1
|
Li T, Luo K, Wang C, Wu L, Pan J, Wang M, Liu J, Li Y, Yao J, Chen W, Zhu S, Zhang Y. GhCKX14 responding to drought stress by modulating antioxi-dative enzyme activity in Gossypium hirsutum compared to CKX family genes. BMC PLANT BIOLOGY 2023; 23:409. [PMID: 37658295 PMCID: PMC10474641 DOI: 10.1186/s12870-023-04419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.
Collapse
Affiliation(s)
- Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kun Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Chenlei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jingwen Pan
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Mingyang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Jinwei Liu
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Ma C, Hua J, Li H, Zhang J, Luo S. Inoculation with carbofuran-degrading rhizobacteria promotes maize growth through production of IAA and regulation of the release of plant-specialized metabolites. CHEMOSPHERE 2022; 307:136027. [PMID: 35973507 DOI: 10.1016/j.chemosphere.2022.136027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Toxic residues of the insecticide carbofuran in farmland is an urgent problem, and high concentrations of carbofuran have been found in the rhizoshperic soil of maize treated with seed coating agents 120-180 days after planting. Using an enrichment co-culture method, we identify a bacterial strain obtained from these carbofuran-contaminated rhizosphere soils as Leclercia adecarboxylata MCH-1. This strain exhibited a significant ability to degrade both carbofuran and 3-keto carbofuran, with total degradation of 55.6 ± 4.6% and 75.7 ± 3.4%, respectively, 24 h following start of co-culture. Further activity screening revealed that the inoculation of maize roots with L. adecarboxylata MCH-1 promoted maize seedling growth. Quantitative analysis demonstrated that this bacterial strain had the ability to synthesize the phytohormone IAA. Simultaneously, the concentration of IAA in the rhizospheric soil increased following inoculation of maize roots with L. adecarboxylata MCH-1. Moreover, the concentrations of plant specialized metabolites, including phenolics, terpenoids, and alkaloids, decreased in maize seedlings and were elevated in the rhizospheric soil after maize roots had been inoculated with the MCH-1 strain. Interestingly, the growth of the strain MCH-1 was improved by co-culture with root exudates obtained from the rhizospheric soil, specifically 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, and zealexin A1 (ZA1). Taken together, our results suggest that the carbofuran-degrading rhizobacterium L. adecarboxylata MCH-1 is able to interact with maize plants through the regulation of maize root exudates. Moreover, inoculation with L. adecarboxylata MCH-1 promotes maize growth through the production of IAA and regulation of the release of plant specialized metabolites. Our results provide a new model organism for the remediation of farmland soils from pollution with carbofuran residues.
Collapse
Affiliation(s)
- Caihong Ma
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Juan Hua
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Hongdi Li
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Jiaming Zhang
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China
| | - Shihong Luo
- Key Laboratory of Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning Province, China.
| |
Collapse
|
3
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
4
|
Hemelíková N, Žukauskaitė A, Pospíšil T, Strnad M, Doležal K, Mik V. Caged Phytohormones: From Chemical Inactivation to Controlled Physiological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12111-12125. [PMID: 34610745 DOI: 10.1021/acs.jafc.1c02018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.
Collapse
Affiliation(s)
- Noemi Hemelíková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
5
|
Hong MJ, Kim JB, Seo YW, Kim DY. Regulation of Glycosylphosphatidylinositol-Anchored Protein (GPI-AP) Expression by F-Box/LRR-Repeat (FBXL) Protein in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1606. [PMID: 34451651 PMCID: PMC8397982 DOI: 10.3390/plants10081606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022]
Abstract
F-box proteins are substrate recognition components of the Skp1-Cullin-F-box (SCF) complex, which performs many important biological functions including the degradation of numerous proteins via the ubiquitin-26S proteasome system. In this study, we isolated the gene encoding the F-box/LRR-repeat (FBXL) protein from wheat (Triticum aestivum L.) seedlings and validated that the TaFBXL protein is a component of the SCF complex. Yeast two-hybrid assays revealed that TaFBXL interacts with the wheat glycosylphosphatidylinositol-anchored protein (TaGPI-AP). The green fluorescent protein (GFP) fusion protein of TaFBXL was detected in the nucleus and plasma membrane, whereas that of TaGPI-AP was observed in the cytosol and probably also plasma membrane. yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that TaFBXL specifically interacts with TaGPI-AP in the nucleus and plasma membrane, and TaGPI-AP is targeted by TaFBXL for degradation via the 26S proteasome system. In addition, TaFBXL and TaGPI-AP showed antagonistic expression patterns upon treatment with indole-3-acetic acid (IAA), and the level of TaGPI-AP was higher in tobacco leaves treated with both MG132 (proteasome inhibitor) and IAA than in leaves treated with either MG132 or IAA. Taken together, our data suggest that TaFBXL regulates the TaGPI-AP protein level in response to exogenous auxin application.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Korea; (M.J.H.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Korea; (M.J.H.); (J.-B.K.)
