1
|
Hercus JC, Salcedo Rubio DA, Osorio Nieto ME, Sturn MML, Keum C, Christians JK. The whole is lesser than the sum of its parts? Dissecting layer-enriched samples of rodent placenta is worth the effort. Placenta 2024; 157:76-80. [PMID: 39317518 DOI: 10.1016/j.placenta.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Gene expression in the placenta, assessed by bulk RNA-seq, is a common method to explore placental function. Many rodent studies homogenize the entire placenta, and yet doing so may obscure differences within specific functional regions such as the labyrinth, junctional zone and decidua. Conversely, analysis of the whole placenta could generate apparent differences due to changes in composition (e.g., relative amounts of labyrinth vs junctional zone) rather than differential gene expression. We assess the value of dissecting and separately analysing the labyrinth and junctional zone/decidua by comparing RNA-seq results from the labyrinth, junctional zone/decidua combined, and whole placenta from an experiment examining effects of maternal food restriction and fetal sex in C57BL6/J mice at gestational day 17.5. The number of genes identified as differentially expressed in response to maternal food restriction was substantially higher in the labyrinth (910 genes), than in the junctional zone/decidua (50 genes), which in turn was slightly higher than in the whole placenta (3 genes). Only one gene was differentially expressed in all 3 tissue types, and 20 genes were differentially expressed in both the labyrinth and junctional zone/decidua. The larger number of differentially expressed genes in the labyrinth was due to both larger effect sizes and estimates of effect sizes having smaller standard errors. While dissection to obtain layer-enriched samples is slightly more time-consuming than collection of whole placenta and requires some practice, our results show that layer-enrichment is clearly worth the effort.
Collapse
Affiliation(s)
- Jess C Hercus
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | | - Mackenzie M L Sturn
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Cheayeong Keum
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Julian K Christians
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
3
|
Rodriguez-Caro F, Moore EC, Good JM. Evolution of parent-of-origin effects on placental gene expression in house mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554674. [PMID: 37662315 PMCID: PMC10473692 DOI: 10.1101/2023.08.24.554674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian placenta is a hotspot for the evolution of genomic imprinting, a form of gene regulation that involves the parent-specific epigenetic silencing of one allele. Imprinted genes are central to placental development and are thought to contribute to the evolution of reproductive barriers between species. However, it is unclear how rapidly imprinting evolves or how functional specialization among placental tissues influences the evolution of imprinted expression. We compared parent-of-origin expression bias across functionally distinct placental layers sampled from reciprocal crosses within three closely related lineages of mice ( Mus ). Using genome-wide gene expression and DNA methylation data from fetal and maternal tissues, we developed an analytical strategy to minimize pervasive bias introduced by maternal contamination of placenta samples. We corroborated imprinted expression at 42 known imprinted genes and identified five candidate imprinted genes showing parent-of-origin specific expression and DNA methylation. Paternally-biased expression was enriched in the labyrinth zone, a layer specialized in nutrient transfer, and maternally-biased genes were enriched in the junctional zone, which specializes in modulation of maternal physiology. Differentially methylated regions were predominantly determined through epigenetic modification of the maternal genome and were associated with both maternally- and paternally-biased gene expression. Lastly, comparisons between lineages revealed a small set of co-regulated genes showing rapid divergence in expression levels and imprinted status in the M. m. domesticus lineage. Together, our results reveal important links between core functional elements of placental biology and the evolution of imprinted gene expression among closely related rodent species.
Collapse
|
4
|
Weigert R, Hetzel S, Bailly N, Haggerty C, Ilik IA, Yung PYK, Navarro C, Bolondi A, Kumar AS, Anania C, Brändl B, Meierhofer D, Lupiáñez DG, Müller FJ, Aktas T, Elsässer SJ, Kretzmer H, Smith ZD, Meissner A. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat Cell Biol 2023; 25:579-591. [PMID: 37024684 PMCID: PMC10104784 DOI: 10.1038/s41556-023-01114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.
Collapse
Affiliation(s)
- Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A Ilik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, US.
