1
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
2
|
Vallcaneras S, Morales L, Delsouc MB, Ramirez D, Filippa V, Fernández M, Telleria CM, Casais M. Interplay between nitric oxide and gonadotrophin-releasing hormone in the neuromodulation of the corpus luteum during late pregnancy in the rat. Reprod Biol Endocrinol 2022; 20:19. [PMID: 35081973 PMCID: PMC8793209 DOI: 10.1186/s12958-022-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide and GnRH are biological factors that participate in the regulation of reproductive functions. To our knowledge, there are no studies that link NO and GnRH in the sympathetic ganglia. Thus, the aim of the present work was to investigate the influence of NO on GnRH release from the coeliac ganglion and its effect on luteal regression at the end of pregnancy in the rat. METHODS The ex vivo system composed by the coeliac ganglion, the superior ovarian nerve, and the ovary of rats on day 21 of pregnancy was incubated for 180 min with the addition, into the ganglionic compartment, of L-NG-nitro arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. The control group consisted in untreated organ systems. RESULTS The addition of L-NAME in the coeliac ganglion compartment decreased NO as well as GnRH release from the coeliac ganglion. In the ovarian compartment, and with respect to the control group, we observed a reduced release of GnRH, NO, and noradrenaline, but an increased production of progesterone, estradiol, and expression of their limiting biosynthetic enzymes, 3β-HSD and P450 aromatase, respectively. The inhibition of NO production by L-NAME in the coeliac ganglion compartment also reduced luteal apoptosis, lipid peroxidation, and nitrotyrosine, whereas it increased the total antioxidant capacity within the corpora lutea. CONCLUSION Collectively, the results indicate that NO production by the coeliac ganglion modulates the physiology of the ovary and luteal regression during late pregnancy in rats.
Collapse
Affiliation(s)
- Sandra Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Laura Morales
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - María Belén Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Darío Ramirez
- Laboratorio de Medicina Experimental & Traduccional (LME&T), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina
| | - Verónica Filippa
- Laboratorio de Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, Bloque I, Piso No. 1, 5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5700, San Luis, Argentina
| | - Marina Fernández
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), V. de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Duff Medical Sciences Building, Laboratory B22, Montreal, Quebec, PC H3A 2B4, Canada.
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, CP D5700HHW, San Luis, Argentina.
| |
Collapse
|
3
|
Morales L, Vallcaneras S, Delsouc MB, Filippa V, Aguilera-Merlo C, Fernández M, Casais M. Neuromodulatory effect of GnRH from coeliac ganglion on luteal regression in the late pregnant rat. Cell Tissue Res 2021; 384:487-498. [PMID: 33779845 DOI: 10.1007/s00441-021-03436-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
The GnRH/GnRH receptor system has been found in several extrapituitary tissues, although its physiological significance has not yet been well established. Taking into account that the peripheral neural system can act as a modulator of pregnancy corpus luteum, the objective was to physiologically investigate the presence of the GnRH system in coeliac ganglion (CG) and to analyse its possible involvement in luteal regression through the superior ovarian nerve (SON) at the end of pregnancy in the rat. The integrated ex vivo CG-SON-Ovary system of rats on day 21 of pregnancy was used. Cetrorelix (CTX), a GnRH receptor antagonist, was added into the ganglionic compartment while the control systems were untreated. Ganglionic GnRH release was detected under basal conditions. Then, the CTX addition in CG increased it, which would indicate the blockade of the receptor. In turn, CTX in CG caused an increase in ovarian progesterone release. Furthermore, the luteal cells showed an increase in the expression of Hsd3b1 and a decrease in the expression of Akr1c3 (progesterone synthesis and degradation enzymes, respectively), reduced TUNEL staining according to an increase in the antioxidant defence system activity and low lipid peroxide levels. The ovarian and ganglionic nitric oxide (NO) release increased, while the luteal nitrotyrosine content, measured as nitrosative stress marker, decreased. CTX in CG decreased the ovarian noradrenaline release. The present study provides evidence that GnRH from CG may trigger neuronal signals that promote the luteal regression in late pregnancy by affecting the release of NO and noradrenaline in the ovary.
Collapse
Affiliation(s)
- Laura Morales
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - Sandra Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - María Belén Delsouc
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - Verónica Filippa
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, Bloque I, Piso No. 1, 5700, San Luis, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5700, San Luis, Argentina
| | - Claudia Aguilera-Merlo
- Histología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, Bloque I, Piso No. 1, 5700, San Luis, Argentina
| | - Marina Fernández
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), V. de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marilina Casais
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Av. Ejército de los Andes 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
4
|
Jiang J, Liu S, Qi L, Wei Q, Shi F. Activation of Ovarian Taste Receptors Inhibits Progesterone Production Potentially via NO/cGMP and Apoptotic Signaling. Endocrinology 2021; 162:6052298. [PMID: 33367902 DOI: 10.1210/endocr/bqaa240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/25/2022]
Abstract
Taste receptors are not only expressed in the taste buds, but also in other nongustatory tissues, including the reproductive system. Taste receptors can be activated by various tastants, thereby exerting relatively physiologic functions. The aim of this study was to investigate the effects and potential mechanisms underlying ovarian taste receptor activation on progesterone production using saccharin sodium as the receptor agonist in a pseudopregnant rat model. Taste 1 receptor member 2 (TAS1R2) and taste 2 receptor member 31 (TAS2R31) were demonstrated to be abundantly expressed in the corpora lutea of rats, and intraperitoneal injection of saccharin sodium can activate both of them and initiate their downstream signaling cascades. The activation of these ovarian taste receptors promoted nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). NO production then increased ovarian cyclic guanosine 3',5'-monophosphate (cGMP) levels, which, in turn, decreased ovarian cyclic adenosine 3',5'-monophosphate levels. In addition, the activation of ovarian taste receptors induced apoptosis, possibly through NO and mitogen-activated protein kinase signaling. As a result, the activation of ovarian taste receptors reduced the protein expression of steroidogenesis-related factors, causing the inhibition of ovarian progesterone production. In summary, our data suggest that the activation of ovarian taste receptors inhibits progesterone production in pseudopregnant rats, potentially via NO/cGMP and apoptotic signaling.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Zhai J, Li S, Cheng X, Chen ZJ, Li W, Du Y. A candidate pathogenic gene, zinc finger gene 217 (ZNF217), may contribute to polycystic ovary syndrome through prostaglandin E2. Acta Obstet Gynecol Scand 2019; 99:119-126. [PMID: 31454071 DOI: 10.1111/aogs.13719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Polycystic ovary syndrome is a complex endocrine condition with chronic inflammation. Prostaglandin E2 (PGE2) is a proinflammatory factor with an increased expression in the serum of women with polycystic ovary syndrome. Zinc finger gene 217 (ZNF217) is known as a candidate gene for polycystic ovary syndrome. We aimed to investigate the relation between ZNF217 and PGE2 in polycystic ovary syndrome. MATERIAL AND METHODS We used a rat model of dehydroepiandrosterone-induced polycystic ovary syndrome and human granulosa cells both of women with polycystic ovary syndrome and of women without the syndrome to measure ZNF217 and other target gene expressions. In addition, we performed in vitro experiments with KGN human granulosa-like tumor cells to verify the molecular mechanisms. RESULTS ZNF217 was decreased in the granulosa cells both of dehydroepiandrosterone-treated rats and of women with polycystic ovary syndrome. Cyclooxygenase 2, a key enzyme of PGE2 synthesis, was highly expressed in the granulosa cells of rats and women with the syndrome, and PGE2 concentration was increased in the follicular fluid. Furthermore, decreased ZNF217 expression was supposed to inhibit estradiol synthesis, which further promoted cyclooxygenase 2 and PGE2 synthesis. At the same time, PGE2 had an inhibitory effect on ZNF217 expression in a dose-dependent manner in KGN cells. CONCLUSIONS Decreased ZNF217 expression in granulosa cells of women with polycystic ovary syndrome induced inflammation via PGE2, and PGE2 inhibited ZNF217 expression to establish a feedback loop. This mechanism might account for the pathogenesis of polycystic ovary syndrome.
