1
|
Cournoyer JE, De BC, Mehta AP. Molecular and biochemical insights from natural and engineered photosynthetic endosymbiotic systems. Curr Opin Chem Biol 2025; 87:102598. [PMID: 40252292 DOI: 10.1016/j.cbpa.2025.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
Mitochondria and chloroplasts evolved through the transformation of bacterial endosymbionts established within the host cells. Studies on these organelles have provided several phylogenetic and biochemical insights related to this remarkable evolutionary transformation. Additionally, comparative studies between naturally existing endosymbionts and present-day organelles have allowed us to identify important common features of endosymbiotic evolution. In this review, we discuss hallmarks of photosynthetic endosymbiotic systems, particularly focusing on some of the fascinating molecular changes that occur in the endosymbiont and the host as the endosymbiont/host chimera evolves and transforms endosymbionts into organelles; these include the following: (i) endosymbiont genome minimization and host/endosymbiont gene transfer, (ii) protein import/export systems, (iii) metabolic crosstalk between the endosymbiont, (iv) alterations to the endosymbiont peptidoglycan, and (v) host-controlled replication of endosymbionts/organelles. We discuss these hallmarks in the context of naturally existing photosynthetic endosymbiotic systems and present-day chloroplasts. Further, we also briefly discuss laboratory efforts to engineer endosymbiosis between photosynthetic bacteria and host cells, the lessons learned from these studies, future directions of these studies, and their implications on evolutionary biology and synthetic biology.
Collapse
Affiliation(s)
- Jay E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Bidhan C De
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, IL 61801, United States.
| |
Collapse
|
2
|
Clark-Cotton MR, Chen SA, Gomez A, Mulabagal AJ, Perry A, Malhotra V, Onishi M. Imaging-based screen identifies novel natural compounds that perturb cell and chloroplast division in Chlamydomonas reinhardtii. Mol Biol Cell 2025; 36:br14. [PMID: 40020179 PMCID: PMC12005104 DOI: 10.1091/mbc.e24-09-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
Successful cell division requires faithful division and segregation of organelles into daughter cells. The unicellular alga Chlamydomonas reinhardtii has a single, large chloroplast whose division is spatiotemporally coordinated with furrowing. Cytoskeletal structures form in the same plane at the midzone of the dividing chloroplast (FtsZ) and the cell (microtubules), but how these structures are coordinated is not understood. Previous work showed that loss of F-actin blocks chloroplast division but not furrow ingression, suggesting that pharmacological perturbations can disorganize these events. In this study, we developed an imaging platform to screen natural compounds that perturb cell division while monitoring FtsZ and microtubules and identified 70 unique compounds. One compound, curcumin, has been proposed to bind to both FtsZ and tubulin proteins in bacteria and eukaryotes, respectively. In C. reinhardtii, where both targets coexist and are involved in cell division, curcumin at a specific dose range caused a severe disruption of the FtsZ ring in chloroplast while leaving the furrow-associated microtubule structures largely intact. Time-lapse imaging showed that loss of FtsZ and chloroplast division failure delayed the completion of furrowing but not the initiation, suggesting that the chloroplast division checkpoint proposed in other algae requires FtsZ or is absent altogether in C. reinhardtii.
Collapse
Affiliation(s)
| | - Sheng-An Chen
- Department of Biology, Duke University, Durham, NC 27708
| | - Aracely Gomez
- Project SEED, North Carolina Section, American Chemical Society, Chapel Hill, NC 27514
| | | | - Adriana Perry
- Project SEED, North Carolina Section, American Chemical Society, Chapel Hill, NC 27514
| | | | | |
Collapse
|
3
|
Maurya AK, Kröninger L, Ehret G, Bäumers M, Marson M, Scheu S, Nowack ECM. A nucleus-encoded dynamin-like protein controls endosymbiont division in the trypanosomatid Angomonas deanei. SCIENCE ADVANCES 2025; 11:eadp8518. [PMID: 40106558 DOI: 10.1126/sciadv.adp8518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Angomonas deanei is a trypanosomatid of the Strigomonadinae. All members of this subfamily contain a single β-proteobacterial endosymbiont. Intriguingly, cell cycles of host and endosymbiont are synchronized. The molecular mechanisms underlying this notable level of integration are unknown. Previously, we identified a nucleus-encoded dynamin-like protein, called ETP9, that localizes at the endosymbiont division site of A. deanei. Here, we found by comparative genomics that endosymbionts throughout the Strigomonadinae lost the capacity to autonomously form a division septum. We describe the cell cycle-dependent subcellular localization of ETP9 that follows accumulation of the bacterium-encoded division protein FtsZ at the endosymbiont division site. Furthermore, we found that ETP9 is essential in symbiotic but dispensable in aposymbiotic A. deanei that lost the endosymbiont. In the symbiotic strain, ETP9 knockdowns resulted in filamentous, division-impaired endosymbionts. Our work unveiled that in A. deanei an endosymbiont division machinery of dual genetic origin evolved in which a neo-functionalized host protein compensates for losses of endosymbiont division genes.
