1
|
Venn AA, Tambutté E, Crovetto L, Tambutté S. pH regulation in coral photosymbiosis and calcification: a compartmental perspective. THE NEW PHYTOLOGIST 2025. [PMID: 40365728 DOI: 10.1111/nph.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/18/2025] [Indexed: 05/15/2025]
Abstract
The coral-dinoflagellate photosymbiosis and coral calcification underpin shallow water, coral reef ecosystems. This review examines the pivotal role of pH regulation in the cell physiology of these processes. Despite simple tissue organization, photosymbiotic corals maintain a complex internal microenvironment, with distinct compartments exhibiting contrasting pH levels. For example, the acidic 'symbiosome' surrounds the algal symbionts, while the alkaline 'extracellular calcifying medium' occurs at the growing front of the skeleton. We discuss how pH regulation of these compartments is crucial to the functioning of coral photosymbiosis and calcification, as well as mitigating the internal acid-base imbalances that these processes create. The role of pH regulation in the interplay between photosymbiosis and calcification is also discussed, focusing on the influence of symbiont photosynthesis on transepithelial gradients and the distribution of energy sources in the coral colony. Throughout this review, insights into pH regulation derived from previous research on ocean acidification are integrated to deepen understanding. Finally, we propose research priorities to advance knowledge of coral resilience under changing ocean conditions, such as investigating inorganic carbon concentration within coral compartments, species-specific differences and the impacts of thermal stress on pH regulation.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Lucas Crovetto
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
- Sorbonne Université - ED 515 Complexité du Vivant, 75005, Paris, France
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, 98000, Monaco
| |
Collapse
|
2
|
Epstein HE, Brown T, Akinrinade AO, McMinds R, Pollock FJ, Sonett D, Smith S, Bourne DG, Carpenter CS, Knight R, Willis BL, Medina M, Lamb JB, Thurber RV, Zaneveld JR. Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution. Anim Microbiome 2025; 7:1. [PMID: 39754287 PMCID: PMC11697511 DOI: 10.1186/s42523-024-00370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea. RESULTS Using a comparative approach, we tested if coral microbiomes correlate with disease susceptibility across 425 million years of coral evolution by conducting a cross-species coral microbiome survey (the "Global Coral Microbiome Project") and combining the results with long-term global disease prevalence and coral trait data. Interpreting these data in their phylogenetic context, we show that microbial dominance predicts disease susceptibility, and traced this dominance-disease association to a single putatively beneficial symbiont genus, Endozoicomonas. Endozoicomonas relative abundance in coral tissue explained 30% of variation in disease susceptibility and 60% of variation in microbiome dominance across 40 coral genera, while also correlating strongly with high growth rates. CONCLUSIONS These results demonstrate that the evolution of Endozoicomonas symbiosis in corals correlates with both disease prevalence and growth rate, and suggest a mediating role. Exploration of the mechanistic basis for these findings will be important for our understanding of how microbial symbioses influence animal life-history tradeoffs.
Collapse
Affiliation(s)
- Hannah E Epstein
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
| | - Tanya Brown
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Biology, University of Texas, Tyler, TX, 75799, USA
| | - Ayọmikun O Akinrinade
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Ryan McMinds
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
- Center for Global Health and Infectious Diseases Research, University of South Florida, 13201 Bruce B. Downs Blvd, MDC 56, Tampa, FL, 33612, USA
| | - F Joseph Pollock
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
- Hawai'i & Palmyra Program, The Nature Conservancy, Honolulu, HI, USA
| | - Dylan Sonett
- School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Styles Smith
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Carolina S Carpenter
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Philadelphia, PA, 16802, USA
| | - Joleah B Lamb
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Jesse R Zaneveld
- School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA
| |
Collapse
|
3
|
Harracksingh AN, Singh A, Mayorova T, Bejoy B, Hornbeck J, Elkhatib W, McEdwards G, Gauberg J, Taha ARW, Islam IM, Erclik T, Currie MA, Noyes M, Senatore A. Mint/X11 PDZ domains from non-bilaterian animals recognize and bind Ca V 2 calcium channel C-termini in vitro . BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582151. [PMID: 38463976 PMCID: PMC10925089 DOI: 10.1101/2024.02.26.582151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PDZ domain mediated interactions with voltage-gated calcium (Ca V ) channel C-termini play important roles in localizing membrane Ca 2+ signaling. The first such interaction was described between the scaffolding protein Mint-1 and Ca V 2.2 in mammals. In this study, we show through various in silico analyses that Mint is an animal-specific gene with a highly divergent N-terminus but a strongly conserved C-terminus comprised of a phosphotyrosine binding domain, two tandem PDZ domains (PDZ-1 and PDZ-2), and a C-terminal auto-inhibitory element that binds and inhibits PDZ-1. In addition to Ca V 2 channels, most genes that interact with Mint are also deeply conserved including amyloid precursor proteins, presenilins, neurexin, and CASK and Veli which form a tripartite complex with Mint in bilaterians. Through yeast and bacterial 2-hybrid experiments, we show that Mint and Ca V 2 channels from cnidarians and placozoans interact in vitro , and in situ hybridization revealed co-expression in dissociated neurons from the cnidarian Nematostella vectensis . Unexpectedly, the Mint orthologue from the ctenophore Hormiphora californiensis strongly binds the divergent C-terminal ligands of cnidarian and placozoan Ca V 2 channels, despite neither the ctenophore Mint, nor the placozoan and cnidarian orthologues, binding the ctenophore Ca V 2 channel C-terminus. Altogether, our analyses suggest that the capacity of Mint to bind CaV2 channels predates pre-bilaterian animals, and that evolutionary changes in Ca V 2 channel C-terminal sequences resulted in altered binding modalities with Mint.
Collapse
|
4
|
Guzman C, Mohri K, Nakamura R, Miyake M, Tsuchiya Y, Tomii K, Watanabe H. Neuronal and non-neuronal functions of the synaptic cell adhesion molecule neurexin in Nematostella vectensis. Nat Commun 2024; 15:6495. [PMID: 39090098 PMCID: PMC11294457 DOI: 10.1038/s41467-024-50818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The evolutionary transition from diffusion-mediated cell-cell communication to faster, targeted synaptic signaling in animal nervous systems is still unclear. Genome sequencing analyses have revealed a widespread distribution of synapse-related genes among early-diverging metazoans, but how synaptic machinery evolved remains largely unknown. Here, we examine the function of neurexins (Nrxns), a family of presynaptic cell adhesion molecules with critical roles in bilaterian chemical synapses, using the cnidarian model, Nematostella vectensis. Delta-Nrxns are expressed mainly in neuronal cell clusters that exhibit both peptidergic and classical neurotransmitter signaling. Knockdown of δ-Nrxn reduces spontaneous peristalsis of N. vectensis polyps. Interestingly, gene knockdown and pharmacological studies suggest that δ-Nrxn is involved in glutamate- and glycine-mediated signaling rather than peptidergic signaling. Knockdown of the epithelial α-Nrxn reveals a major role in cell adhesion between ectodermal and endodermal epithelia. Overall, this study provides molecular, functional, and cellular insights into the pre-neural function of Nrxns, as well as key information for understanding how and why they were recruited to the synaptic machinery.