| |
Collapse
|
5
|
Xie L, Ding N, Sheng S, Zhang H, Yin H, Gao L, Zhang H, Ma S, Yang A, Li G, Jiao Y, Shi Q, Jiang Y, Zhang H. Cooperation between NSPc1 and DNA methylation represses HOXA11 expression and promotes apoptosis of trophoblast cells during preeclampsia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1-13. [PMID: 36815373 PMCID: PMC10157525 DOI: 10.3724/abbs.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has shown that the apoptosis of trophoblast cells plays an important role in the pathogenesis of preeclampsia, and an intricate interplay between DNA methylation and polycomb group (PcG) protein-mediated gene silencing has been highlighted recently. Here, we provide evidence that the expression of nervous system polycomb 1 (NSPc1), a BMI1 homologous polycomb protein, is significantly elevated in trophoblast cells during preeclampsia, which accelerates trophoblast cell apoptosis. Since NSPc1 acts predominantly as a transcriptional inactivator that specifically represses HOXA11 expression in trophoblast cells during preeclampsia, we further show that NSPc1 is required for DNMT3a recruitment and maintenance of the DNA methylation in the HOXA11 promoter in trophoblast cells during preeclampsia. In addition, we find that the interplay of DNMT3a and NSPc1 represses the expression of HOXA11 and promotes trophoblast cell apoptosis. Taken together, these results indicate that the cooperation between NSPc1 and DNMT3a reduces HOXA11 expression in preeclampsia pathophysiology, which provides novel therapeutic approaches for targeted inhibition of trophoblast cell apoptosis during preeclampsia pathogenesis.
Collapse
Affiliation(s)
- Lin Xie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ning Ding
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Siqi Sheng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Honghong Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - He Yin
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Lina Gao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Clinical MedicineNingxia Medical UniversityYinchuan750004China
| | - Hui Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Yun Jiao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Infectious DiseasesGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Qing Shi
- Department of GynecologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Huiping Zhang
- Department of Medical GeneticsMaternal and Child Health of Hunan ProvinceChangsha410008China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- General Hospital of Ningxia Medical UniversityYinchuan750004China
| |
Collapse
|
6
|
Du C, Jiang J, Li Y, Yu M, Jin J, Chen S, Fan H, Macfarlan TS, Cao B, Sun MA. Regulation of endogenous retrovirus-derived regulatory elements by GATA2/3 and MSX2 in human trophoblast stem cells. Genome Res 2023; 33:197-207. [PMID: 36806146 PMCID: PMC10069462 DOI: 10.1101/gr.277150.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The placenta is an organ with extraordinary phenotypic diversity in eutherian mammals. Recent evidence suggests that numerous human placental enhancers are evolved from lineage-specific insertions of endogenous retroviruses (ERVs), yet the transcription factors (TFs) underlying their regulation remain largely elusive. Here, by first focusing on MER41, a primate-specific ERV family previously linked to placenta and innate immunity, we uncover the binding motifs of multiple crucial trophoblast TFs (GATA2/3, MSX2, GRHL2) in addition to innate immunity TFs STAT1 and IRF1. Integration of ChIP-seq data confirms the binding of GATA2/3, MSX2, and their related factors on the majority of MER41-derived enhancers in human trophoblast stem cells (TSCs). MER41-derived enhancers that are constitutively active in human TSCs are distinct from those activated upon interferon stimulation, which is determined by the binding of relevant TFs and their subfamily compositions. We further demonstrate that GATA2/3 and MSX2 have prevalent binding to numerous other ERV families - indicating their broad impact on ERV-derived enhancers. Functionally, the derepression of many syncytiotrophoblast genes after MSX2 knockdown is likely to be mediated by regulatory elements derived from ERVs - suggesting ERVs are also important for mediating transcriptional repression. Overall, this study characterizes the regulation of ERV-derived regulatory elements by GATA2/3, MSX2, and their cofactors in human TSCs, and provides mechanistic insights into the importance of ERVs in human trophoblast regulatory network.
Collapse
Affiliation(s)
- Cui Du
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jing Jiang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuzhuo Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Miao Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuai Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hairui Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China;
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; .,Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
7
|
Andrews S, Krueger C, Mellado-Lopez M, Hemberger M, Dean W, Perez-Garcia V, Hanna CW. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun 2023; 14:371. [PMID: 36690623 PMCID: PMC9870994 DOI: 10.1038/s41467-023-36019-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development, exemplified by the embryonic and perinatal lethality observed in mice lacking de novo DNA methyltransferases (DNMTs). Here we characterise the role for DNMT3A, 3B and 3L in gene regulation and development of the mouse placenta. We find that each DNMT establishes unique aspects of the placental methylome through targeting to distinct chromatin features. Loss of Dnmt3b results in de-repression of germline genes in trophoblast lineages and impaired formation of the maternal-foetal interface in the placental labyrinth. Using Sox2-Cre to delete Dnmt3b in the embryo, leaving expression intact in placental cells, the placental phenotype was rescued and, consequently, the embryonic lethality, as Dnmt3b null embryos could now survive to birth. We conclude that de novo DNA methylation by DNMT3B during embryogenesis is principally required to regulate placental development and function, which in turn is critical for embryo survival.