Collapse
Affiliation(s)
- Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiaoyue Cheng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
6
|
Ferreira SR, Vélez LM, F Heber M, Abruzzese GA, Motta AB. Prenatal androgen excess alters the uterine peroxisome proliferator-activated receptor (PPAR) system. Reprod Fertil Dev 2019; 31:1401-1409. [PMID: 31039921 DOI: 10.1071/rd18432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
It is known that androgen excess induces changes in fetal programming that affect several physiological pathways. Peroxisome proliferator-activated receptors (PPARs) α, δ and γ are key mediators of female reproductive functions, in particular in uterine tissues. Thus, we aimed to study the effect of prenatal hyperandrogenisation on the uterine PPAR system. Rats were treated with 2mg testosterone from Day 16 to 19 of pregnancy. Female offspring (PH group) were followed until 90 days of life, when they were killed. The PH group exhibited an anovulatory phenotype. We quantified uterine mRNA levels of PPARα (Ppara ), PPARδ (Ppard ), PPARγ (Pparg ), their regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a ) and nuclear receptor co-repressor 1 (Ncor1 ) and cyclo-oxygenase (COX)-2 (Ptgs2 ), and assessed the lipid peroxidation (LP) index and levels of glutathione (GSH) and prostaglandin (PG) E2 . The PH group showed decreased levels of all uterine PPAR isoforms compared with the control group. In addition, PGE2 and Ptgs2 levels were increased in the PH group, which led to a uterine proinflammatory environment, as was LP, which led to a pro-oxidant status that GSH was not able to compensate for. These results suggest that prenatal exposure to androgen excess has a fetal programming effect that affects the gene expression of PPAR isoforms, and creates a misbalanced oxidant-antioxidant state and a proinflammatory status.
Collapse
Affiliation(s)
- Silvana R Ferreira
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Leandro M Vélez
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Maria F Heber
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Giselle A Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina; and Corresponding author
| |
Collapse
|
7
|
Treatment with the synthetic PPARG ligand pioglitazone ameliorates early ovarian alterations induced by dehydroepiandrosterone in prepubertal rats. Pharmacol Rep 2019; 71:96-104. [DOI: 10.1016/j.pharep.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 01/13/2023]
|
8
|
Kraisoon A, Redmer DA, Bass CS, Navanukraw C, Dorsam ST, Valkov V, Reyaz A, Grazul-Bilska AT. Corpora lutea in superovulated ewes fed different planes of nutrition. Domest Anim Endocrinol 2018; 62:16-23. [PMID: 28886590 DOI: 10.1016/j.domaniend.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023]
Abstract
The corpus luteum (CL) is an ovarian structure which is critical for the maintenance of reproductive cyclicity and pregnancy support. Diet and/or diet components may affect some luteal functions. FSH is widely used to induce multiple follicle development and superovulation. We hypothesized that FSH would affect luteal function in ewes fed different nutritional planes. Therefore, the aim of this study was to determine if FSH-treatment affects (1) ovulation rate; (2) CL weight; (3) cell proliferation; (4) vascularity; (5) expression of endothelial nitric oxide (eNOS) and soluble guanylate cyclase (sGC) proteins; and (6) luteal and serum progesterone (P4) concentration in control (C), overfed (O), and underfed (U) ewes at the early- and mid-luteal phases. In addition, data generated from this study were compared to data obtained from nonsuperovulated sheep and described by Bass et al. Ewes were categorized by weight and randomly assigned into nutrition groups: C (2.14 Mcal/kg; n = 11), O (2xC; n = 12), and U (0.6xC; n = 11). Nutritional treatment was initiated 60 d prior to day 0 of the estrous cycle. Ewes were injected with FSH on day 13-15 of the first estrous cycle, and blood samples and ovaries were collected at early- and mid-luteal phases of the second estrous cycle. The number of CL/ewe was determined, and CL was dissected and weighed. CL was fixed for evaluation of expression of Ki67 (a proliferating cell marker), CD31 (an endothelial cell marker), and eNOS and sGC proteins using immunohistochemistry and image analysis. From day 0 until tissue collection, C maintained, O gained, and U lost body weight. The CL number was greater (P < 0.03) in C and O than U. Weights of CL, cell proliferation, vascularity, and eNOS but not sGC expression were greater (P < 0.001), and serum, but not luteal tissue, P4 concentrations tended to be greater (P = 0.09) at the early- than mid-luteal phase. Comparisons of CL measurements demonstrated greater (P < 0.01) cell proliferation and serum P4 concentration, but less vascularity at the early and mid-luteal phases, and less CL weight at the mid-luteal phase in superovulated than nonsuperovulated ewes; however, concentration of P4 in luteal tissues was similar in both groups. Thus, in superovulated ewes, luteal cell proliferation and vascularity, expression of eNOS, and serum P4 concentration depend on the stage of luteal development, but not diet. Comparison to control ewes demonstrated several differences and some similarities in luteal functions after FSH-induced superovulation.
Collapse
Affiliation(s)
- A Kraisoon
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - C S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - C Navanukraw
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand; Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Khon Kaen University, Khon Kaen, Thailand
| | - S T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - V Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - A Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
9
|
Bass CS, Redmer DA, Kaminski SL, Grazul-Bilska AT. Luteal function during the estrous cycle in arginine-treated ewes fed different planes of nutrition. Reproduction 2017; 153:253-265. [DOI: 10.1530/rep-16-0526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Functions of corpus luteum (CL) are influenced by numerous factors including hormones, growth and angiogenic factors, nutritional plane and dietary supplements such as arginine (Arg), a semi-essential amino acid and precursor for proteins, polyamines and nitric oxide (NO). The aim of this study was to determine if Arg supplementation to ewes fed different planes of nutrition influences: (1) progesterone (P4) concentrations in serum and luteal tissue, (2) luteal vascularity, cell proliferation, endothelial NO synthase (eNOS) and receptor (R) soluble guanylate cyclase β protein and mRNA expression and (3) luteal mRNA expression for selected angiogenic factors during the estrous cycle. Ewes (n = 111) were categorized by weight and randomly assigned to one of three nutritional planes: maintenance control (C), overfed (2× C) and underfed (0.6× C) beginning 60 days prior to onset of estrus. After estrus synchronization, ewes from each nutritional plane were assigned randomly to one of two treatments: Arg or saline. Serum and CL were collected at the early, mid and late luteal phases. The results demonstrated that: (1) nutritional plane affected ovulation rates, luteal vascularity, cell proliferation andNOS3,GUCY1B3, vascular endothelial growth factor (VEGF) andVEGFR2mRNA expression, (2) Arg affected luteal vascularity, cell proliferation andNOS3,GUCY1B3,VEGFandVEGFR2mRNA expression and (3) luteal vascularity, cell proliferation and the VEGF and NO systems depend on the stage of the estrous cycle. These data indicate that plane of nutrition and/or Arg supplementation can alter vascularization and expression of selected angiogenic factors in luteal tissue during the estrous cycle in sheep.
Collapse
|
10
|
Abruzzese GA, Heber MF, Ferreira SR, Velez LM, Reynoso R, Pignataro OP, Motta AB. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism. J Endocrinol 2016; 230:67-79. [PMID: 27179108 DOI: 10.1530/joe-15-0471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Abstract
Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Maria Florencia Heber
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Silvana Rocio Ferreira
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Leandro Martin Velez
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Roxana Reynoso
- Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Omar Pedro Pignataro
- Laboratorio de Endocrinología Molecular y Transducción de SeñalesInstituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Vallcaneras SS, de la Vega M, Delgado SM, Motta A, Telleria C, Rastrilla AM, Casais M. Prolactin modulates luteal regression from the coeliac ganglion via the superior ovarian nerve in the late-pregnant rat. Reprod Fertil Dev 2016; 28:565-73. [DOI: 10.1071/rd14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/10/2014] [Indexed: 11/23/2022] Open
Abstract
There is considerable evidence of the neuroendocrine control involved in luteal regression in the rat. In addition, circulating prolactin (PRL), which increases during the night before parturition, may gain access to the coeliac ganglion (CG), indirectly impacting the physiology of the ovary because of the known connection between the CG and the ovary via the superior ovarian nerve (SON). In this work we investigated in the CG–SON–ovary system and whether PRL added to the CG has an impact, indirectly via the SON, on luteal regression on Day 21 of pregnancy. The system was incubated without (control) or with PRL added to the CG. We measured the ovarian release of progesterone (P), oestradiol and prostaglandin F2 alpha (PGF2α) by radioimmunoassay, and nitrites (NO) by the Griess method. Luteal mRNA expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 20α-HSD, aromatase, inducible nitric oxide synthase (iNOS) and apoptosis regulatory factors was analysed by reverse transcription–polymerase chain reaction. P release, the expression of Bcl-2 and the Bcl-2 : Bax ratio was lower than control preparations, while the expression of 20α-HSD and the release of NO and PGF2α were higher in the experimental group. In conclusion, PRL acts at the CG and, by a neural pathway, modulates luteal function at the end of pregnancy.
