1
|
Khan S, Noor S, Awan HH, Iqbal S, AlQahtani SA, Dilshad N, Ahmad N. Deep-ProBind: binding protein prediction with transformer-based deep learning model. BMC Bioinformatics 2025; 26:88. [PMID: 40121399 PMCID: PMC11929993 DOI: 10.1186/s12859-025-06101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Binding proteins play a crucial role in biological systems by selectively interacting with specific molecules, such as DNA, RNA, or peptides, to regulate various cellular processes. Their ability to recognize and bind target molecules with high specificity makes them essential for signal transduction, transport, and enzymatic activity. Traditional experimental methods for identifying protein-binding peptides are costly and time-consuming. Current sequence-based approaches often struggle with accuracy, focusing too narrowly on proximal sequence features and ignoring structural data. This study presents Deep-ProBind, a powerful prediction model designed to classify protein binding sites by integrating sequence and structural information. The proposed model employs a transformer and evolutionary-based attention mechanism, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Pseudo position specific scoring matrix -Discrete Wavelet Transform (PsePSSM -DWT) approach to encode peptides. The SHapley Additive exPlanations (SHAP) algorithm selects the optimal hybrid features, and a Deep Neural Network (DNN) is then used as the classification algorithm to predict protein-binding peptides. The performance of the proposed model was evaluated in comparison with traditional Machine Learning (ML) algorithms and existing models. Experimental results demonstrate that Deep-ProBind achieved 92.67% accuracy with tenfold cross-validation on benchmark datasets and 93.62% accuracy on independent samples. The Deep-ProBind outperforms existing models by 3.57% on training data and 1.52% on independent tests. These results demonstrate Deep-ProBind's reliability and effectiveness, making it a valuable tool for researchers and a potential resource in pharmacological studies, where peptide binding plays a critical role in therapeutic development.
Collapse
Affiliation(s)
- Salman Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KPK, Pakistan
| | - Sumaiya Noor
- Business and Management Sciences Department, Purdue University, West Lafayette, IN, USA
| | - Hamid Hussain Awan
- Department of Computer Science, Rawalpindi Women University, Rawalpindi, 46300, Punjab, Pakistan
| | - Shehryar Iqbal
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | - Salman A AlQahtani
- New Emerging Technologies and 5g Network and Beyond Research Chair, Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Naqqash Dilshad
- Department of Computer Science & Engineering, Sejong University, Seoul, 05006, South Korea
| | - Nijad Ahmad
- Department of Computer Science, Khurasan University, Jalalabad, Afghanistan.
| |
Collapse
|
2
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci (P/R and HD), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella, our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus, possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii, demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seonju Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Chen W, Yan M, Chen S, Sun J, Wang J, Meng D, Li J, Zhang L, Guo L. The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres. NATURE PLANTS 2024; 10:1928-1943. [PMID: 39543324 DOI: 10.1038/s41477-024-01849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Nicotiana benthamiana is a model organism widely adopted in plant biology. Its complete assembly remains unavailable despite several recent improvements. To further improve its usefulness, we generate and phase the complete 2.85 Gb genome assembly of allotetraploid N. benthamiana. We find that although Solanaceae centromeres are widely dominated by Ty3/Gypsy retrotransposons, satellite-based centromeres are surprisingly common in N. benthamiana, with 11 of 19 centromeres featured by megabase-scale satellite arrays. Interestingly, the satellite-enriched and satellite-free centromeres are extensively invaded by distinct Gypsy retrotransposons which CENH3 protein more preferentially occupies, suggestive of their crucial roles in centromere function. We demonstrate that ribosomal DNA is a major origin of centromeric satellites, and mitochondrial DNA could be employed as a core component of the centromere. Subgenome analysis indicates that the emergence of satellite arrays probably drives new centromere formation. Altogether, we propose that N. benthamiana centromeres evolved via neocentromere formation, satellite expansion, retrotransposon enrichment and mtDNA integration.
Collapse
Affiliation(s)
- Weikai Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Ming Yan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shaoying Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jie Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jingxuan Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dian Meng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jun Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Lili Zhang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, China
| | - Li Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
4
|
Gardner C, Chen J, Hadfield C, Lu Z, Debruin D, Zhan Y, Donlin MJ, Ahn TH, Lin Z. Chromosome-level subgenome-aware de novo assembly provides insight into Saccharomyces bayanus genome divergence after hybridization. Genome Res 2024; 34:2133-2146. [PMID: 39288995 PMCID: PMC11610598 DOI: 10.1101/gr.279364.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaptation, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitate adaptation, we have completed chromosome-level de novo assemblies of all chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380, using Oxford Nanopore Technologies' MinION long-read sequencing. We characterize the S. bayanus genome and compare it with its parent species, Saccharomyces uvarum and Saccharomyces eubayanus, and other S. bayanus genomes to better understand genome evolution after a relatively recent hybridization event. We observe multiple recombination events between the subgenomes in each chromosome, followed by loss of heterozygosity (LOH) in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of Saccharomyces cerevisiae, such as those involved in the maltose metabolism. Finally, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaptation to maltose brewing environments and mitigated the maladaptive effect of hybridization. This paper describes the first in-depth study using long-read sequencing technology of an S. bayanus hybrid genome, which may serve as an excellent reference for future studies of this important yeast and other yeast strains.