Collapse
Affiliation(s)
- Christine Guzman
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Kurato Mohri
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Minato Miyake
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
5
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
6
|
Jonusaite S, Oulhen N, Izumi Y, Furuse M, Yamamoto T, Sakamoto N, Wessel G, Heyland A. Identification of the genes encoding candidate septate junction components expressed during early development of the sea urchin, Strongylocentrotus purpuratus, and evidence of a role for Mesh in the formation of the gut barrier. Dev Biol 2023; 495:21-34. [PMID: 36587799 DOI: 10.1016/j.ydbio.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Septate junctions (SJs) evolved as cell-cell junctions that regulate the paracellular barrier and integrity of epithelia in invertebrates. Multiple morphological variants of SJs exist specific to different epithelia and/or phyla but the biological significance of varied SJ morphology is unclear because the knowledge of the SJ associated proteins and their functions in non-insect invertebrates remains largely unknown. Here we report cell-specific expression of nine candidate SJ genes in the early life stages of the sea urchin Strongylocentrotus purpuratus. By use of in situ RNA hybridization and single cell RNA-seq we found that the expression of selected genes encoding putatively SJ associated transmembrane and cytoplasmic scaffold molecules was dynamically regulated during epithelial development in the embryos and larvae with different epithelia expressing different cohorts of SJ genes. We focused a functional analysis on SpMesh, a homolog of the Drosophila smooth SJ component Mesh, which was highly enriched in the endodermal epithelium of the mid- and hindgut. Functional perturbation of SpMesh by both CRISPR/Cas9 mutagenesis and vivo morpholino-mediated knockdown shows that loss of SpMesh does not disrupt the formation of the gut epithelium during gastrulation. However, loss of SpMesh resulted in a severely reduced gut-paracellular barrier as quantitated by increased permeability to 3-5 kDa FITC-dextran. Together, these studies provide a first look at the molecular SJ physiology during the development of a marine organism and suggest a shared role for Mesh-homologous proteins in forming an intestinal barrier in invertebrates. Results have implications for consideration of the traits underlying species-specific sensitivity of marine larvae to climate driven ocean change.
Collapse
Affiliation(s)
- Sima Jonusaite
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, United States
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan; Nagoya University Graduate School of Medicine, Aichi, 464-8601, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Gary Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, United States
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
9
|
Wright BA, Kvansakul M, Schierwater B, Humbert PO. Cell polarity signalling at the birth of multicellularity: What can we learn from the first animals. Front Cell Dev Biol 2022; 10:1024489. [PMID: 36506100 PMCID: PMC9729800 DOI: 10.3389/fcell.2022.1024489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The innovation of multicellularity has driven the unparalleled evolution of animals (Metazoa). But how is a multicellular organism formed and how is its architecture maintained faithfully? The defining properties and rules required for the establishment of the architecture of multicellular organisms include the development of adhesive cell interactions, orientation of division axis, and the ability to reposition daughter cells over long distances. Central to all these properties is the ability to generate asymmetry (polarity), coordinated by a highly conserved set of proteins known as cell polarity regulators. The cell polarity complexes, Scribble, Par and Crumbs, are considered to be a metazoan innovation with apicobasal polarity and adherens junctions both believed to be present in all animals. A better understanding of the fundamental mechanisms regulating cell polarity and tissue architecture should provide key insights into the development and regeneration of all animals including humans. Here we review what is currently known about cell polarity and its control in the most basal metazoans, and how these first examples of multicellular life can inform us about the core mechanisms of tissue organisation and repair, and ultimately diseases of tissue organisation, such as cancer.
Collapse
Affiliation(s)
- Bree A. Wright
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia
| | - Bernd Schierwater
- Institute of Animal Ecology and Evolution, University of Veterinary Medicine Hannover, Foundation, Bünteweg, Hannover, Germany
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Patrick O. Humbert,
| |
Collapse
|
10
|
Capasso L, Aranda M, Cui G, Pousse M, Tambutté S, Zoccola D. Investigating calcification-related candidates in a non-symbiotic scleractinian coral, Tubastraea spp. Sci Rep 2022; 12:13515. [PMID: 35933557 PMCID: PMC9357087 DOI: 10.1038/s41598-022-17022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
In hermatypic scleractinian corals, photosynthetic fixation of CO2 and the production of CaCO3 are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process. Despite this advantage, non-symbiotic scleractinian corals have been systematically neglected in calcification studies, resulting in a lack of data especially at the molecular level. Here, we combined a tissue micro-dissection technique and RNA-sequencing to identify calcification-related ion transporters, and other candidates, in the ahermatypic non-symbiotic scleractinian coral Tubastraea spp. Our results show that Tubastraea spp. possesses several calcification-related candidates previously identified in symbiotic scleractinian corals (such as SLC4-γ, AMT-1like, CARP, etc.). Furthermore, we identify and describe a role in scleractinian calcification for several ion transporter candidates (such as SLC13, -16, -23, etc.) identified for the first time in this study. Taken together, our results provide not only insights about the molecular mechanisms underlying non-symbiotic scleractinian calcification, but also valuable tools for the development of biotechnological solutions to better control the extreme invasiveness of corals belonging to this particular genus.
Collapse
Affiliation(s)
- Laura Capasso
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Melanie Pousse
- Université Côte d'Azur, CNRS, Inserm, Institut for Research On Cancer and Aging, Nice (IRCAN), Medical School of Nice, Nice, France
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| |
Collapse
|
11
|
Rathbun LI, Everett CA, Bergstralh DT. Emerging Cnidarian Models for the Study of Epithelial Polarity. Front Cell Dev Biol 2022; 10:854373. [PMID: 35433674 PMCID: PMC9012326 DOI: 10.3389/fcell.2022.854373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are vital to the function of most organs, providing critical functions such as secretion, protection, and absorption. Cells within an epithelial layer must coordinate to create functionally distinct apical, lateral, and basal surfaces in order to maintain proper organ function and organism viability. This is accomplished through the careful targeting of polarity factors to their respective locations within the cell, as well as the strategic placement of post-mitotic cells within the epithelium during tissue morphogenesis. The process of establishing and maintaining epithelial tissue integrity is conserved across many species, as important polarity factors and spindle orientation mechanisms can be found in many phyla. However, most of the information gathered about these processes and players has been investigated in bilaterian organisms such as C. elegans, Drosophila, and vertebrate species. This review discusses the advances made in the field of epithelial polarity establishment from more basal organisms, and the advantages to utilizing these simpler models. An increasing number of cnidarian model organisms have been sequenced in recent years, such as Hydra vulgaris and Nematostella vectensis. It is now feasible to investigate how polarity is established and maintained in basal organisms to gain an understanding of the most basal requirements for epithelial tissue morphogenesis.