Collapse
Affiliation(s)
- Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Marson
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
MOGI Y, MATSUO Y, KONDO Y, HIGASHIYAMA T, INADA T, YOSHIDA Y. Genome-wide changes of protein translation levels for cell and organelle proliferation in a simple unicellular alga. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:41-53. [PMID: 39805589 PMCID: PMC11808204 DOI: 10.2183/pjab.101.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025]
Abstract
Cell proliferation is a fundamental characteristic of organisms, driven by the holistic functions of multiple proteins encoded in the genome. However, the individual contributions of thousands of genes and the millions of protein molecules they express to cell proliferation are still not fully understood, even in simple eukaryotes. Here, we present a genome-wide translation map of cells during proliferation in the unicellular alga Cyanidioschyzon merolae, based on the sequencing of ribosome-protected messenger RNA fragments. Ribosome profiling has revealed both qualitative and quantitative changes in protein translation for each gene during cell division, driven by the large-scale reallocation of ribosomes. Comparisons of ribosome footprints from non-dividing and dividing cells allowed the identification of proteins involved in cell proliferation. Given that in vivo experiments on two selected candidate proteins identified a division-phase-specific mitochondrial nucleoid protein and a mitochondrial division protein, further analysis of the candidate proteins may offer key insights into the comprehensive mechanism that facilitate cell and organelle proliferation.
Collapse
Affiliation(s)
- Yuko MOGI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Co-first author
| | - Yoshitaka MATSUO
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Co-first author
| | - Yuiki KONDO
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya HIGASHIYAMA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshifumi INADA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yamato YOSHIDA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Telli M, Ünlü ES. Comparative de novo transcriptome analysis and random UV mutagenesis: application in high biomass and astaxanthin production enhancement for Haematococcus pluvialis. Mol Biol Rep 2023; 50:8133-8143. [PMID: 37550538 DOI: 10.1007/s11033-023-08722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Astaxanthin is a natural carotenoid with strong antioxidant capacity. The high demand on astaxanthin by cosmetic, food, pharmaceutical and aquaculture industries promote its value in the biotechnological research. Haematococcus pluvialis Flotow 1844 has been characterized as one of the most promising species for natural astaxanthin biosynthesis. Even though H. pluvialis as an advantage in producing astaxanthin, its slow grow-yield limits usage of the species for large-scale production. METHODS AND RESULTS In this study we generated mutated H. pluvialis strain by using one-step random UV mutagenesis approach for higher biomass production in the green flagellated period and in turn higher astaxanthin accumulation in red stage per unit algae harvest. Isolated mutant strains were tested for the astaxanthin accumulation and yield of biomass. Among tested strains only mutant strain designated as only MT-3-7-2 showed a consistent and higher growth pattern, the rest had shown a fluctuated and then decreased growth rate than wild type. To demonstrate the phenotypical changes in MT-3-7-2 is associated with transcriptome, we carried out comparative analysis of transcriptome profiles between MT-3-7-2 and the wild type strains. De novo assembly was carried out to obtain the transcripts. Differential expression levels for the transcripts were evaluated by functional annotation analysis. CONCLUSIONS Data showed that increased biomass for the MT-3-7-2 strain was different from wild type with expression of transcripts upregulated in carbohydrate metabolism and downregulated in lipid metabolisms. Our data suggests a switching mechanism is enrolled between carbohydrate and lipid metabolism to regulate cell proliferation and stress responses.