Collapse
Affiliation(s)
- Cory Gardner
- Department of Computer Science, Saint Louis University, St. Louis, Missouri 63103, USA
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Junhao Chen
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Christina Hadfield
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - David Debruin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Maureen J Donlin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Tae-Hyuk Ahn
- Department of Computer Science, Saint Louis University, St. Louis, Missouri 63103, USA;
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Zhenguo Lin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA;
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| |
Collapse
|
5
|
Pontes A, Paraíso F, Liu YC, Limtong S, Jindamorakot S, Jespersen L, Gonçalves C, Rosa CA, Tsai IJ, Rokas A, Hittinger CT, Gonçalves P, Sampaio JP. Tracking alternative versions of the galactose gene network in the genus Saccharomyces and their expansion after domestication. iScience 2024; 27:108987. [PMID: 38333711 PMCID: PMC10850751 DOI: 10.1016/j.isci.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
When Saccharomyces cerevisiae grows on mixtures of glucose and galactose, galactose utilization is repressed by glucose, and induction of the GAL gene network only occurs when glucose is exhausted. Contrary to reference GAL alleles, alternative alleles support faster growth on galactose, thus enabling distinct galactose utilization strategies maintained by balancing selection. Here, we report on new wild populations of Saccharomyces cerevisiae harboring alternative GAL versions and, for the first time, of Saccharomyces paradoxus alternative alleles. We also show that the non-functional GAL version found earlier in Saccharomyces kudriavzevii is phylogenetically related to the alternative versions, which constitutes a case of trans-specific maintenance of highly divergent alleles. Strains harboring the different GAL network variants show different levels of alleviation of glucose repression and growth proficiency on galactose. We propose that domestication involved specialization toward thriving in milk from a generalist ancestor partially adapted to galactose consumption in the plant niche.
Collapse
Affiliation(s)
- Ana Pontes
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Francisca Paraíso
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Savitree Limtong
- Department of Microbiology Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Biodiversity Center Kasetsart University, Bangkok 10900, Thailand
| | - Sasitorn Jindamorakot
- Microbial Diversity and Utilization Research Team, Thailand Bioresource Research Center, National Centre for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Carla Gonçalves
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, Nova School of Science and Technology, Caparica 2829-516, Portugal
- Associate Laboratory i4HB, Nova School of Science and Technology, Caparica 2829-516, Portugal
| |
Collapse
|
6
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
7
|
Jin X, Du H, Zhu C, Wan H, Liu F, Ruan J, Mower JP, Zhu A. Haplotype-resolved genomes of wild octoploid progenitors illuminate genomic diversifications from wild relatives to cultivated strawberry. NATURE PLANTS 2023; 9:1252-1266. [PMID: 37537397 DOI: 10.1038/s41477-023-01473-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Strawberry is an emerging model for studying polyploid genome evolution and rapid domestication of fruit crops. Here we report haplotype-resolved genomes of two wild octoploids (Fragaria chiloensis and Fragaria virginiana), the progenitor species of cultivated strawberry. Substantial variation is identified between species and between haplotypes. We redefine the four subgenomes and track the genetic contributions of diploid species by additional sequencing of the diploid F. nipponica genome. We provide multiple lines of evidence that F. vesca and F. iinumae, rather than other described extant species, are the closest living relatives of these wild and cultivated octoploids. In response to coexistence with quadruplicate gene copies, the octoploid strawberries have experienced subgenome dominance, homoeologous exchanges and coordinated expression of homoeologous genes. However, some homoeologues have substantially altered expression bias after speciation and during domestication. These findings enhance our understanding of the origin, genome evolution and domestication of strawberries.
Collapse
Affiliation(s)
- Xin Jin
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chumeng Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
8
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Zhang RG, Lu C, Li GY, Lv J, Wang L, Wang ZX, Chen Z, Liu D, Zhao Y, Shi TL, Zhang W, Tang ZH, Mao JF, Ma YP, Jia KH, Zhao W. Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes. Nat Commun 2023; 14:2204. [PMID: 37076529 PMCID: PMC10115784 DOI: 10.1038/s41467-023-37939-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Affiliation(s)
- Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoxia Lu
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Guang-Yuan Li
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, Shandong, China
| | - Jie Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Longxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Zhao-Xuan Wang
- Shijiazhuang People's Medical College, Shijiazhuang, 050091, Hebei, China
| | - Zhe Chen
- InvoGenomics Biotechnology Co., Ltd., Jinan, 250109, Shandong, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, Shandong, China
| | - Ye Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Wei Zhang
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261322, Shandong, China
| | - Zhao-Hui Tang
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Yong-Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations / Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Kai-Hua Jia
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
10
|
Song Y, Li C, Liu L, Hu P, Li G, Zhao X, Zhou H. The population genomic analyses of chloroplast genomes shed new insights on the complicated ploidy and evolutionary history in Fragaria. FRONTIERS IN PLANT SCIENCE 2023; 13:1065218. [PMID: 36874917 PMCID: PMC9975502 DOI: 10.3389/fpls.2022.1065218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The genus Fragaria consists of a rich diversity of ploidy levels with diploid (2x), tetraploid (4x), pentaploid (5x), hexaploidy (6x), octoploid (8x) and decaploid (10x) species. Only a few studies have explored the origin of diploid and octoploid strawberry, and little is known about the roles of tetraploidy and hexaploidy during the evolution of octoploid strawberry. The chloroplast genome is usually a stable circular genome and is widely used in investigating the evolution and matrilineal identification. Here, we assembled the chloroplast genomes of F. x ananassa cv. 'Benihoppe' (8x) using Illumina and HiFi data seperately. The genome alignment results showed that more InDels were located in the chloroplast genomes based on the PacBio HiFi data than Illumina data. We obtain highly accurate chloroplast genomes assembled through GetOrganelle using Illumina reads. We assembled 200 chloroplast genomes including 198 Fragaria (21 species) and 2 Potentilla samples. Analyses of sequence variation, phylogenetic and PCA analyses showed that Fragaria was divided into five groups. F. iinumae, F. nilgerrensis and all octoploid accessions formed Group A, C and E separately. Species native to western China were clustered into Group B. Group D consisted of F. virdis, F. orientalis, F. moschata, and F. vesca. STRUCTURE and haplotype network confirmed that the diploid F. vesca subsp. bracteata was the last maternal donator of octoploid strawberry. The dN/dS ratio estimated for the protein-coding genes revealed that genes involved in ATP synthase and photosystem function were under positive selection. These findings demonstrate the phylogeny of totally 21 Fragaria species and the origin of octoploid species. F. vesca was the last female donator of octoploid, which confirms the hypothesis that the hexaploid species F. moschata may be an evolutionary intermediate between the diploids and wild octoploid species.