Collapse
Affiliation(s)
- Simon Andrews
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
| | - Christel Krueger
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Bioinformatics Innovation Hub, Altos Labs Cambridge Institute, Cambridge, UK
| | | | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Carrasco-Wong I, González-Ortiz M, Araujo GG, Lima VV, Giachini FR, Stojanova J, Moller A, Martín SS, Escudero P, Damiano AE, Sosa-Macias M, Galaviz-Hernandez C, Teran E, Escudero C. The Placental Function Beyond Pregnancy: Insights from Latin America. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:287-307. [PMID: 37466779 DOI: 10.1007/978-3-031-32554-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Currently, more than 100,000 papers had been published studying the placenta in both physiological and pathological contexts. However, relevant health conditions affecting placental function, mostly found in low-income countries, should be evaluated deeper. This review will raise some - of what we think necessary - points of discussion regarding challenging topics not fully understood, including the paternal versus maternal contribution on placental genes imprinting, placenta-brain communication, and some environmental conditions affecting the placenta. The discussions are parts of an international effort to fulfil some gaps observed in this area, and Latin-American research groups currently evaluate that.
Collapse
Affiliation(s)
- Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
| | - Gabriel Gomes Araujo
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, Brazil
| | - Victor V Lima
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, Brazil
| | - Fernanda R Giachini
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidade Federal de Mato Grosso, Barra do Garcas, Brazil
| | - Jana Stojanova
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar, Chile
| | - Alejandra Moller
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Pablo Escudero
- Faculty of Medicine, Universidad San Sebastian, Sede Concepcion, Chile
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)- CONICET- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martha Sosa-Macias
- Genomics Academia, Instituto Politécnico Nacional-CIIDIR Durango, Durango, Mexico
| | | | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
- Vascular Physiology Laboratory, Basic Sciences Department, Faculty of Sciences, Universidad del Bio-Bio, Chillan, Chile.
| |
Collapse
|
9
|
Islam M, Strawn M, Behura SK. Fetal origin of sex‐bias brain aging. FASEB J 2022; 36:e22463. [DOI: 10.1096/fj.202200255rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Monica Strawn
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Susanta K. Behura
- Division of Animal Sciences University of Missouri Columbia Missouri USA
- MU Institute for Data Science and Informatics University of Missouri Columbia Missouri USA
- Interdisciplinary Neuroscience Program University of Missouri Columbia Missouri USA
| |
Collapse
|
10
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
de Sena Brandine G, Smith AD. Fast and memory-efficient mapping of short bisulfite sequencing reads using a two-letter alphabet. NAR Genom Bioinform 2022; 3:lqab115. [PMID: 34988438 PMCID: PMC8693577 DOI: 10.1093/nargab/lqab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
DNA cytosine methylation is an important epigenomic mark with a wide range of functions in many organisms. Whole genome bisulfite sequencing is the gold standard to interrogate cytosine methylation genome-wide. Algorithms used to map bisulfite-converted reads often encode the four-base DNA alphabet with three letters by reducing two bases to a common letter. This encoding substantially reduces the entropy of nucleotide frequencies in the resulting reference genome. Within the paradigm of read mapping by first filtering possible candidate alignments, reduced entropy in the sequence space can increase the required computing effort. We introduce another bisulfite mapping algorithm (abismal), based on the idea of encoding a four-letter DNA sequence as only two letters, one for purines and one for pyrimidines. We show that this encoding can lead to greater specificity compared to existing encodings used to map bisulfite sequencing reads. Through the two-letter encoding, the abismal software tool maps reads in less time and using less memory than most bisulfite sequencing read mapping software tools, while attaining similar accuracy. This allows in silico methylation analysis to be performed in a wider range of computing machines with limited hardware settings.
Collapse
Affiliation(s)
- Guilherme de Sena Brandine
- Quantitative and Computational Biology, University of Southern California. 1050 Child's way, Los Angeles, CA 90007, USA
| | - Andrew D Smith
- Quantitative and Computational Biology, University of Southern California. 1050 Child's way, Los Angeles, CA 90007, USA
| |
Collapse
|
12
|
Pastor WA, Kwon SY. Distinctive aspects of the placental epigenome and theories as to how they arise. Cell Mol Life Sci 2022; 79:569. [PMID: 36287261 PMCID: PMC9606139 DOI: 10.1007/s00018-022-04568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
The placenta has a methylome dramatically unlike that of any somatic cell type. Among other distinctions, it features low global DNA methylation, extensive “partially methylated domains” packed in dense heterochromatin and methylation of hundreds of CpG islands important in somatic development. These features attract interest in part because a substantial fraction of human cancers feature the exact same phenomena, suggesting parallels between epigenome formation in placentation and cancer. Placenta also features an expanded set of imprinted genes, some of which come about by distinctive developmental pathways. Recent discoveries, some from far outside the placental field, shed new light on how the unusual placental epigenetic state may arise. Nonetheless, key questions remain unresolved.