Collapse
|
12
|
Figueroa F, Motta A, Acosta M, Mohamed F, Oliveros L, Forneris M. Role of macrophage secretions on rat polycystic ovary: its effect on apoptosis. Reproduction 2015; 150:437-48. [PMID: 26264225 DOI: 10.1530/rep-15-0216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome is the most common endocrine disorder among women of reproductive age. Little is known about its etiology, although the evidence suggests an intrinsic ovarian abnormality in which endocrine, metabolic, neural and immune factors would be involved. In this work, the effects of macrophage (MO) secretion on ovarian apoptosis in a polycystic ovary syndrome rat model (PCO rat) induced by estradiol valerate are studied. Spleen MO secretions were used to stimulate ovaries and ovarian interstitial and granulosa cells from both PCO and control rats. Ovarian hormones and prostaglandin E2 (PGE2) were measured by RIA; ovarian mRNA levels of Bax, Bcl2 and NFkB by RT-PCR; and ovarian inducible nitric oxide synthase (iNOS) by western blot. The number of apoptotic cells was evaluated by TUNEL. In the PCO ovary, the MO secretions from PCO rats increased the Bax and NFkB mRNA expressions and increased TUNEL staining in both granulosa and theca cells. In addition, the PCO MO secretions produced a decrease of nitric oxide release, iNOS protein level and PGE2 content in the PCO ovary, and it also induced an increase of androstenedione production by PCO interstitial cells, in comparison with control MO secretions. Considering these results and knowing that testosterone stimulates tumour necrosis factor-α production by PCO MO modifying ovarian response by increasing androstenedione, it is reasonable to suggest that the increase of androgens stimulated in ovarian cells by PCO MO secretions could in turn stimulate the cytokine production from MO, thus maintaining an apoptotic vicious cycle in the PCO ovary.
Collapse
Affiliation(s)
- Florencia Figueroa
- Laboratorio de Biología de la ReproducciónyÁrea MorfologíaDepartamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, ArgentinaLaboratorio de Fisio-patología Ovárica (CEFYBO)Universidad de Buenos Aires, Argentina
| | - Alicia Motta
- Laboratorio de Biología de la ReproducciónyÁrea MorfologíaDepartamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, ArgentinaLaboratorio de Fisio-patología Ovárica (CEFYBO)Universidad de Buenos Aires, Argentina
| | - Mariano Acosta
- Laboratorio de Biología de la ReproducciónyÁrea MorfologíaDepartamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, ArgentinaLaboratorio de Fisio-patología Ovárica (CEFYBO)Universidad de Buenos Aires, Argentina
| | - Fabian Mohamed
- Laboratorio de Biología de la ReproducciónyÁrea MorfologíaDepartamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, ArgentinaLaboratorio de Fisio-patología Ovárica (CEFYBO)Universidad de Buenos Aires, Argentina
| | - Liliana Oliveros
- Laboratorio de Biología de la ReproducciónyÁrea MorfologíaDepartamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, ArgentinaLaboratorio de Fisio-patología Ovárica (CEFYBO)Universidad de Buenos Aires, Argentina
| | - Myriam Forneris
- Laboratorio de Biología de la ReproducciónyÁrea MorfologíaDepartamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, ArgentinaLaboratorio de Fisio-patología Ovárica (CEFYBO)Universidad de Buenos Aires, Argentina
| |
Collapse
|
13
|
Velez LM, Heber MF, Ferreira SR, Abruzzese GA, Reynoso RM, Motta AB. Effect of hyperandrogenism on ovarian function. Reproduction 2015; 149:577-85. [PMID: 25767140 DOI: 10.1530/rep-15-0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
The objective of this work was to study the ovarian function when follicular development is induced during a hyperandrogenic condition. Female rats were injected with either equine chorionic gonadotropin (eCG group) to induce folliculogenesis or eCG together with DHEA to induce folliculogenesis in a hyperandrogenic condition (eCG+HA group). The control group was injected with vehicle. Ovarian mRNA levels of the peroxisome proliferator-activated receptor gamma (PPARγ) co-activator PGC1α, the PPARγ co-repressor NCoR, the main enzymes involved in the ovarian steroidogenesis (CYP17, 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-HSD, and CYP19A), and cyclooxygenase 2 (COX2) were evaluated only by real-time PCR. COX2 was evaluated by both real-time PCR and western blot. Serum steroid hormones and both the oxidative and inflammatory statuses were also quantified. We found that eCG-induced folliculogenesis induced increased mRNA levels of PGC1α and decreased those of NCoR when compared with controls. In addition, we found an increase in serum estradiol (E2) levels and enhanced mRNA expression of CYP19A. A pro-inflammatory status and a pro-oxidant status were also established. When folliculogenesis was induced in a hyperandrogenic condition, the mRNA levels of the PPARγ co-repressor NCoR remained higher than in controls and the pro-inflammatory and pro-oxidant statuses were enhanced. In addition, the enzymes involved in ovarian steroidogenesis were altered leading to the accumulation of testosterone and an unfavorable E2/testosterone ratio. These alterations led to abnormal follicular development.
Collapse
Affiliation(s)
- Leandro M Velez
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria F Heber
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvana R Ferreira
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giselle A Abruzzese
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxana M Reynoso
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisio-patología OváricaCentro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Laboratorio de EndocrinologíaDepartamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Wu CH, Chen MJ, Shieh TM, Wang KL, Wu YT, Hsia SM, Chiang W. Potential benefits of adlay on hyperandrogenism in human chorionic gonadotropin-treated theca cells and a rodent model of polycystic ovary syndrome. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
15
|
Zamberlam G, Sahmi F, Price CA. Nitric oxide synthase activity is critical for the preovulatory epidermal growth factor-like cascade induced by luteinizing hormone in bovine granulosa cells. Free Radic Biol Med 2014; 74:237-44. [PMID: 24992832 DOI: 10.1016/j.freeradbiomed.2014.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/22/2023]
Abstract
In rabbits and rodents, nitric oxide (NO) is generally considered to be critical for ovulation. In monovulatory species, however, the importance of NO has not been determined, nor is it clear where in the preovulatory cascade NO may act. The objectives of this study were (1) to determine if nitric oxide synthase (NOS) enzymes are regulated by luteinizing hormone (LH) and (2) to determine if and where endogenous NO is critical for expression of genes essential for the ovulatory cascade in bovine granulosa cells in serum-free culture. Time- and dose-response experiments demonstrated that LH had a significant stimulatory effect on endothelial NOS (NOS3) mRNA abundance, but in a prostaglandin-dependent manner. NO production was stimulated by LH before a detectable increase in NOS3 mRNA levels was observed. Pretreatment of cells with the NOS inhibitor L-NAME blocked the effect of LH on the epidermal growth factor (EGF)-like ligands epiregulin and amphiregulin, as well as prostaglandin-endoperoxide synthase-2 mRNA abundance and protein levels. Similarly, EGF treatment increased mRNA encoding epiregulin, amphiregulin, and the early response gene EGR1, and this was inhibited by pretreatment with L-NAME. Interestingly, pretreatment with L-NAME had no effect on either ERK1/2 or AKT activation. Taken together, these results suggest that endogenous NOS activity is critical for the LH-induced ovulatory cascade in granulosa cells of a monotocous species and acts downstream of EGF receptor activation but upstream of the EGF-like ligands.
Collapse
Affiliation(s)
- Gustavo Zamberlam
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Fatiha Sahmi
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 7C6, Canada
| | - Christopher A Price
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 7C6, Canada.
| |
Collapse
|
16
|
Vallcaneras SS, Delgado SM, Motta A, Telleria CM, Rastrilla AM, Casais M. Effect of prolactin acting on the coeliac ganglion via the superior ovarian nerve on ovarian function in the postpartum lactating and non-lactating rat. Gen Comp Endocrinol 2013; 184:1-8. [PMID: 23313075 DOI: 10.1016/j.ygcen.2012.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/22/2012] [Accepted: 12/24/2012] [Indexed: 11/20/2022]
Abstract
Whether prolactin (PRL) has a luteotrophic or luteolytic effect in the rat ovary depends on the nature of the corpora lutea present in the ovaries and the hormonal environment to which they are exposed. The aim was to investigate the effect of PRL acting on the coeliac ganglion (CG) on the function of the corpora lutea on day 4 postpartum under either lactating or non-lactating conditions, using the CG-superior ovarian nerve-ovary system. The ovarian release of progesterone (P), estradiol, PGF2α, and nitrites was assessed in the ovarian compartment at different incubation times. Luteal mRNA expression of 3β-HSD, 20α-HSD, aromatase, PGF2α receptor, iNOS, Bcl-2, Bax, Fas and FasL was analysed in the corpus luteum of pregnancy at the end of the experiments. Comparative analysis of control groups showed that the ovarian release of P, nitrites, and PGF2α, the expression of PGF2α receptor, and the Bcl-2/Bax ratio were lower in non-lactating rats, with increased release of estradiol, and higher expression of aromatase, Fas and FasL, demonstrating the higher luteal functionality in ovaries of lactating animals. PRL added to the CG compartment increased the ovarian release of P, estradiol, nitrites and PGF2α, and decreased the Bcl-2/Bax ratio in non-lactating rats; yet, with the exception of a reduction in the release of nitrites, such parameters were not modified in lactating animals. Together, these data suggest that the CG is able to respond to the effect of PRL and, via a neural pathway, fine-tune the physiology of the ovary under different hormonal conditions.