Collapse
Affiliation(s)
- Murat Telli
- Faculty of Art and Science, Department of Biology, Bolu Abant İzzet Baysal University, 14280, Bolu, Turkey.
| | - Ercan Selçuk Ünlü
- Faculty of Art and Science, Department of Chemistry, Bolu Abant İzzet Baysal University, 14280, Bolu, Turkey
| |
Collapse
|
6
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
7
|
Sumiya N. Coordination mechanism of cell and cyanelle division in the glaucophyte alga Cyanophora sudae. PROTOPLASMA 2022; 259:855-867. [PMID: 34553240 DOI: 10.1007/s00709-021-01704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In unicellular algae with a single chloroplast, two mechanisms coordinate cell and chloroplast division: the S phase-specific expression of chloroplast division genes and the permission of cell cycle progression from prophase to metaphase by the onset of chloroplast division. This study investigated whether a similar mechanism exists in a unicellular alga with multiple chloroplasts using the glaucophyte alga Cyanophora sudae, which contains four chloroplasts (cyanelles). Cells with eight cyanelles appeared after the S phase arrest with a topoisomerase inhibitor camptothecin, suggesting that the mechanism of S phase-specific expression of cyanelle division genes was conserved in this alga. Inhibition of peptidoglycan synthesis by β-lactam antibiotic ampicillin arrested cells in the S-G2 phase, and inhibition of septum invagination with cephalexin resulted in cells with two nuclei and one cyanelle, despite inhibition of cyanelle division. This indicates that even in the unicellular alga with four chloroplasts, the cell cycle progresses to the M phase following the progression of chloroplast division to a certain division stage. These results suggested that C. sudae has two mechanisms for coordinating cell and cyanelle division, similar to the unicellular algae with a single chloroplast.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
8
|
Sumiya N. Cis-acting elements involved in the G2/M-phase-specific transcription of the cyclin B gene in the unicellular alga Cyanidioschyzon merolae. JOURNAL OF PLANT RESEARCH 2021; 134:1301-1310. [PMID: 34338916 DOI: 10.1007/s10265-021-01334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
M-specific activator (MSA) cis-acting elements have been determined to be involved in the regulation of G2/M-phase-specific transcription in spermatophytes. In this study, the involvement of MSA-core elements in G2/M-phase-specific transcription was examined in the unicellular red alga Cyanidioschyzon merolae. In the C. merolae genome, MSA-core elements do not accumulate specifically in the upstream of mitosis-specific transcriptional genes. Mutations of the four MSA-core elements of the cyclin B gene, which encodes a central factor of the G2-to-M-phase transition, have resulted in the abolishment of transcription or permission of transcription even in the G1 phase. These results suggest that all four MSA-core elements located in the upstream region of cyclin B are involved in G2/M-phase-specific transcription in C. merolae; however, the nature of the involvement of MSA-core elements in G2/M-phase-specific transcription differed among the four elements. Thus, MSA-core-element-mediated G2/M-phase-specific transcription in C. merolae seems to be regulated by a complex mechanism.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
| |
Collapse
|
9
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
10
|
Jong LW, Fujiwara T, Hirooka S, Miyagishima SY. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. PROTOPLASMA 2021; 258:1103-1118. [PMID: 33675395 DOI: 10.1007/s00709-021-01628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Several eukaryotic cell lineages proliferate by multiple fission cell cycles, during which cells grow to manyfold of their original size, then undergo several rounds of cell division without intervening growth. A previous study on volvocine green algae, including both unicellular and multicellular (colonial) species, showed a correlation between the minimum number of successive cell divisions without intervening cellular growth, and the threshold cell size for commitment to the first round of successive cell divisions: two times the average newly born daughter cell volume for unicellular Chlamydomonas reinhardtii, four times for four-celled Tetrabaena socialis, in which each cell in the colony produces a daughter colony by two successive cell divisions, and eight times for the eight-celled Gonium pectorale, in which each cell produces a daughter colony by three successive cell divisions. To assess whether this phenomenon is also applicable to other lineages, we have characterized cyanidialean red algae, namely, Cyanidioschyzon merolae, which proliferates by binary fission, as well as Cyanidium caldarium and Galdieria sulphuraria, which form up to four and 32 daughter cells (autospores), respectively, in a mother cell before hatching out. The result shows that there is also a correlation between the number of successive cell divisions and the threshold cell size for cell division or the first round of the successive cell divisions. In both C. merolae and C. caldarium, the cell size checkpoint for cell division(s) exists in the G1-phase, as previously shown in volvocine green algae. When C. merolae cells were arrested in the G1-phase and abnormally enlarged by conditional depletion of CDKA, the cells underwent two or more successive cell divisions without intervening cellular growth after recovery of CDKA, similarly to C. caldarium and G. sulphuraria. These results suggest that the threshold size for cell division is a major factor in determining the number of successive cell divisions and that evolutionary changes in the mechanism of cell size monitoring resulted in a variation of multiple fission cell cycle in eukaryotic algae.
