1
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular Vesicles Alter Trophoblast Function in Pregnancies Complicated by COVID-19. J Extracell Vesicles 2025; 14:e70051. [PMID: 40205960 PMCID: PMC11982706 DOI: 10.1002/jev2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/05/2025] [Indexed: 04/11/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) cause placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro. Trophoblast exposure to EVs isolated from patients with an active infection (AI), but not controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an AI, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19, depending on the gestational timing of infection, and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs, and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
Affiliation(s)
- Thea N. Golden
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sneha Mani
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca L. Linn
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Rita Leite
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Natalie A. Trigg
- Epigenetics InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Annette Wilson
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren Anton
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Monica Mainigi
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Colin C. Conine
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Epigenetics InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of NeonatologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Brett A. Kaufman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jerome F. Strauss
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Samuel Parry
- Department of Obstetrics and GynecologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca A. Simmons
- Center for Women's Health and Reproductive MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Excellence in Environmental ToxicologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of NeonatologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Kendall Bártů M, Flídrová M, Němejcová K, Hojný J, Dvořák J, Michalová K, Dundr P. Endometrial stromal tumor with whorling and GREB1::CTNNB1 fusion-a case report on a rare entity. Virchows Arch 2025; 486:633-638. [PMID: 38995355 DOI: 10.1007/s00428-024-03869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Endometrial stromal tumors are rare lesions with a diverse morphology, which may make achieving the correct diagnosis challenging in some cases. We report a case of a uterine mesenchymal tumor diagnosed as endometrial stromal nodule with a peculiar whorled morphology and GREB1::CTNNB1 fusion confirmed by transcriptome RNA sequencing. The tumor was sharply demarcated, lacked invasive growth, and had benign behavior, as the patient remained without disease recurrence 15 years later. Immunohistochemically, the tumor cells showed diffuse nuclear expression of beta-catenin, confirming the activation of the beta-catenin pathway. Our case represents only the 4th reported case of CTNNB1-rearranged endometrial stromal tumor with extensive whorling. The biological nature of uterine tumors characterized by whorled morphology and rearrangement of CTNNB1 is not yet clear, which underscores the importance of genetic profiling for accurate diagnosis and potential targeted therapies in malignant cases.
Collapse
Affiliation(s)
- Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic.
| | - Miroslava Flídrová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic
| | - Jiří Dvořák
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic
| | - Květoslava Michalová
- Department of Pathology, Charles University, Faculty of Medicine in Plzeň, Bioptical Laboratory, Ltd., Pilsen, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12800, Prague, Czech Republic
| |
Collapse
|
3
|
Dai Y, Yuan Z, Fan W, Lin Z. Molecular mechanism of aberrant decidualization in adenomyosis leading to reduced endometrial receptivity. Front Endocrinol (Lausanne) 2025; 15:1435177. [PMID: 39886033 PMCID: PMC11779606 DOI: 10.3389/fendo.2024.1435177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
Patients with adenomyosis not only experience a decrease in quality of life as a result of dysmenorrhea and severe monthly flow but they are also rendered infertile. Pregnancy rates are still low among women with adenomyosis, even with assisted reproduction. According to the current study, endometrial receptivity is primarily responsible for the lower conception rate among patients with adenomyosis. Decidualization of endometrial stromal cells is the fundamental requirement for endometrial receptivity and the maintenance of a normal pregnancy, even though endometrial receptivity is made up of a variety of cells, including immune cells, endometrial epithelial cells, and endometrial stromal cells. Our overview reveals that endometriosis deficiencies are present in patients with adenomyosis. These flaws may be linked to aberrant pathways in endometrial stromal cells, such as PI3K/Akt, JAK2/STAT3, and hedgehog. Correcting the abnormal expression of molecules in endometrial stromal cells in the endometrium of patients with adenomyosis may become the focus of research to improve endometrial receptivity and increase the pregnancy rate.
Collapse
Affiliation(s)
- Yuanquan Dai
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weisen Fan
- Department of Gynecology, Guang anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiheng Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Chadchan SB, Popli P, Liao Z, Andreas E, Dias M, Wang T, Gunderson SJ, Jimenez PT, Lanza DG, Lanz RB, Foulds CE, Monsivais D, DeMayo FJ, Yalamanchili HK, Jungheim ES, Heaney JD, Lydon JP, Moley KH, O'Malley BW, Kommagani R. A GREB1-steroid receptor feedforward mechanism governs differential GREB1 action in endometrial function and endometriosis. Nat Commun 2024; 15:1947. [PMID: 38431630 PMCID: PMC10908778 DOI: 10.1038/s41467-024-46180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pooja Popli
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Eryk Andreas
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Dias
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie J Gunderson
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patricia T Jimenez
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Zhang HF, Delaidelli A, Javed S, Turgu B, Morrison T, Hughes CS, Yang X, Pachva M, Lizardo MM, Singh G, Hoffmann J, Huang YZ, Patel K, Shraim R, Kung SH, Morin GB, Aparicio S, Martinez D, Maris JM, Bosse KR, Williams KC, Sorensen PH. A MYCN-independent mechanism mediating secretome reprogramming and metastasis in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2023; 9:eadg6693. [PMID: 37611092 PMCID: PMC10446492 DOI: 10.1126/sciadv.adg6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Taylor Morrison
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Christopher S. Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Xiaqiu Yang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Manideep Pachva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Michael M. Lizardo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Zhou Huang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| |
Collapse
|
7
|
Popli P, Chadchan SB, Dias M, Deng X, Gunderson SJ, Jimenez P, Yalamanchili H, Kommagani R. SF3B1-dependent alternative splicing is critical for maintaining endometrial homeostasis and the establishment of pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541590. [PMID: 37292891 PMCID: PMC10245700 DOI: 10.1101/2023.05.20.541590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The remarkable potential of human endometrium to undergo spontaneous remodeling is shaped by controlled spatiotemporal gene expression patterns. Although hormone-driven transcription shown to govern these patterns, the post-transcriptional processing of these mRNA transcripts, including the mRNA splicing in the endometrium is not studied yet. Here, we report that the splicing factor, SF3B1 is central in driving alternative splicing (AS) events that are vital for physiological responses of the endometrium. We show that loss of SF3B1 splicing activity impairs stromal cell decidualization as well as embryo implantation. Transcriptomic analysis revealed that SF3B1 depletion decidualizing stromal cells led to differential mRNA splicing. Specifically, a significant upregulation in mutually exclusive AS events (MXEs) with SF3B1 loss resulted in the generation of aberrant transcripts. Further, we found that some of these candidate genes phenocopy SF3B1 function in decidualization. Importantly, we identify progesterone as a potential upstream regulator of SF3B1-mediated functions in endometrium possibly via maintaining its persistently high levels, in coordination with deubiquitinating enzymes. Collectively, our data suggest that SF3B1-driven alternative splicing plays a critical role in mediating the endometrial-specific transcriptional paradigms. Thus, the identification of novel mRNA variants associated with successful pregnancy establishment may help to develop new strategies to diagnose or prevent early pregnancy loss.