| | - Yong Weon Seo
- Division of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| | - Dae Yeon Kim
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| |
Collapse
|
6
|
Dang HT, Malone JM, Boutsalis P, Krishnan M, Gill G, Preston C. Reduced translocation in 2,4-D-resistant oriental mustard populations (Sisymbrium orientale L.) from Australia. PEST MANAGEMENT SCIENCE 2018; 74:1524-1532. [PMID: 29286550 DOI: 10.1002/ps.4845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Two oriental mustard populations (P2 and P13) collected from Port Broughton, South Australia were identified as resistant to 2,4-D. The level of resistance, mechanism and the mode of inheritance for 2,4-D resistance in these populations were investigated. RESULTS Populations P2 and P13 were confirmed to be resistant to 2,4-D at the field rate (600 g a.e. ha-1 ). P2 and P13 were 81- and 67-fold more resistant than the susceptible populations (S1 and S2) at the dose required for 50% mortality (LD50 ), respectively. No predicted amino acid modification was detected in sequences of potential target-site genes (ABP, TIR1 and AFB5). Resistant populations had reduced 2,4-D translocation compared with the susceptible populations, with 77% of [14 C]2,4-D retained in the treated leaf versus 32% at 72 h after treatment. Resistance to 2,4-D is encoded on the nuclear genome and is dominant, as the response to 2,4-D of all F2 individuals were similar to the resistant biotypes. The segregation of F2 phenotypes fitted a 3: 1 (R: S) inheritance model. CONCLUSION Resistance to 2,4-D in oriental mustard is likely due to reduced translocation of 2,4-D out of the treated leaf. Inheritance of 2,4-D resistance is conferred by a single gene with a high level of dominance. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue Thi Dang
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Peter Boutsalis
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Mahima Krishnan
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Gurjeet Gill
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| |
Collapse
|
7
|
Shukla A, Srivastava S, Suprasanna P. Genomics of Metal Stress-Mediated Signalling and Plant Adaptive Responses in Reference to Phytohormones. Curr Genomics 2017; 18:512-522. [PMID: 29204080 PMCID: PMC5684655 DOI: 10.2174/1389202918666170608093327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/15/2016] [Accepted: 10/30/2016] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION As a consequence of a sessile lifestyle, plants often have to face a number of life threatening abiotic and biotic stresses. Plants counteract the stresses through morphological and physiological adaptations, which are imparted through flexible and well-coordinated network of signalling and effector molecules, where phytohormones play important role. Hormone synthesis, signal transduction, perception and cross-talks create a complex network. Omics approaches, which include transcriptomics, genomics, proteomics and metabolomics, have opened new paths to understand such complex networks. OBJECTIVE This review concentrates on the importance of phytohormones and enzymatic expressions under metal stressed conditions. CONCLUSION This review sheds light on gene expressions involved in plant adaptive and defence responses during metal stress. It gives an insight of genomic approaches leading to identification and functional annotation of genes involved in phytohormone signal transduction and perception. Moreover, it also emphasizes on perception, signalling and cross-talks among various phytohormones and other signalling components viz., Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS).
Collapse
Affiliation(s)
- Anurakti Shukla
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi - 221005, U.P., India
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai - 400085, Maharashtra, India
| |
Collapse
|
8
|
da Costa CT, Pedebos C, Verli H, Fett-Neto AG. The role of Zn2+, dimerization and N-glycosylation in the interaction of Auxin-Binding Protein 1 (ABP1) with different auxins. Glycobiology 2017; 27:1109-1119. [DOI: 10.1093/glycob/cwx080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/04/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Cibele Tesser da Costa
- Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS 91501-970, Brazil
| | - Conrado Pedebos
- Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS 91501-970, Brazil
| | - Hugo Verli
- Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS 91501-970, Brazil
| | - Arthur Germano Fett-Neto
- Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
9
|
BEN MAHMOUD K, JEDIDI E, DELPORTE F, MUHOVSKI Y, JEMMALI A, DRUART P. Molecular investigations of the somatic embryogenesis recalcitrancein the cherry (Prunus cerasus L.) rootstock CAB 6P. Turk J Biol 2017. [DOI: 10.3906/biy-1604-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
10
|
Abstract
The plant hormone auxin (indole-3-acetic acid, IAA) controls growth and developmental responses throughout the life of a plant. A combination of molecular, genetic and biochemical approaches has identified several key components involved in auxin signal transduction. Rapid auxin responses in the nucleus include transcriptional activation of auxin-regulated genes and degradation of transcriptional repressor proteins. The nuclear auxin receptor is an integral component of the protein degradation machinery. Although auxin signalling in the nucleus appears to be short and simple, recent studies indicate that there is a high degree of diversity and complexity, largely due to the existence of multigene families for each of the major molecular components. Current studies are attempting to identify interacting partners among these families, and to define the molecular mechanisms involved in the interactions. Future goals are to determine the levels of regulation of the key components of the transcriptional complex, to identify higher-order complexes and to integrate this pathway with other auxin signal transduction pathways, such as the pathway that is activated by auxin binding to a different receptor at the outer surface of the plasma membrane. In this case, auxin binding triggers a signal cascade that affects a number of rapid cytoplasmic responses. Details of this pathway are currently under investigation.