Collapse
Affiliation(s)
- Yanhong Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaochao Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
11
|
García-Ríos E, Guillamón JM. Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 2022; 10:microorganisms10091811. [PMID: 36144411 PMCID: PMC9500811 DOI: 10.3390/microorganisms10091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Wine yeast have been exposed to harsh conditions for millennia, which have led to adaptive evolutionary strategies. Thus, wine yeasts from Saccharomyces genus are considered an interesting and highly valuable model to study human-drive domestication processes. The rise of whole-genome sequencing technologies together with new long reads platforms has provided new understanding about the population structure and the evolution of wine yeasts. Population genomics studies have indicated domestication fingerprints in wine yeast, including nucleotide variations, chromosomal rearrangements, horizontal gene transfer or hybridization, among others. These genetic changes contribute to genetically and phenotypically distinct strains. This review will summarize and discuss recent research on evolutionary trajectories of wine yeasts, highlighting the domestication hallmarks identified in this group of yeast.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
- Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
- Correspondence:
| | - José Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| |
Collapse
|
12
|
Nedoluzhko A, Sharko F, Tsygankova S, Boulygina E, Slobodova N, Teslyuk A, Galindo-Villegas J, Rastorguev S. Intergeneric hybridization of two stickleback species leads to introgression of membrane-associated genes and invasive TE expansion. Front Genet 2022; 13:863547. [PMID: 36092944 PMCID: PMC9452749 DOI: 10.3389/fgene.2022.863547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Interspecific hybridization has occurred relatively frequently during the evolution of vertebrates. This process usually abolishes reproductive isolation between the parental species. Moreover, it results in the exchange of genetic material and can lead to hybridogenic speciation. Hybridization between species has predominately been observed at the interspecific level, whereas intergeneric hybridization is rarer. Here, using whole-genome sequencing analysis, we describe clear and reliable signals of intergeneric introgression between the three-spined stickleback (Gasterosteus aculeatus) and its distant mostly freshwater relative the nine-spined stickleback (Pungitius pungitius) that inhabit northwestern Russia. Through comparative analysis, we demonstrate that such introgression phenomena apparently take place in the moderate-salinity White Sea basin, although it is not detected in Japanese sea stickleback populations. Bioinformatical analysis of the sites influenced by introgression showed that they are located near transposable elements, whereas those in protein-coding sequences are mostly found in membrane-associated and alternative splicing-related genes.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Limited Liability Company ELGENE, Moscow, Russia
| | - Fedor Sharko
- Limited Liability Company ELGENE, Moscow, Russia
- Laboratory of Vertebrate Genomics and Epigenomics, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Laboratory of Bioinformatics and Big Data Analysis, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Svetlana Tsygankova
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Eugenia Boulygina
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Natalia Slobodova
- Laboratory of Eukaryotic Genomics, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Anton Teslyuk
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Jorge Galindo-Villegas, ; Sergey Rastorguev,
| | - Sergey Rastorguev
- Limited Liability Company ELGENE, Moscow, Russia
- Laboratory of Bioinformatics and Big Data Analysis, Kurchatov Center for Genomic Research, National Research Center “Kurchatov Institute”, Moscow, Russia
- *Correspondence: Jorge Galindo-Villegas, ; Sergey Rastorguev,
| |
Collapse
|
13
|
Characterization of Saccharomyces Strains Isolated from “Kéknyelű” Grape Must and Their Potential for Wine Production. FERMENTATION 2022. [DOI: 10.3390/fermentation8080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Novel wine yeast strains have the potential to satisfy customer demand for new sensorial experiences and to ensure that wine producers have strains that can produce wine as efficiently as possible. In this respect, hybrid yeast strains have recently been the subject of intense research, as they are able to combine the favourable characteristics of both parental strains. In this study, two Saccharomyces “Kéknyelű” grape juice isolates were identified by species-specific PCR and PCR-RFLP methods and investigated with respect to their wine fermentation potential. Physiological characterization of the isolated strains was performed and included assessment of ethanol, sulphur dioxide, temperature and glucose (osmotic stress) tolerance, killer-toxin production, glucose fermentation ability at 16 °C and 24 °C, and laboratory-scale fermentation using sterile “Kéknyelű” must. Volatile components of the final product were studied by gas chromatography (GC) and mass spectrometry (MS). One isolate was identified as a S. cerevisiae × S. kudriavzevii hybrid and the other was S. cerevisiae. Both strains were characterized by high ethanol, sulphur dioxide and glucose tolerance, and the S. cerevisiae strain exhibited the killer phenotype. The hybrid isolate showed good glucose fermentation ability and achieved the lowest residual sugar content in wine. The ester production of the hybrid strain was high compared to the control S. cerevisiae starter strain, and this contributed to the fruity aroma of the wine. Both strains have good oenological characteristics, but only the hybrid yeast has the potential for use in wine fermentation.
