1
|
Li Y, Zhu S. Polar localization and local translation of RHO-RELATED PROTEIN FROM PLANTS2 mRNAs promote root hair growth in Arabidopsis. THE PLANT CELL 2024; 37:koae333. [PMID: 39692591 DOI: 10.1093/plcell/koae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
Root hairs are tip-growing cells that anchor plants in the soil and are critical for water uptake, nutrient acquisition, and plant-environment interactions. While the molecular mechanisms that maintain the polar growth of root hairs through the asymmetric distribution of proteins, such as RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2), have been described, it is unclear whether and how the transcripts encoding these tip-localized proteins are polarly localized and locally translated. Here, we demonstrated that ROP2 mRNA exhibits polar localization in Arabidopsis (Arabidopsis thaliana) root hairs. We showed that region VI (250-350 bp downstream of the stop codon) of the ROP2 3' untranslated region (UTR) is necessary for proper mRNA localization. Moreover, region VI-mediated ROP2 mRNA polar localization was required for local translation of ROP2 transcripts, contributing to the proper subcellular localization of ROP2. Region III (100-200 bp downstream of the stop codon) influenced the local translation of ROP2 mRNA. Phenotypic investigations demonstrated that both regions III and VI of the ROP2 3' UTR play crucial roles in modulating root hair growth. These findings help explain the local protein biosynthesis of ROP2, advancing our understanding of the regulatory mechanism and genetic basis of mRNA localization and local translation in plants.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| |
Collapse
|
2
|
Lu WL, Xie XG, Ai HW, Wu HF, Dai YY, Wang LN, Rahman K, Su J, Sun K, Han T. Crosstalk between H 2O 2 and Ca 2+ signaling is involved in root endophyte-enhanced tanshinone biosynthesis of Salvia miltiorrhiza. Microbiol Res 2024; 285:127740. [PMID: 38795408 DOI: 10.1016/j.micres.2024.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.
Collapse
Affiliation(s)
- Wei-Lan Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xing-Guang Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Hong-Wei Ai
- The 967th hospital of PLA, Dalian 116000, People's Republic of China
| | - Hui-Fen Wu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Yuan-Yuan Dai
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, People's Republic of China
| | - Lu-Nuan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
3
|
Denninger P. RHO OF PLANTS signalling and the activating ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS: specificity in cellular signal transduction in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3685-3699. [PMID: 38683617 PMCID: PMC11194304 DOI: 10.1093/jxb/erae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 05/01/2024]
Abstract
Every cell constantly receives signals from its neighbours or the environment. In plants, most signals are perceived by RECEPTOR-LIKE KINASEs (RLKs) and then transmitted into the cell. The molecular switches RHO OF PLANTS (ROP) are critical proteins for polar signal transduction and regulate multiple cell polarity processes downstream of RLKs. Many ROP-regulating proteins and scaffold proteins of the ROP complex are known. However, the spatiotemporal ROP signalling complex composition is not yet understood. Moreover, how specificity is achieved in different ROP signalling pathways within one cell still needs to be determined. This review gives an overview of recent advances in ROP signalling and how specificity by downstream scaffold proteins can be achieved. The composition of the ROP signalling complexes is discussed, focusing on the possibility of the simultaneous presence of ROP activators and inactivators within the same complex to balance ROP activity. Furthermore, this review highlights the function of plant-specific ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS polarizing ROP signalling and defining the specificity of the initiated ROP signalling pathway.
Collapse
Affiliation(s)
- Philipp Denninger
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354 Freising, Germany
| |
Collapse
|
4
|
Hoffmann N, Mohammad E, McFarlane HE. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3731-3747. [PMID: 38676707 PMCID: PMC11194303 DOI: 10.1093/jxb/erae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | - Eskandar Mohammad
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | | |
Collapse
|
5
|
Du J, Wei H, Song X, Zhang L, Hu J. PdRabG3f interfered with gibberellin-mediated internode elongation and xylem developing in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112074. [PMID: 38548138 DOI: 10.1016/j.plantsci.2024.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.