Collapse
Affiliation(s)
- William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
13
|
Mallery CS, Carrillo M, Mei A, Correia-Branco A, Kashpur O, Wallingford MC. Cellular Complexity of Hemochorial Placenta: Stem Cell Populations, Insights from scRNA-seq, and SARS-CoV-2 Susceptibility. CURRENT STEM CELL REPORTS 2021; 7:185-193. [PMID: 34697582 PMCID: PMC8527817 DOI: 10.1007/s40778-021-00194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
Purpose of Review The placenta is a transient organ that forms de novo and serves a critical role in supporting fetal growth and development. Placental oxygen, nutrients, and waste are transported through processes that depend on vascular structure and cell type-specific expression and localization of membrane transporters. Understanding how the placenta develops holds great significance for maternal-fetal medicine. The purpose of this review is to examine current information regarding placental progenitor populations. Recent Findings Recent advancements in single-cell RNA sequencing (scRNA-seq) provide unprecedented depth for the investigation of cell type-specific gene expression patterns in the placenta. Thus far, several mouse placenta scRNA-seq studies have been conducted which produced and analyzed transcriptomes of placental progenitors and cells of the fully developed placenta between embryonic day (E) 7.0 and E12.5. Together with human placenta scRNA-seq data which, in part, has been produced through coordinated research campaigns in the scientific community to understand the potential for SARS-CoV-2 infection, these mammalian studies lend fundamental insight into the cellular and molecular composition of hemochorial placentae found in both mouse and human. Summary Single-cell placenta research has advanced understanding of tissue-resident stem cells and molecules that are poised to support maternal-fetal communication and nutrient transport. Herein, we provide context for these recent findings by reviewing placental anatomy and cell populations, and discuss recent scRNA-seq mouse placenta findings. Further research is needed to evaluate the utility of placental stem cells in the development of new therapeutic approaches for the treatment of wound healing and disease.
Collapse
Affiliation(s)
- Christopher S. Mallery
- Tufts Medical Center, Mother Infant Research Institute, 800 Washington St, Boston, MA 02111 USA
- Texas A&M University - San Antonio, One University Way, San Antonio, 78224 USA
| | - Maira Carrillo
- Tufts Medical Center, Mother Infant Research Institute, 800 Washington St, Boston, MA 02111 USA
- Odessa College, 201 W University Blvd, Odessa, TX 79764 USA
| | - Ariel Mei
- Tufts Medical Center, Mother Infant Research Institute, 800 Washington St, Boston, MA 02111 USA
- Simmons University, 300 Fenway, Boston, MA 02115 USA
| | - Ana Correia-Branco
- Tufts Medical Center, Mother Infant Research Institute, 800 Washington St, Boston, MA 02111 USA
| | - Olga Kashpur
- Tufts Medical Center, Mother Infant Research Institute, 800 Washington St, Boston, MA 02111 USA
| | - Mary C. Wallingford
- Tufts Medical Center, Mother Infant Research Institute, 800 Washington St, Boston, MA 02111 USA
- Division of Obstetrics and Gynecology, Tufts University School of Medicine, 800 Washington Street, Boston, MA 02111 USA
| |
Collapse
|
14
|
Sun J, Zheng W, Liu W, Kou X, Zhao Y, Liang Z, Wang L, Zhang Z, Xiao J, Gao R, Gao S, Jiang C. Differential Transcriptomes and Methylomes of Trophoblast Stem Cells From Naturally-Fertilized and Somatic Cell Nuclear-Transferred Embryos. Front Cell Dev Biol 2021; 9:664178. [PMID: 33869230 PMCID: PMC8047118 DOI: 10.3389/fcell.2021.664178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/05/2022] Open
Abstract
Trophoblast stem cells (TSCs) are critical to mammalian embryogenesis by providing the cell source of the placenta. TSCs can be derived from trophoblast cells. However, the efficiency of TSC derivation from somatic cell nuclear transfer (NT) blastocysts is low. The regulatory mechanisms underlying transcription dynamics and epigenetic landscape remodeling during TSC derivation remain elusive. Here, we derived TSCs from the blastocysts by natural fertilization (NF), NT, and a histone deacetylase inhibitor Scriptaid-treated NT (SNT). Profiling of the transcriptomes across the stages of TSC derivation revealed that fibroblast growth factor 4 (FGF4) treatment resulted in many differentially expressed genes (DEGs) at outgrowth and initiated transcription program for TSC formation. We identified 75 transcription factors (TFs) that are continuously upregulated during NF TSC derivation, whose transcription profiles can infer the time course of NF not NT TSC derivation. Most DEGs in NT outgrowth are rescued in SNT outgrowth. The correct time course of SNT TSC derivation is inferred accordingly. Moreover, these TFs comprise an interaction network important to TSC stemness. Profiling of DNA methylation dynamics showed an extremely low level before FGF4 treatment and gradual increases afterward. FGF4 treatment results in a distinct DNA methylation remodeling process committed to TSC formation. We further identified 1,293 CpG islands (CGIs) whose DNA methylation difference is more than 0.25 during NF TSC derivation. The majority of these CGIs become highly methylated upon FGF4 treatment and remain in high levels. This may create a barrier for lineage commitment to restrict embryonic development, and ensure TSC formation. There exist hundreds of aberrantly methylated CGIs during NT TSC derivation, most of which are corrected during SNT TSC derivation. More than half of the aberrantly methylated CGIs before NT TSC formation are inherited from the donor genome. In contrast, the aberrantly methylated CGIs upon TSC formation are mainly from the highly methylated CGIs induced by FGF4 treatment. Functional annotation indicates that the aberrantly highly methylated CGIs play a role in repressing placenta development genes, etc., related to post-implantation development and maintaining TSC pluripotency. Collectively, our findings provide novel insights into the transcription dynamics, DNA methylation remodeling, and the role of FGF4 during TSC derivation.