Collapse
|
14
|
Theelen B, Mixão V, Ianiri G, Goh JPZ, Dijksterhuis J, Heitman J, Dawson TL, Gabaldón T, Boekhout T. Multiple Hybridization Events Punctuate the Evolutionary Trajectory of Malassezia furfur. mBio 2022; 13:e0385321. [PMID: 35404119 PMCID: PMC9040865 DOI: 10.1128/mbio.03853-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Malassezia species are important fungal skin commensals and are part of the normal microbiota of humans and other animals. However, under certain circumstances these fungi can also display a pathogenic behavior. For example, Malassezia furfur is a common commensal of human skin and yet is often responsible for skin disorders but also systemic infections. Comparative genomics analysis of M. furfur revealed that some isolates have a hybrid origin, similar to several other recently described hybrid fungal pathogens. Because hybrid species exhibit genomic plasticity that can impact phenotypes, we sought to elucidate the genomic evolution and phenotypic characteristics of M. furfur hybrids in comparison to their parental lineages. To this end, we performed a comparative genomics analysis between hybrid strains and their presumptive parental lineages and assessed phenotypic characteristics. Our results provide evidence that at least two distinct hybridization events occurred between the same parental lineages and that the parental strains may have originally been hybrids themselves. Analysis of the mating-type locus reveals that M. furfur has a pseudobipolar mating system and provides evidence that after sexual liaisons of mating compatible cells, hybridization involved cell-cell fusion leading to a diploid/aneuploid state. This study provides new insights into the evolutionary trajectory of M. furfur and contributes with valuable genomic resources for future pathogenicity studies. IMPORTANCEMalassezia furfur is a common commensal member of human/animal microbiota that is also associated with several pathogenic states. Recent studies report involvement of Malassezia species in Crohn's disease, a type of inflammatory bowel disease, pancreatic cancer progression, and exacerbation of cystic fibrosis. A recent genomics analysis of M. furfur revealed the existence of hybrid isolates and identified their putative parental lineages. In this study, we explored the genomic and phenotypic features of these hybrids in comparison to their putative parental lineages. Our results revealed the existence of a pseudobipolar mating system in this species and showed evidence for the occurrence of multiple hybridization events in the evolutionary trajectory of M. furfur. These findings significantly advance our understanding of the evolution of this commensal microbe and are relevant for future studies exploring the role of hybridization in the adaptation to new niches or environments, including the emergence of pathogenicity.
Collapse
Affiliation(s)
- Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Joleen Pei Zhen Goh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas L. Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
- Center for Cell Death, Injury and Regeneration, Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Bendixsen DP, Peris D, Stelkens R. Patterns of Genomic Instability in Interspecific Yeast Hybrids With Diverse Ancestries. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:742894. [PMID: 37744091 PMCID: PMC10512264 DOI: 10.3389/ffunb.2021.742894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 09/26/2023]
Abstract
The genomes of hybrids often show substantial deviations from the features of the parent genomes, including genomic instabilities characterized by chromosomal rearrangements, gains, and losses. This plastic genomic architecture generates phenotypic diversity, potentially giving hybrids access to new ecological niches. It is however unclear if there are any generalizable patterns and predictability in the type and prevalence of genomic variation and instability across hybrids with different genetic and ecological backgrounds. Here, we analyzed the genomic architecture of 204 interspecific Saccharomyces yeast hybrids isolated from natural, industrial fermentation, clinical, and laboratory environments. Synchronous mapping to all eight putative parental species showed significant variation in read depth indicating frequent aneuploidy, affecting 44% of all hybrid genomes and particularly smaller chromosomes. Early generation hybrids with largely equal genomic content from both parent species were more likely to contain aneuploidies than introgressed genomes with an older hybridization history, which presumably stabilized the genome. Shared k-mer analysis showed that the degree of genomic diversity and variability varied among hybrids with different parent species. Interestingly, more genetically distant crosses produced more similar hybrid genomes, which may be a result of stronger negative epistasis at larger genomic divergence, putting constraints on hybridization outcomes. Mitochondrial genomes were typically inherited from the species also contributing the majority nuclear genome, but there were clear exceptions to this rule. Together, we find reliable genomic predictors of instability in hybrids, but also report interesting cross- and environment-specific idiosyncrasies. Our results are an important step in understanding the factors shaping divergent hybrid genomes and their role in adaptive evolution.
Collapse
Affiliation(s)
- Devin P. Bendixsen
- Population Genetics Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University, Valencia, Spain
| | - Rike Stelkens
- Population Genetics Division, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Lairón-Peris M, Castiglioni GL, Routledge SJ, Alonso-Del-Real J, Linney JA, Pitt AR, Melcr J, Goddard AD, Barrio E, Querol A. Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid. Microb Genom 2021; 7. [PMID: 34448691 PMCID: PMC8549368 DOI: 10.1099/mgen.0.000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethanol, which also contained metabisulfite, a preservative that is used during wine fermentation as it converts to sulfite. After the adaptation process under these selected stressful environmental conditions, the tolerance of the adapted strain (H14A7-etoh) to sulfite and ethanol was investigated, revealing that the adapted hybrid is more resistant to sulfite compared to the original H14A7 strain, whereas ethanol tolerance improvement was slight. However, a trade-off in the adapted hybrid was found, as it had a lower capacity to ferment glucose and fructose in comparison with H14A7. Hybrid genomes are almost always unstable, and different signals of adaptation on H14A7-etoh genome were detected. Each subgenome present in the adapted strain had adapted differently. Chromosome aneuploidies were present in S. cerevisiae chromosome III and in S. uvarum chromosome VII–XVI, which had been duplicated. Moreover, S. uvarum chromosome I was not present in H14A7-etoh and a loss of heterozygosity (LOH) event arose on S. cerevisiae chromosome I. RNA-sequencing analysis showed differential gene expression between H14A7-etoh and H14A7, which can be easily correlated with the signals of adaptation that were found on the H14A7-etoh genome. Finally, we report alterations in the lipid composition of the membrane, consistent with conserved tolerance mechanisms.