Collapse
Affiliation(s)
- Sandra S Vallcaneras
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | | | | | | | | | | |
Collapse
|
17
|
Amalfi S, Velez LM, Heber MF, Vighi S, Ferreira SR, Orozco AV, Pignataro O, Motta AB. Prenatal hyperandrogenization induces metabolic and endocrine alterations which depend on the levels of testosterone exposure. PLoS One 2012; 7:e37658. [PMID: 22655062 PMCID: PMC3360026 DOI: 10.1371/journal.pone.0037658] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/22/2012] [Indexed: 01/16/2023] Open
Abstract
Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS during the adult life.
Collapse
Affiliation(s)
- Sabrina Amalfi
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Martín Velez
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Susana Vighi
- Departamento de Patología, Hospital de Clínicas, Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Vega Orozco
- Laboratorio de Investigaciones Biomédicas, Instituto de Biología y Medicina de Cuyo, Buenos Aires, Argentina
| | - Omar Pignataro
- Laboratorio de Endocrinología Molecular y Transducción de Señales, Instituto de Biología y Medicina Experimental, Nacional de Investigaciones Científicas y Técnicas, Buenos Aries, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
18
|
Sander VA, Hapon MB, Sícaro L, Lombardi EP, Jahn GA, Motta AB. Alterations of folliculogenesis in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol 2011; 124:58-64. [PMID: 21262361 DOI: 10.1016/j.jsbmb.2011.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 11/21/2022]
Abstract
The objective of the present study was to examine some factors involved in follicular development of women with polycystic ovary syndrome (PCOS). Women with PCOS showed increased levels of serum luteinizing hormone (LH) but decreased follicular production of progesterone and estradiol by pre-ovulatory follicles. The mRNA expression corresponding to steroidogenic acute regulatory protein (StAR), and 20alpha-hydroxysteroid dehydrogenase (20α-HSD) was increased, while that corresponding to cytochrome P450 aromatase (P450arom) was decreased in PCOS follicles as compared to controls. No changes in the mRNA expression for 3beta-hydroxysteroid dehydrogenase 2 (3β-HSD2), cytochrome P450 side-chain cleavage (P450scc), cytochrome P450 17 alpha hydroxylase/lyase (P450c17), cyclooxygenase 2 (COX2), and transcription factors (GATA-4 and GATA-6) were found. We conclude that despite the hyper-luteinized environment of PCOS follicles, these follicles produce lower levels of progesterone and estradiol, and that this is characterized by increased degradation of progesterone and decreased estradiol synthesis. Our data demonstrate that the synthesis of prostaglandin F2α (PGF2α) may be affected in PCOS-follicles and that the transcription factors GATA-4 and GATA-6 are present in PCOS-follicles but they are not involved in the abnormal transcription observed in the steroidogenic enzymes.
Collapse
Affiliation(s)
- Valeria Analía Sander
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Shirasuna K, Sasahara K, Matsui M, Shimizu T, Miyamoto A. Prostaglandin F2alpha differentially affects mRNA expression relating to angiogenesis, vasoactivation and prostaglandins in the early and mid corpus luteum in the cow. J Reprod Dev 2010; 56:428-36. [PMID: 20484870 DOI: 10.1262/jrd.10-004o] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Administration of prostaglandin (PG) F(2alpha) in cattle during the mid-luteal phase (Days 8-12 of the estrous cycle) drastically reduces the plasma progesterone concentrations and the volume of the corpus luteum (CL). However, PGF(2alpha) does not induce luteolysis during the early luteal phase (up to Day 5 of the estrous cycle). To characterize the possible distinct difference in acute response to a luteolytic dose of PGF(2alpha) administration, we determined various mRNA expressions in the early and mid CL relating to angiogenesis, vasoactivation and PG-related factors at 30 min after PGF(2alpha) injection in cyclic cows. The experiments were conducted on Day 4 (early CL) and Days 10-12 (mid CL). Cows were either injected with 500 microg PGF(2alpha) analogue or saline as the control (early CL control, n=5; early CL PGF(2alpha) treated, n=5; mid CL control, n=5; mid CL PGF(2alpha) treated, n=7). Thirty min after injection of PGF(2alpha) or saline, the cows were ovariectomized transvaginally, and the CL tissues were collected from regions designated as the periphery and center of the CL. Administration of PGF(2alpha) up-regulated the mRNA expressions of angiogenic-related factors such as vascular endothelial growth factors, vasohibin, fibroblast growth factor 2 and insulin-like growth factor-II in the early CL, whereas PGF(2alpha) down-regulated these mRNA expressions in the mid CL. In the vasoactive factors, PGF(2alpha) stimulated the mRNA expressions of endothelin-1, angiotensin converting enzyme, endothelial nitric oxide synthase (NOS) and inducible NOS in the periphery area of the mid CL, but not in the early CL. However, PGF(2alpha) drastically down-regulated PGF(2alpha) receptor mRNA expression in both regions of the early and mid CL. The results indicated a clear difference in the acute action of PGF(2alpha) depending not only on the luteal phase (immature vs. mature) but also the region (periphery vs. center) within the CL at 30 min after PGF(2alpha) injection in the cow.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | |
Collapse
|
20
|
Belgorosky D, Sander VA, Yorio MPD, Faletti AG, Motta AB. Hyperandrogenism alters intraovarian parameters during early folliculogenesis in mice. Reprod Biomed Online 2010; 20:797-807. [PMID: 20362510 DOI: 10.1016/j.rbmo.2010.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/23/2009] [Accepted: 01/21/2010] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate how hyperandrogenism affects early folliculogenesis. Hyperandrogenism was induced in prepuberal female BALB/c mice by daily s.c. injection of dehydroepiandrosterone (60 mg/kg body weight in 0.1 ml sesame oil) for 10 consecutive days. Although hyperandrogenism increased the growth rate of primary follicles, it also increased ovarian oxidative stress (evaluated by the increase in lipid peroxidation, the decrease in superoxide dismutase activity and the fact that glutathione content was not modified). By using the annexin V/cytometry assay it was found that the excess of androgens decreased viable ovarian cells and increased early apoptotic ones. The increased lipid peroxidation induced enhanced ovarian prostaglandin E production. In addition, hyperandrogenism increased the number of T lymphocytes that infiltrate ovarian tissue and modified their phenotype (decreased CD4+ or helper and increased the suppressor/cytotoxic CD8+). The excess of androgens decreased the ovarian expression of the long isoform of leptin receptor (Ob-Rb, the only isoform expressed in the ovarian tissue) when compared with controls. All these alterations increased serum concentrations of oestradiol, a pro-apoptotic agent. It is concluded that the excess of androgens impairs early follicular development by modulating some endocrine and immune parameters that are either directly or indirectly related to follicular atresia.