Collapse
Affiliation(s)
- Jin Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weisheng Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Zehang Liang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lu Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zihao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Xiao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui Gao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Extensive Placental Methylation Profiling in Normal Pregnancies. Int J Mol Sci 2021; 22:ijms22042136. [PMID: 33669975 PMCID: PMC7924820 DOI: 10.3390/ijms22042136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The placental methylation pattern is crucial for the regulation of genes involved in trophoblast invasion and placental development, both key events for fetal growth. We investigated LINE-1 methylation and methylome profiling using a methylation EPIC array and the targeted methylation sequencing of 154 normal, full-term pregnancies, stratified by birth weight percentiles. LINE-1 methylation showed evidence of a more pronounced hypomethylation in small neonates compared with normal and large for gestational age. Genome-wide methylation, performed in two subsets of pregnancies, showed very similar methylation profiles among cord blood samples while placentae from different pregnancies appeared very variable. A unique methylation profile emerged in each placenta, which could represent the sum of adjustments that the placenta made during the pregnancy to preserve the epigenetic homeostasis of the fetus. Investigations into the 1000 most variable sites between cord blood and the placenta showed that promoters and gene bodies that are hypermethylated in the placenta are associated with blood-specific functions, whereas those that are hypomethylated belong mainly to pathways involved in cancer. These features support the functional analogies between a placenta and cancer. Our results, which provide a comprehensive analysis of DNA methylation profiling in the human placenta, suggest that its peculiar dynamicity can be relevant for understanding placental plasticity in response to the environment.
Collapse
|
16
|
Arévalo L, Gardner S, Campbell P. Haldane's rule in the placenta: Sex-biased misregulation of the Kcnq1 imprinting cluster in hybrid mice. Evolution 2020; 75:86-100. [PMID: 33215684 DOI: 10.1111/evo.14132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
Hybrid phenotypes that contribute to postzygotic reproductive isolation often exhibit pronounced asymmetry, both between reciprocal crosses and between the sexes in accordance with Haldane's rule. Inviability in mammalian hybrids is associated with parent-of-origin placental growth abnormalities for which misregulation of imprinted gene (IGs) is the leading candidate mechanism. However, direct evidence for the involvement of IGs in hybrid growth dysplasia is limited. We used transcriptome and reduced representation bisulfite sequencing to conduct the first genome-scale assessment of the contribution of IGs to parent-of-origin placental growth dysplasia in the cross between the house mouse (Mus musculus domesticus) and the Algerian mouse (Mus spretus). IGs with transgressive expression and methylation were concentrated in the Kcnq1 cluster, which contains causal genes for prenatal growth abnormalities in mice and humans. Hypermethylation of the cluster's imprinting control region, and consequent misexpression of the genes Phlda2 and Ascl2, is a strong candidate mechanism for transgressive placental undergrowth. Transgressive placental and gene regulatory phenotypes, including expression and methylation in the Kcnq1 cluster, were more extreme in hybrid males. Although consistent with Haldane's rule, male-biased defects are unexpected in rodent placenta because the X-chromosome is effectively hemizygous in both sexes. In search of an explanation, we found evidence of leaky imprinted (paternal) X-chromosome inactivation in hybrid female placenta, an epigenetic disturbance that may buffer females from the effects of X-linked incompatibilities to which males are fully exposed. Sex differences in chromatin structure on the X and sex-biased maternal effects are nonmutually exclusive alternative explanations for adherence to Haldane's rule in hybrid placenta. The results of this study contribute to understanding the genetic basis of hybrid inviability in mammals, and the role of IGs in speciation.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078.,Current Address: Department of Developmental Pathology, University of Bonn Medical School, Bonn, DE-53127, Germany
| | - Sarah Gardner
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078.,Current Address: Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, 92521
| | - Polly Campbell
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078.,Current Address: Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, 92521
| |
Collapse
|
17
|
Decato BE, Qu J, Ji X, Wagenblast E, Knott SRV, Hannon GJ, Smith AD. Characterization of universal features of partially methylated domains across tissues and species. Epigenetics Chromatin 2020; 13:39. [PMID: 33008446 PMCID: PMC7532633 DOI: 10.1186/s13072-020-00363-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Partially methylated domains (PMDs) are a hallmark of epigenomes in reproducible and specific biological contexts, including cancer cells, the placenta, and cultured cell lines. Existing methods for deciding whether PMDs exist in a sample, as well as their identification, are few, often tailored to specific biological questions, and require high coverage samples for accurate identification. RESULTS In this study, we outline a set of axioms that take a step towards a functional definition for PMDs, describe an improved method for comparable PMD detection across samples with substantially differing sequencing depths, and refine the decision criteria for whether a sample contains PMDs using a data-driven approach. Applying our method to 267 methylomes from 7 species, we corroborated recent results regarding the general association between replication timing and PMD state, and report identification of several reproducibly "escapee" genes within late-replicating domains that escape the reduced expression and hypomethylation of their immediate genomic neighborhood. We also explored the discordant PMD state of orthologous genes between human and mouse, and observed a directional association of PMD state with gene expression and local gene density. CONCLUSIONS Our improved method makes low sequencing depth, population-level studies of PMD variation possible and our results further refine the model of PMD formation as one where sequence context and regional epigenomic features both play a role in gradual genome-wide hypomethylation.