Collapse
Affiliation(s)
- María Lairón-Peris
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| | - Gabriel L Castiglioni
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| | - Sarah J Routledge
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| | - John A Linney
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Andrew R Pitt
- College of Health and Life Sciences, Aston University, Birmingham, UK.,Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Material, University of Groningen, Groningen, The Netherlands
| | - Alan D Goddard
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos, CSIC, Valencia, Spain
| |
Collapse
|
17
|
Feng C, Wang J, Harris AJ, Folta KM, Zhao M, Kang M. Tracing the Diploid Ancestry of the Cultivated Octoploid Strawberry. Mol Biol Evol 2021; 38:478-485. [PMID: 32941604 PMCID: PMC7826170 DOI: 10.1093/molbev/msaa238] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The commercial strawberry, Fragaria × ananassa, is a recent allo-octoploid that is cultivated worldwide. However, other than Fragaria vesca, which is universally accepted one of its diploid ancestors, its other early diploid progenitors remain unclear. Here, we performed comparative analyses of the genomes of five diploid strawberries, F. iinumae, F. vesca, F. nilgerrensis, F. nubicola, and F. viridis, of which the latter three are newly sequenced. We found that the genomes of these species share highly conserved gene content and gene order. Using an alignment-based approach, we show that F. iinumae and F. vesca are the diploid progenitors to the octoploid F. × ananassa, whereas the other three diploids that we analyzed in this study are not parental species. We generated a fully resolved, dated phylogeny of Fragaria, and determined that the genus arose ∼6.37 Ma. Our results effectively resolve conflicting hypotheses regarding the putative diploid progenitors of the cultivated strawberry, establish a reliable backbone phylogeny for the genus, and provide genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.,Department of Biology, Oberlin College, Oberlin, OH
| | - Kevin M Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
19
|
Hutzler M, Michel M, Kunz O, Kuusisto T, Magalhães F, Krogerus K, Gibson B. Unique Brewing-Relevant Properties of a Strain of Saccharomyces jurei Isolated From Ash ( Fraxinus excelsior). Front Microbiol 2021; 12:645271. [PMID: 33868204 PMCID: PMC8044551 DOI: 10.3389/fmicb.2021.645271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
The successful application of Saccharomyces eubayanus and Saccharomyces paradoxus in brewery fermentations has highlighted the potential of wild Saccharomyes yeasts for brewing, and prompted investigation into the application potential of other members of the genus. Here, we evaluate, for the first time, the brewing potential of Saccharomyces jurei. The newly isolated strain from an ash tree (Fraxinus excelsior) in Upper Bavaria, Germany, close to the river Isar, was used to ferment a 12°P wort at 15°C. Performance was compared directly with that of a reference lager strain (TUM 34/70) and the S. eubayanus type strain. Both wild yeast rapidly depleted simple sugars and thereafter exhibited a lag phase before maltose utilization. This phase lasted for 4 and 10 days for S. eubayanus and S. jurei, respectively. S. eubayanus utilized fully the available maltose but, consistent with previous reports, did not use maltotriose. S. jurei, in contrast, utilized approximately 50% of the maltotriose available, making this the first report of maltotriose utilization in a wild Saccharomyces species. Maltotriose use was directly related to alcohol yield with 5.5, 4.9, and 4.5% ABV produced by Saccharomyces pastorianus, S. jurei, and S. eubayanus. Beers also differed with respect to aroma volatiles, with a high level (0.4 mg/L) of the apple/aniseed aroma ethyl hexanoate in S. jurei beers, while S. eubayanus beers had a high level of phenylethanol (100 mg/L). A trained panel rated all beers as being of high quality, but noted clear differences. A phenolic spice/clove note was prominent in S. jurei beer. This was less pronounced in the S. eubayanus beers, despite analytical levels of 4-vinylguaiacol being similar. Tropical fruit notes were pronounced in S. jurei beers, possibly resulting from the high level of ethyl hexanoate. Herein, we present results from the first intentional application of S. jurei as a yeast for beer fermentation (at the time of submission) and compare its fermentation performance to other species of the genus. Results indicate considerable potential for S. jurei application in brewing, with clear advantages compared to other wild Saccharomyces species.
Collapse
Affiliation(s)
- Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Maximilian Michel
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Oliver Kunz
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Tiina Kuusisto
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland.,Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Brian Gibson
- Chair of Brewing and Beverage Technology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Li M, Xiao Y, Mount S, Liu Z. An Atlas of Genomic Resources for Studying Rosaceae Fruits and Ornamentals. FRONTIERS IN PLANT SCIENCE 2021; 12:644881. [PMID: 33868343 PMCID: PMC8047320 DOI: 10.3389/fpls.2021.644881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/12/2023]
Abstract
Rosaceae, a large plant family of more than 3,000 species, consists of many economically important fruit and ornamental crops, including peach, apple, strawberry, raspberry, cherry, and rose. These horticultural crops are not only important economic drivers in many regions of the world, but also major sources of human nutrition. Additionally, due to the diversity of fruit types in Rosaceae, this plant family offers excellent opportunities for investigations into fleshy fruit diversity, evolution, and development. With the development of high-throughput sequencing technologies and computational tools, an increasing number of high-quality genomes and transcriptomes of Rosaceae species have become available and will greatly facilitate Rosaceae research and breeding. This review summarizes major genomic resources and genome research progress in Rosaceae, highlights important databases, and suggests areas for further improvement. The availability of these big data resources will greatly accelerate research progress and enhance the agricultural productivity of Rosaceae.