Collapse
|
8
|
Stope MB, Mustea A, Sänger N, Einenkel R. Immune Cell Functionality during Decidualization and Potential Clinical Application. Life (Basel) 2023; 13:life13051097. [PMID: 37240742 DOI: 10.3390/life13051097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Due to a vast influx in the secretory phase of the menstrual cycle, leukocytes represent 40-50% of the decidua at the time of implantation. Their importance for the implantation, maintenance of pregnancy, and parturition are known yet not fully understood. Thus, in idiopathic infertility, decidual immune-related factors are speculated to be the cause. In this review, the immune cell functions in the decidua were summarized, and clinical diagnostics, as well as interventions, were discussed. There is a rising number of commercially available diagnostic tools. However, the intervention options are still limited and/or poorly studied. In order for us to make big steps towards the proper use of reproductive immunology findings, we need to understand the mechanisms and especially support translational research.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Lyu M, Gao W, Zhang L, Yang X, Yue F, Li H, Ma X, Liu L. Hsa_circ_0001550 impairs decidualization by regulating the proliferation and apoptosis of endometrial stromal cells. Reprod Biomed Online 2023; 46:225-233. [PMID: 36396534 DOI: 10.1016/j.rbmo.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
RESEARCH QUESTION What is the molecular function of hsa_circ_0001550 in decidualization? DESIGN Human endometrial stromal cells (HESC) were isolated from the endometrium tissues to build an in-vitro decidualization model. Different concentrations of medroxyprogesterone acetate (MPA) were used to observe whether the expression level of hsa_circ_0001550 was related to progesterone. Biological characteristics and distribution of hsa_circ_0001550 were determined by RNase R, actinomycin D (Act D) assay and cytoplasmic/nuclear fraction assay. Then the overexpression of hsa_circ_0001550 was achieved by adenovirus vector. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assays. The cell cycle was assessed by flow cytometry analyses. Cell apoptosis was determined by annexin-V/propidium iodide double staining experiment and western blotting. RESULTS The expression of hsa_circ_0001550 was decreased in decidua and decidualized HESC (P < 0.001, P = 0.014). Hsa_circ_0001550 is a covalently closed RNA molecule that was verified by RNase R assay and Act D assay (P = 0.012). Nuclear and cytoplasmic separation experiments confirmed that hsa_circ_0001550 was mainly distributed in the cytoplasm. Overexpression of hsa_circ_0001550 inhibited decidualization of HESC (P < 0.0001). Furthermore, overexpression of hsa_circ_0001550 inhibited proliferation by decreasing the number of S phase cells (P = 0.033). Annexin-V/propidium iodide double staining experiment and western blotting revealed that overexpression of hsa_circ_0001550 promoted HESC apoptosis (P < 0.001, P = 0.0139). CONCLUSIONS Hsa_circ_0001550 impairs decidualization of HESC. Progesterone decreases the expression of hsa_circ_0001550. The results may provide new insights into the cause of decidualization.
Collapse
Affiliation(s)
- Meng Lyu
- The First Clinical Medical College of Lanzhou University, Lanzhou Gansu, China
| | - Wenxin Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou Gansu, China
| | - Lili Zhang
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou Gansu, China; Gansu Key Laboratory of Reproductive Medicine and Embryos, Lanzhou Gansu, China
| | - Xia Yang
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou Gansu, China; Gansu Key Laboratory of Reproductive Medicine and Embryos, Lanzhou Gansu, China
| | - Feng Yue
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou Gansu, China; Gansu Key Laboratory of Reproductive Medicine and Embryos, Lanzhou Gansu, China
| | - Hongxing Li
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou Gansu, China; Gansu Key Laboratory of Reproductive Medicine and Embryos, Lanzhou Gansu, China
| | - Xiaoling Ma
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou Gansu, China; Gansu Key Laboratory of Reproductive Medicine and Embryos, Lanzhou Gansu, China.
| | - Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou Gansu, China; The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou Gansu, China; Gansu Key Laboratory of Reproductive Medicine and Embryos, Lanzhou Gansu, China.
| |
Collapse
|
10
|
Comprehensive Analysis of GDF10 Methylation Site-Associated Genes as Prognostic Markers for Endometrial Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7117083. [PMID: 36262352 PMCID: PMC9576415 DOI: 10.1155/2022/7117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Growth differentiation factor-10 (GDF10) with its methylation trait has recently been found to play a crucial regulatory and communication role in cancers. This investigation aims to identify GDF10 methylation site-associated genes that are closely associated with endometrial cancer (EC) patients' survival based on normal and UCEC samples from the UCSC Xena database. Our study revealed for the first time that EC exhibited significantly higher levels of GDF10 promoter methylation in comparison with normal tissues. Multiple differentiated methylation sites, which have prognostic value due to their apparent survival differences, were found in the GDF10 promoter region. We performed weighted gene coexpression network analysis (WGCNA) on EC tissues and paraneoplastic tissues while using these differentially methylated sites as phenotypes for selecting the most correlated key modules and their internal genes. To obtain a gene set, the key module genes and differentially expressed genes (DEGs) of EC were intersected. The least absolute shrinkage and selection operator (LASSO) regression along with multivariate Cox regression were performed from the gene set and we screened out the key genes B4GALNT3, DNAJC22, and GREB1. Finally, a prognostic model was validated for effectiveness based on these genes. Additionally, Kaplan-Meier analysis and time-dependent receiver operating characteristics (ROC) were applied to assess and verify the model, and they showed good prognosis prediction. Moreover, the differences in risk scores were statistically significant with age, tumor stage, and grade. They may be related to the immune infiltration of tumors as well. In conclusion, based on the methylation-related genes associated with GDF10, we developed a prognosis model for EC patients. It might provide a fresh view for further research and treatment of EC.