Collapse
Affiliation(s)
- Lin Wei Jong
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan.
| |
Collapse
|
11
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
12
|
Abstract
It is widely believed that cleavage-furrow formation during cytokinesis is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green alga Chlamydomonas reinhardtii We found that although F-actin is associated with the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cytokinesis itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that microtubules are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.
Collapse
|
13
|
Ferrari C, Mutwil M. Gene expression analysis of Cyanophora paradoxa reveals conserved abiotic stress responses between basal algae and flowering plants. THE NEW PHYTOLOGIST 2020; 225:1562-1577. [PMID: 31602652 DOI: 10.1111/nph.16257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/04/2019] [Indexed: 05/25/2023]
Abstract
The glaucophyte Cyanophora paradoxa represents the most basal member of the kingdom Archaeplastida, but the function and expression of most of its genes are unknown. This information is needed to uncover how functional gene modules, that is groups of genes performing a given function, evolved in the plant kingdom. We have generated a gene expression atlas capturing responses of Cyanophora to various abiotic stresses. The data were included in the CoNekT-Plants database, enabling comparative transcriptomic analyses across two algae and six land plants. We demonstrate how the database can be used to study gene expression, co-expression networks and gene function in Cyanophora, and how conserved transcriptional programs can be identified. We identified gene modules involved in phycobilisome biosynthesis, response to high light and cell division. While we observed no correlation between the number of differentially expressed genes and the impact on growth of Cyanophora, we found that the response to stress involves a conserved, kingdom-wide transcriptional reprogramming, which is activated upon most stresses in algae and land plants. The Cyanophora stress gene expression atlas and the tools found in the https://conekt.plant.tools/ database thus provide a useful resource to reveal functionally related genes and stress responses in the plant kingdom.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
14
|
Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, Ferrari C, Facchinelli F, Ball SG, Cenci U, Chan CX, Wagner NE, Yoon HS, Weber APM, Bhattacharya D. Analysis of an improved Cyanophora paradoxa genome assembly. DNA Res 2020; 26:287-299. [PMID: 31098614 PMCID: PMC6704402 DOI: 10.1093/dnares/dsz009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.
Collapse
Affiliation(s)
- Dana C Price
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Marek Mutwil
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Camilla Ferrari
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Fabio Facchinelli
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole E Wagner
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Miyagishima SY, Era A, Hasunuma T, Matsuda M, Hirooka S, Sumiya N, Kondo A, Fujiwara T. Day/Night Separation of Oxygenic Energy Metabolism and Nuclear DNA Replication in the Unicellular Red Alga Cyanidioschyzon merolae. mBio 2019; 10:e00833-19. [PMID: 31266864 PMCID: PMC6606799 DOI: 10.1128/mbio.00833-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The transition from G1 to S phase and subsequent nuclear DNA replication in the cells of many species of eukaryotic algae occur predominantly during the evening and night in the absence of photosynthesis; however, little is known about how day/night changes in energy metabolism and cell cycle progression are coordinated and about the advantage conferred by the restriction of S phase to the night. Using a synchronous culture of the unicellular red alga Cyanidioschyzon merolae, we found that the levels of photosynthetic and respiratory activities peak during the morning and then decrease toward the evening and night, whereas the pathways for anaerobic consumption of pyruvate, produced by glycolysis, are upregulated during the evening and night as reported recently in the green alga Chlamydomonas reinhardtii Inhibition of photosynthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) largely reduced respiratory activity and the amplitude of the day/night rhythm of respiration, suggesting that the respiratory rhythm depends largely on photosynthetic activity. Even when the timing of G1/S-phase transition was uncoupled from the day/night rhythm by depletion of retinoblastoma-related (RBR) protein, the same patterns of photosynthesis and respiration were observed, suggesting that cell cycle progression and energy metabolism are regulated independently. Progression of the S phase under conditions of photosynthesis elevated the frequency of nuclear DNA double-strand breaks (DSB). These results suggest that the temporal separation of oxygenic energy metabolism, which causes oxidative stress, from nuclear DNA replication reduces the risk of DSB during cell proliferation in C. merolaeIMPORTANCE Eukaryotes acquired chloroplasts through an endosymbiotic event in which a cyanobacterium or a unicellular eukaryotic