Collapse
Affiliation(s)
| | | | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
12
|
Mor Khalifa G, Levy S, Mass T. The calcifying interface in a stony coral primary polyp: An interplay between seawater and an extracellular calcifying space. J Struct Biol 2021; 213:107803. [PMID: 34695544 DOI: 10.1016/j.jsb.2021.107803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Stony coral exoskeletons build the foundation for the most biologically diverse marine ecosystems on Earth, coral reefs, which face major threats due to many anthropogenic-related stressors. Therefore, understanding coral biomineralization mechanisms is crucial for coral reef management in the coming decades and for using coral skeletons in geochemical studies. This study combines in-vivo imaging with cryo-electron microscopy and cryo-elemental mapping to gain novel insights into the biological microenvironment and the ion pathways that facilitate biomineralization in primary polyps of the stony coral Stylophora pistillata. We document increased tissue permeability in the primary polyp and a highly dispersed cell packing in the tissue directly responsible for producing the coral skeleton. This tissue arrangement may facilitate the intimate involvement of seawater at the mineralization site, also documented here. We further observe an extensive filopodial network containing carbon-rich vesicles extruding from some of the calicoblastic cells. Single-cell RNA-Sequencing data interrogation supports these morphological observations by showing higher expression of genes involved in filopodia and vesicle structure and function in the calicoblastic cells. These observations provide a new conceptual framework for resolving the ion pathway from the external seawater to the tissue-mineral interface in stony coral biomineralization processes.
Collapse
Affiliation(s)
- Gal Mor Khalifa
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
13
|
Vernale A, Prünster MM, Marchianò F, Debost H, Brouilly N, Rocher C, Massey-Harroche D, Renard E, Le Bivic A, Habermann BH, Borchiellini C. Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. BMC Ecol Evol 2021; 21:160. [PMID: 34418961 PMCID: PMC8380372 DOI: 10.1186/s12862-021-01866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. RESULTS To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. CONCLUSIONS Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell-cell and cell-matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.
Collapse
Affiliation(s)
- Amélie Vernale
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Maria Mandela Prünster
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Fabio Marchianò
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Henry Debost
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
| | - Dominique Massey-Harroche
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Bianca H Habermann
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
14
|
Capasso L, Ganot P, Planas-Bielsa V, Tambutté S, Zoccola D. Intracellular pH regulation: characterization and functional investigation of H + transporters in Stylophora pistillata. BMC Mol Cell Biol 2021; 22:18. [PMID: 33685406 PMCID: PMC7941709 DOI: 10.1186/s12860-021-00353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reef-building corals regularly experience changes in intra- and extracellular H+ concentrations ([H+]) due to physiological and environmental processes. Stringent control of [H+] is required to maintain the homeostatic acid-base balance in coral cells and is achieved through the regulation of intracellular pH (pHi). This task is especially challenging for reef-building corals that share an endosymbiotic relationship with photosynthetic dinoflagellates (family Symbiodinaceae), which significantly affect the pHi of coral cells. Despite their importance, the pH regulatory proteins involved in the homeostatic acid-base balance have been scarcely investigated in corals. Here, we report in the coral Stylophora pistillata a full characterization of the genomic structure, domain topology and phylogeny of three major H+ transporter families that are known to play a role in the intracellular pH regulation of animal cells; we investigated their tissue-specific expression patterns and assessed the effect of seawater acidification on their expression levels. RESULTS We identified members of the Na+/H+ exchanger (SLC9), vacuolar-type electrogenic H+-ATP hydrolase (V-ATPase) and voltage-gated proton channel (HvCN) families in the genome and transcriptome of S. pistillata. In addition, we identified a novel member of the HvCN gene family in the cnidarian subclass Hexacorallia that has not been previously described in any species. We also identified key residues that contribute to H+ transporter substrate specificity, protein function and regulation. Last, we demonstrated that some of these proteins have different tissue expression patterns, and most are unaffected by exposure to seawater acidification. CONCLUSIONS In this study, we provide the first characterization of H+ transporters that might contribute to the homeostatic acid-base balance in coral cells. This work will enrich the knowledge of the basic aspects of coral biology and has important implications for our understanding of how corals regulate their intracellular environment.
Collapse
Affiliation(s)
- Laura Capasso
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | | | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.
| |
Collapse
|
15
|
Mashukova A, Forteza R, Shah VN, Salas PJ. The cell polarity kinase Par1b/MARK2 activation selects specific NF-kB transcripts via phosphorylation of core mediator Med17/TRAP80. Mol Biol Cell 2021; 32:690-702. [PMID: 33596087 PMCID: PMC8108508 DOI: 10.1091/mbc.e20-10-0646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Par1b/MARK2 is a Ser/Thr kinase with pleiotropic effects that participates in the generation of apico-basal polarity in Caenorhabditis elegans. It is phosphorylated by atypical PKC(ι/λ) in Thr595 and inhibited. Because previous work showed a decrease in atypical protein kinase C (aPKC) activity under proinflammatory conditions, we analyzed the hypothesis that the resulting decrease in Thr595-MARK2 with increased kinase activity may also participate in innate immunity. We confirmed that pT595-MARK2 was decreased under inflammatory stimulation. The increase in MARK2 activity was verified by Par3 delocalization and rescue with a specific inhibitor. MARK2 overexpression significantly enhanced the transcriptional activity of NF-kB for a subset of transcripts. It also resulted in phosphorylation of a single band (∼Mr 80,000) coimmunoprecipitating with RelA, identified as Med17. In vitro phosphorylation showed direct phosphorylation of Med17 in Ser152 by recombinant MARK2. Expression of S152D-Med17 mimicked the effect of MARK2 activation on downstream transcriptional regulation, which was antagonized by S152A-Med17. The decrease in pThr595 phosphorylation was validated in aPKC-deficient mouse jejunal mucosae. The transcriptional effects were confirmed in transcriptome analysis and transcript enrichment determinations in cells expressing S152D-Med17. We conclude that theMARK2-Med17 axis represents a novel form of cross-talk between polarity signaling and transcriptional regulation including, but not restricted to, innate immunity responses.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136.,Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314
| | - Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Viraj N Shah
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Pedro J Salas
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
16
|