Collapse
|
11
|
Lee SH, Lim CL, Shen W, Tan SMX, Woo ARE, Yap YHY, Sian CAS, Goh WWB, Yu WP, Li L, Lin VCL. Activation function 1 of progesterone receptor is required for progesterone antagonism of oestrogen action in the uterus. BMC Biol 2022; 20:222. [PMID: 36199058 PMCID: PMC9535881 DOI: 10.1186/s12915-022-01410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Progesterone receptor (PGR) is a master regulator of uterine function through antagonistic and synergistic interplays with oestrogen receptors. PGR action is primarily mediated by activation functions AF1 and AF2, but their physiological significance is unknown. RESULTS We report the first study of AF1 function in mice. The AF1 mutant mice are infertile with impaired implantation and decidualization. This is associated with a delay in the cessation of epithelial proliferation and in the initiation of stromal proliferation at preimplantation. Despite tissue selective effect on PGR target genes, AF1 mutations caused global loss of the antioestrogenic activity of progesterone in both pregnant and ovariectomized models. Importantly, the study provides evidence that PGR can exert an antioestrogenic effect by genomic inhibition of Esr1 and Greb1 expression. ChIP-Seq data mining reveals intermingled PGR and ESR1 binding on Esr1 and Greb1 gene enhancers. Chromatin conformation analysis shows reduced interactions in these genes' loci in the mutant, coinciding with their upregulations. CONCLUSION AF1 mediates genomic inhibition of ESR1 action globally whilst it also has tissue-selective effect on PGR target genes.
Collapse
Affiliation(s)
- Shi Hao Lee
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Chew Leng Lim
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei Shen
- grid.35155.370000 0004 1790 4137College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Samuel Ming Xuan Tan
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Amanda Rui En Woo
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Yeannie H. Y. Yap
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore ,grid.459705.a0000 0004 0366 8575Present Address: Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor Malaysia
| | - Caitlyn Ang Su Sian
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wilson Wen Bin Goh
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Wei-Ping Yu
- grid.185448.40000 0004 0637 0221Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673 Singapore
| | - Li Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Valerie C. L. Lin
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
12
|
Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 2022; 39:110889. [PMID: 35649353 PMCID: PMC9637993 DOI: 10.1016/j.celrep.2022.110889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.
Collapse
Affiliation(s)
- Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keijo Viiri
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
13
|
Gupta SK, Jea JDY, Yen L. RNA-driven JAZF1-SUZ12 gene fusion in human endometrial stromal cells. PLoS Genet 2021; 17:e1009985. [PMID: 34928964 PMCID: PMC8722726 DOI: 10.1371/journal.pgen.1009985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/03/2022] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogenic fusion genes as the result of chromosomal rearrangements are important for understanding genome instability in cancer cells and developing useful cancer therapies. To date, the mechanisms that create such oncogenic fusion genes are poorly understood. Previously we reported an unappreciated RNA-driven mechanism in human prostate cells in which the expression of chimeric RNA induces specified gene fusions in a sequence-dependent manner. One fundamental question yet to be addressed is whether such RNA-driven gene fusion mechanism is generalizable, or rather, a special case restricted to prostate cells. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene commonly found in low-grade endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The induced fusion gene is validated both at the RNA and the genomic DNA level. The ability of designed chimeric RNAs to drive and recapitulate the formation of JAZF1-SUZ12 gene fusion in endometrial cells represents another independent case of RNA-driven gene fusion, suggesting that RNA-driven genomic recombination is a permissible mechanism in mammalian cells. The results could have fundamental implications in the role of RNA in genome stability, and provide important insight in early disease mechanisms related to the formation of cancer fusion genes. Fusion genes resulting from chromosomal translocations are important for understanding cancer mechanisms and developing anti-cancer therapies. Fusion gene are presumed to occur prior to fusion RNA expression. However, studies have reported the presence of fusion RNAs in individuals who were negative for chromosomal translocations. The observation, that fusion RNA could be present prior to fusion gene formation, raises the provocative hypothesis that fusion RNA, or any cellular RNA with sequence compositions resembling that of fusion RNA, could act as a template to mediate genomic rearrangement which leads to the final gene fusion. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene found in endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The results could have fundamental implications in the role of RNA in mammalian genome stability, provide important insight in early disease mechanism, as well as developing gene editing technology via mechanisms native to mammalian cells.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jocelyn Duen-Ya Jea
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chadchan SB, Popli P, Ambati CR, Tycksen E, Han SJ, Bulun SE, Putluri N, Biest SW, Kommagani R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci Alliance 2021; 4:4/12/e202101224. [PMID: 34593556 PMCID: PMC8500332 DOI: 10.26508/lsa.202101224] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Chandrasekhar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott W Biest
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Division of Minimally Invasive Gynecologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA .,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Oestreich AK, Chadchan SB, Medvedeva A, Lydon JP, Jungheim ES, Moley KH, Kommagani R. The autophagy protein, FIP200 (RB1CC1) mediates progesterone responses governing uterine receptivity and decidualization†. Biol Reprod 2021; 102:843-851. [PMID: 31901086 DOI: 10.1093/biolre/ioz234] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022] Open
Abstract
Successful establishment of pregnancy depends on steroid hormone-driven cellular changes in the uterus during the peri-implantation period. To become receptive to embryo implantation, uterine endometrial stromal cells (ESCs) must transdifferentiate into decidual cells that secrete factors necessary for embryo survival and trophoblast invasion. Autophagy is a key homeostatic process vital for cellular homeostasis. Although the uterus undergoes major cellular changes during early pregnancy, the precise role of autophagy in uterine function is unknown. Here, we report that conditional knockout of the autophagy protein FIP200 in the reproductive tract of female mice results in reduced fecundity due to an implantation defect. In the absence of FIP200, aberrant progesterone signaling results in sustained uterine epithelial proliferation and failure of stromal cells to decidualize. Additionally, loss of FIP200 impairs decidualization of human ESCs. We conclude that the autophagy protein FIP200 plays a crucial role in uterine receptivity, decidualization, and fertility. These data establish autophagy as a major cellular pathway required for uterine receptivity and decidualization in both mice and human ESCs.