alga was integrated into a previously nonphotosynthetic eukaryotic cell. Photosynthesis by chloroplasts enabled algae to expand their habitats and led to further evolution of land plants. However, photosynthesis causes greater oxidative stress than mitochondrion-based respiration. In seed plants, cell division is restricted to nonphotosynthetic meristematic tissues and populations of photosynthetic cells expand without cell division. Thus, seemingly, photosynthesis is spatially sequestrated from cell proliferation. In contrast, eukaryotic algae possess photosynthetic chloroplasts throughout their life cycle. Here we show that oxygenic energy conversion (daytime) and nuclear DNA replication (night time) are temporally sequestrated in C. merolae This sequestration enables "safe" proliferation of cells and allows coexistence of chloroplasts and the eukaryotic host cell, as shown in yeast, where mitochondrial respiration and nuclear DNA replication are temporally sequestrated to reduce the mutation rate.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Atsuko Era
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Nobuko Sumiya
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Nada, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Nada, Kobe, Japan
- Biomass Engineering Program, RIKEN, Yokohama, Kanagawa, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| |
Collapse
|
16
|
Hovde BT, Deodato CR, Andersen RA, Starkenburg SR, Barlow SB, Cattolico RA. Chrysochromulina: Genomic assessment and taxonomic diagnosis of the type species for an oleaginous algal clade. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Li J, Chen Q, Bao B, Liu M, Bao M, Liu J, Mu J. RNA-seq analysis reveals the significant effects of different light conditions on oil degradation by marine Chlorella vulgaris. MARINE POLLUTION BULLETIN 2018; 137:267-276. [PMID: 30503435 DOI: 10.1016/j.marpolbul.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/30/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Marine Chlorella vulgaris, an efficient hydrocarbon-degrading organism, is easily affected by light. In this study, we investigated the direct effects of different light conditions on crude oil degradation by C. vulgaris and its crude enzyme. Under 12 h illumination, the crude enzyme improved hydrocarbon removal by 39.36%, whereas the addition of the enzyme and C. vulgaris increased the degradation rate by 121.73%. Conversely, the addition of enzyme under heterotrophic condition was negatively related to oil degradation by C. vulgaris, and the degradation rate decreased from 74.32% to 48.65% and further reduced by 34.54%. The results of RNA sequencing analysis suggested that hydrocarbons removal was attributed to C. vulgaris metabolism in heterotrophic physiological state. While enhanced removal efficiency of hydrocarbons was achieved in mixotrophic physiological state due to the coupling of C. vulgaris metabolism with photocatalytic oxidation. Functional enzymes played key roles in photocatalysis and biodegradation processes.
Collapse
Affiliation(s)
- Jingjing Li
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qingguo Chen
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Bo Bao
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei Liu
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Junzhi Liu
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jun Mu
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
18
|
Pokora W, Aksmann A, Baścik-Remisiewicz A, Dettlaff-Pokora A, Tukaj Z. Exogenously applied hydrogen peroxide modifies the course of the Chlamydomonas reinhardtii cell cycle. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:61-72. [PMID: 30170242 DOI: 10.1016/j.jplph.2018.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The interaction of NO and H2O2 in the regulation of plant development is well documented. We have recently shown that the content of NO and H2O2 changes in a characteristic way during the cell cycle of Chlamydomonas reinhardtii (Pokora et al., 2017), which implies participation of these molecules in the regulation of Chlamydomonas development. To verify this assumption, H2O2 was supplied at a concentration about 1.5 times higher than that determined in the control cells. Cells were synchronized by alternating the light/dark (10/14 h) regimen. H2O2 was added to zoospore suspensions, previously held in the dark, and cells growing for 3, 6, and 9 h in the light. The data indicate that, depending on the phase of the Chlamydomonas cell cycle, H2O2, via mild modification of redox homeostasis, may: a) accelerate or delay the duration of the cell cycle; b) increase the number of replication rounds occurring in one cell cycle; c) modify the biomass and cell volume of progeny cells and d) accelerate the liberation of daughter cells. This provides a tool to control the development of Chlamydomonas cell and thus offers the opportunity to obtain a population of cells with characteristics desired in biotechnology.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Baścik-Remisiewicz
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
19