Collapse
Affiliation(s)
- Benjamin E. Decato
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| | - Jianghan Qu
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| | - Xiaojing Ji
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| | - Elvin Wagenblast
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724 USA
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5G 1L7 Canada
| | - Simon R. V. Knott
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724 USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048 USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724 USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- New York Genome Center, 101 6th Avenue, New York, NY 10013 USA
| | - Andrew D. Smith
- Quantitative and Computational Biology Section, University of Southern California, Childs Way, Los Angeles, California USA
| |
Collapse
|
18
|
Legault LM, Doiron K, Lemieux A, Caron M, Chan D, Lopes FL, Bourque G, Sinnett D, McGraw S. Developmental genome-wide DNA methylation asymmetry between mouse placenta and embryo. Epigenetics 2020; 15:800-815. [PMID: 32056496 PMCID: PMC7518706 DOI: 10.1080/15592294.2020.1722922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
In early embryos, DNA methylation is remodelled to initiate the developmental program but for mostly unknown reasons, methylation marks are acquired unequally between embryonic and placental cells. To better understand this, we generated high-resolution DNA methylation maps of mouse mid-gestation (E10.5) embryo and placenta. We uncovered specific subtypes of differentially methylated regions (DMRs) that contribute directly to the developmental asymmetry existing between mid-gestation embryonic and placental DNA methylation patterns. We show that the asymmetry occurs rapidly during the acquisition of marks in the post-implanted conceptus (E3.5-E6.5), and that these patterns are long-lasting across subtypes of DMRs throughout prenatal development and in somatic tissues. We reveal that at the peri-implantation stages, the de novo methyltransferase activity of DNMT3B is the main driver of methylation marks on asymmetric DMRs, and that DNMT3B can largely compensate for lack of DNMT3A in the epiblast and extraembryonic ectoderm, whereas DNMT3A can only partially compensate in the absence of DNMT3B. However, as development progresses and as DNMT3A becomes the principal de novo methyltransferase, the compensatory DNA methylation mechanism of DNMT3B on DMRs becomes less effective.
Collapse
Affiliation(s)
- LM Legault
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - K Doiron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
| | - A Lemieux
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
| | - M Caron
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - D Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - FL Lopes
- School of Veterinary Medicine, São Paulo State University (Unesp), Aracatuba, Brazil
| | - G Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
- Canadian Center for Computational Genomics, Montreal, Quebec, Canada
| | - D Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Pediatrics, Université De Montréal, Montreal, Canada
| | - S McGraw
- Research Center of the CHU Sainte-Justine, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Université De Montréal, Montreal, Canada
- Department of Obstetrics and Gynecology, Université De Montréal, Montreal, Canada
| |
Collapse
|
19
|
Kartal Ö, Schmid MW, Grossniklaus U. Cell type-specific genome scans of DNA methylation divergence indicate an important role for transposable elements. Genome Biol 2020; 21:172. [PMID: 32660534 PMCID: PMC7359245 DOI: 10.1186/s13059-020-02068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
In population genomics, genetic diversity measures play an important role in genome scans for divergent sites. In population epigenomics, comparable tools are rare although the epigenome can vary at several levels of organization. We propose a model-free, information-theoretic approach, the Jensen-Shannon divergence (JSD), as a flexible diversity index for epigenomic diversity. Here, we demonstrate how JSD uncovers the relationship between genomic features and cell type-specific methylome diversity in Arabidopsis thaliana. However, JSD is applicable to any epigenetic mark and any collection of individuals, tissues, or cells, for example to assess the heterogeneity in healthy organs and tumors.