Collapse
Affiliation(s)
- Arin K Oestreich
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Sangappa B Chadchan
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Alexandra Medvedeva
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Kelle H Moley
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Ramakrishna Kommagani
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| |
Collapse
|
16
|
Duijndam B, Goudriaan A, van den Hoorn T, van der Stel W, Le Dévédec S, Bouwman P, van der Laan JW, van de Water B. Physiologically Relevant Estrogen Receptor Alpha Pathway Reporters for Single-Cell Imaging-Based Carcinogenic Hazard Assessment of Estrogenic Compounds. Toxicol Sci 2021; 181:187-198. [PMID: 33769548 PMCID: PMC8163057 DOI: 10.1093/toxsci/kfab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) belongs to the nuclear hormone receptor family of ligand-inducible transcription factors and regulates gene networks in biological processes such as cell growth and proliferation. Disruption of these networks by chemical compounds with estrogenic activity can result in adverse outcomes such as unscheduled cell proliferation, ultimately culminating in tumor formation. To distinguish disruptive activation from normal physiological responses, it is essential to quantify relationships between different key events leading to a particular adverse outcome. For this purpose, we established fluorescent protein MCF7 reporter cell lines for ERα-induced proliferation by bacterial artificial chromosome-based tagging of 3 ERα target genes: GREB1, PGR, and TFF1. These target genes are inducible by the non-genotoxic carcinogen and ERα agonist 17β-estradiol in an ERα-dependent manner and are essential for ERα-dependent cell-cycle progression and proliferation. The 3 GFP reporter cell lines were characterized in detail and showed different activation dynamics upon exposure to 17β-estradiol. In addition, they demonstrated specific activation in response to other established reference estrogenic compounds of different potencies, with similar sensitivities as validated OECD test methods. This study shows that these fluorescent reporter cell lines can be used to monitor the spatial and temporal dynamics of ERα pathway activation at the single-cell level for more mechanistic insight, thereby allowing a detailed assessment of the potential carcinogenic activity of estrogenic compounds in humans.
Collapse
Affiliation(s)
- Britt Duijndam
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands.,Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Annabel Goudriaan
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Tineke van den Hoorn
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Sylvia Le Dévédec
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
17
|
Shin EM, Huynh VT, Neja SA, Liu CY, Raju A, Tan K, Tan NS, Gunaratne J, Bi X, Iyer LM, Aravind L, Tergaonkar V. GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. SCIENCE ADVANCES 2021; 7:7/12/eabe2470. [PMID: 33731348 PMCID: PMC7968844 DOI: 10.1126/sciadv.abe2470] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/29/2021] [Indexed: 05/03/2023]
Abstract
What covalent modifications control the temporal ubiquitination of ERα and hence the duration of its transcriptional activity remain poorly understood. We show that GREB1, an ERα-inducible enzyme, catalyzes O-GlcNAcylation of ERα at residues T553/S554, which stabilizes ERα protein by inhibiting association with the ubiquitin ligase ZNF598. Loss of GREB1-mediated glycosylation of ERα results in reduced cellular ERα levels and insensitivity to estrogen. Higher GREB1 expression in ERα+ve breast cancer is associated with greater survival in response to tamoxifen, an ERα agonist. Mice lacking Greb1 exhibit growth and fertility defects reminiscent of phenotypes in ERα-null mice. In summary, this study identifies GREB1, a protein with an evolutionarily conserved domain related to DNA-modifying glycosyltransferases of bacteriophages and kinetoplastids, as the first inducible and the only other (apart from OGT) O-GlcNAc glycosyltransferase in mammalian cytoplasm and ERα as its first substrate.
Collapse
Affiliation(s)
- Eun Myoung Shin
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Vinh Thang Huynh
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sultan Abda Neja
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Chia Yi Liu
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Kelly Tan
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive,, Singapore 637551, Singapore
| | - Jayantha Gunaratne
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117594, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), A*STAR, Singapore, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research, Singapore 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| |
Collapse
|
18
|
Chadchan SB, Popli P, Maurya VK, Kommagani R. The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization†. Biol Reprod 2021; 104:336-343. [PMID: 33205194 PMCID: PMC7717150 DOI: 10.1093/biolre/ioaa211] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) first appeared in December 2019 and rapidly spread throughout the world. The SARS-CoV-2 virus enters the host cells by binding to the angiotensin-converting enzyme 2 (ACE2). Although much of the focus is on respiratory symptoms, recent reports suggest that SARS-CoV-2 can cause pregnancy complications such as pre-term birth and miscarriages; and women with COVID-19 have had maternal vascular malperfusion and decidual arteriopathy in their placentas. Here, we report that the ACE2 protein is expressed in both endometrial epithelial and stromal cells in the proliferative phase of the menstrual cycle, and the expression increases in stromal cells in the secretory phase. It was observed that the ACE2 mRNA and protein abundance increased during primary human endometrial stromal cell (HESC) decidualization. Furthermore, HESCs transfected with ACE2-targeting siRNA impaired the full decidualization response, as evidenced by a lack of morphology change and lower expression of the decidualization markers PRL and IGFBP1. Additionally, in mice during pregnancy, the ACE2 protein was expressed in the uterine epithelial cells, and stromal cells increased through day 6 of pregnancy. Finally, progesterone induced Ace2 mRNA expression in mouse uteri more than vehicle or estrogen. These data establish a role for ACE2 in endometrial physiology, suggesting that SARS-CoV-2 may be able to enter endometrial stromal cells and elicit pathological manifestations in women with COVID-19, including an increased risk of early pregnancy loss.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pooja Popli
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vineet K Maurya
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramakrishna Kommagani
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Ramírez-de-Arellano A, Villegas-Pineda JC, Hernández-Silva CD, Pereira-Suárez AL. The Relevant Participation of Prolactin in the Genesis and Progression of Gynecological Cancers. Front Endocrinol (Lausanne) 2021; 12:747810. [PMID: 34745013 PMCID: PMC8566755 DOI: 10.3389/fendo.2021.747810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland and multiple non-pituitary sites, vital in several physiological processes such as lactation, pregnancy, cell growth, and differentiation. However, PRL is nowadays known to have a strong implication in oncogenic processes, making it essential to delve into the mechanisms governing these actions. PRL and its receptor (PRLR) activate a series of effects such as survival, cellular proliferation, migration, invasion, metastasis, and resistance to treatment, being highly relevant in developing certain types of cancer. Because women produce high levels of PRL, its influence in gynecological cancers is herein reviewed. It is interesting that, other than the 23 kDa PRL, whose mechanism of action is endocrine, other variants of PRL have been observed to be produced by tumoral tissue, acting in a paracrine/autocrine manner. Because many components, including PRL, surround the microenvironment, it is interesting to understand the hormone's modulation in cancer cells. This work aims to review the most important findings regarding the PRL/PRLR axis in cervical, ovarian, and endometrial cancers and its molecular mechanisms to support carcinogenesis.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