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Kim JI, Moore CE, Archibald JM, Bhattacharya D, Yi G, Yoon HS, Shin W. Evolutionary Dynamics of Cryptophyte Plastid Genomes. Genome Biol Evol 2017; 9:1859-1872. [PMID: 28854597 PMCID: PMC5534331 DOI: 10.1093/gbe/evx123] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cryptophytes are an ecologically important group of largely photosynthetic unicellular eukaryotes. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin and the host cell retains four different genomes (host nuclear, mitochondrial, plastid, and red algal nucleomorph). Here, we report a comparative analysis of plastid genomes from six representative cryptophyte genera. Four newly sequenced cryptophyte plastid genomes of Chroomonas mesostigmatica, Ch. placoidea, Cryptomonas curvata, and Storeatula sp. CCMP1868 share a number of features including synteny and gene content with the previously sequenced genomes of Cryptomonas paramecium, Rhodomonas salina, Teleaulax amphioxeia, and Guillardia theta. Our analysis of these plastid genomes reveals examples of gene loss and intron insertion. In particular, the chlB/chlL/chlN genes, which encode light-independent (dark active) protochlorophyllide oxidoreductase (LIPOR) proteins have undergone recent gene loss and pseudogenization in cryptophytes. Comparison of phylogenetic trees based on plastid and nuclear genome data sets show the introduction, via secondary endosymbiosis, of a red algal derived plastid in a lineage of chlorophyll-c containing algae. This event was followed by additional rounds of eukaryotic endosymbioses that spread the red lineage plastid to diverse groups such as haptophytes and stramenopiles.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Christa E Moore
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Gangman Yi
- Department of Multimedia Engineering, Dongkuk University, Seoul, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
21
|
Life Cycle Analysis of Endosymbiotic Algae in an Endosymbiotic Situation with Paramecium bursaria Using Capillary Flow Cytometry. ENERGIES 2017. [DOI: 10.3390/en10091413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Onuma R, Mishra N, Miyagishima SY. Regulation of chloroplast and nucleomorph replication by the cell cycle in the cryptophyte Guillardia theta. Sci Rep 2017; 7:2345. [PMID: 28539635 PMCID: PMC5443833 DOI: 10.1038/s41598-017-02668-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023] Open
Abstract
The chloroplasts of cryptophytes arose through a secondary endosymbiotic event in which a red algal endosymbiont was integrated into a previously nonphotosynthetic eukaryote. The cryptophytes retain a remnant of the endosymbiont nucleus (nucleomorph) that is replicated once in the cell cycle along with the chloroplast. To understand how the chloroplast, nucleomorph and host cell divide in a coordinated manner, we examined the expression of genes/proteins that are related to nucleomorph replication and chloroplast division as well as the timing of nuclear and nucleomorph DNA synthesis in the cryptophyte Guillardia theta. Nucleus-encoded nucleomorph HISTONE H2A mRNA specifically accumulated during the nuclear S phase. In contrast, nucleomorph-encoded genes/proteins that are related to nucleomorph replication and chloroplast division (FtsZ) are constantly expressed throughout the cell cycle. The results of this study and previous studies on chlorarachniophytes suggest that there was a common evolutionary pattern in which an endosymbiont lost its replication cycle-dependent transcription while cell-cycle-dependent transcriptional regulation of host nuclear genes came to restrict the timing of nucleomorph replication and chloroplast division.
Collapse
Affiliation(s)
- Ryo Onuma
- Department of Cell Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| | - Neha Mishra
- Department of Cell Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
23
|
Pedroza-Garcia JA, Domenichini S, Bergounioux C, Benhamed M, Raynaud C. Chloroplasts around the plant cell cycle. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:107-113. [PMID: 27816816 DOI: 10.1016/j.pbi.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Plastids arose from an endosymbiosis between a host cell and free-living bacteria. One key step during this evolutionary process has been the establishment of coordinated cell and symbiont division to allow the maintenance of organelles during proliferation of the host. However, surprisingly little is known about the underlying mechanisms. In addition, due to their central role in the cell's energetic metabolism and to their sensitivity to various environmental cues such as light or temperature, plastids are ideally fitted to be the source of signals allowing plants to adapt their development according to external conditions. Consistently, there is accumulating evidence that plastid-derived signals can impinge on cell cycle regulation. In this review, we summarize current knowledge of the dialogue between chloroplasts and the nucleus in the context of the cell cycle.
Collapse
Affiliation(s)
- José-Antonio Pedroza-Garcia
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Séverine Domenichini
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
24
|
Abstract
Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase-specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle.