Collapse
|
11
|
Abstract
As a prominent regulator of plant growth and development, the hormone auxin plays an essential role in controlling cell division and expansion. Auxin-responsive gene transcription is mediated through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway. Roles for TIR1/AFB pathway components in auxin response are understood best, but additional factors implicated in auxin responses require more study. The function of these factors, including S-Phase Kinase-Associated Protein 2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained largely obscure. Recent advances have begun to clarify roles for these factors in auxin response while also raising additional questions to be answered.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| |
Collapse
|
12
|
Pan X, Chen J, Yang Z. Auxin regulation of cell polarity in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:144-53. [PMID: 26599954 PMCID: PMC7513928 DOI: 10.1016/j.pbi.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/04/2023]
Abstract
Auxin is well known to control pattern formation and directional growth at the organ/tissue levels via the nuclear TIR1/AFB receptor-mediated transcriptional responses. Recent studies have expanded the arena of auxin actions as a trigger or key regulator of cell polarization and morphogenesis. These actions require non-transcriptional responses such as changes in the cytoskeleton and vesicular trafficking, which are commonly regulated by ROP/Rac GTPase-dependent pathways. These findings beg for the question about the nature of auxin receptors that regulate these responses and renew the interest in ABP1 as a cell surface auxin receptor, including the work showing auxin-binding protein 1 (ABP1) interacts with the extracellular domain of the transmembrane kinase (TMK) receptor-like kinases in an auxin-dependent manner, as well as the debate on this auxin binding protein discovered about 40 years ago. This review highlights recent work on the non-transcriptional auxin signaling mechanisms underscoring cell polarity and shape formation in plants.
Collapse
Affiliation(s)
- Xue Pan
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Jisheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
13
|
Shi YF, Wang DL, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu JZ. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. MOLECULAR PLANT 2015; 8:1350-65. [PMID: 25917173 DOI: 10.1016/j.molp.2015.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/30/2015] [Accepted: 04/16/2015] [Indexed: 05/21/2023]
Abstract
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.
Collapse
Affiliation(s)
- Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Da-Li Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Angela Hendrickson Culler
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Molly A Kreiser
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jayanti Suresh
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
14
|
De Smet S, Cuypers A, Vangronsveld J, Remans T. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. Int J Mol Sci 2015; 16:19195-224. [PMID: 26287175 PMCID: PMC4581294 DOI: 10.3390/ijms160819195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/01/2015] [Indexed: 01/23/2023] Open
Abstract
Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.
Collapse
Affiliation(s)
- Stefanie De Smet
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tony Remans
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
15
|
Chen J, Wang F, Zheng S, Xu T, Yang Z. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4957-70. [PMID: 26047974 PMCID: PMC4598803 DOI: 10.1093/jxb/erv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals.
Collapse
Affiliation(s)
- Jisheng Chen
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shiqin Zheng
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tongda Xu
- Center for Plant Stress Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC. Genome Sequencing of Arabidopsis abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes. THE PLANT CELL 2015; 27:1820-6. [PMID: 26106149 PMCID: PMC4531353 DOI: 10.1105/tpc.15.00214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 05/19/2023]
Abstract
Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function. During our own studies with abp1-5, we observed growth phenotypes segregating independently of the ABP1 lesion, leading us to sequence the genome of the abp1-5 line described previously. We found that the abp1-5 line we sequenced contains over 8000 single nucleotide polymorphisms in addition to the ABP1 mutation and that at least some of these mutations may originate from the Arabidopsis Wassilewskija accession. Furthermore, a phyB null allele in the abp1-5 background is likely causative for the long hypocotyl phenotype previously attributed to disrupted ABP1 function. Our findings complicate the interpretation of abp1-5 phenotypes for which no complementation test was conducted. Our findings on abp1-5 also provide a cautionary tale illustrating the need to use multiple alleles or complementation lines when attributing roles to a gene product.
Collapse
Affiliation(s)
- Tara A Enders
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Sookyung Oh
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
17
|
Luczak M, Krzeszowiec-Jeleń W, Konopka-Postupolska D, Wojtaszek P. Collagenase as a useful tool for the analysis of plant cellular peripheries. PHYTOCHEMISTRY 2015; 112:195-209. [PMID: 25435175 DOI: 10.1016/j.phytochem.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy. On the other hand, potential substrates of collagenase, among them annexin 1 have been recognized. Mass spectra of annexin 1 obtained after collagenase digestion and results from analysis of potential cleavage sites suggested that the mechanism of enzyme cleavage might not depend on the amino acid sequence. Summarizing, collagenase was found to be a very useful tool for exploring molecules involved in the functioning of cellular peripheries.
Collapse
Affiliation(s)
- Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
| | | | | | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
18
|
Abstract
Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny-Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled "The relative activities of different auxins" from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin-including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances.
Collapse
|
19
|
Lin D, Ren H, Fu Y. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:31-9. [PMID: 25168157 DOI: 10.1111/jipb.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/27/2014] [Indexed: 05/08/2023]
Abstract
In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.