Collapse
Affiliation(s)
- Denise Belgorosky
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121ABG Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
21
|
SHIRASUNA K. Nitric Oxide and Luteal Blood Flow in the Luteolytic Cascade in the Cow. J Reprod Dev 2010; 56:9-14. [DOI: 10.1262/jrd.09-206e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Koumei SHIRASUNA
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
22
|
Elia EM, Belgorosky D, Faut M, Vighi S, Pustovrh C, Luigi D, Motta AB. The effects of metformin on uterine tissue of hyperandrogenized BALB/c mice. Mol Hum Reprod 2009; 15:421-32. [PMID: 19482906 DOI: 10.1093/molehr/gap033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present study investigated the role of the N, N'-dimethylbiguanide metformin (50 mg/kg body weight in 0.05 ml water, given orally with a canulla) in preventing the adverse effects generated by hyperandrogenism on uterine function. Daily injection of dehydroepiandrosterone (DHEA: 6 mg/100 g body weight in 0.1 ml oil) for 20 consecutive days induces polycystic ovaries in BALB/c mice. In this model we found that DHEA produced alterations on uterine histology closely related to the development of pre-cancerous structures concomitantly with increased incidence of uterine apoptosis. The injection of DHEA induced a pro-inflammatory status since uterine prostaglandin (PG) F2 alpha levels and cyclooxygenase 2 were increased although PGE levels were decreased. Furthermore, DHEA promoted a pro-oxidant status since it increased nitric oxide synthase (NOS) activity and decreased superoxide dismutase and catalase activities and the antioxidant metabolite glutathione levels. DHEA also regulated the percentages of CD4+ and CD8+ T lymphocyte that infiltrate uterine tissue. When metformin was administered together with DHEA uterine histology and apoptosis did not differ when compared with controls. Therefore, metformin prevented the pro-inflammatory and pro-oxidative status generated by DHEA and restores the ratios of CD4+ and CD8+ T cells to those observed in controls. We conclude that metformin is able to restore either directly or indirectly uterine function by preventing some inflammatory and oxidative alterations produced by hyperandrogenism.
Collapse
Affiliation(s)
- Evelin Mariel Elia
- Laboratorio de Fisio-patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), UBA-CONICET, BuenosAires, Argentina
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee SH, Acosta TJ, Yoshioka S, Okuda K. Prostaglandin F(2alpha) regulates the nitric oxide generating system in bovine luteal endothelial cells. J Reprod Dev 2009; 55:418-24. [PMID: 19404000 DOI: 10.1262/jrd.20205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to elucidate whether luteolytic prostaglandin F(2alpha) (PGF) plays roles in regulating the nitric oxide (NO) generating system in luteal endothelial cells (LECs). Reverse transcriptase PCR, immunoblotting and immunostaining revealed the presence of PGF receptor mRNA (521 bp) and protein (64 kDa) in cultured LECs obtained from the mid-stage corpus luteum. When cultured LECs were exposed to 0.1 microM-10 microM PGF, NO production was significantly stimulated by PGF at 24 h. When LECs were exposed to 1 microM PGF for 2, 6 and 24 h, PGF did not affect the expressions of endothelial NO synthase (eNOS) mRNA and protein. On the other hand, PGF stimulated the expression of inducible NOS (iNOS) mRNA (P<0.05) and protein (P<0.05) at 2 h, but not at 6 and 24 h. By observing the conversion of [(3)C](L)-arginine to [(3)C](L)-citrulline, we found that PGF stimulated NOS activity in cultured LECs at 2 h (P<0.05). The overall findings indicate that bovine LECs are a target for PGF and that PGF stimulates iNOS expression and NOS activity in bovine LECs. Stimulation of the NO generating system and NOS activity by PGF may result in increasing local NO production followed by luteolysis.
Collapse
Affiliation(s)
- Seung-Hyung Lee
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
24
|
Elia E, Vighi S, Lombardi E, Motta AB. Detrimental effects of hyperandrogenism on uterine functions. Int Immunopharmacol 2008; 8:1827-34. [DOI: 10.1016/j.intimp.2008.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/17/2008] [Accepted: 09/01/2008] [Indexed: 12/12/2022]
|
25
|
Keator CS, Schreiber DT, Hoagland TA, McCracken JA. Luteotrophic and luteolytic effects of nitric oxide in sheep are dose-dependent in vivo. Domest Anim Endocrinol 2008; 35:74-80. [PMID: 18448306 DOI: 10.1016/j.domaniend.2008.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/15/2008] [Accepted: 02/12/2008] [Indexed: 11/23/2022]
Abstract
It has been suggested that nitric oxide (NO) acts in either an anti-luteolytic or in a luteolytic manner, but the mechanism for these opposing roles is unclear. We hypothesized that NO may act in a dose-dependent manner to regulate luteal function, whereby low concentrations of NO might stimulate luteal progesterone production (i.e. luteotrophic) and high concentrations of NO might reduce concentrations of plasma progesterone (i.e. luteolytic). To test this hypothesis we infused increasing concentrations of the fast-acting NO donor, dipropylenetriamine NONOate (DPTA), into the arterial supply of sheep with ovarian transplants bearing a corpus luteum (CL). Infusions were performed on sheep with CL 11 days of age (n=9) or over 30 days of age (n=15). We measured changes in the concentration of progesterone in ovarian venous plasma during the 1-h infusion and for 24h after the infusion, and then compared the mean concentration of progesterone between treatment groups for effects by dose and dose by period interactions. Compared with saline-treated controls (n=6), the highest dose of 1000 microg/min DPTA (n=6) reduced (P<or=0.05) the mean concentration of progesterone after the infusion. In sheep bearing a CL over 30 days of age, the 10 microg/min DPTA dose (n=3) markedly increased (P<or=0.05) the mean concentration of progesterone both during and after the infusion, whereas the 100 microg/min DPTA dose (n=3) increased (P<or=0.05) the mean concentration of progesterone only during the 1-h infusion. The mean concentration of progesterone was not different (P>0.05) in sheep infused with the lowest dose of 1 microg/min DPTA (n=6) compared with controls. We conclude that NO regulates luteal function in a dose-dependent manner in sheep in vivo.
Collapse
Affiliation(s)
- Christopher S Keator
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Storrs, CT 06269-4040, United States.
| | | | | | | |
Collapse
|
26
|
Shirasuna K, Watanabe S, Asahi T, Wijayagunawardane MPB, Sasahara K, Jiang C, Matsui M, Sasaki M, Shimizu T, Davis JS, Miyamoto A. Prostaglandin F2alpha increases endothelial nitric oxide synthase in the periphery of the bovine corpus luteum: the possible regulation of blood flow at an early stage of luteolysis. Reproduction 2008; 135:527-39. [PMID: 18296510 DOI: 10.1530/rep-07-0496] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostaglandin F(2)(alpha) (PGF(2)(alpha)) released from the uterus causes alterations in luteal blood flow, reduces progesterone secretion, and induces luteolysis in the bovine corpus luteum (CL). We have recently discovered that luteal blood flow in the periphery of the mature CL acutely increases coincidently with pulsatile increases in a metabolite of PGF(2)(alpha) (PGFM). In this study, we characterized changes in regional luteal blood flow together with regional alterations in endothelial nitric oxide synthase (eNOS) expression during spontaneous luteolysis and in response to PGF(2)(alpha). Smooth muscle actin-positive blood vessels larger than 20 microm were observed mainly in the periphery of mature CL. PGF(2)(alpha) receptor was localized to luteal cells and large blood vessels in the periphery of mid-CL. PGF(2)(alpha) acutely stimulated eNOS expression in the periphery but not in the center of mature CL. Injection of the NO donor S-nitroso-N-acetylpenicillamine into CL induced an acute increase in luteal blood flow and shortened the estrous cycle. In contrast, injection of the NOS inhibitor l-NAME into CL completely suppressed the acute increase in luteal blood flow induced by PGF(2)(alpha) and delayed the onset of luteolysis. In conclusion, PGF(2)(alpha) has a site-restricted action depending on not only luteal phase but also the region in the CL. PGF(2)(alpha) stimulates eNOS expression, vasodilation of blood vessels, and increased luteal blood flow in periphery of mature CL. Furthermore, the increased blood flow is mediated by NO, suggesting that the acute increase in peripheral blood flow to CL is one of the first physiological indicators of NO action in response to PGF(2)(alpha).
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hapon MB, Motta AB, Ezquer M, Bonafede M, Jahn GA. Hypothyroidism prolongs corpus luteum function in the pregnant rat. Reproduction 2007; 133:197-205. [PMID: 17244746 DOI: 10.1530/rep-06-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been shown that hypothyroidism in the rat produces a prolongation of pregnancy associated with a delay in the fall of circulating progesterone (P4) at term. The aim of the present work is to determine whether the delayed P4 decline in hypothyroid mother rats is due to a retarded induction of P4 degradation to 20alphaOH P4 or to a stimulation of its synthesis, and to investigate the possible mechanisms that may underlie the altered luteal function. We determined by RIA the circulating profile of the hormones (TSH, PRL, LH, P4, PGF2alpha, and PGE2) involved in luteal regulation at the end of pregnancy and, by semiquantitative RT-PCR, the expression of factors involved in P4 synthesis (CytP450scc, StAR, 3betaHSD, PRLR) and metabolism (20alphaHSD, PGF2alphaR, iNOS and COX2). Our results show that the delay in P4 decline and parturition is the resultant of retarded luteal regression, caused by a combination of decreases in luteolytic factors, mainly luteal PGF2alpha, iNOS mRNA expression and also circulating LH, and increased synthesis or action of luteotrophic factors, such as luteal and circulating PGE2 and circulating PRL. All these changes may be direct causes of the decreased 20alphaHSD mRNA and protein (measured by western blot analysis) expression, which in the presence of unchanged expression of the factors involved in P4 synthesis results in elevated luteal and circulating P4 that prolonged pregnancy and also may favor longer survival of the corpus luteum.