Rouka E, Gourgoulianni N, Lüpold S, Hatzoglou C, Gourgoulianis K, Blanckenhorn WU, Zarogiannis SG. The Drosophila septate junctions beyond barrier function: Review of the literature, prediction of human orthologs of the SJ-related proteins and identification of protein domain families. Acta Physiol (Oxf) 2021; 231:e13527. [PMID: 32603029 DOI: 10.1111/apha.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The involvement of Septate Junctions (SJs) in critical cellular functions that extend beyond their role as diffusion barriers in the epithelia and the nervous system has made the fruit fly an ideal model for the study of human diseases associated with impaired Tight Junction (TJ) function. In this study, we summarized current knowledge of the Drosophila melanogaster SJ-related proteins, focusing on their unconventional functions. Additionally, we sought to identify human orthologs of the corresponding genes as well as protein domain families. The systematic literature search was performed in PubMed and Scopus databases using relevant key terms. Orthologs were predicted using the DIOPT tool and aligned protein regions were determined from the Pfam database. 3-D models of the smooth SJ proteins were built on the Phyre2 and DMPFold protein structure prediction servers. A total of 30 proteins were identified as relatives to the SJ cellular structure. Key roles of these proteins, mainly in the regulation of morphogenetic events and cellular signalling, were highlighted. The investigation of protein domain families revealed that the SJ-related proteins contain conserved domains that are required not only for cell-cell interactions and cell polarity but also for cellular signalling and immunity. DIOPT analysis of orthologs identified novel human genes as putative functional homologs of the fruit fly SJ genes. A gap in our knowledge was identified regarding the domains that occur in the proteins encoded by eight SJ-associated genes. Future investigation of these domains is needed to provide functional information.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Chrissi Hatzoglou
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Sotirios G. Zarogiannis
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| |
Collapse
|
17
|
Sun CY, Stifler CA, Chopdekar RV, Schmidt CA, Parida G, Schoeppler V, Fordyce BI, Brau JH, Mass T, Tambutté S, Gilbert PUPA. From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci U S A 2020; 117:30159-30170. [PMID: 33188087 PMCID: PMC7720159 DOI: 10.1073/pnas.2012025117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Ganesh Parida
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Jack H Brau
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Tali Mass
- Marine Biology Department, University of Haifa, 31905 Haifa, Israel
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706;
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
- Department of Geoscience, University of Wisconsin, Madison, WI 53706
- Department of Materials Science, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
18
|
Finegan TM, Bergstralh DT. Neuronal immunoglobulin superfamily cell adhesion molecules in epithelial morphogenesis: insights from Drosophila. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190553. [PMID: 32829687 PMCID: PMC7482216 DOI: 10.1098/rstb.2019.0553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
|
19
|
Venn AA, Bernardet C, Chabenat A, Tambutté E, Tambutté S. Paracellular transport to the coral calcifying medium: effects of environmental parameters. J Exp Biol 2020; 223:jeb227074. [PMID: 32675232 DOI: 10.1242/jeb.227074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Coral calcification relies on the transport of ions and molecules to the extracellular calcifying medium (ECM). Little is known about paracellular transport (via intercellular junctions) in corals and other marine calcifiers. Here, we investigated whether the permeability of the paracellular pathway varied in different environmental conditions in the coral Stylophora pistillata Using the fluorescent dye calcein, we characterised the dynamics of calcein influx from seawater to the ECM and showed that increases in paracellular permeability (leakiness) induced by hyperosmotic treatment could be detected by changes in calcein influx rates. We then used the calcein-imaging approach to investigate the effects of two environmental stressors on paracellular permeability: seawater acidification and temperature change. Under conditions of seawater acidification (pH 7.2) known to depress pH in the ECM and the calcifying cells of S. pistillata, we observed a decrease in half-times of calcein influx, indicating increased paracellular permeability. By contrast, high temperature (31°C) had no effect, whereas low temperature (20°C) caused decreases in paracellular permeability. Overall, our study establishes an approach to conduct further in vivo investigation of paracellular transport and suggests that changes in paracellular permeability could form an uncharacterised aspect of the physiological response of S. pistillata to seawater acidification.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Coralie Bernardet
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Apolline Chabenat
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000 Monaco
| |
Collapse
|
20
|
Lim HY, Bao H, Liu Y, Wang W. Select Septate Junction Proteins Direct ROS-Mediated Paracrine Regulation of Drosophila Cardiac Function. Cell Rep 2020; 28:1455-1470.e4. [PMID: 31390561 DOI: 10.1016/j.celrep.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/18/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Septate junction (SJ) complex proteins act in unison to provide a paracellular barrier and maintain structural integrity. Here, we identify a non-barrier role of two individual SJ proteins, Coracle (Cora) and Kune-kune (Kune). Reactive oxygen species (ROS)-p38 MAPK signaling in non-myocytic pericardial cells (PCs) is important for maintaining normal cardiac physiology in Drosophila. However, the underlying mechanisms remain unknown. We find that in PCs, Cora and Kune are altered in abundance in response to manipulations of ROS-p38 signaling. Genetic analyses establish Cora and Kune as key effectors of ROS-p38 signaling in PCs on proper heart function. We further determine that Cora regulates normal Kune levels in PCs, which in turn modulates normal Kune levels in the cardiomyocytes essential for proper heart function. Our results thereby reveal select SJ proteins Cora and Kune as signaling mediators of the PC-derived ROS regulation of cardiac physiology.
Collapse
Affiliation(s)
- Hui-Ying Lim
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | - Hong Bao
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Ying Liu
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
22
|
Ganot P, Tambutté E, Caminiti-Segonds N, Toullec G, Allemand D, Tambutté S. Ubiquitous macropinocytosis in anthozoans. eLife 2020; 9:50022. [PMID: 32039759 PMCID: PMC7032929 DOI: 10.7554/elife.50022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells' cytoplasm is macropinocytosis. Most cells form large vesicles of 350-600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Gaëlle Toullec
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
23
|
Molecular organization and function of vertebrate septate-like junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183211. [PMID: 32032590 DOI: 10.1016/j.bbamem.2020.183211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Septate-like junctions display characteristic ladder-like ultrastructure reminiscent of the invertebrate epithelial septate junctions and are present at the paranodes of myelinated axons. The paranodal junctions where the myelin loops attach to the axon at the borders of the node of Ranvier provide both a paracellular barrier to ion diffusion and a lateral fence along the axonal membrane. The septate-like junctions constrain the proper distribution of nodal Na+ channels and juxtaparanodal K+ channels, which are required for the safe propagation of the nerve influx and rapid saltatory conduction. The paranodal cell adhesion molecules have been identified as target antigens in peripheral demyelinating autoimmune diseases and the pathogenic mechanisms described. This review aims at presenting the recent knowledge on the molecular and structural organization of septate-like junctions, their formation and stabilization during development, and how they are involved in demyelinating diseases.