Collapse
Affiliation(s)
- Deshu Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | |
Collapse
|
20
|
Hawkins C, Liu Z. A model for an early role of auxin in Arabidopsis gynoecium morphogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:327. [PMID: 25071809 PMCID: PMC4086399 DOI: 10.3389/fpls.2014.00327] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/23/2014] [Indexed: 05/19/2023]
Abstract
The female reproductive organ of angiosperms, the gynoecium, often consists of the fusion of multiple ovule-bearing carpels. It serves the important function of producing and protecting ovules as well as mediating pollination. The gynoecium has likely contributed to the tremendous success of angiosperms over their 160 million year history. In addition, being a highly complex plant organ, the gynoecium is well suited to serving as a model system for use in the investigation of plant morphogenesis and development. The longstanding model of gynoecium morphogenesis in Arabidopsis holds that apically localized auxin biosynthesis in the gynoecium results in an apical to basal gradient of auxin that serves to specify along its length the development of style, ovary, and gynophore in a concentration-dependent manner. This model is based primarily on the observed effects of the auxin transport blocker N-1-naphthylphthalamic acid (NPA) as well as analyses of mutants of Auxin Response Factor (ARF) 3/ETTIN (ETT). Both NPA treatment and ett mutation disrupt gynoecium morphological patterns along the apical-basal axis. More than a decade after the model's initial proposal, however, the auxin gradient on which the model critically depends remains elusive. Furthermore, multiple observations are inconsistent with such an auxin-gradient model. Chiefly, the timing of gynoecium emergence and patterning occurs at a very early stage when the organ has little-to-no apical-basal dimension. Based on these observations and current models of early leaf patterning, we propose an alternate model for gynoecial patterning. Under this model, the action of auxin is necessary for the early establishment of adaxial-abaxial patterning of the carpel primordium. In this case, the observed gynoecial phenotypes caused by NPA and ett are due to the disruption of this early adaxial-abaxial patterning of the carpel primordia. Here we present the case for this model based on recent literature and current models of leaf development.
Collapse
Affiliation(s)
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College ParkMD, USA
| |
Collapse
|
21
|
Retzer K, Butt H, Korbei B, Luschnig C. The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. PROTOPLASMA 2014; 251:731-46. [PMID: 24221297 PMCID: PMC4059964 DOI: 10.1007/s00709-013-0572-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 05/04/2023]
Abstract
Recent years have provided us with spectacular insights into the biology of the plant hormone auxin, leaving the impression of a highly versatile molecule involved in virtually every aspect of plant development. A combination of genetics, biochemistry, and cell biology has established auxin signaling pathways, leading to the identification of two distinct modes of auxin perception and downstream regulatory cascades. Major targets of these signaling modules are components of the polar auxin transport machinery, mediating directional distribution of the phytohormone throughout the plant body, and decisively affecting plant development. Alterations in auxin transport, metabolism, or signaling that occur as a result of intrinsic as well as environmental stimuli, control adjustments in morphogenetic programs, giving rise to defined growth responses attributed to the activity of the phytohormone. Some of the results obtained from the analysis of auxin, however, do not fit coherently into a picture of highly specific signaling events, but rather suggest mutual interactions between auxin and fundamental cellular pathways, like the control of intracellular protein sorting or translation. Crosstalk between auxin and these basic determinants of cellular activity and how they might shape auxin effects in the control of morphogenesis are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Haroon Butt
- Department of Biological Sciences, Forman Christian College, Ferozepur Road, Lahore, 54600 Pakistan
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
22
|
Ivanova A, Law SR, Narsai R, Duncan O, Lee JH, Zhang B, Van Aken O, Radomiljac JD, van der Merwe M, Yi K, Whelan J. A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:1233-1254. [PMID: 24820025 PMCID: PMC4081334 DOI: 10.1104/pp.114.237495] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/04/2014] [Indexed: 05/18/2023]
Abstract
The perception and integration of stress stimuli with that of mitochondrion function are important during periods of perturbed cellular homeostasis. In a continuous effort to delineate these mitochondrial/stress-interacting networks, forward genetic screens using the mitochondrial stress response marker alternative oxidase 1a (AOX1a) provide a useful molecular tool to identify and characterize regulators of mitochondrial stress signaling (referred to as regulators of alternative oxidase 1a [RAOs] components). In this study, we reveal that mutations in genes coding for proteins associated with auxin transport and distribution resulted in a greater induction of AOX1a in terms of magnitude and longevity. Three independent mutants for polarized auxin transport, rao3/big, rao4/pin-formed1, and rao5/multidrug-resistance1/abcb19, as well as the Myb transcription factor rao6/asymmetric leaves1 (that displays altered auxin patterns) were identified and resulted in an acute sensitivity toward mitochondrial dysfunction. Induction of the AOX1a reporter system could be inhibited by the application of auxin analogs or reciprocally potentiated by blocking auxin transport. Promoter activation studies with AOX1a::GUS and DR5::GUS lines further confirmed a clear antagonistic relationship between the spatial distribution of mitochondrial stress and auxin response kinetics, respectively. Genome-wide transcriptome analyses revealed that mitochondrial stress stimuli, such as antimycin A, caused a transient suppression of auxin signaling and conversely, that auxin treatment repressed a part of the response to antimycin A treatment, including AOX1a induction. We conclude that mitochondrial stress signaling and auxin signaling are reciprocally regulated, balancing growth and stress response(s).