Collapse
|
25
|
Suzuki S, Ishida KI, Hirakawa Y. Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans. Genome Biol Evol 2016; 8:2672-82. [PMID: 27503292 PMCID: PMC5635652 DOI: 10.1093/gbe/evw188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chlorarachniophyte algae possess complex plastids acquired by the secondary endosymbiosis of a green alga, and the plastids harbor a relict nucleus of the endosymbiont, the so-called nucleomorph. Due to massive gene transfer from the endosymbiont to the host, many proteins involved in plastid and nucleomorph are encoded by the nuclear genome. Genome sequences have provided a blueprint for the fate of endosymbiotically derived genes; however, transcriptional regulation of these genes remains poorly understood. To gain insight into the evolution of endosymbiotic genes, we performed genome-wide transcript profiling along the cell cycle of the chlorarachniophyte Bigelowiella natans, synchronized by light and dark cycles. Our comparative analyses demonstrated that transcript levels of 7,751 nuclear genes (35.7% of 21,706 genes) significantly oscillated along the diurnal/cell cycles, and those included 780 and 147 genes for putative plastid and nucleomorph-targeted proteins, respectively. Clustering analysis of those genes revealed the existence of transcriptional networks related to specific biological processes such as photosynthesis, carbon metabolism, translation, and DNA replication. Interestingly, transcripts of many plastid-targeted proteins in B. natans were induced before dawn, unlike other photosynthetic organisms. In contrast to nuclear genes, 99% nucleomorph genes were found to be constitutively expressed during the cycles. We also found that the nucleomorph DNA replication would be controlled by a nucleus-encoded viral-like DNA polymerase. The results of this study suggest that nucleomorph genes have lost transcriptional regulation along the diurnal cycles, and nuclear genes exert control over the complex plastid including the nucleomorph.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Takahashi T. Simultaneous Evaluation of Life Cycle Dynamics between a Host Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow Cytometry. Sci Rep 2016; 6:31638. [PMID: 27531180 PMCID: PMC4987690 DOI: 10.1038/srep31638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/22/2016] [Indexed: 01/16/2023] Open
Abstract
Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Miyazaki, Japan
| |
Collapse
|
27
|
Hirakawa Y, Ishida KI. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae. BMC PLANT BIOLOGY 2015; 15:276. [PMID: 26556725 PMCID: PMC4641359 DOI: 10.1186/s12870-015-0662-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/03/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Division of double-membraned plastids (primary plastids) is performed by constriction of a ring-like division complex consisting of multiple plastid division proteins. Consistent with the endosymbiotic origin of primary plastids, some of the plastid division proteins are descended from cyanobacterial cell division machinery, and the others are of host origin. In several algal lineages, complex plastids, the "secondary plastids", have been acquired by the endosymbiotic uptake of primary plastid-bearing algae, and are surrounded by three or four membranes. Although homologous genes for primary plastid division proteins have been found in genome sequences of secondary plastid-bearing organisms, little is known about the function of these proteins or the mechanism of secondary plastid division. RESULTS To gain insight into the mechanism of secondary plastid division, we characterized two plastid division proteins, FtsZD-1 and FtsZD-2, in chlorarachniophyte algae. FtsZ homologs were encoded by the nuclear genomes and carried an N-terminal plastid targeting signal. Immunoelectron microscopy revealed that both FtsZD-1 and FtsZD-2 formed a ring-like structure at the midpoint of bilobate plastids with a projecting pyrenoid in Bigelowiella natans. The ring was always associated with a shallow plate-like invagination of the two innermost plastid membranes. Furthermore, gene expression analysis confirmed that transcripts of ftsZD genes were periodically increased soon after cell division during the B. natans cell cycle, which is not consistent with the timing of plastid division. CONCLUSIONS Our findings suggest that chlorarachniophyte FtsZD proteins are involved in partial constriction of the inner pair of plastid membranes, but not in the whole process of plastid division. It is uncertain how the outer pair of plastid membranes is constricted, and as-yet-unknown mechanism is required for the secondary plastid division in chlorarachniophytes.
Collapse
Affiliation(s)
- Yoshihisa Hirakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
28
|
Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima SY. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2015; 56:1962-80. [PMID: 26272551 DOI: 10.1093/pcp/pcv120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/07/2015] [Indexed: 05/21/2023]
Abstract
Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yasuko Kawase
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Jumpei Hayakawa
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mami Matsuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Mami Nakamura
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Atsuko Era
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kan Tanaka
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Sousuke Imamura
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shin-ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
29
|
Reyes-Prieto A. The basic genetic toolkit to move in with your photosynthetic partner. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
31
|
Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 2014; 9:e111261. [PMID: 25337786 PMCID: PMC4206486 DOI: 10.1371/journal.pone.0111261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage.