Collapse
Affiliation(s)
| | | | | | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
21
|
Priest SJ, Coelho MA, Mixão V, Clancey SA, Xu Y, Sun S, Gabaldón T, Heitman J. Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans. PLoS Genet 2021; 17:e1008871. [PMID: 33465111 PMCID: PMC7846113 DOI: 10.1371/journal.pgen.1008871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/29/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungal Cryptococcus species, Cryptococcus neoformans and Cryptococcus deneoformans, are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary between C. neoformans and C. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype in Cryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomycete Cryptococcus species. Several mechanisms enforce species boundaries by either preventing the formation of hybrid zygotes, known as pre-zygotic barriers, or preventing the viability and fecundity of hybrids, known as post-zygotic barriers. Despite these barriers, interspecific hybrids form at an appreciable frequency, such as hybrid isolates of the human fungal pathogenic species, Cryptococcus neoformans and Cryptococcus deneoformans, which are regularly isolated from both clinical and environmental sources. C. neoformans x C. deneoformans hybrids are typically highly aneuploid, sterile, and display phenotypes intermediate to those of either parent, although self-fertile isolates and transgressive phenotypes have been observed. One important mechanism known to enforce species boundaries or lead to incipient speciation is the DNA mismatch repair system, which blocks recombination between divergent DNA sequences during meiosis. The aim of this study was to determine if genetically deleting the DNA mismatch repair component Msh2 would relax the species boundary between C. neoformans and C. deneoformans. Progeny derived from C. neoformans x C. deneoformans crosses in which both parental strains lacked Msh2 had higher viability, and unlike previous studies in Saccharomyces, these Cryptococcus hybrid progeny had higher levels of aneuploidy and no observable increase in meiotic recombination at the whole-genome level.
Collapse
Affiliation(s)
- Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yitong Xu
- Program in Cell and Molecular Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Doña J, Sweet AD, Johnson KP. Comparing rates of introgression in parasitic feather lice with differing dispersal capabilities. Commun Biol 2020; 3:610. [PMID: 33097824 PMCID: PMC7584577 DOI: 10.1038/s42003-020-01345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Organisms vary in their dispersal abilities, and these differences can have important biological consequences, such as impacting the likelihood of hybridization events. However, there is still much to learn about the factors influencing hybridization, and specifically how dispersal ability affects the opportunities for hybridization. Here, using the ecological replicate system of dove wing and body lice (Insecta: Phthiraptera), we show that species with higher dispersal abilities exhibited increased genomic signatures of introgression. Specifically, we found a higher proportion of introgressed genomic reads and more reticulated phylogenetic networks in wing lice, the louse group with higher dispersal abilities. Our results are consistent with the hypothesis that differences in dispersal ability might drive the extent of introgression through hybridization. Jorge Doña, Andrew Sweet and Kevin Johnson find that dove lice species with higher dispersal abilities have stronger genomic signatures of introgression. By using sequence data from multiple species of both wing and body lice from the same species of hosts, the authors are able to control for nearly all factors besides dispersal ability, demonstrating the power of this study system.
Collapse
Affiliation(s)
- Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA. .,Departamento de Biología Animal, Universidad de Granada, 18001, Granada, Spain.
| | - Andrew D Sweet
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA.,Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN, 47907, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA.
| |
Collapse
|
23
|
Timouma S, Schwartz JM, Delneri D. HybridMine: A Pipeline for Allele Inheritance and Gene Copy Number Prediction in Hybrid Genomes and Its Application to Industrial Yeasts. Microorganisms 2020; 8:microorganisms8101554. [PMID: 33050146 PMCID: PMC7600756 DOI: 10.3390/microorganisms8101554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-scale computational approaches are opening opportunities to model and predict favorable combination of traits for strain development. However, mining the genome of complex hybrids is not currently an easy task, due to the high level of redundancy and presence of homologous. For example, Saccharomyces pastorianus is an allopolyploid sterile yeast hybrid used in brewing to produce lager-style beers. The development of new yeast strains with valuable industrial traits such as improved maltose utilization or balanced flavor profiles are now a major ambition and challenge in craft brewing and distilling industries. Moreover, no genome annotation for most of these industrial strains have been published. Here, we developed HybridMine, a new user-friendly, open-source tool for functional annotation of hybrid aneuploid genomes of any species by predicting parental alleles including paralogs. Our benchmark studies showed that HybridMine produced biologically accurate results for hybrid genomes compared to other well-established software. As proof of principle, we carried out a comprehensive structural and functional annotation of complex yeast hybrids to enable system biology prediction studies. HybridMine is developed in Python, Perl, and Bash programming languages and is available in GitHub.
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, M1 7DN Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, M1 7DN Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| |
Collapse
|
24
|
The Genome Sequence of the Jean-Talon Strain, an Archeological Beer Yeast from Québec, Reveals Traces of Adaptation to Specific Brewing Conditions. G3-GENES GENOMES GENETICS 2020; 10:3087-3097. [PMID: 32605927 PMCID: PMC7466965 DOI: 10.1534/g3.120.401149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genome sequences of archeological Saccharomyces cerevisiae isolates can reveal insights about the history of human baking, brewing and winemaking activities. A yeast strain called Jean-Talon was recently isolated from the vaults of the Intendant’s Palace of Nouvelle France on a historical site in Québec City. This site was occupied by breweries from the end of the 17th century until the middle of the 20th century when poisoning caused by cobalt added to the beer led to a shutdown of brewing activities. We sequenced the genome of the Jean-Talon strain and reanalyzed the genomes of hundreds of strains to determine how it relates to other domesticated and wild strains. The Jean-Talon strain is most closely related to industrial beer strains from the beer and bakery genetic groups from the United Kingdom and Belgium. It has numerous aneuploidies and Copy Number Variants (CNVs), including the main gene conferring cobalt resistance in yeast. The Jean-Talon strain has indeed higher tolerance to cobalt compared to other yeast strains, consistent with adaptation to the most recent brewing activities on the site. We conclude from this that the Jean-Talon strain most likely derives from recent brewing activities and not from the original breweries of Nouvelle France on the site.