Collapse
Affiliation(s)
- Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Simon R Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Jae-Hoon Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Botao Zhang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Jordan D Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - Margaretha van der Merwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - KeKe Yi
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Botany, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (A.I., S.R.L., O.D., B.Z., J.D.R., J.W.);Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (A.I., R.N., J.-H.L., O.V.A., J.D.R., M.v.d.M.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (K.Y.)
| |
Collapse
|
23
|
Chen J, Yang Z. Novel ABP1-TMK auxin sensing system controls ROP GTPase-mediated interdigitated cell expansion in Arabidopsis. Small GTPases 2014; 5:e29711. [PMID: 24978644 PMCID: PMC4205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 02/28/2024] Open
Abstract
ROP GTPases (Rho-like GTPase from plants), plant counterparts of animal and fungal Rho-family GTPases, have recently been shown to be key components of a novel signaling pathway activated by the plant hormone auxin. Auxin (indole acetic acid) is a key regulator of virtually every aspect of plant growth and development, yet the molecular mechanisms of auxin responses remain largely unknown. AUXIN BINDING PROTEIN1 (ABP1) is an ancient protein that binds auxin and has been implied as a receptor for a number of auxin responses, but its precise mechanism remains unresolved. A paradox for ABP1's action is that it is predominantly found in the endoplasmic reticulum (ER) lumen, while it has been implicated as a cell surface auxin receptor, functionally distinct from the nuclear TIR1/AFB auxin receptor family that regulates transcriptional responses. Since our group reported that ABP1 is required for activating two antagonizing ROP signaling pathways involved in cytoskeletal reorganization and cell shape formation in Arabidopsis leaf pavement cells, we recently further showed that the plasma membrane-localized TMK receptor-like kinases functionally interact in a complex with ABP1 and are required for ABP1-dependent activation of ROP GTPases by auxin. The formation of this cell surface complex is induced by auxin and requires functional ABP1. These exciting findings provide convincing evidence for this novel auxin sensing system on the cell surface and suggest intriguing mechanisms for TMKs being functional partners of ABP1 to transmit extracellular auxin signal to intracellular ROP signaling module during polar cell expansion.
Collapse
Affiliation(s)
- Jisheng Chen
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| |
Collapse
|
24
|
Chen J, Yang Z. Novel ABP1-TMK auxin sensing system controls ROP GTPase-mediated interdigitated cell expansion in Arabidopsis. Small GTPases 2014:e29711. [PMID: 25483217 DOI: 10.4161/sgtp.29711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
ROP GTPases (Rho-like GTPase from plants), plant counterparts of animal and fungal Rho-family GTPases, have recently been shown to be key components of a novel signaling pathway activated by the plant hormone auxin. Auxin (indole acetic acid) is a key regulator of virtually every aspect of plant growth and development, yet the molecular mechanisms of auxin responses remain largely unknown. AUXIN BINDING PROTEIN1 (ABP1) is an ancient protein that binds auxin and has been implied as a receptor for a number of auxin responses, but its precise mechanism remains unresolved. A paradox for ABP1's action is that it is predominantly found in the endoplasmic reticulum (ER) lumen, while it has been implicated as a cell surface auxin receptor, functionally distinct from the nuclear TIR1/AFB auxin receptor family that regulates transcriptional responses. Since our group reported that ABP1 is required for activating two antagonizing ROP signaling pathways involved in cytoskeletal reorganization and cell shape formation in Arabidopsis leaf pavement cells, we recently further showed that the plasma membrane-localized TMK receptor-like kinases functionally interact in a complex with ABP1 and are required for ABP1-dependent activation of ROP GTPases by auxin. The formation of this cell surface complex is induced by auxin and requires functional ABP1. These exciting findings provide convincing evidence for this novel auxin sensing system on the cell surface and suggest intriguing mechanisms for TMKs being functional partners of ABP1 to transmit extracellular auxin signal to intracellular ROP signaling module during polar cell expansion.
Collapse
Affiliation(s)
- Jisheng Chen
- a Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | |
Collapse
|
25
|
Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: a redox cue in deconvolution. THE NEW PHYTOLOGIST 2014; 202:1142-1156. [PMID: 24611485 DOI: 10.1111/nph.12739] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/26/2014] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), CC 12457600, Mar del Plata, Argentina
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| |
Collapse
|
26
|
Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 2014; 5:3978. [PMID: 24865297 PMCID: PMC4052687 DOI: 10.1038/ncomms4978] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
The colonization of land by plants was a key event in the evolution of life. Here we report
the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum
(Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from
aquatic algae to land plants. Comparison of the genome sequence with that of other algae and
land plants demonstrate that K. flaccidum acquired many genes specific to land
plants. We demonstrate that K. flaccidum indeed produces several plant hormones and
homologues of some of the signalling intermediates required for hormone actions in higher
plants. The K. flaccidum genome also encodes a primitive system to protect against
the harmful effects of high-intensity light. The presence of these plant-related systems in
K. flaccidum suggests that, during evolution, this alga acquired the fundamental
machinery required for adaptation to terrestrial environments. Plant colonization of land is an important evolutionary event. Here, the
authors sequence the genome of a filamentous terrestrial alga and, through a comparative
analysis with related algae and land plant species, provide insight into how aquatic algae
adapted to terrestrial environments.
Collapse
|
27
|
Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H, Wang W, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang Z. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 2014; 343:1025-8. [PMID: 24578577 DOI: 10.1126/science.1245125] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane-associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.
Collapse
Affiliation(s)
- Tongda Xu
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Miyawaki KN, Yang Z. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:449. [PMID: 25295042 PMCID: PMC4170102 DOI: 10.3389/fpls.2014.00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/20/2014] [Indexed: 05/04/2023]
Abstract
Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.
Collapse
Affiliation(s)
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
- *Correspondence: Zhenbiao Yang, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| |
Collapse
|
29
|
Jahn L, Mucha S, Bergmann S, Horn C, Staswick P, Steffens B, Siemens J, Ludwig-Müller J. The Clubroot Pathogen (Plasmodiophora brassicae) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis. PLANTS 2013; 2:726-49. [PMID: 27137401 PMCID: PMC4844388 DOI: 10.3390/plants2040726] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/17/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022]
Abstract
The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.