Collapse
|
24
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
25
|
Livingston DB, Patel H, Donini A, MacMillan HA. Active transport of brilliant blue FCF across the Drosophila midgut and Malpighian tubule epithelia. Comp Biochem Physiol A Mol Integr Physiol 2020; 239:110588. [DOI: 10.1016/j.cbpa.2019.110588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
|
26
|
Chen K, Chen S, Xu J, Yu Y, Liu Z, Tan A, Huang Y. Maelstrom regulates spermatogenesis of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:43-51. [PMID: 30970276 DOI: 10.1016/j.ibmb.2019.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/03/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The spermatogenesis of animal is essential for the reproduction and a very large number of genes participate in this procession. The Maelstrom (Mael) is identified essential for spermatogenesis in both Drosophila and mouse, though the mechanisms appear to differ. It was initially found that Mael gene is necessary for axis specification of oocytes in Drosophila, and recent studies suggested that Mael participates in the piRNA pathway. In this study, we obtained Bombyx mori Mael mutants by using a binary transgenic CRISPR/Cas9 system and analyzed the function of Mael in B. mori, a model lepidopteran insect. The results showed that BmMael is not necessary for piRNA pathway in the ovary of silkworm, whereas it might be essential for transposon elements (TEs) repression in testis. The BmMael mutation resulted in male sterility, and further analysis established that BmMael was essential for spermatogenesis. The spermatogenesis defects occurred in the elongation stage and resulted in nuclei concentration arrest. RNA-seq and qRT-PCR analyses demonstrated that spermatogenesis defects were associated with tight junctions and apoptosis. We also found that BmMael was not involved in the silkworm sex determination pathway. Our data provide insights into the biological function of BmMael in male spermatogenesis and might be useful for developing novel methods to control lepidopteron pests.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
27
|
Salinas-Saavedra M, Rock AQ, Martindale MQ. Germ layer-specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm. eLife 2018; 7:e36740. [PMID: 30063005 PMCID: PMC6067901 DOI: 10.7554/elife.36740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
In triploblastic animals, Par-proteins regulate cell-polarity and adherens junctions of both ectodermal and endodermal epithelia. But, in embryos of the diploblastic cnidarian Nematostella vectensis, Par-proteins are degraded in all cells in the bifunctional gastrodermal epithelium. Using immunohistochemistry, CRISPR/Cas9 mutagenesis, and mRNA overexpression, we describe the functional association between Par-proteins, ß-catenin, and snail transcription factor genes in N. vectensis embryos. We demonstrate that the aPKC/Par complex regulates the localization of ß-catenin in the ectoderm by stabilizing its role in cell-adhesion, and that endomesodermal epithelial cells are organized by a different cell-adhesion system than overlying ectoderm. We also show that ectopic expression of snail genes, which are expressed in mesodermal derivatives in bilaterians, is sufficient to downregulate Par-proteins and translocate ß-catenin from the junctions to the cytoplasm in ectodermal cells. These data provide molecular insight into the evolution of epithelial structure and distinct cell behaviors in metazoan embryos.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| | - Amber Q Rock
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
| | - Mark Q Martindale
- The Whitney
Laboratory for Marine BioscienceUniversity of
FloridaFloridaUnited
States
- Department of
BiologyUniversity of
FloridaFloridaUnited
States
| |
Collapse
|
28
|
Del Prete S, Bua S, Zoccola D, Alasmary FAS, AlOthman Z, Alqahtani LS, Techer N, Supuran CT, Tambutté S, Capasso C. Comparison of the Anion Inhibition Profiles of the α-CA Isoforms (SpiCA1, SpiCA2 and SpiCA3) from the Scleractinian Coral Stylophora pistillata. Int J Mol Sci 2018; 19:ijms19072128. [PMID: 30037122 PMCID: PMC6073313 DOI: 10.3390/ijms19072128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes used by living organisms to accelerate the CO2 hydration/dehydration reaction at rates dramatically high compared to the uncatalyzed reaction. These enzymes have different isoforms and homologues and can be found in the form of cytoplasmic, secreted or membrane-bound proteins. CAs play a role in numerous physiological processes including biomineralization and symbiosis, as is the case in reef-building corals. Previously, molecular and biochemical data have been obtained at the molecular level in the branching coral Stylophora pistillata for two coral isoforms which differ significantly in their catalytic activity and susceptibility to inhibition with anions and sulfonamides. More recently it has been determined that the genome of S. pistillata encodes for 16 CAs. Here, we cloned, expressed, purified and characterized a novel α-CA, named SpiCA3, which is cytoplasmic and ubiquitously expressed in all the cell layers including the calcifying cells. SpiCA3 is the most effective CA among the coral isoforms investigated and the most efficient catalyst known up to date in Metazoa. We also investigated the inhibition profiles of SpiCA3 and compared it with those obtained for the two other isoforms in the presence of inorganic anions and other small molecules known to interfere with metalloenzymes. These results suggest that S. pistillata has adapted its CA isoforms to achieve the physiological functions in different physicochemical microenvironments.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Didier Zoccola
- Centre Scientifique de Monaco, Department of Marine Biology, 8 Quai Antoine 1, 98000 Monaco.
| | - Fatmah A S Alasmary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Linah S Alqahtani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
- Department of Chemistry, King Faisal University, Alahsa, Saudi Arabia.
| | - Nathalie Techer
- Centre Scientifique de Monaco, Department of Marine Biology, 8 Quai Antoine 1, 98000 Monaco.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 8 Quai Antoine 1, 98000 Monaco.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| |
Collapse
|
29
|
Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, Deutekom ES, Kaandorp JA, Voolstra CR, Forêt S, Allemand D, Tambutté S, Aranda M. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. SCIENCE ADVANCES 2018; 4:eaar8028. [PMID: 29881778 PMCID: PMC5990304 DOI: 10.1126/sciadv.aar8028] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 05/18/2023]
Abstract
There are increasing concerns that the current rate of climate change might outpace the ability of reef-building corals to adapt to future conditions. Work on model systems has shown that environmentally induced alterations in DNA methylation can lead to phenotypic acclimatization. While DNA methylation has been reported in corals and is thought to associate with phenotypic plasticity, potential mechanisms linked to changes in whole-genome methylation have yet to be elucidated. We show that DNA methylation significantly reduces spurious transcription in the coral Stylophora pistillata. Furthermore, we find that DNA methylation also reduces transcriptional noise by fine-tuning the expression of highly expressed genes. Analysis of DNA methylation patterns of corals subjected to long-term pH stress showed widespread changes in pathways regulating cell cycle and body size. Correspondingly, we found significant increases in cell and polyp sizes that resulted in more porous skeletons, supporting the hypothesis that linear extension rates are maintained under conditions of reduced calcification. These findings suggest an epigenetic component in phenotypic acclimatization that provides corals with an additional mechanism to cope with environmental change.
Collapse
Affiliation(s)
- Yi Jin Liew
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Didier Zoccola
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Yong Li
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Eric Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Alexander A. Venn
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Craig T. Michell
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Guoxin Cui
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Eva S. Deutekom
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Jaap A. Kaandorp
- Computational Science Lab, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Christian R. Voolstra
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Denis Allemand
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, Principality of Monaco
| | - Manuel Aranda
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
- Corresponding author.
| |
Collapse
|
30
|
Belahbib H, Renard E, Santini S, Jourda C, Claverie JM, Borchiellini C, Le Bivic A. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics 2018; 19:393. [PMID: 29793430 PMCID: PMC5968619 DOI: 10.1186/s12864-018-4715-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. Results To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. Conclusions These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia. Electronic supplementary material The online version of this article (10.1186/s12864-018-4715-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hassiba Belahbib
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| | - Sébastien Santini
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Cyril Jourda
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
| |
Collapse
|
31
|
Comeau S, Tambutté E, Carpenter RC, Edmunds PJ, Evensen NR, Allemand D, Ferrier-Pagès C, Tambutté S, Venn AA. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH. Proc Biol Sci 2018; 284:rspb.2016.1669. [PMID: 28100813 DOI: 10.1098/rspb.2016.1669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/02/2016] [Indexed: 11/12/2022] Open
Abstract
Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pHCF) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pHCF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (AT). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pHCF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [AT], revealing that seawater pH is not the sole driver of pHCF Notably, when we synthesize our results with published data, we identify linear relationships of pHCF with the seawater [DIC]/[H+] ratio, [AT]/ [H+] ratio and [[Formula: see text]]. Our findings contribute new insights into the mechanisms determining the sensitivity of coral calcification to changes in seawater carbonate chemistry, which are needed for predicting effects of environmental change on coral reefs and for robust interpretations of isotopic palaeoenvironmental records in coral skeletons.