Collapse
|
25
|
Abstract
MOTIVATION Consider a simple computational problem. The inputs are (i) the set of mixed reads generated from a sample that combines two organisms and (ii) separate sets of reads for several reference genomes of known origins. The goal is to find the two organisms that constitute the mixed sample. When constituents are absent from the reference set, we seek to phylogenetically position them with respect to the underlying tree of the reference species. This simple yet fundamental problem (which we call phylogenetic double-placement) has enjoyed surprisingly little attention in the literature. As genome skimming (low-pass sequencing of genomes at low coverage, precluding assembly) becomes more prevalent, this problem finds wide-ranging applications in areas as varied as biodiversity research, food production and provenance, and evolutionary reconstruction. RESULTS We introduce a model that relates distances between a mixed sample and reference species to the distances between constituents and reference species. Our model is based on Jaccard indices computed between each sample represented as k-mer sets. The model, built on several assumptions and approximations, allows us to formalize the phylogenetic double-placement problem as a non-convex optimization problem that decomposes mixture distances and performs phylogenetic placement simultaneously. Using a variety of techniques, we are able to solve this optimization problem numerically. We test the resulting method, called MIxed Sample Analysis tool (MISA), on a varied set of simulated and biological datasets. Despite all the assumptions used, the method performs remarkably well in practice. AVAILABILITY AND IMPLEMENTATION The software and data are available at https://github.com/balabanmetin/misa and https://github.com/balabanmetin/misa-data. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Metin Balaban
- Bioinformatics and Systems Biology Department, University of California San Diego, San Diego, CA 92093, USA
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
26
|
Abstract
Allopolyploidy generates diversity by increasing the number of copies and sources of chromosomes. Many of the best-known evolutionary radiations, crops, and industrial organisms are ancient or recent allopolyploids. Allopolyploidy promotes differentiation and facilitates adaptation to new environments, but the tools to test its limits are lacking. Here we develop an iterative method of Hybrid Production (iHyPr) to combine the genomes of multiple budding yeast species, generating Saccharomyces allopolyploids of at least six species. When making synthetic hybrids, chromosomal instability and cell size increase dramatically as additional copies of the genome are added. The six-species hybrids initially grow slowly, but they rapidly regain fitness and adapt, even as they retain traits from multiple species. These new synthetic yeast hybrids and the iHyPr method have potential applications for the study of polyploidy, genome stability, chromosome segregation, and bioenergy. Many industrial organisms are the result of recent or ancient allopolypoidy events. Here the authors iteratively combine the genomes of six yeast species to generate a viable hybrid.
Collapse
|
27
|
Bellut K, Krogerus K, Arendt EK. Lachancea fermentati Strains Isolated From Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Front Microbiol 2020; 11:764. [PMID: 32390994 PMCID: PMC7191199 DOI: 10.3389/fmicb.2020.00764] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023] Open
Abstract
With a growing interest in non-alcoholic and low alcohol beer (NABLAB), researchers are looking into non-conventional yeasts to harness their special metabolic traits for their production. One of the investigated species is Lachancea fermentati, which possesses the uncommon ability to produce significant amounts of lactic acid during alcoholic fermentation, resulting in the accumulation of lactic acid while exhibiting reduced ethanol production. In this study, four Lachancea fermentati strains isolated from individual kombucha cultures were investigated. Whole genome sequencing was performed, and the strains were characterized for important brewing characteristics (e.g., sugar utilization) and sensitivities toward stress factors. A screening in wort extract was performed to elucidate strain-dependent differences, followed by fermentation optimization to enhance lactic acid production. Finally, a low alcohol beer was produced at 60 L pilot-scale. The genomes of the kombucha isolates were diverse and could be separated into two phylogenetic groups, which were related to their geographical origin. Compared to a Saccharomyces cerevisiae brewers' yeast, the strains' sensitivities to alcohol and acidic conditions were low, while their sensitivities toward osmotic stress were higher. In the screening, lactic acid production showed significant, strain-dependent differences. Fermentation optimization by means of response surface methodology (RSM) revealed an increased lactic acid production at a low pitching rate, high fermentation temperature, and high extract content. It was shown that a high initial glucose concentration led to the highest lactic acid production (max. 18.0 mM). The data indicated that simultaneous lactic acid production and ethanol production occurred as long as glucose was present. When glucose was depleted and/or lactic acid concentrations were high, the production shifted toward the ethanol pathway as the sole pathway. A low alcohol beer (<1.3% ABV) was produced at 60 L pilot-scale by means of stopped fermentation. The beer exhibited a balanced ratio of sweetness from residual sugars and acidity from the lactic acid produced (13.6 mM). However, due to the stopped fermentation, high levels of diacetyl were present, which could necessitate further process intervention to reduce concentrations to acceptable levels.