20
|
Kao YC, Lee JC. An update of molecular findings in uterine tumor resembling ovarian sex cord tumor and GREB1-rearranged uterine sarcoma with variable sex-cord differentiation. Genes Chromosomes Cancer 2020; 60:180-189. [PMID: 33099842 DOI: 10.1002/gcc.22909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Uterine tumor resembling ovarian sex cord tumor (UTROSCT) is a uterine mesenchymal tumor defined histologically by showing sex cord-like growth patterns, such as sheets, nests, trabeculae, cords, or tubules, with/without Sertoli-like or Leydig-like components, and immunohistochemically by exhibiting variable sex cord markers in addition to epithelial, myogenic, and sex hormone markers. Recent years have seen the emergence in UTROSCT of novel fusion genes that involve key genes in sex hormone pathways, including ESR1 and GREB1 as the 5' partner, and (co)activator oncogenes, particularly NCOA1-3, as the 3' partner. While the identification of similar fusions in the majority of cases serves as a strong argument for UTROSCT to be a distinct entity, there is no denying significant clinicopathologic heterogeneity within the disease spectrum, which might to some extent correlate with the different fusion types. The current review gives a summary of the recently identified fusions in UTROSCT, along with their possible clinicopathologic relevance. Also discussed are unsolved issues including the relationship between UTROSCT and so-called GREB1-rearranged uterine sarcoma as well as other uterine mesenchymal tumors harboring similar fusions.
Collapse
Affiliation(s)
- Yu-Chien Kao
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Chieh Lee
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
21
|
Chadchan SB, Maurya VK, Krekeler GL, Jungheim ES, Kommagani R. A Role for Malignant Brain Tumor Domain-Containing Protein 1 in Human Endometrial Stromal Cell Decidualization. Front Cell Dev Biol 2020; 8:745. [PMID: 32850854 PMCID: PMC7432280 DOI: 10.3389/fcell.2020.00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Up to 30% of women experience early miscarriage due to impaired decidualization. For implantation to occur, the uterine endometrial stromal fibroblast-like cells must differentiate into decidual cells, but the genes required for decidualization have not been fully defined. Here, we show that Malignant Brain Tumor Domain-containing Protein 1 (MBTD1), a member of the polycomb group protein family, is critical for human endometrial stromal cell (HESC) decidualization. MBTD1 predominantly localized to HESCs during the secretory phase and the levels were significantly elevated during in vitro decidualization of both immortalized and primary HESCs. Importantly, siRNA-mediated MBTD1 knockdown significantly impaired in vitro decidualization of both immortalized and primary HESCs, as evidenced by reduced expression of the decidualization markers PRL and IGFBP1. Further, knockdown of MBTD1 reduced cell proliferation and resulted in G2/M cell cycle arrest in decidualizing HESCs. Although progesterone signaling is required for decidualization, MBTD1 expression was not affected by progesterone signaling; however, MBTD1 knockdown significantly reduced expression of the progesterone target genes WNT4, FOXOA1, and GREB1. Collectively, our data suggest that MBTD1 contributes to in vitro decidualization of HESCs by sustaining progesterone signaling. This work could have implications for designing diagnostic and therapeutic tools for recurrent pregnancy loss.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Vineet K Maurya
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Gwendalyn L Krekeler
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Emily S Jungheim
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, United States
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Chadchan SB, Maurya VK, Popli P, Kommagani R. The SARS-CoV-2 receptor, Angiotensin converting enzyme 2 (ACE2) is required for human endometrial stromal cell decidualization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32607509 DOI: 10.1101/2020.06.23.168252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
STUDY QUESTION Is SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE 2) expressed in the human endometrium during the menstrual cycle, and does it participate in endometrial decidualization? SUMMARY ANSWER ACE2 protein is highly expressed in human endometrial stromal cells during the secretory phase and is essential for human endometrial stromal cell decidualization. WHAT IS KNOWN ALREADY ACE2 is expressed in numerous human tissues including the lungs, heart, intestine, kidneys and placenta. ACE2 is also the receptor by which SARS-CoV-2 enters human cells. STUDY DESIGN SIZE DURATION Proliferative (n = 9) and secretory (n = 6) phase endometrium biopsies from healthy reproductive-age women and primary human endometrial stromal cells from proliferative phase endometrium were used in the study. PARTICIPANTS/MATERIALS SETTING METHODS ACE2 expression and localization were examined by qRT-PCR, Western blot, and immunofluorescence in both human endometrial samples and mouse uterine tissue. The effect of ACE2 knockdown on morphological and molecular changes of human endometrial stromal cell decidualization were assessed. Ovariectomized mice were treated with estrogen or progesterone to determine the effects of these hormones on ACE2 expression. MAIN RESULTS AND THE ROLE OF CHANCE In human tissue, ACE2 protein is expressed in both endometrial epithelial and stromal cells in the proliferative phase of the menstrual cycle, and expression increases in stromal cells in the secretory phase. The ACE2 mRNA ( P < 0.0001) and protein abundance increased during primary human endometrial stromal cell (HESC) decidualization. HESCs transfected with ACE2 -targeting siRNA were less able to decidualize than controls, as evidenced by a lack of morphology change and lower expression of the decidualization markers PRL and IGFBP1 ( P < 0.05). In mice during pregnancy, ACE2 protein was expressed in uterine epithelial and stromal cells increased through day six of pregnancy. Finally, progesterone induced expression of Ace2 mRNA in mouse uteri more than vehicle or estrogen ( P < 0.05). LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Experiments assessing the function of ACE2 in human endometrial stromal cell decidualization were in vitro . Whether SARS-CoV-2 can enter human endometrial stromal cells and affect decidualization have not been assessed. WIDER IMPLICATIONS OF THE FINDINGS Expression of ACE2 in the endometrium allow SARS-CoV-2 to enter endometrial epithelial and stromal cells, which could impair in vivo decidualization, embryo implantation, and placentation. If so, women with COVID-19 may be at increased risk of early pregnancy loss. STUDY FUNDINGS/COMPETING INTERESTS This study was supported by National Institutes of Health / National Institute of Child Health and Human Development grants R01HD065435 and R00HD080742 to RK and Washington University School of Medicine start-up funds to RK. The authors declare that they have no conflicts of interest.