Collapse
Affiliation(s)
- S Comeau
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA .,School of Earth and Environment and ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - E Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco.,Laboratoire International Associé 647 «BIOSENSIB», Centre Scientifique de Monaco-Centre National de la Recherche Scientifique, 8 Quai Antoine 1er, MC98000, Monaco
| | - R C Carpenter
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - P J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - N R Evensen
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA.,Marine Spatial Ecology Lab, ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - D Allemand
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco.,Laboratoire International Associé 647 «BIOSENSIB», Centre Scientifique de Monaco-Centre National de la Recherche Scientifique, 8 Quai Antoine 1er, MC98000, Monaco
| | - C Ferrier-Pagès
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco.,Laboratoire International Associé 647 «BIOSENSIB», Centre Scientifique de Monaco-Centre National de la Recherche Scientifique, 8 Quai Antoine 1er, MC98000, Monaco
| | - S Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco.,Laboratoire International Associé 647 «BIOSENSIB», Centre Scientifique de Monaco-Centre National de la Recherche Scientifique, 8 Quai Antoine 1er, MC98000, Monaco
| | - A A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco .,Laboratoire International Associé 647 «BIOSENSIB», Centre Scientifique de Monaco-Centre National de la Recherche Scientifique, 8 Quai Antoine 1er, MC98000, Monaco
| |
Collapse
|
32
|
A chelicerate-specific burst of nonclassical Dscam diversity. BMC Genomics 2018; 19:66. [PMID: 29351731 PMCID: PMC5775551 DOI: 10.1186/s12864-017-4420-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immunoglobulin (Ig) superfamily receptor Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for both nervous and immune systems in insects. However, further information is required to develop a comprehensive view of Dscam diversification across the broad spectrum of Chelicerata clades, a basal branch of arthropods and the second largest group of terrestrial animals. RESULTS In this study, a genome-wide comprehensive analysis of Dscam genes across Chelicerata species revealed a burst of nonclassical Dscams, categorised into four types-mDscam, sDscamα, sDscamβ, and sDscamγ-based on their size and structure. Although the mDscam gene class includes the highest number of Dscam genes, the sDscam genes utilise alternative promoters to expand protein diversity. Furthermore, we indicated that the 5' cassette duplicate is inversely correlated with the sDscam gene duplicate. We showed differential and sDscam- biased expression of nonclassical Dscam isoforms. Thus, the Dscam isoform repertoire across Chelicerata is entirely dominated by the number and expression levels of nonclassical Dscams. Taken together, these data show that Chelicerata evolved a large conserved and lineage-specific repertoire of nonclassical Dscams. CONCLUSIONS This study showed that arthropods have a large diversified Chelicerata-specific repertoire of nonclassical Dscam isoforms, which are structurally and mechanistically distinct from those of insects. These findings provide a global framework for the evolution of Dscam diversity in arthropods and offer mechanistic insights into the diversification of the clade-specific Ig superfamily repertoire.
Collapse
|
33
|
Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, Tambutté S, Allemand D, Aranda M. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci Rep 2017; 7:17583. [PMID: 29242500 PMCID: PMC5730576 DOI: 10.1038/s41598-017-17484-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Stony corals form the foundation of coral reef ecosystems. Their phylogeny is characterized by a deep evolutionary divergence that separates corals into a robust and complex clade dating back to at least 245 mya. However, the genomic consequences and clade-specific evolution remain unexplored. In this study we have produced the genome of a robust coral, Stylophora pistillata, and compared it to the available genome of a complex coral, Acropora digitifera. We conducted a fine-scale gene-based analysis focusing on ortholog groups. Among the core set of conserved proteins, we found an emphasis on processes related to the cnidarian-dinoflagellate symbiosis. Genes associated with the algal symbiosis were also independently expanded in both species, but both corals diverged on the identity of ortholog groups expanded, and we found uneven expansions in genes associated with innate immunity and stress response. Our analyses demonstrate that coral genomes can be surprisingly disparate. Future analyses incorporating more genomic data should be able to determine whether the patterns elucidated here are not only characteristic of the differences between S. pistillata and A. digitifera but also representative of corals from the robust and complex clade at large.
Collapse
Affiliation(s)
- Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Yong Li
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yi Jin Liew
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Baumgarten
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Biology of Host-Parasite Interactions Unit, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine Ier, 98000, Monaco, Monaco
| | - Jean-François Flot
- Université libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Bruxelles, Belgium
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 quai Antoine Ier, 98000, Monaco, Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 quai Antoine Ier, 98000, Monaco, Monaco
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
34
|
Abstract
The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.
Collapse
Affiliation(s)
- Frederique Varoqueaux
- Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, CH-1005 Switzerland; ,
| | - Dirk Fasshauer
- Département des Neurosciences Fondamentales, Université de Lausanne, Lausanne, CH-1005 Switzerland; ,
| |
Collapse
|
35
|
Abstract
The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non-bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non-bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre- and postsynaptic signaling machineries evolved.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Gullmets J, Torvaldson E, Lindqvist J, Imanishi SY, Taimen P, Meinander A, Eriksson JE. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin. FASEB J 2017; 31:5332-5341. [PMID: 28778974 DOI: 10.1096/fj.201700332r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 11/11/2022]
Abstract
Cytoplasmic intermediate filaments (cIFs) are found in all eumetazoans, except arthropods. To investigate the compatibility of cIFs in arthropods, we expressed human vimentin (hVim), a cIF with filament-forming capacity in vertebrate cells and tissues, transgenically in Drosophila Transgenic hVim could be recovered from whole-fly lysates by using a standard procedure for intermediate filament (IF) extraction. When this procedure was used to test for the possible presence of IF-like proteins in flies, only lamins and tropomyosin were observed in IF-enriched extracts, thereby providing biochemical reinforcement to the paradigm that arthropods lack cIFs. In Drosophila, transgenic hVim was unable to form filament networks in S2 cells and mesenchymal tissues; however, cage-like vimentin structures could be observed around the nuclei in internal epithelia, which suggests that Drosophila retains selective competence for filament formation. Taken together, our results imply that although the filament network formation competence is partially lost in Drosophila, a rudimentary filament network formation ability remains in epithelial cells. As a result of the observed selective competence for cIF assembly in Drosophila, we hypothesize that internal epithelial cIFs were the last cIFs to disappear from arthropods.-Gullmets, J., Torvaldson, E., Lindqvist, J., Imanishi, S. Y., Taimen, P., Meinander, A., Eriksson, J. E. Internal epithelia in Drosophila display rudimentary competence to form cytoplasmic networks of transgenic human vimentin.
Collapse
Affiliation(s)
- Josef Gullmets
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, Turku, Finland
| | - Elin Torvaldson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Julia Lindqvist
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, Turku, Finland
| | - Annika Meinander
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
37
|
Manduca Contactin Regulates Amyloid Precursor Protein-Dependent Neuronal Migration. J Neurosci 2017; 36:8757-75. [PMID: 27535920 DOI: 10.1523/jneurosci.0729-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Amyloid precursor protein (APP) was originally identified as the source of β-amyloid peptides that accumulate in Alzheimer's disease (AD), but it also has been implicated in the control of multiple aspects of neuronal motility. APP belongs to an evolutionarily conserved family of transmembrane proteins that can interact with a variety of adapter and signaling molecules. Recently, we showed that both APP and its insect ortholog [APPL (APP-Like)] directly bind the heterotrimeric G-protein Goα, supporting the model that APP can function as an unconventional Goα-coupled receptor. We also adapted a well characterized assay of neuronal migration in the hawkmoth, Manduca sexta, to show that APPL-Goα signaling restricts ectopic growth within the developing nervous system, analogous to the role postulated for APP family proteins in controlling migration within the mammalian cortex. Using this assay, we have now identified Manduca Contactin (MsContactin) as an endogenous ligand for APPL, consistent with previous work showing that Contactins interact with APP family proteins in other systems. Using antisense-based knockdown protocols and fusion proteins targeting both proteins, we have shown that MsContactin is selectively expressed by glial cells that ensheath the migratory neurons (expressing APPL), and that MsContactin-APPL interactions normally prevent inappropriate migration and outgrowth. These results provide new evidence that Contactins can function as authentic ligands for APP family proteins that regulate APP-dependent responses in the developing nervous system. They also support the model that misregulated Contactin-APP interactions might provoke aberrant activation of Goα and its effectors, thereby contributing to the neurodegenerative sequelae that typify AD. SIGNIFICANCE STATEMENT Members of the amyloid precursor protein (APP) family participate in many aspects of neuronal development, but the ligands that normally activate APP signaling have remained controversial. This research provides new evidence that members of the Contactin family function as authentic ligands for APP and its orthologs, and that this evolutionarily conserved class of membrane-attached proteins regulates key aspects of APP-dependent migration and outgrowth in the embryonic nervous system. By defining the normal role of Contactin-APP signaling during development, these studies also provide the framework for investigating how the misregulation of Contactin-APP interactions might contribute to neuronal dysfunction in the context of both normal aging and neurodegenerative conditions, including Alzheimer's disease.