Collapse
Affiliation(s)
- María Belén Hapon
- Laboratorio de Reproducción y Lactancia, IMBECU-CONICET, Mendoza, Argentina.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The corpus luteum (CL) is one of the few endocrine glands that forms from the remains of another organ and whose function and survival are limited in scope and time. The CL is the site of rapid remodeling, growth, differentiation, and death of cells originating from granulosa, theca, capillaries, and fibroblasts. The apparent raison d'etre of the CL is the production of progesterone, and all the structural and functional features of this gland are geared toward this end. Because of its unique importance for successful pregnancies, the mammals have evolved a complex series of checks and balances that maintains progesterone at appropriate levels throughout gestation. The formation, maintenance, regression, and steroidogenesis of the CL are among the most significant and closely regulated events in mammalian reproduction. During pregnancy, the fate of the CL depends on the interplay of ovarian, pituitary, and placental regulators. At the end of its life span, the CL undergoes a process of regression leading to its disappearance from the ovary and allowing the initiation of a new cycle. The generation of transgenic, knockout and knockin mice and the development of innovative technologies have revealed a novel role of several molecules in the reprogramming of granulosa cells into luteal cells and in the hormonal and molecular control of the function and demise of the CL. The current review highlights our knowledge on these key molecular events in rodents.
Collapse
Affiliation(s)
- Carlos Stocco
- Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
29
|
Rosiansky-Sultan M, Klipper E, Spanel-Borowski K, Meidan R. Inverse relationship between nitric oxide synthases and endothelin-1 synthesis in bovine corpus luteum: interactions at the level of luteal endothelial cell. Endocrinology 2006; 147:5228-35. [PMID: 16887911 DOI: 10.1210/en.2006-0795] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endothelin-1 (ET-1) and nitric oxide (NO) play pivotal roles in corpus luteum (CL) function. The present study examined the interplay between NO and ET-1 synthesis in the bovine CL. We found similar inducible and endothelial NO synthase (iNOS and eNOS, respectively) activities in the young CL (d 1-5) expressing the highest levels of both eNOS and iNOS mRNA. These values later declined at mid-cycle (d 8-15) and remained low at later stages (d 16-18). Luteolysis, initiated by prostaglandin F2alpha analog administration, further reduced NOS mRNA and by 24 h, NOS values dropped to approximately 15% of those at mid-cycle. eNOS protein levels followed a similar pattern to its mRNA. Because endothelial cells (ECs) are the main site for ET-1 and NO production in the CL, we examined the direct effects of the NO donor, NONOate on luteal ECs (LECs). Elevated NO levels markedly decreased ET-1 mRNA, and peptide concentrations in cultured and freshly isolated LECs in a dose-dependent manner. In agreement, NOS inhibitor, NG-nitro-l-arginine methyl ester, stimulated ET-1 mRNA expression in these cells. Interestingly, NO also up-regulated prostaglandin F2alpha receptors in LECs. These data show that there is an inverse relationship between NOS and ET-1 throughout the CL life span, and imply that this pattern may be the result of their interaction within the resident LECs. NOS are expressed in a physiologically relevant manner: elevated NO at an early luteal stage is likely to play an important role in angiogenesis, whereas reduced levels of NO during luteal regression may facilitate the sustained up-regulation of ET-1 levels during luteolysis.
Collapse
Affiliation(s)
- Maya Rosiansky-Sultan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
30
|
Watanabe S, Shirasuna K, Matsui M, Yamamoto D, Berisha B, Schams D, Miyamoto A. Effect of intraluteal injection of endothelin type A receptor antagonist on PGF2alpha-induced luteolysis in the cow. J Reprod Dev 2006; 52:551-9. [PMID: 16757881 DOI: 10.1262/jrd.18018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelin-1 (ET-1) is a luteolytic mediator in the bovine corpus luteum (CL), and its action appears to be via endothelin type A receptor (ETR-A). Thus, the aim of the present study was to determine the effect of ETR-A antagonist on PGF2alpha-induced luteolysis in the cow. Cows on days 10-12 of the estrous cycle were subjected to five intraluteal injections of the ETR-A antagonist LU 135252 in saline or only saline at -0.5, 2, 4, 6, and 8 h after PGF2alpha administration (=0 h). Serial luteal biopsies were conducted to determine the expression of mRNA in the luteal tissue. There were no significant differences in the decrease in plasma progesterone (P) concentrations and the mRNA expressions of steroidogenic acute regulatory protein and 3beta-hydroxysteroid dehydrogenase/Delta5, Delta4-isomerase between the ETR-A antagonist-treated group and the control group. However, the start of the decline in CL volume and blood flow area surrounding the CL was delayed for almost two days in the ETR-A antagonist-treated group compared to the control group. The mRNA expression of preproET-1 and endothelin type B receptor increased in both groups, while the ETR-A mRNA remained unchanged. In addition, caspase-3 mRNA expression increased significantly at 24 h in the control group only and its level was higher than that of the ETR-A antagonist-treated group. Thus, the present study suggests that ET-1 regulates structural luteolysis via ETR-A by controlling blood vessel contraction in the CL of the cow.
Collapse
Affiliation(s)
- Sho Watanabe
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Al-Gubory KH, Ceballos-Picot I, Nicole A, Bolifraud P, Germain G, Michaud M, Mayeur C, Blachier F. Changes in activities of superoxide dismutase, nitric oxide synthase, glutathione-dependent enzymes and the incidence of apoptosis in sheep corpus luteum during the estrous cycle. Biochim Biophys Acta Gen Subj 2005; 1725:348-57. [PMID: 16055271 DOI: 10.1016/j.bbagen.2005.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 06/21/2005] [Accepted: 06/28/2005] [Indexed: 11/30/2022]
Abstract
Anti-oxidative enzymes play a role in protecting cells from oxidative stress-induced cell death. The present study was conducted to evaluate whether the anti-oxidant and pro-oxidant enzymatic capacities of the sheep corpus luteum (CL) are correlated with steroidogenic and structural status of the gland during the estrous cycle. Steroidogenic activity, apoptosis and superoxide dismutase (SOD1 and SOD2), nitric oxide synthase (NOS), glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferase (GST) activities were determined in the CL at specific developmental stages of the luteal phase. The intensity of apoptotic DNA fragmentation, characteristic of physiological cell death, was much greater in CL at late luteal phase than at early and mid-luteal phase, concomitantly with the diminution in the plasma progesterone concentrations from mid-to late luteal phase. SOD1 and GPX activities increased from early to mid-luteal phase, and increased further at late luteal phase. SOD2 and GST activities were not different between early and mid-luteal phase, but increased at late luteal phase. GSR activity was not different between any luteal phase examined. NOS activity decreased from early to mid- and late luteal phase. These results show that the activities of SOD1, SOD2, NOS, GPX, GSR and GST in the sheep CL are subject to major changes during the estrous cycle, and that the anti-oxidant and pro-oxidant enzymatic capacities of luteal cells are not correlated with cell steroidogenic status and integrity during the late luteal phase.