Collapse
Affiliation(s)
- Önder Kartal
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008 Switzerland
- Creoptix AG, Zugerstrasse 76, Wädenswil, 8820 Switzerland
| | - Marc W. Schmid
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008 Switzerland
- MWSchmid GmbH, Möhrlistrasse 25, Zurich, 8006 Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008 Switzerland
| |
Collapse
|
20
|
Abstract
As the maternal–foetal interface, the placenta is essential for the establishment and progression of healthy pregnancy, regulating both foetal growth and maternal adaptation to pregnancy. The evolution and functional importance of genomic imprinting are inextricably linked to mammalian placentation. Recent technological advances in mapping and manipulating the epigenome in embryogenesis in mouse models have revealed novel mechanisms regulating genomic imprinting in placental trophoblast, the physiological implications of which are only just beginning to be explored. This review will highlight important recent discoveries and exciting new directions in the study of placental imprinting. The placenta is essential for healthy pregnancy because it supports the growth of the baby, helps the mother’s body adapt, and provides a connection between mother and the developing baby. Studying gene regulation and the early steps in placental development is challenging in human pregnancy, so mouse models have been key in building our understanding of these processes. In particular, these studies have identified a subset of genes that are essential for placentation, termed imprinted genes. Imprinted genes are those that are expressed from only one copy, depending on whether they were inherited from mom or dad. In this review, I describe recent novel approaches used to study the mechanisms regulating these imprinted genes in mouse models, and I highlight several new discoveries. It has become apparent that the regulation of imprinted genes in placenta is often unique from other tissues and that there are species-specific mechanisms allowing the evolution of new imprinted genes specifically in the placenta.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Gao X, Liu S, Song H, Feng X, Duan M, Huang L, Zhou F. AgeGuess, a Methylomic Prediction Model for Human Ages. Front Bioeng Biotechnol 2020; 8:80. [PMID: 32211384 PMCID: PMC7075810 DOI: 10.3389/fbioe.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Aging was a biological process under regulations from both inherited genetic factors and various molecular modifications within cells during the lifespan. Multiple studies demonstrated that the chronological age may be accurately predicted using the methylomic data. This study proposed a three-step feature selection algorithm AgeGuess for the age regression problem. AgeGuess selected 107 methylomic features as the gender-independent age biomarkers and the Support Vector Regressor (SVR) model using these biomarkers achieved 2.0267 in the mean absolute deviation (MAD) compared with the real chronological ages. Another regression algorithm Ridge achieved a slightly better MAD 1.9859 using the same biomarkers. The gender-independent age prediction models may be further improved by establishing two gender-specific models. And it's interesting to observe that there were only two methylation biomarkers shared by the two gender-specific biomarker sets and these two biomarkers were within the two known age-associated biomarker genes CALB1 and KLF14.
Collapse
Affiliation(s)
- Xiaoqian Gao
- BioKnow Health Informatics Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Shuai Liu
- BioKnow Health Informatics Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Haoqiu Song
- BioKnow Health Informatics Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China.,College of Computer Science, Hubei University of Technology, Wuhan, China
| | - Xin Feng
- BioKnow Health Informatics Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Meiyu Duan
- BioKnow Health Informatics Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| | - Fengfeng Zhou
- BioKnow Health Informatics Laboratory Key Laboratory of Symbolic Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
22
|
Gigante S, Gouil Q, Lucattini A, Keniry A, Beck T, Tinning M, Gordon L, Woodruff C, Speed TP, Blewitt ME, Ritchie ME. Using long-read sequencing to detect imprinted DNA methylation. Nucleic Acids Res 2019; 47:e46. [PMID: 30793194 PMCID: PMC6486641 DOI: 10.1093/nar/gkz107] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 02/01/2023] Open
Abstract
Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.
Collapse
Affiliation(s)
- Scott Gigante
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Genetics, Yale University, 333 Cedar Street, New Haven CT 06510, USA
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Alexis Lucattini
- Australian Genome Research Facility, 305 Grattan Street, Melbourne VIC 3000, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Matthew Tinning
- Australian Genome Research Facility, 305 Grattan Street, Melbourne VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility, 305 Grattan Street, Melbourne VIC 3000, Australia
| | - Chris Woodruff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Terence P Speed
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,School of Mathematics and Statistics, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne VIC 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Melbourne VIC 3010, Australia
| |
Collapse
|
23
|
de Sena Brandine G, Smith AD. Falco: high-speed FastQC emulation for quality control of sequencing data. F1000Res 2019; 8:1874. [PMID: 33552473 DOI: 10.12688/f1000research.21142.1] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Quality control is an essential first step in sequencing data analysis, and software tools for quality control are deeply entrenched in standard pipelines at most sequencing centers. Although the associated computations are straightforward, in many settings the total computing effort required for quality control is appreciable and warrants optimization. We present Falco, an emulation of the popular FastQC tool that runs on average three times faster while generating equivalent results. Compared to FastQC, Falco also requires less memory to run and provides more flexible visualization of HTML reports.