Collapse
Affiliation(s)
- Linda Jahn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Stefanie Mucha
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Sabine Bergmann
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Cornelia Horn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, 379 Keim, Lincoln, NE 68521 USA.
| | - Bianka Steffens
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany.
| | - Johannes Siemens
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
30
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
31
|
Peer WA. From perception to attenuation: auxin signalling and responses. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:561-8. [PMID: 24004572 DOI: 10.1016/j.pbi.2013.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 05/10/2023]
Abstract
The plant hormone auxin is essential for growth, development, and responses to environmental factors. Recently, Auxin Binding Protein 1 was shown to mediate non-transcriptional auxin signalling at the cell periphery. This has provoked reexamination of the paradigm that all auxin perception is intracellular and is mediated by the TIR1/AFB-Aux/IAA co-receptors for which auxin functions as a concentration-dependent molecular glue. Further, another F-box protein, SKP2a, was shown to bind auxin in the same way as TIR1/AFB, which provides a link to the role of auxin in the cell cycle. New work on auxin signalling and homeostasis include D6 PROTEIN KINASE activation of PINFORMED (PIN) auxin carriers, ROP-GTPase mediation of PIN localization, endoplasmic reticulum localization PIN and PIN-LIKES auxin carriers, and auxin biosynthesis and metabolism.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, 5138 Plant Science Building, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, 5138 Plant Science Building, College Park, MD 20742, USA.
| |
Collapse
|
32
|
Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GFE. Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. MOLECULAR PLANT 2013; 6:1473-86. [PMID: 23519456 DOI: 10.1093/mp/sst053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
While it is known that patatin-related phospholipase A (pPLA) activity is rapidly activated within 3 min by auxin, hardly anything is known about how this signal influences downstream responses like transcription of early auxin-induced genes or other physiological responses. We screened mutants with T-DNA insertions in members of the pPLA gene family for molecular and physiological phenotypes related to auxin. Only one in nine Arabidopsis thaliana ppla knockdown mutants displayed an obvious constitutive auxin-related phenotype. Compared to wild-type, ppla-IIIδ mutant seedlings had decreased main root lengths and increased lateral root numbers. We tested auxin-induced gene expression as a molecular readout for primary molecular auxin responses in nine ppla mutants and found delayed up-regulation of auxin-responsive gene expression in all of them. Thirty minutes after auxin treatment, up-regulation of up to 40% of auxin-induced genes was delayed in mutant seedlings. We observed only a few cases with hypersensitive auxin-induced gene expression in ppla mutants. While, in three ppla mutants, which were investigated in detail, rapid up-regulation (as early as 10min after auxin stimulus) of auxin-regulated genes was impaired, late transcriptional responses were wild-type-like. This regulatory or dynamic phenotype was consistently observed in different ppla mutants with delayed up-regulation that frequently affected the same genes. This defect was not affected by pPLA transcript levels which remained constant. This indicates a posttranslational mechanism as a functional link of pPLAs to auxin signaling. The need for a receptor triggering an auxin response without employing transcription regulation is discussed.
Collapse
Affiliation(s)
- Corinna Labusch
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzwissenschaften, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Grieneisen VA, Marée AFM, Ostergaard L. Juicy stories on female reproductive tissue development: coordinating the hormone flows. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:847-63. [PMID: 23869979 DOI: 10.1111/jipb.12092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/07/2013] [Indexed: 05/07/2023]
Abstract
In the past 20-30 years, developmental biologists have made tremendous progress in identifying genes required for the specification of individual cell types of an organ and in describing how they interact in genetic networks. In comparison, very little is known about the mechanisms that regulate tissue polarity and overall organ patterning. Gynoecia and fruits from members of the Brassicaceae family of flowering plants provide excellent model systems to study organ patterning and tissue specification because they become partitioned into distinct domains whose formation is determined by polarity establishment both at a cellular and whole tissue level. Interactions among key regulators of Arabidopsis gynoecium and fruit development have revealed a network of upstream transcription factor activities required for such tissue differentiation. Regulation of the plant hormone auxin is emerging as both an immediate downstream output and input of these activities, and here we aim to provide an overview of the current knowledge regarding the link between auxin and female reproductive development in plants. In this review, we will also demonstrate how available data can be exploited in a mathematical modeling approach to reveal and understand the feedback regulatory circuits that underpin the polarity establishment, necessary to guide auxin flows.
Collapse
Affiliation(s)
- Verônica A Grieneisen
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | |
Collapse
|
34
|
Abstract
The role, if any, of microtubules in auxin transport is poorly understood in plant biology. In this issue of Developmental Cell, Ambrose et al. (2013) show that the microtubule binding protein CLASP regulates PIN2 auxin transporter trafficking and stability via Sorting Nexin1, a component of the retromer complex.