Collapse
|
23
|
Sanchez-Fernandez A, Roncero-Martin R, Moran JM, Lavado-García J, Puerto-Parejo LM, Lopez-Espuela F, Aliaga I, Pedrera-Canal M. Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density. Healthcare (Basel) 2020; 8:healthcare8020172. [PMID: 32549322 PMCID: PMC7349482 DOI: 10.3390/healthcare8020172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
Nursing research is expected to provide options for the primary prevention of disease and health promotion, regardless of pathology or disease. Nurses have the skills to develop and lead research that addresses the relationship between genetic factors and health. Increasing genetic knowledge and research capacity through interdisciplinary cooperation as well as the development of research resources, will accelerate the rate at which nurses contribute to the knowledge about genetics and health. There are currently different fields in which knowledge can be expanded by research developed from the nursing field. Here, we present an emerging field of research in which it is hypothesized that genetics may affect bone metabolism. Better insight of genetic factors that are contributing to metabolic bone diseases would allow for focused nursing care and preventive interventions.
Collapse
Affiliation(s)
| | - Raúl Roncero-Martin
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Jose M. Moran
- Departamento de Estomatología II, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-927-257450
| | - Jesus Lavado-García
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Luis Manuel Puerto-Parejo
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Fidel Lopez-Espuela
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Ignacio Aliaga
- Departamento de Estomatología II, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María Pedrera-Canal
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| |
Collapse
|
24
|
Panigrahi M, Kumar H, Sah V, Dillipkumar Verma A, Bhushan B, Parida S. Transcriptome profiling of buffalo endometrium reveals molecular signature distinct to early pregnancy. Gene 2020; 743:144614. [PMID: 32222532 DOI: 10.1016/j.gene.2020.144614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Buffalo reproduction struggles with a high incidence of early embryonic mortality. Effective treatment and prevention strategies for this condition are not available due to lack of understanding of molecular pathways in early pregnancy of this species. In the present study, we have attempted to understand these molecular pathways by characterizing the endometrial transcriptomic profiles of pregnant buffalos during early pregnancy. For the transcriptome profiling, buffalo endometrial tissues of 29-36 days of pregnancy and of nonpregnant luteal phase were collected from the local slaughterhouse. We confirmed the status of pregnancy based on the crown vertebral length of the foetus. Total RNA was isolated and sequencing was performed using the Illumina nextseq platform. The raw reads were filtered and mapped to the Bos taurus UMD 3.1 reference genome assembly. An average of 24,597 genes was investigated for differential expression between the two groups. Transcriptome data identified a total of 450 differentially expressed genes (using a cut off value of log2 fold changes >2 and <-2) in early pregnancy in comparison to the nonpregnant group (Padj < 0.05). Among these, 270 genes were significantly upregulated and 180 genes were downregulated. The most impacted pathways were related to secretion, transport, ionic homeostasis, mitosis and negative regulation of viral processes. In conclusion, our study characterized a unique set of DEGs, during the early pregnancy of buffalo, which potentially modulate the endometrial environment to establish and maintain a successful pregnancy.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Vaishali Sah
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Ankita Dillipkumar Verma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
25
|
Clinicopathologic Characterization of GREB1-rearranged Uterine Sarcomas With Variable Sex-Cord Differentiation. Am J Surg Pathol 2020; 43:928-942. [PMID: 31094921 DOI: 10.1097/pas.0000000000001265] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Uterine mesenchymal tumors are genetically heterogenous; those with uniform cytomorphology, best exemplified by endometrial stromal tumors, often contain various fusion genes. Novel fusions involving ESR1 and GREB1, key factors in sex hormone pathways, have been implicated in rare uterine mesenchymal tumors. Particularly, the fusions between 5'-ESR1/GREB1 and 3'-NCOA2/NCOA3 were recently identified in 4 uterine tumors resembling ovarian sex-cord tumor (UTROSCT). By RNA sequencing, pathology review, and FISH screening, we identified 4 uterine sarcomas harboring rearranged GREB1, including GREB1-NCOA2 and the novel GREB1-NR4A3, GREB1-SS18, and GREB1-NCOA1, validated by RT-PCR and/or FISH. They occurred in the myometrium of postmenopausal women and were pathologically similar despite minor differences. Tumor cells were generally uniform and epithelioid, with vesicular nuclei and distinct to prominent nucleoli. Growth patterns included solid sheets, trabeculae/cords, nests, and fascicles. Only 1 tumor showed small foci of definitive sex-cord components featuring well-formed tubules, retiform structures, Leydig-like cells, and lipid-laden cells and exhibiting convincing immunoreactivity to sex-cord markers (calretinin, α-inhibin, and Melan-A). In contrast, all the 4 classic UTROSCT we collected occurred in premenopausal patients, consisted predominantly of unequivocal sex-cord elements, prominently expressed multiple sex-cord markers, and harbored ESR1-NCOA3 fusion. Combined with previously reported cases, GREB1-rearranged tumors involved significantly older women (P=0.001), tended to be larger and more mitotically active, showed more variable and often inconspicuous sex-cord differentiation, and appeared to behave more aggressively than ESR1-rearranged UTROSCT. Therefore, these 2 groups of tumors might deserve separate consideration, despite some overlapping features and the possibility of belonging to the same disease spectrum.