Collapse
Affiliation(s)
- Guilherme de Sena Brandine
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| | - Andrew D Smith
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
24
|
Abstract
Quality control is an essential first step in sequencing data analysis, and software tools for quality control are deeply entrenched in standard pipelines at most sequencing centers. Although the associated computations are straightforward, in many settings the total computing effort required for quality control is appreciable and warrants optimization. We present Falco, an emulation of the popular FastQC tool that runs on average three times faster while generating equivalent results. Compared to FastQC, Falco also requires less memory to run and provides more flexible visualization of HTML reports.
Collapse
Affiliation(s)
- Guilherme de Sena Brandine
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| | - Andrew D Smith
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
25
|
Xiang M, Ma Y, Lei H, Wen L, Chen S, Wang X. In vitro fertilization placenta overgrowth in mice is associated with downregulation of the paternal imprinting gene H19. Mol Reprod Dev 2019; 86:1940-1950. [PMID: 31556166 DOI: 10.1002/mrd.23279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/17/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Xiang
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
- Department of Obstetrics and GynecologySchool of Clinical Medicine, Xi'an Medical University Xi'an China
| | - Yuan Ma
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Hui Lei
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Liang Wen
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Shuqiang Chen
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| | - Xiaohong Wang
- Department of Obstetrics and GynecologyTangdu Hospital, Air Force Military Medical University Xi'an China
| |
Collapse
|
26
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
27
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
28
|
Yu D, Wang J, Zou H, Feng T, Chen L, Li J, Qi X, Li Z, Duan X, Xu C, Zhang L, Long X, Lan J, Chen C, Wang C, Xu X, Ren J, Zhao Y, Hu X, Lian Z, Men H, Pan D, Li N, Capecchi MR, Du X, Zhao Y, Wu S. Silencing of retrotransposon-derived imprinted gene RTL1 is the main cause for postimplantational failures in mammalian cloning. Proc Natl Acad Sci U S A 2018; 115:E11071-E11080. [PMID: 30381455 PMCID: PMC6255163 DOI: 10.1073/pnas.1814514115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Substantial rates of fetal loss plague all in vitro procedures involving embryo manipulations, including human-assisted reproduction, and are especially problematic for mammalian cloning where over 90% of reconstructed nuclear transfer embryos are typically lost during pregnancy. However, the epigenetic mechanism of these pregnancy failures has not been well described. Here we performed methylome and transcriptome analyses of pig induced pluripotent stem cells and associated cloned embryos, and revealed that aberrant silencing of imprinted genes, in particular the retrotransposon-derived RTL1 gene, is the principal epigenetic cause of pregnancy failure. Remarkably, restoration of RTL1 expression in pig induced pluripotent stem cells rescued fetal loss. Furthermore, in other mammals, including humans, low RTL1 levels appear to be the main epigenetic cause of pregnancy failure.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Huiying Zou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Tao Feng
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193 Beijing, China
| | - Lei Chen
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030
| | - Xiaolan Qi
- College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 100193 Beijing, China
| | - Zhifang Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiaoyue Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Chunlong Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Liang Zhang
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Xi Long
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Jing Lan
- Chongqing Academy of Animal Science, 402460 Chongqing, China
| | - Chao Chen
- Tang Tang Biomedical Technology (Beijing) Co., 100101 Beijing, China
| | - Chao Wang
- Department of Computer and Technology, Tsinghua University, 100101 Beijing, China
| | - Xinyu Xu
- School of Life Sciences, Tsinghua University, 100101 Beijing, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agriculture University, 100193 Beijing, China
| | - Hongsheng Men
- Rat Resource and Research Center, University of Missouri, Columbia, MO 65201
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65201
| | - Dengke Pan
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China;
- College of Animal Science and Technology, China Agriculture University, 100193 Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China;
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China;
| |
Collapse
|
29
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Wilson SL, Robinson WP. Utility of DNA methylation to assess placental health. Placenta 2018; 64 Suppl 1:S23-S28. [DOI: 10.1016/j.placenta.2017.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
|
31
|
Abstract
CpG island promoters are generally devoid of DNA methylation in somatic cells but are frequently methylated during tumorigenesis. Reporting recently in Nature, Smith et al. (2017) show that the signaling-induced methylome in early extraembryonic tissues resembles that of many cancers, suggesting that placental nuclear programming might be co-opted in tumorigenesis.
Collapse
Affiliation(s)
- Matthew C Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Sciences, Petersplatz 1, 4001 Basel, Switzerland.
| |
Collapse
|