Collapse
Affiliation(s)
- Chunhua Zhang
- Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
35
|
Bender RL, Fekete ML, Klinkenberg PM, Hampton M, Bauer B, Malecha M, Lindgren K, A Maki J, Perera MADN, Nikolau BJ, Carter CJ. PIN6 is required for nectary auxin response and short stamen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:893-904. [PMID: 23551385 DOI: 10.1111/tpj.12184] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 05/04/2023]
Abstract
The PIN family of proteins is best known for its involvement in polar auxin transport and tropic responses. PIN6 (At1g77110) is one of the remaining PIN family members in Arabidopsis thaliana to which a biological function has not yet been ascribed. Here we report that PIN6 is a nectary-enriched gene whose expression level is positively correlated with total nectar production in Arabidopsis, and whose function is required for the proper development of short stamens. PIN6 accumulates in internal membranes consistent with the ER, and multiple lines of evidence demonstrate that PIN6 is required for auxin-dependent responses in nectaries. Wild-type plants expressing auxin-responsive DR5:GFP or DR5:GUS reporters displayed intense signal in lateral nectaries, but pin6 lateral nectaries showed little or no signal for these reporters. Further, exogenous auxin treatment increased nectar production more than tenfold in wild-type plants, but nectar production was not increased in pin6 mutants when treated with auxin. Conversely, the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) reduced nectar production in wild-type plants by more than twofold, but had no significant effect on pin6 lines. Interestingly, a MYB57 transcription factor mutant, myb57-2, closely phenocopied the loss-of-function mutant pin6-2. However, PIN6 expression was not dependent on MYB57, and RNA-seq analyses of pin6-2 and myb57-2 mutant nectaries showed little overlap in terms of differentially expressed genes. Cumulatively, these results demonstrate that PIN6 is required for proper auxin response and nectary function in Arabidopsis. These results also identify auxin as an important factor in the regulation of nectar production, and implicate short stamens in the maturation of lateral nectaries.
Collapse
Affiliation(s)
- Ricci L Bender
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Peer WA, Cheng Y, Murphy AS. Evidence of oxidative attenuation of auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2629-39. [PMID: 23709674 DOI: 10.1093/jxb/ert152] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Indole-3-acetic acid (IAA) is the principle auxin in Arabidopsis and is synthesized primarily in meristems and nodes. Auxin is transported to distal parts of the plant in response to developmental programming or environmental stimuli to activate cell-specific responses. As with any signalling event, the signal must be attenuated to allow the system to reset. Local auxin accumulations are thus reduced by conjugation or catabolism when downstream responses have reached their optima. In most cell types, localized auxin accumulation increases both reactive oxygen species (ROS) and an irreversible catabolic product 2-oxindole-3-acid acid (oxIAA). oxIAA is inactive and does not induce expression of the auxin-responsive reporters DR5 or 2XD0. Here it is shown that oxIAA is not transported from cell to cell, although it appears to be a substrate for the ATP-binding cassette subfamily G (ABCG) transporters that are positioned primarily on the outer lateral surface of the root epidermis. However, oxIAA and oxIAA-Glc levels are higher in ABCB mutants that accumulate auxin due to defective cellular export. Auxin-induced ROS production appears to be at least partially mediated by the NAD(P)H oxidase RbohD. oxIAA levels are higher in mutants that lack ROS-scavenging flavonoids (tt4) and are lower in mutants that accumulate excess flavonols (tt3). These data suggest a model where IAA signalling is attenuated by IAA catabolism to oxIAA. Flavonoids appear to buffer ROS accumulations that occur with localized increases in IAA. This buffering of IAA oxidation would explain some growth responses observed in flavonoid-deficient mutants that cannot be explained by their established role in partially inhibiting auxin transport.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
37
|
Abstract
In December 2012, scientists from around the world gathered in Waikoloa, Hawaii for 'Auxin 2012', a meeting organized by Paula McSteen (University of Missouri, USA), Ben Scheres (Utrecht University, The Netherlands) and Yunde Zhao (University of California, San Diego, USA). At the meeting, participants discussed the latest advances in auxin biosynthesis, transport and signaling research, in addition to providing context for how these pathways intersect with other aspects of plant physiology and development. Fittingly, the meeting began with a traditional Hawaiian ceremony that recognized the centrality of the harvest of plant life ('mea ho'oulu' in Hawaiian) for continued human survival.
Collapse
Affiliation(s)
- Lucia C Strader
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA.
| | | |
Collapse
|
38
|
|
39
|
da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. FRONTIERS IN PLANT SCIENCE 2013; 4:133. [PMID: 23717317 PMCID: PMC3653114 DOI: 10.3389/fpls.2013.00133] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/21/2013] [Indexed: 05/18/2023]
Abstract
Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation.