Collapse
|
26
|
Sang Y, Li Y, Xu L, Li D, Du M. Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases. Acta Biochim Biophys Sin (Shanghai) 2020; 52:105-115. [PMID: 31854442 DOI: 10.1093/abbs/gmz146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial decidualization is one of the earliest changes by which the uterus adapts to pregnancy. During this period, the endometrium undergoes complex changes in its biochemistry, physiology, and function at various levels, providing a suitable microenvironment for embryo implantation and development. Favorable decidualization lays an essential foundation for subsequent gestation, without which pregnancy failure or pregnancy complications may occur. The interaction between pregnancy-related hormones and cytokines produced by embryonic and uterine cells is known to be essential for decidualization, in which some transcription factors also play pivotal roles. Increasing evidence has revealed the importance of metabolism in regulating decidualization. Here, we summarize and discuss these crucial elements in decidualization and the relationship between decidualization and pregnancy complications. A better comprehension of these issues should help to improve the prediction of pregnancy outcomes and the use of appropriate intervention.
Collapse
Affiliation(s)
- Yifei Sang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yanhong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ling Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Dajin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
27
|
Oestreich AK, Chadchan SB, Popli P, Medvedeva A, Rowen MN, Stephens CS, Xu R, Lydon JP, Demayo FJ, Jungheim ES, Moley KH, Kommagani R. The Autophagy Gene Atg16L1 is Necessary for Endometrial Decidualization. Endocrinology 2020; 161:5686885. [PMID: 31875883 PMCID: PMC6986551 DOI: 10.1210/endocr/bqz039] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
Uterine receptivity is critical for establishing and maintaining pregnancy. For the endometrium to become receptive, stromal cells must differentiate into decidual cells capable of secreting factors necessary for embryo survival and placental development. Although there are multiple reports of autophagy induction correlated with endometrial stromal cell (ESC) decidualization, the role of autophagy in decidualization has remained elusive. To determine the role of autophagy in decidualization, we utilized 2 genetic models carrying mutations to the autophagy gene Atg16L1. Although the hypomorphic Atg16L1 mouse was fertile and displayed proper decidualization, conditional knockout in the reproductive tract of female mice reduced fertility by decreasing the implantation rate. In the absence of Atg16L1, ESCs failed to properly decidualize and fewer blastocysts were able to implant. Additionally, small interfering RNA knock down of Atg16L1 was detrimental to the decidualization response of human ESCs. We conclude that Atg16L1 is necessary for decidualization, implantation, and overall fertility in mice. Furthermore, considering its requirement for human endometrial decidualization, these data suggest Atg16L1 may be a potential mediator of implantation success in women.
Collapse
Affiliation(s)
- Arin K Oestreich
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Sangappa B Chadchan
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Pooja Popli
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Alexandra Medvedeva
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Marina N Rowen
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Claire S Stephens
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Ran Xu
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Francesco J Demayo
- Reproductive & Developmental Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Emily S Jungheim
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Kelle H Moley
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Ramakrishna Kommagani
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Palstra AP, Mendez S, Dirks RP, Schaaf MJM. Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish ( Danio rerio). Front Physiol 2019; 9:1889. [PMID: 30692930 PMCID: PMC6339955 DOI: 10.3389/fphys.2018.01889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the role of cortisol, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal, and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol signaling through Gr cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analyzed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 vs. 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish, and in this cluster genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Because these two processes appear to be regulated in both wild type and mutant fish, which both display exercise-enhanced growth, we suggest that they play an important role in the growth of muscles upon exercise.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen Marine Research, Wageningen University and Research, Yerseke, Netherlands.,Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands.,Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | - Silvia Mendez
- Wageningen Marine Research, Wageningen University and Research, Yerseke, Netherlands.,Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
29
|
Croce S, Lesluyes T, Delespaul L, Bonhomme B, Pérot G, Velasco V, Mayeur L, Rebier F, Ben Rejeb H, Guyon F, McCluggage WG, Floquet A, Querleu D, Chakiba C, Devouassoux-Shisheboran M, Mery E, Arnould L, Averous G, Soubeyran I, Le Guellec S, Chibon F. GREB1-CTNNB1 fusion transcript detected by RNA-sequencing in a uterine tumor resembling ovarian sex cord tumor (UTROSCT): A novel CTNNB1 rearrangement. Genes Chromosomes Cancer 2019; 58:155-163. [PMID: 30350331 DOI: 10.1002/gcc.22694] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations of CTNNB1 have been implicated in tumorigenesis in many organs. However, tumors harboring a CTNNB1 translocation are extremely rare and this translocation has never been reported in a uterine mesenchymal neoplasm. We report a novel translocation t(2;3)(p25;p22) involving the GREB1 (intron 8) and CTNNB1 (exon 3) in a uterine tumor resembling ovarian sex cord tumor (UTROSCT), which exhibited extrauterine metastasis. The translocation detected by RNA-sequencing was validated by RT-PCR, and resulted in nuclear expression of β-catenin. Juxtapositioning with GREB1, which is overexpressed in response to estrogens, resulted in overexpression of a truncated and hypophosphorylated nuclear β-catenin in the primary and recurrent tumors. This accumulation of nuclear β-catenin results in a constitutive activation of the Wnt/β-catenin signaling pathway with a major oncogenic effect. The CTNNB1 gene fusion, promoted by an estrogen-responsive gene (GREB1), could be a potential driver of tumorigenesis in this case and a therapeutic target with adapted inhibitors. RT-PCR and immunohistochemistry performed on 11 additional UTROSCTs showed no CTNNB1 fusion transcript or nuclear β-catenin immunoreactivity.