Collapse
|
38
|
Chen LY, Jiang M, Zhang B, Gokce O, Südhof TC. Conditional Deletion of All Neurexins Defines Diversity of Essential Synaptic Organizer Functions for Neurexins. Neuron 2017; 94:611-625.e4. [PMID: 28472659 PMCID: PMC5501922 DOI: 10.1016/j.neuron.2017.04.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022]
Abstract
Neurexins are recognized as key organizers of synapses that are essential for normal brain function. However, it is unclear whether neurexins are fundamental building blocks of all synapses with similar overall functions or context-dependent specifiers of synapse properties. To address this question, we produced triple cKO (conditional knockout) mice that allow ablating all neurexin expression in mice. Using neuron-specific manipulations combined with immunocytochemistry, paired recordings, and two-photon Ca2+ imaging, we analyzed excitatory synapses formed by climbing fibers on Purkinje cells in cerebellum and inhibitory synapses formed by parvalbumin- or somatostatin-positive interneurons on pyramidal layer 5 neurons in the medial prefrontal cortex. After pan-neurexin deletions, we observed in these synapses severe but dramatically different synaptic phenotypes that ranged from major impairments in their distribution and function (climbing-fiber synapses) to large decreases in synapse numbers (parvalbumin-positive synapses) and severe alterations in action potential-induced presynaptic Ca2+ transients (somatostatin-positive synapses). Thus, neurexins function primarily as context-dependent specifiers of synapses.
Collapse
Affiliation(s)
- Lulu Y Chen
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Man Jiang
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Bo Zhang
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
González-Mariscal L, Miranda J, Raya-Sandino A, Domínguez-Calderón A, Cuellar-Perez F. ZO-2, a tight junction protein involved in gene expression, proliferation, apoptosis, and cell size regulation. Ann N Y Acad Sci 2017; 1397:35-53. [PMID: 28415133 DOI: 10.1111/nyas.13334] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
ZO-2 is a peripheral tight junction protein that belongs to the membrane-associated guanylate kinase protein family. Here, we explain the modular and supramodular organization of ZO-2 that allows it to interact with a wide variety of molecules, including cell-cell adhesion proteins, cytoskeletal components, and nuclear factors. We also describe how ZO proteins evolved through metazoan evolution and analyze the intracellular traffic of ZO-2, as well as the roles played by ZO-2 at the plasma membrane and nucleus that translate into the regulation of proliferation, cell size, and apoptosis. In addition, we focus on the impact of ZO-2 expression on male fertility and on maladies like cancer, cholestasis, and hearing loss.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
40
|
Yu ASL. Paracellular transport as a strategy for energy conservation by multicellular organisms? Tissue Barriers 2017; 5:e1301852. [PMID: 28452575 DOI: 10.1080/21688370.2017.1301852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Paracellular transport of solutes and water accompanies transcellular transport across epithelial barriers and together they serve to maintain internal body composition. However, whether paracellular transport is necessary and why it evolved is unknown. In this commentary I discuss our recent studies to address this question in the proximal tubule of the kidney. Paracellular reabsorption of sodium occurs in the proximal tubule and is mediated by claudin-2. However, deletion of claudin-2 in mice does not affect whole kidney sodium excretion because it can be completely compensated by downtream transcellular transport mechanisms. This occurs at the expense of increased oxygen consumption, tissue hypoxia and increased susceptibility to ischemic injury. It is concluded that paracellular transport acts as an energy saving mechanism to increase transport without consuming additional oxygen. It is speculated that this might be why paracellular transport evolved in leaky epithelia with high transport needs.
Collapse
Affiliation(s)
- Alan S L Yu
- a Division of Nephrology and Hypertension, Department of Internal Medicine , University of Kansas Medical Center , Kansas City , KS , USA.,b Division of Infectious Diseases, Department of Internal Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
41
|
Smith CL, Reese TS. Adherens Junctions Modulate Diffusion between Epithelial Cells in Trichoplax adhaerens. THE BIOLOGICAL BULLETIN 2016; 231:216-224. [PMID: 28048952 DOI: 10.1086/691069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Trichoplax adhaerens is the sole named member of Placozoa, an ancient metazoan phylum. This coin-shaped animal glides on ventral cilia to find and digest algae on the substrate. It has only six cell types, all but two of which are incorporated into the epithelium that encloses it. The upper epithelium is thin, composed of a pavement of relatively large polygonal disks, each bearing a cilium. The lower epithelium is thick and composed primarily of narrow ciliated cells that power locomotion. Interspersed among these cells are two different secretory cells: one containing large lipophilic granules that, when released, lyse algae under the animal; the other, less abundant, is replete with smaller secretory granules containing neuropeptides. All cells within both epithelia are joined by adherens junctions that are stabilized by apical actin networks. Cells are held in place during shape changes or under osmotic stress, but dissociate in low calcium. Neither tight, septate, nor gap junctions are evident, leaving only the adherens junction to control the permeability of the epithelium. Small (<4 kDa) fluorescent dextrans introduced into artificial seawater readily penetrate into the animal between the cells. Larger dextrans enter slowly, except in animals treated with reduced calcium, indicating that the adherens junctions form a circumferential belt around each cell that impedes diffusion into the animal. During feeding, the limited permeability of the adherens junctions helps to confine material released from lysed algae within the narrow space under the animal, where it is absorbed by endocytosis.