Collapse
Affiliation(s)
- Konstantin Bellut
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Lairón-Peris M, Pérez-Través L, Muñiz-Calvo S, Guillamón JM, Heras JM, Barrio E, Querol A. Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Front Bioeng Biotechnol 2020; 8:129. [PMID: 32195231 PMCID: PMC7062649 DOI: 10.3389/fbioe.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. Genomic sequencing analysis showed that the artificial spore-derivative hybrid is an allotriploid, which is very common among natural hybrids. Its genome contains one genome copy from the S. uvarum parental genome and two heterozygous copies of the S. cerevisiae parental genome, with the exception of a monosomic S. cerevisiae chromosome III, where the sex-determining MAT locus is located. This genome constitution supports that the original hybrid from which the spore was obtained likely originated by a rare-mating event between a mating-competent S. cerevisiae diploid cell and either a diploid or a haploid S. uvarum cell of the opposite mating type. Moreover, a comparative transcriptomic analysis reveals that each spore-derivative hybrid subgenome is regulating different processes during the fermentation, in which each parental species has demonstrated to be more efficient. Therefore, interactions between the two subgenomes in the spore-derivative hybrid improve those differential species-specific adaptations to the wine fermentation environments, already present in the parental species.
Collapse
Affiliation(s)
- María Lairón-Peris
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Laura Pérez-Través
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Sara Muñiz-Calvo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | | | - Eladio Barrio
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| |
Collapse
|
29
|
Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Rokas A, Hittinger CT. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res 2020; 20:foaa008. [PMID: 32009143 PMCID: PMC7067299 DOI: 10.1093/femsyr/foaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina
| | - D Peris
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain
| | - F A Cubillos
- Millennium Institute for Integrative Biology (iBio). General del Canto 51 (7500574), Santiago
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología. Alameda 3363 (9170002). Estación Central. Santiago, Chile
| | - J L Steenwyk
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
| | - A Rokas
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| |
Collapse
|
30
|
Tattini L, Tellini N, Mozzachiodi S, D'Angiolo M, Loeillet S, Nicolas A, Liti G. Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. Mol Biol Evol 2020; 36:2861-2877. [PMID: 31397846 PMCID: PMC6878955 DOI: 10.1093/molbev/msz177] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.
Collapse
Affiliation(s)
- Lorenzo Tattini
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Nicolò Tellini
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | | | - Sophie Loeillet
- CNRS UMR3244, Institut Curie, PSL Research University, Paris, France
| | - Alain Nicolas
- CNRS UMR3244, Institut Curie, PSL Research University, Paris, France
| | - Gianni Liti
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| |
Collapse
|
31
|
Saubin M, Devillers H, Proust L, Brier C, Grondin C, Pradal M, Legras JL, Neuvéglise C. Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures. Front Microbiol 2020; 10:2960. [PMID: 32010076 PMCID: PMC6974558 DOI: 10.3389/fmicb.2019.02960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
Hanseniaspora, a predominant yeast genus of grape musts, includes sister species recently reported as fast evolving. The aim of this study was to investigate the genetic relationships between the four most closely related species, at the population level. A multi-locus sequence typing strategy based on five markers was applied on 107 strains, confirming the clear delineation of species H. uvarum, H. opuntiae, H. guilliermondii, and H. pseudoguilliermondii. Huge variations were observed in the level of intraspecific nucleotide diversity, and differences in heterozygosity between species indicate different life styles. No clear population structure was detected based on geographical or substrate origins. Instead, H. guilliermondii strains clustered into two distinct groups, which may reflect a recent step toward speciation. Interspecific hybrids were detected between H. opuntiae and H. pseudoguilliermondii. Their characterization using flow cytometry, karyotypes and genome sequencing showed different genome structures in different ploidy contexts: allodiploids, allotriploids, and allotetraploids. Subculturing of an allotriploid strain revealed chromosome loss equivalent to one chromosome set, followed by an auto-diploidization event, whereas another auto-diploidized tetraploid showed a segmental duplication. Altogether, these results suggest that Hanseniaspora genomes are not only fast evolving but also highly dynamic.
Collapse
Affiliation(s)
- Méline Saubin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lucas Proust
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cathy Brier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Cécile Grondin
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
32
|
Langdon QK, Peris D, Baker EP, Opulente DA, Nguyen HV, Bond U, Gonçalves P, Sampaio JP, Libkind D, Hittinger CT. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol Evol 2019; 3:1576-1586. [PMID: 31636426 DOI: 10.1038/s41559-019-0998-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, CSIC, Valencia, Spain
| | - EmilyClare P Baker
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA. .,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
33
|
Baker EP, Peris D, Moriarty RV, Li XC, Fay JC, Hittinger CT. Mitochondrial DNA and temperature tolerance in lager yeasts. SCIENCE ADVANCES 2019; 5:eaav1869. [PMID: 30729163 PMCID: PMC6353617 DOI: 10.1126/sciadv.aav1869] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/03/2019] [Indexed: 06/01/2023]
Abstract
A growing body of research suggests that the mitochondrial genome (mtDNA) is important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged in temperature tolerance, driving their use in high- or low-temperature fermentations. Here, we experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial hybrids (Saccharomyces cerevisiae × Saccharomyces eubayanus or Saccharomyces pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain temperature preferences. The strong influence of mitotype on the temperature tolerance of otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation hypothesis in yeasts and demonstrates how mitotype has influenced the world's most commonly fermented beverage.
Collapse
Affiliation(s)
- EmilyClare P. Baker
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Paterna, Valencia, Spain
| | - Ryan V. Moriarty
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Xueying C. Li
- Molecular Genetics and Genomics Program, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
- Center for Genome Sciences and System Biology, Washington University, St. Louis, MO, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C. Fay
- Molecular Genetics and Genomics Program, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
- Center for Genome Sciences and System Biology, Washington University, St. Louis, MO, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|