Collapse
Affiliation(s)
- Sabrina Croce
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Tom Lesluyes
- Comprehensive Cancer Center, INSERM U1218, Institut Bergonié, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Cancer Research Center of Toulouse, Oncosarc, INSERM UMR1037, Toulouse, France.,Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Lucile Delespaul
- University of Bordeaux, Bordeaux, France.,Cancer Research Center of Toulouse, Oncosarc, INSERM UMR1037, Toulouse, France
| | - Benjamin Bonhomme
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Gaëlle Pérot
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Laetitia Mayeur
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Flora Rebier
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Houda Ben Rejeb
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Frédéric Guyon
- Department of Surgery, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Anne Floquet
- Department of Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Denis Querleu
- University of Bordeaux, Bordeaux, France.,Department of Surgery, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Camille Chakiba
- Department of Oncology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | | | - Eliane Mery
- Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Laurent Arnould
- Department of Pathology, Centre JF Leclerc, Comprehensive Cancer Center, Dijon, France
| | | | - Isabelle Soubeyran
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
| | - Sophie Le Guellec
- Cancer Research Center of Toulouse, Oncosarc, INSERM UMR1037, Toulouse, France.,Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Frédéric Chibon
- Cancer Research Center of Toulouse, Oncosarc, INSERM UMR1037, Toulouse, France.,Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| |
Collapse
|
30
|
Katoh N, Kuroda K, Tomikawa J, Ogata-Kawata H, Ozaki R, Ochiai A, Kitade M, Takeda S, Nakabayashi K, Hata K. Reciprocal changes of H3K27ac and H3K27me3 at the promoter regions of the critical genes for endometrial decidualization. Epigenomics 2018; 10:1243-1257. [PMID: 30212243 DOI: 10.2217/epi-2018-0006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Decidualization is essential for embryo implantation and placental development. We aimed to obtain transcriptome and epigenome profiles for primary endometrial stromal cells (ESCs) and in vitro decidualized cells. MATERIALS & METHODS ESCs isolated from human endometrial tissues remained untreated (D0), or decidualized for 4 days (D4) and 8 days (D8) in the presence of 8-bromo-cAMP and progesterone. RESULTS Among the epigenetic modifications examined (DNA methylation, H3K27ac, H3K9me3 and H3K27me3), the H3K27ac patterns changed most dramatically, with a moderate correlation with gene expression changes, upon decidualization. Subsets of up- and down-regulated genes upon decidualization were associated with reciprocal changes of H3K27ac and H3K27me3 modifications at their promoter region, and were enriched with genes essential for decidualization such as WNT4, ZBTB16, PROK1 and GREB1. CONCLUSION Our dataset is useful to further elucidate the molecular mechanisms underlying decidualization.
Collapse
Affiliation(s)
- Noriko Katoh
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan.,Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Keiji Kuroda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Rie Ozaki
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Asako Ochiai
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Mari Kitade
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Satoru Takeda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| |
Collapse
|
31
|
Michalski SA, Chadchan SB, Jungheim ES, Kommagani R. Isolation of Human Endometrial Stromal Cells for In Vitro Decidualization. J Vis Exp 2018. [PMID: 30222162 DOI: 10.3791/57684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The differentiation of human endometrial stromal cells (HESC) from fibroblast-like appearance into secretory decidua is a transformation required for embryo implantation into the uterine lining of the maternal womb. Improper decidualization has been established as a root cause for implantation failure and subsequent early embryo miscarriage. Therefore, understanding the molecular mechanisms underlying decidualization is advantageous to improving the rate of successful births. In vivo based studies of artificial decidualization are often limiting due to ethical dilemmas associated with human research, as well as translational complications within animal models. As a result, in vitro assays through primary cell culture are often utilized to explore the modulation of decidualization via hormones. This study provides a detailed protocol for the isolation of HESC and subsequent artificial decidualization via the supplementation of hormones to the culturing medium. Further, this study provides a well-designed method to knockdown any gene of interest by utilizing lipid-based siRNA transfections. This protocol permits the optimization of culture purity as well as product yield, thereby maximizing the ability to utilize this model as a reliable method to understand the molecular mechanisms underlying decidualization, and the subsequent quantification of secreted agents by decidualized endometrial stromal cells.
Collapse
Affiliation(s)
- Stephanie A Michalski
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine
| | - Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine;
| |
Collapse
|
32
|
Cheng M, Michalski S, Kommagani R. Role for Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in Hormone-Dependent Cancers. Int J Mol Sci 2018; 19:ijms19092543. [PMID: 30154312 PMCID: PMC6163654 DOI: 10.3390/ijms19092543] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Sex hormones play important roles in the onset and progression of several cancers, such as breast, ovarian, and prostate cancer. Although drugs targeting sex hormone function are useful in treating cancer, tumors often develop resistance. Thus, we need to define the downstream effectors of sex hormones in order to develop new treatment strategies for these cancers. Recent studies unearthed one potential mediator of steroid hormone action in tumors: growth regulation by estrogen in breast cancer 1 (GREB1). GREB1 is an early estrogen-responsive gene, and its expression is correlated with estrogen levels in breast cancer patients. Additionally, GREB1 responds to androgen in prostate cancer cells, and can stimulate the proliferation of breast, ovarian, and prostate cancer cells. Recent studies have shown that GREB1 also responds to progesterone in human endometrial cells, suggesting that GREB1 is a pan steroid-responsive gene. This mini-review examines evidence that GREB1 participates in several hormone-dependent cancers and could be targeted to treat these cancers.
Collapse
Affiliation(s)
- Meng Cheng
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stephanie Michalski
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Ramakrishna Kommagani
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Yoshinaga K. A historical review of blastocyst implantation research. Biol Reprod 2018; 99:175-195. [PMID: 30010858 PMCID: PMC6279068 DOI: 10.1093/biolre/ioy093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Research development on blastocyst implantation was reviewed in three sections: primate implantation, ungulate farm animal implantation, and the general process of blastocyst implantation in small rodents. Future research directions of this area are suggested.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, Division of Extramural Research, NICHD, NIH,
Bethesda, Maryland, USA
| |
Collapse
|
34
|
Yada T, Mekuchi M, Ojima N. Molecular biology and functional genomics of immune-endocrine interactions in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 2018; 257:272-279. [PMID: 29108728 DOI: 10.1016/j.ygcen.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Immune-endocrine interactions are an important pathogen resistance mechanism in fish. We review the immune-endocrine interactions in the Japanese eel, Anguilla japonica, with special reference to high throughput gene sequencing. These data may be relevant to the significant decrease in the eel harvest in recent years and will aid in the selection of appropriate disease-resistant strains for aquaculture. More than 1000 sequences that whose expression in elvers responded to air exposure were identified through comprehensive gene expression analysis using next-generation sequencing. These included transcription factors within the MAPK pathway. Significant changes in expression after air exposure were detected by quantitative polymerase chain reaction analysis in many genes related to disease resistance. These factors include innate immune system factors and cytokines that interact with the endocrine system during the stress response. Other applications of immune-endocrine interactions in eel culture are discussed.
Collapse
Affiliation(s)
- Takashi Yada
- Freshwater Fisheries Research Center, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Nikko, Japan.
| | - Miyuki Mekuchi
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Nobuhiko Ojima
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|