Collapse
|
42
|
Xu J, Li JT, Jiang Y, Peng W, Yao Z, Chen B, Jiang L, Feng J, Ji P, Liu G, Liu Z, Tai R, Dong C, Sun X, Zhao ZX, Zhang Y, Wang J, Li S, Zhao Y, Yang J, Sun X, Xu P. Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (Leuciscus waleckii) in an Extremely Alkaline Environment. Mol Biol Evol 2016; 34:145-159. [PMID: 28007977 PMCID: PMC5854124 DOI: 10.1093/molbev/msw230] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Amur ide (Leuciscus waleckii) is a cyprinid fish that is widely distributed in Northeast Asia. The Lake Dali Nur population inhabits one of the most extreme aquatic environments on Earth, with an alkalinity up to 50 mmol/L (pH 9.6), thus providing an exceptional model with which to characterize the mechanisms of genomic evolution underlying adaptation to extreme environments. Here, we developed the reference genome assembly for L. waleckii from Lake Dali Nur. Intriguingly, we identified unusual expanded long terminal repeats (LTRs) with higher nucleotide substitution rates than in many other teleosts, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding egg coat proteins and natriuretic peptide receptors, possibly underlying the adaptation to extreme environmental stress. We further sequenced the genomes of 10 additional individuals from freshwater and 18 from Lake Dali Nur populations, and we detected a total of 7.6 million SNPs from both populations. In a genome scan and comparison of these two populations, we identified a set of genomic regions under selective sweeps that harbor genes involved in ion homoeostasis, acid-base regulation, unfolded protein response, reactive oxygen species elimination, and urea excretion. Our findings provide comprehensive insight into the genomic mechanisms of teleost fish that underlie their adaptation to extreme alkaline environments.
Collapse
Affiliation(s)
- Jian Xu
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jiong-Tang Li
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yanliang Jiang
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Wenzhu Peng
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.,State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China
| | - Zongli Yao
- Engineering Research Centre for Saline-alkaline Fisheries, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, China
| | - Baohua Chen
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Likun Jiang
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jingyan Feng
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peifeng Ji
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Guiming Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL
| | - Ruyu Tai
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Chuanju Dong
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Xiaoqing Sun
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zi-Xia Zhao
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yan Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jian Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV
| | - Shangqi Li
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yunfeng Zhao
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jiuhui Yang
- Dalinor National Nature Reserve, Keshiketeng, Chifeng, China
| | - Xiaowen Sun
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China .,State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China.,Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China
| |
Collapse
|
43
|
Harden N, Wang SJH, Krieger C. Making the connection – shared molecular machinery and evolutionary links underlie the formation and plasticity of occluding junctions and synapses. J Cell Sci 2016; 129:3067-76. [DOI: 10.1242/jcs.186627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
The pleated septate junction (pSJ), an ancient structure for cell–cell contact in invertebrate epithelia, has protein components that are found in three more-recent junctional structures, the neuronal synapse, the paranodal region of the myelinated axon and the vertebrate epithelial tight junction. These more-recent structures appear to have evolved through alterations of the ancestral septate junction. During its formation in the developing animal, the pSJ exhibits plasticity, although the final structure is extremely robust. Similar to the immature pSJ, the synapse and tight junctions both exhibit plasticity, and we consider evidence that this plasticity comes at least in part from the interaction of members of the immunoglobulin cell adhesion molecule superfamily with highly regulated membrane-associated guanylate kinases. This plasticity regulation probably arose in order to modulate the ancestral pSJ and is maintained in the derived structures; we suggest that it would be beneficial when studying plasticity of one of these structures to consider the literature on the others. Finally, looking beyond the junctions, we highlight parallels between epithelial and synaptic membranes, which both show a polarized distribution of many of the same proteins – evidence that determinants of apicobasal polarity in epithelia also participate in patterning of the synapse.
Collapse
Affiliation(s)
- Nicholas Harden
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
| | - Simon Ji Hau Wang
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, British Columbia V5A 1S6, Canada
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| | - Charles Krieger
- Simon Fraser University, Department of Biomedical Physiology and Kinesiology, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
44
|
Le Goff C, Ganot P, Zoccola D, Caminiti-Segonds N, Allemand D, Tambutté S. Carbonic Anhydrases in Cnidarians: Novel Perspectives from the Octocorallian Corallium rubrum. PLoS One 2016; 11:e0160368. [PMID: 27513959 PMCID: PMC4981384 DOI: 10.1371/journal.pone.0160368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Although the ability to elaborate calcium carbonate biominerals was apparently gained independently during animal evolution, members of the alpha carbonic anhydrases (α-CAs) family, which catalyze the interconversion of CO2 into HCO3-, are involved in the biomineralization process across metazoans. In the Mediterranean red coral Corallium rubrum, inhibition studies suggest an essential role of CAs in the synthesis of two biominerals produced in this octocoral, the axial skeleton and the sclerites. Hitherto no molecular characterization of these enzymes was available. In the present study we determined the complete set of α-CAs in C. rubrum by data mining the genome and transcriptome, and measured their differential gene expression between calcifying and non-calcifying tissues. We identified six isozymes (CruCA1-6), one cytosolic and five secreted/membrane-bound among which one lacked two of the three zinc-binding histidines and was so referred to as a carbonic anhydrase related protein (CARP). One secreted isozyme (CruCA4) showed specific expression both by qPCR and western-blot in the calcifying tissues, suggesting its involvement in biomineralization. Moreover, phylogenetic analyses of α-CAs, identified in six representative cnidarians with complete genome, support an independent recruitment of α-CAs for biomineralization within anthozoans. Finally, characterization of cnidarian CARPs highlighted two families: the monophyletic cytosolic CARPs, and the polyphyletic secreted CARPs harboring a cnidarian specific cysteine disulfide bridge. Alignment of the cytosolic CARPs revealed an evolutionary conserved R-H-Q motif in place of the characteristic zinc-binding H-H-H necessary for the catalytic function of α-CAs.
Collapse
|
45
|
Septate Junction Proteins Play Essential Roles in Morphogenesis Throughout Embryonic Development in Drosophila. G3-GENES GENOMES GENETICS 2016; 6:2375-84. [PMID: 27261004 PMCID: PMC4978892 DOI: 10.1534/g3.116.031427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction.
Collapse
|
46
|
Takeuchi T, Yamada L, Shinzato C, Sawada H, Satoh N. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics. PLoS One 2016; 11:e0156424. [PMID: 27253604 PMCID: PMC4890752 DOI: 10.1371/journal.pone.0156424] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/14/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
- * E-mail:
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517–0004, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517–0004, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
| |
Collapse
|
47
|
Salas PJ, Forteza R, Mashukova A. Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 2016; 4:e1178368. [PMID: 27583190 PMCID: PMC4993576 DOI: 10.1080/21688370.2016.1178368] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022] Open
Abstract
As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types I and II) expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can hardly be explained by evolutionary advantages in mechanical features. The use of transgenic mouse models has revealed unexpected functional relationships between keratin intermediate filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different epithelia. Precise mechanistic explanations for these phenomena are still lacking. However, immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate filaments (“scaffolding”) appear as common molecular mechanisms and may explain the need for so many different keratin genes in vertebrates.
Collapse
Affiliation(s)
- Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Radia Forteza
- Department of Cell Biology, Miller School of Medicine, University of Miami , Miami, FL, USA
| | - Anastasia Mashukova
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Physiology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
48
|
The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti. J Comp Physiol B 2016; 186:589-602. [DOI: 10.1007/s00360-016-0979-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/06/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
|
49
|
Occluding junctions of invertebrate epithelia. J Comp Physiol B 2015; 186:17-43. [DOI: 10.1007/s00360-015-0937-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/12/2015] [Accepted: 09/22/2015] [Indexed: 01/30/2023]
|
50
|
Falini G, Fermani S, Goffredo S. Coral biomineralization: A focus on intra-skeletal organic matrix and calcification. Semin Cell Dev Biol 2015; 46:17-26. [DOI: 10.1016/j.semcdb.2015.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
|