Collapse
Affiliation(s)
- Kaïs H Al-Gubory
- Unité Biologie du Développement et de la Reproduction, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liszewska E, Rekawiecki R, Kotwica J. Effect of progesterone on the expression of bax and bcl-2 and on caspase activity in bovine luteal cells. Prostaglandins Other Lipid Mediat 2005; 78:67-81. [PMID: 16303606 DOI: 10.1016/j.prostaglandins.2005.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 01/11/2005] [Accepted: 03/31/2005] [Indexed: 11/18/2022]
Abstract
Bovine luteal cells from days 6-10 and 11-15 of the estrous cycle were exposed (6 h) to factors that support or disrupt steroidogenesis. The expression of bcl-2 and bax and level of active caspase-3 in cells was measured. Progesterone (P4) increased (P<0.01) while staurosporine decreased (P<0.01-P<0.001) bcl-2 expression at both stages of the estrous cycle studied. In cells from 11-15 days of the estrous cycle expression of bcl-2 was stimulated (P<0.05) by prostaglandin (PG)E2 and inhibited (P<0.01) by 3,3',4,4'-tertrachlorobiphenyl (PCB)-77. Treatment with aminoglutethimide (blocker of cytochrome P450scc; 1.5 x 10(-4)M), nitric oxide donor (spermine NONOate), and staurosporine increased bax expression in cells collected from both experimental periods. The influence of these factors was greater in cells from days 11-15 (P<0.001) than by cells on days 6-10 (P<0.05) of the estrous cycle. PCB-77 stimulated expression of bax in cells from 11-15 days of cycle (P<0.01) only. Treatment of luteal cells with P4 and PGE2 for 24 h decreased (P<0.05) level of active caspase-3 while aminoglutethimide (P<0.05), spermine NONOate (P<0.05), and staurosporine (P<0.001) increased caspase-3 activity in the cells. Moreover, P4 decreased (P<0.05) while staurosporine increased (P<0.01) the ratio of bax/bcl-2 at both stages of the cycle. Aminoglutethimide, spermine NONOate and PCB increased (0<0.05) this ratio in cells on days 11-15 of the cycle. These results suggest that P4 concentrations in luteal cells protects against apoptosis, while disruption of steroidogenesis and reduced ability of luteal cells to produce P4 can induce cell death.
Collapse
Affiliation(s)
- E Liszewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, P.O. Box 55, 10-718 Olsztyn, Poland
| | | | | |
Collapse
|
33
|
Luchetti CG, Solano ME, Sander V, Arcos MLB, Gonzalez C, Di Girolamo G, Chiocchio S, Cremaschi G, Motta AB. Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function. J Reprod Immunol 2005; 64:59-74. [PMID: 15596227 DOI: 10.1016/j.jri.2004.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/22/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
The purpose of the present report was to study the possible relationship between ovarian functionality and the immune response during cystogenesis induced by androgenization with dehydroepiandrosterone (DHEA). Daily injection of DHEA (6 mg/kg body weight) for 20 consecutive days induced ovarian cysts in BALB/c mice. As markers of ovarian function, serum estradiol (E) and progesterone (P) and the ovarian inmunomodulator prostaglandin E (PGE) were analyzed. In order to know how the integrity of the tissue was altered after induction of cystogenesis, the oxidative status was also evaluated. Serum E and P levels, and ovarian PGE concentration, were increased in animals with cysts compared with healthy controls. The oxidant status (quantified by malondialdehyde (MDA) formed after the breakdown of the cellular membrane by free radical mechanisms) was augmented, meanwhile the antioxidant (evaluated by the glutathione (GSH) content) diminished during the induction of cystogenesis. Both immunohistochemical and flow cytometry assays demonstrated that DHEA treatment increased the number of T lymphocytes infiltrating ovarian tissue. Therefore, while ovarian controls showed equivalent expression of CD4+ and CD8+ T cell subsets, injection of DHEA yielded a selective ovarian T cell infiltration as demonstrated by enhanced CD8+ and diminished CD4+ T lymphocyte expression. These results show that the development of cysts involves changes in ovarian function and an imbalance in the oxidant-antioxidant equilibrium. We observed also both an increased and selective T lymphocyte infiltration.
Collapse
Affiliation(s)
- Carolina Griselda Luchetti
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Serrano 669, C1414DEM Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sander V, Solano ME, Elia E, Luchetti CG, Di Girolamo G, Gonzalez C, Motta AB. The influence of dehydroepiandrosterone on early pregnancy in mice. Neuroimmunomodulation 2005; 12:285-92. [PMID: 16166807 DOI: 10.1159/000087106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 02/22/2005] [Indexed: 11/19/2022] Open
Abstract
The aim of the present report was to study the role of high levels of dehydroepiandrosterone (DHEA) on the ovarian function and embryonic resorption during early pregnancy in BALB/c mice. Pregnant animals were injected with DHEA following both the post-implantatory (DHEA-2) and peri-implantatory (DHEA-6) models. Morphological studies of implantation sites showed 40% of embryonic resorption in the DHEA-2 group while 100% of resorption was observed in the DHEA-6 group. Serum samples of both DHEA-2 and DHEA-6 groups showed higher estradiol levels and a lower progesterone concentration than those of control groups. Ovarian prostaglandin E levels after both DHEA-2 and DHEA-6 treatments increased when compared to control groups. The antioxidant metabolite glutathione diminished during both DHEA treatments. In summary, the data presented here suggest that DHEA treatment during early pregnancy modulates the ovarian function and is responsible for embryonic resorption with different degrees depending on when it is administered.
Collapse
Affiliation(s)
- Valeria Sander
- Centro de Estudios Farmacológicos y Botánicos, Consejo de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
35
|
Yadav VK, Lakshmi G, Medhamurthy R. Prostaglandin F2alpha-mediated activation of apoptotic signaling cascades in the corpus luteum during apoptosis: involvement of caspase-activated DNase. J Biol Chem 2004; 280:10357-67. [PMID: 15623530 DOI: 10.1074/jbc.m409596200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin F(2alpha) (PGF(2alpha)) acting via a G protein-coupled receptor has been shown to induce apoptosis in the corpus luteum of many species. Studies were carried out to characterize changes in the apoptotic signaling cascade(s) culminating in luteal tissue apoptosis during PGF(2alpha)-induced luteolysis in the bovine species in which initiation of apoptosis was demonstrable at 18 h after exogenous PGF(2alpha) treatment. An analysis of intrinsic arm of apoptotic signaling cascade elements revealed that PGF(2alpha) injection triggered increased ratio of Bax to Bcl-2 in the luteal tissue as early as 4 h posttreatment that remained elevated until 18 h. This increase was associated with the elevation in the active caspase-9 and -3 protein levels and activity (p < 0.05) at 4-12 h, but a spurt in the activity was seen only at 18 h posttreatment that could not be accounted for by the changes in the Bax/Bcl-2 ratio or changes in translocation of Bax to mitochondria. Examination of luteal tissue for FasL/Fas death receptor cascade revealed increased expression of FasL and Fas at 18 h accompanied by a significant (p < 0.05) induction in the caspase-8 activity and truncated Bid levels. Furthermore, intrabursal administration of specific caspase inhibitors, downstream to the extrinsic and intrinsic apoptotic signaling cascades, in a pseudopregnant rat model revealed a greater importance of extrinsic apoptotic signaling cascade in mediating luteal tissue apoptosis during PGF(2alpha) treatment. The DNase responsible for PGF(2alpha)-induced apoptotic DNA fragmentation was found to be Ca(2+)/Mg(2+)-dependent, temperature-sensitive DNase, and optimally active at neutral pH conditions. This putative DNase was inhibited by the recombinant inhibitor of caspase-activated DNase, and immunodepletion of caspase-activated DNase from luteal lysates abolished the observed DNA fragmentation activity. Together, these data demonstrate for the first time temporal and spatial changes in the apoptotic signaling cascades during PGF(2alpha)-in-duced apoptosis in the corpus luteum.
Collapse
Affiliation(s)
- Vijay K Yadav
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
36
|
Estévez A, Farina M, Franchi A, Johnson C, Vega M, Motta AB. Interleukin-1β up-regulates nitrite production: effects on ovarian function. Nitric Oxide 2004; 10:92-100. [PMID: 15135362 DOI: 10.1016/j.niox.2004.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/11/2004] [Indexed: 11/24/2022]
Abstract
We have previously reported that Interleukin-1beta (IL-1beta) affects ovarian function in the rat, modulating prostaglandin and progesterone (P) production. As IL-1beta effects were associated to nitric oxide (NO) synthesis, in the present work we have further examined the role of ovarian NOS-system, in IL-1beta antisteroidogenic action. Mid-luteal explants from rats were incubated for 4 h in the presence of IL-1beta (1-35 ng/ml)-alone or in combination with NOS-inhibitors-and then assayed for P and nitrite production. IL-1beta treatment reduced P levels in a dose-dependent manner, returning to basal levels at 35 ng/ml. This reduction in steroid synthesis was paralleled by a dose-dependent increase in nitrite levels, reaching a maximum at 25 ng/ml but without effect at 35 ng/ml. L-Arginine (1 and 2 mM) was able to mimic IL-1beta actions and the NOS blocker L-Nitro-Arginin-Methyl Ester reverted these effects. Moreover, the selective iNOS inhibitor, 1400 W, completely abolished IL-1beta antisteroidogenic effect, therefore confirming the dependence of IL-1beta action upon iNOS activation. Finally, IL-1beta did not affect eNOS expression but up-regulated iNOS mRNA and protein levels. Our results suggest an interaction between IL-1beta and the NOS-system. Thus, we may conclude that in the rat iNOS-derived NO production, induced by IL-1beta, affects ovarian P biosynthesis and hence NO may be a major effector molecule of ovarian IL-1 system.