Collapse
Affiliation(s)
- Cibele T. da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Cibele T. da Costa and Márcia R. de Almeida have contributed equally to this work
| | - Márcia R. de Almeida
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Cibele T. da Costa and Márcia R. de Almeida have contributed equally to this work
| | - Carolina M. Ruedell
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joseli Schwambach
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Felipe S. Maraschin
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arthur G. Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Arthur G. Fett-Neto, Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, P.O. Box 15005, Porto Alegre 91501-970, Rio Grande do Sul, Brazil. e-mail:
| |
Collapse
|
40
|
Hohm T, Preuten T, Fankhauser C. Phototropism: translating light into directional growth. AMERICAN JOURNAL OF BOTANY 2013; 100:47-59. [PMID: 23152332 DOI: 10.3732/ajb.1200299] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
41
|
Yang Z, Lavagi I. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:601-607. [PMID: 23177207 PMCID: PMC3545472 DOI: 10.1016/j.pbi.2012.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 05/17/2023]
Abstract
Breaking of the cell membrane symmetry to form polarized or localized domains/regions of the plasma membrane (PM) is a fundamental cellular process that occurs in essentially all cellular organisms, and is required for a wide variety of cellular functions/behaviors including cell morphogenesis, cell division and cell differentiation. In plants, the development of localized or polarized PM domains has been linked to a vast array of cellular and developmental processes such as polar cell expansion, asymmetric cell division, cell morphogenesis, the polarization of auxin transporters (and thus auxin polar transport), secondary cell wall patterning, cell type specification, and tissue pattern formation. Rho GTPases from plants (ROPs) are known to be involved in many of these processes. Here, we review the current knowledge on ROP involvement in breaking symmetry and propose that ROP-based self-organizing signaling may provide a common mechanism for the spatial control of PM domains required in various cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
42
|
Wei CH, Harris BR, Li D, Berardini TZ, Huala E, Kao HY, Lu Z. Accelerating literature curation with text-mining tools: a case study of using PubTator to curate genes in PubMed abstracts. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas041. [PMID: 23160414 PMCID: PMC3500520 DOI: 10.1093/database/bas041] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Today’s biomedical research has become heavily dependent on access to the biological knowledge encoded in expert curated biological databases. As the volume of biological literature grows rapidly, it becomes increasingly difficult for biocurators to keep up with the literature because manual curation is an expensive and time-consuming endeavour. Past research has suggested that computer-assisted curation can improve efficiency, but few text-mining systems have been formally evaluated in this regard. Through participation in the interactive text-mining track of the BioCreative 2012 workshop, we developed PubTator, a PubMed-like system that assists with two specific human curation tasks: document triage and bioconcept annotation. On the basis of evaluation results from two external user groups, we find that the accuracy of PubTator-assisted curation is comparable with that of manual curation and that PubTator can significantly increase human curatorial speed. These encouraging findings warrant further investigation with a larger number of publications to be annotated. Database URL:http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
Collapse
Affiliation(s)
- Chih-Hsuan Wei
- National Center for Biotechnology Information-NCBI, National Library of Medicine-NLM, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Asnacios A, Hamant O. The mechanics behind cell polarity. Trends Cell Biol 2012; 22:584-91. [PMID: 22980034 DOI: 10.1016/j.tcb.2012.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/10/2012] [Accepted: 08/12/2012] [Indexed: 01/12/2023]
Abstract
The generation of cell polarity is one of the most intriguing symmetry-breaking events in biology. It is involved in almost all physiological and developmental processes and, despite the differences between plant and animal cell structures, cell polarity is generated by a similar core mechanism that comprises the extracellular matrix (ECM), Rho GTPase, the cytoskeleton, and the membranes. Several recent articles show that mechanical factors also contribute to the establishment and robustness of cell polarity, and the different molecular actors of cell polarity are now viewed as integrators of both biochemical and mechanical signals. Although cell polarity remains a complex process, some level of functional convergence between plants and animals is revealed. Following comparative presentation of cell polarity in plants and animals, we will discuss the theoretical background behind the role of mechanics in polarity and the relevant experimental tests, focusing on ECM anchorage, cytoskeleton behavior, and membrane tension.
Collapse
Affiliation(s)
- Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche 7057, Centre National de la Recherche Scientifique (CNRS) and Université Paris-Diderot (Paris 7), CC7056-10, Rue A. Domont et L. Duquet, 75205 Paris Cedex 13, France
| | | |
Collapse
|
44
|
Cui X, Luan S. A new wave of hormone research: crosstalk mechanisms. MOLECULAR PLANT 2012; 5:959-60. [PMID: 22952061 DOI: 10.1093/mp/sss090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
45
|
Strohm AK, Baldwin KL, Masson PH. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. FRONTIERS IN PLANT SCIENCE 2012; 3:274. [PMID: 23248632 PMCID: PMC3518769 DOI: 10.3389/fpls.2012.00274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/21/2012] [Indexed: 05/07/2023]
Abstract
Gravitropism is a process that allows plant organs to guide their growth relative to the gravity vector. It requires them to sense changes in their orientation and generate a biochemical signal that they transmit to the tissues that drive organ curvature. Trafficking between the plasma membrane and endosomal compartments is important for all of these phases of the gravitropic response. The sedimentation of starch-filled organelles called amyloplasts plays a key role in sensing reorientation, and vacuolar integrity is required for amyloplast sedimentation in shoots. Other proteins associated with the vesicle trafficking pathway contribute to early gravity signal transduction independently of amyloplast sedimentation in both roots and hypocotyls. Phosphatidylinositol signaling, which starts at the plasma membrane and later affects the localization of auxin efflux facilitators, is a likely second messenger in the signal transduction phase of gravitropism. Finally, membrane-localized auxin influx and efflux facilitators contribute to a differential auxin gradient across the gravistimulated organs, which directs root curvature.
Collapse
Affiliation(s)
- Allison K. Strohm
- Laboratory of Genetics, University of Wisconsin-MadisonMadison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-MadisonMadison, WI, USA
| | - Katherine L. Baldwin
- Laboratory of Genetics, University of Wisconsin-MadisonMadison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-MadisonMadison, WI, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-MadisonMadison, WI, USA
- *Correspondence: Patrick H. Masson, Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, WI 53706, USA. e-mail:
| |
Collapse
|