Collapse
|
32
|
Miyagishima SY, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M. Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 2014; 5:3807. [PMID: 24806410 DOI: 10.1038/ncomms4807] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms of cell division have been observed in several lineages of eukaryotes, especially photosynthetic unicellular eukaryotes. However, the mechanism underlying the circadian regulation of the cell cycle and the nature of the advantage conferred remain unknown. Here, using the unicellular red alga Cyanidioschyzon merolae, we show that the G1/S regulator RBR-E2F-DP complex links the G1/S transition to circadian rhythms. Time-dependent E2F phosphorylation promotes the G1/S transition during subjective night and this phosphorylation event occurs independently of cell cycle progression, even under continuous dark or when cytosolic translation is inhibited. Constitutive expression of a phospho-mimic of E2F or depletion of RBR unlinks cell cycle progression from circadian rhythms. These transgenic lines are exposed to higher oxidative stress than the wild type. Circadian inhibition of cell cycle progression during the daytime by RBR-E2F-DP pathway likely protects cells from photosynthetic oxidative stress by temporally compartmentalizing photosynthesis and cell cycle progression.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima 411-8540, Shizuoka, Japan [3] Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan [4]
| | - Takayuki Fujiwara
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2]
| | - Nobuko Sumiya
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan [3]
| | - Shunsuke Hirooka
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Akihiko Nakano
- 1] Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan [2] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Yukihiro Kabeya
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| | - Mami Nakamura
- 1] Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan [2] Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| |
Collapse
|
33
|
Miyagishima SY, Kabeya Y, Sugita C, Sugita M, Fujiwara T. DipM is required for peptidoglycan hydrolysis during chloroplast division. BMC PLANT BIOLOGY 2014; 14:57. [PMID: 24602296 PMCID: PMC4015805 DOI: 10.1186/1471-2229-14-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/26/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained over time by chloroplast division, a process which is performed by the constriction of a ring-like division complex at the division site. The division complex has retained certain components of the cyanobacterial division complex, which function inside the chloroplast. It also contains components developed by the host cell, which function outside of the chloroplast and are believed to generate constrictive force from the cytosolic side, at least in red algae and Viridiplantae. In contrast to the chloroplasts in these lineages, those in glaucophyte algae possess a peptidoglycan layer between the two envelope membranes, as do cyanobacteria. RESULTS In this study, we show that chloroplast division in the glaucophyte C. paradoxa does not involve any known chloroplast division proteins of the host eukaryotic origin, but rather, peptidoglycan spitting and probably the outer envelope division process rely on peptidoglycan hydrolyzing activity at the division site by the DipM protein, as in cyanobacterial cell division. In addition, we found that DipM is required for normal chloroplast division in the moss Physcomitrella patens. CONCLUSIONS These results suggest that the regulation of peptidoglycan splitting was essential for chloroplast division in the early evolution of chloroplasts and this activity is likely still involved in chloroplast division in Viridiplantae.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yukihiro Kabeya
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Fujiwara
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
34
|
Miyagishima SY, Nakamura M, Uzuka A, Era A. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. FRONTIERS IN PLANT SCIENCE 2014; 5:459. [PMID: 25309558 PMCID: PMC4164004 DOI: 10.3389/fpls.2014.00459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 05/08/2023]
Abstract
The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
- *Correspondence: Shin-ya Miyagishima, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Mami Nakamura
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Akihiro Uzuka
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Atsuko Era
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
| |
Collapse
|
35
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
36
|
TerBush AD, Yoshida Y, Osteryoung KW. FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 2013; 25:461-70. [DOI: 10.1016/j.ceb.2013.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 11/30/2022]
|
37
|
Yoshida Y, Miyagishima SY, Kuroiwa H, Kuroiwa T. The plastid-dividing machinery: formation, constriction and fission. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:714-21. [PMID: 22824141 DOI: 10.1016/j.pbi.2012.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 05/11/2023]
Abstract
Plastids divide by constriction of the plastid-dividing (PD) machinery, which encircles the division site. The PD machinery consists of the stromal inner machinery which includes the inner PD and filamenting temperature-sensitive mutant Z (FtsZ) rings and the cytosolic outer machinery which includes the outer PD and dynamin rings. The major constituent of the PD machinery is the outer PD ring, which consists of a bundle of polyglucan filaments. In addition, recent proteomic studies suggest that the PD machinery contains additional proteins that have not been characterized. The PD machinery forms from the inside to the outside of the plastid. The constriction seems to occur by sliding of the polyglucan filaments of the outer PD ring, aided by dynamin. The final fission of the plastid is probably promoted by the 'pinchase' activity of dynamin.
Collapse
Affiliation(s)
- Yamato Yoshida
- Initiative Research Unit, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|