Collapse
Affiliation(s)
- A Estévez
- Center for Pharmacological and Botanical Studies (CEFYBO)-Council of Scientific and Technical Investigation (CONICET), Serrano 669 CP (1414), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
37
|
Tognetti T, Estevez A, Luchetti CG, Sander V, Franchi AM, Motta AB. Relationship between endothelin 1 and nitric oxide system in the corpus luteum regression. Prostaglandins Leukot Essent Fatty Acids 2003; 69:359-64. [PMID: 14580371 DOI: 10.1016/j.plefa.2003.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study was designed to investigate the relationship between the nitric oxide (NO) system and endothelin 1 (ET-1) in the mechanism of corpus luteum (CL) development and consequently regression in rats. We first evaluated basal ET-1 levels in ovarian tissue from rats with different stages of CL development. An increased ovarian ET-1 content was found during CL regression. In a dose-department response, ET-1 decreased progesterone (P4) and increased prostaglandin (PG) PGF2alpha production. By means of a competitive nitric oxide synthase (NOS) inhibitor: L-nitro arginine methyl ester (L-NAME) and a slow NO releasing: diethyl-aminetriamine (DETA-NONOate), we demonstrated that NO system could be the intermediary in the ET-1 diminishing P4 production. The Western blot analysis revealed an increase on iNOS while eNOS protein expression was diminished. We also found a diminution of total NOS activity after ET-1 treatment. These data suggest the existence of a functional relationship between ET-1 and NOS isoforms leading the regulation of CL functionally.
Collapse
Affiliation(s)
- T Tognetti
- Laboratorio de Fisiopatologi;a Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO): Consejo Nacional de Investigaciones Cienti;ficas y Técnicas (CONICET), Serrano 669, (C1414DEM), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
38
|
Estevez A, Tognetti T, Rearte B, Sander V, Motta AB. Interleukin-1beta in the functional and structural luteolysis. Relationship with the nitric oxide system. Prostaglandins Leukot Essent Fatty Acids 2002; 67:411-7. [PMID: 12468262 DOI: 10.1054/plef.2002.0451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present report was to investigate the in vitro effect of interleukin-1beta(IL-1beta) on corpus luteum (CL) function and some aspects of this mechanism involved. Ovarian rat dispersates from mid-luteal phase were exposed to different doses of IL-1beta (1, 10, 20 ng/ml). Meanwhile 1, 10 and 20 ng/ml of IL-1beta decreased progesterone (P4) production, only the highest doses of IL-1beta increased prostaglandin F2alpha (PGF2alpha) levels. To investigate the possible relationship between PGs production and P4 synthesis, we incubated together IL-1beta (20 ng/ml) and indomethacin (0.1 mM) a potent inhibitor of cyclooxygenase pathway. We found that P4 inhibition induced by IL-1beta was completely prevented by addition of indomethacin. On the other hand, when ovarian rat tissue were exposed at 20 ng/ml of IL-1beta (doses that affected both PGF2alpha and P4 production) the nitric oxide synthase (NOS) activity was augmented. Moreover, IL-1beta effects on PGF2alpha and P4 levels were impaired when a NOS inhibitor N(W)-nitro- L -arginine methyl ester (L-NAME, 600 microM) was added to the incubation media. These data demonstrate that: (i) at the tested doses (1-20 ng/ml), IL-1beta is involved in CL function through the diminution of P4 production of whole ovarian dispersate culture; (ii) at the highest doses assayed (20 ng/ml) IL-1beta increased PGF2alpha production; (iii) at these doses, IL-1beta decreased P4 production by means of a cyclooxygenase pathway and (iv) the NO system would be a key intermediary second messenger in the IL-1beta actions.
Collapse
Affiliation(s)
- A Estevez
- Centro de Estudios Farmacológicos y Botánicos--Consejo de Investigaciones Científicas y Técnicas, Serrano, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
39
|
Yoon SJ, Choi KH, Lee KA. Nitric oxide-mediated inhibition of follicular apoptosis is associated with HSP70 induction and Bax suppression. Mol Reprod Dev 2002; 61:504-10. [PMID: 11891922 DOI: 10.1002/mrd.10033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) has recently emerged as a potential regulator of follicular development because of its involvement in the regulation of several physiological functions of the ovary. NO influences apoptotic cell death of follicular cells as a follicle survival factor. The present study was conducted (1) to investigate the mechanism involved in the protective effect of NO on spontaneously induced follicular apoptosis in serum-free condition and (2) to determine the role of NO on the expression of mRNAs and proteins for HSP70 and Bax. Preovulatory follicles obtained from PMSG-primed rats were cultured for 24 hr in serum-free medium with or without sodium nitroprusside (SNP), a NO generator. Granulosa cells within follicles incubated in medium alone for 24 hr exhibited extensive apoptosis. Treatment of SNP in the culture medium blocked this onset of apoptosis. Both mRNA and protein levels of HSP70 were highly increased with SNP than those of control group. On the contrary, those of Bax were suppressed with SNP treatment. Results of the present study suggest that NO prevents rat preovulatory follicular apoptosis in vitro by stimulating HSP70 and suppressing Bax expression.
Collapse
Affiliation(s)
- Se-Jin Yoon
- Infertility Medical Center, CHA General Hospital, Seoul, Korea
| | | | | |
Collapse
|
40
|
Abstract
The free radical gas, nitric oxide is now known to be an important biological messenger in animals. Signal transmission by a gas that is produced by one cell, penetrates through membranes and regulates the function of another cell, represents new principles for signalling in biological systems. Nitric oxide is synthesised from L-arginine by enzyme nitric oxide synthase, which exists in multiple isoforms in a wide range of mammalian cells. Studies conducted in recent years point at a strong influence of NO in a wide range of reproductive functions. It is implicated in the control of gonadotrophin secretion at both hypothalamic and hypophyseal levels, LH surge mechanism, sexual behaviour, estradiol synthesis, follicle survival and ovulation. While considerable work lies ahead in unravelling the role of NO at the peripheral, cellular and molecular level in the domestic animal reproduction, findings presented in this review provide a general overview of growing appreciation of NO as a vital molecule controlling hypothalamic-pituitary-gonadal (HPG) axis.
Collapse
Affiliation(s)
- V D Dixit
- Institute for animal science and animal behaviour (FAL), Mariensee, 31535, Neustadt, Germany
| | | |
Collapse
|
41
|
Fridén BE, Runesson E, Hahlin M, Brännström M. Evidence for nitric oxide acting as a luteolytic factor in the human corpus luteum. Mol Hum Reprod 2000; 6:397-403. [PMID: 10775642 DOI: 10.1093/molehr/6.5.397] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aims of the present study were to characterize the expression and cellular localization of isoforms of nitric oxide synthase (NOS) in the human corpus luteum (CL) and to determine the effects of nitric oxide (NO) on CL steroidogenesis. Immunoblotting analyses revealed that endothelial NOS (eNOS) is the most abundant isoform in human CL with highest values during the late luteal phase. Immunoreactive eNOS was localized predominantely in the theca lutein layer, being particularly abundant in endothelial cells, but with positive staining also in some steroidogenic cells. Immunoreactive inducible NOS (iNOS) was also detected, but to lesser degree, and did not display apparent phase-specific changes. The effect of NO on CL steroid synthesis was examined using human chorionic gonadotrophin (HCG)-stimulated dispersed CL cells cultured in vitro. Progesterone production was significantly decreased (P < 0.05) by the NO donor spermine NONOate (10(-5) mol/l) in cells of the late, but not mid-, luteal phase. To investigate a potential link between NO and the local prostaglandins (PG), concentrations of PGF(2alpha) and PGE(2) were measured in culture medium. NO significantly increased (P < 0.05) concentrations of both PGF(2alpha) and PGE(2) during the late luteal phase. It is concluded that NO may be luteolytic in the human CL of menstruation.
Collapse
Affiliation(s)
- B E Fridén
- Department of Obstetrics and Gynecology, Göteborg University, Sahlgrenska University Hospital, 413 45 Göteborg, Sweden
| | | | | | | |
Collapse
|