Collapse
Affiliation(s)
- Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hantian Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
6
|
Du X, Gao Y, Zhang H, Xu X, Li Y, Zhao L, Luo M, Wang H. HDA6 modulates Arabidopsis pavement cell morphogenesis through epigenetic suppression of ROP6 GTPase expression and signaling. THE NEW PHYTOLOGIST 2024; 241:2523-2539. [PMID: 38214469 DOI: 10.1111/nph.19532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
The transcriptional regulation of Rho-related GTPase from plants (ROPs), which determine cell polarity formation and maintenance during plant development, still remains enigmatic. In this study, we elucidated the epigenetic mechanism of histone deacetylase HDA6 in transcriptional repression of ROP6 and its impact on cell polarity and morphogenesis in Arabidopsis leaf epidermal pavement cells (PCs). We found that the hda6 mutant axe1-4 exhibited impaired jigsaw-shaped PCs and convoluted leaves. This correlated with disruptions in the spatial organizations of cortical microtubules and filamentous actin, which is integral to PC indentation and lobe formation. Further transcriptional analyses and chromatin immunoprecipitation assay revealed that HDA6 specifically represses ROP6 expression through histone H3K9K14 deacetylation. Importantly, overexpression of dominant negative-rop6 in axe1-4 restored interdigitated cell morphology. Our study unveils HDA6 as a key regulator in Arabidopsis PC morphogenesis through epigenetic suppression of ROP6. It reveals the pivotal role of HDA6 in the transcriptional regulation of ROP6 and provides compelling evidence for the functional interplay between histone deacetylation and ROP6-mediated cytoskeletal arrangement in the development of interdigitated PCs.
Collapse
Affiliation(s)
- Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingmiao Gao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyu Xu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C. GTPase ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1 and PHT1;4 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1775-1786. [PMID: 34288396 DOI: 10.1111/jipb.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus, an essential macroelement for plant growth and development, is a major limiting factor for sustainable crop yield. The Rho of plant (ROP) GTPase is involved in regulating multiple signal transduction processes in plants, but potentially including the phosphate deficiency signaling pathway remains unknown. Here, we identified that the rop6 mutant exhibited a dramatic tolerant phenotype under Pi-deficient conditions, with higher phosphate accumulation and lower anthocyanin content. In contrast, the rop6 mutant was more sensitive to arsenate (As(V)) toxicity, the analog of Pi. Immunoblot analysis displayed that the ROP6 protein was rapidly degraded through ubiquitin/26S proteasome pathway under Pi-deficient conditions. In addition, pull-down assay using GST-RIC1 demonstrated that the ROP6 activity was decreased obviously under Pi-deficient conditions. Strikingly, protein-protein interaction and two-voltage clamping assays demonstrated that ROP6 physically interacted with and inhibited the key phosphate uptake transporters PHT1;1 and PHT1;4 in vitro and in vivo. Moreover, genetic analysis showed that ROP6 functioned upstream of PHT1;1 and PHT1;4. Thus, we conclude that GTPase ROP6 modulates the uptake of phosphate by inhibiting the activities of PHT1;1 and PHT1;4 in Arabidopsis.
Collapse
Affiliation(s)
- Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chuanqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shiyuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
9
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
10
|
Cheng X, Mwaura BW, Chang Stauffer SR, Bezanilla M. A Fully Functional ROP Fluorescent Fusion Protein Reveals Roles for This GTPase in Subcellular and Tissue-Level Patterning. THE PLANT CELL 2020; 32:3436-3451. [PMID: 32917738 PMCID: PMC7610296 DOI: 10.1105/tpc.20.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 05/18/2023]
Abstract
Rho of Plants (ROPs) are GTPases that regulate polarity and patterned wall deposition in plants. As these small, globular proteins have many interactors, it has been difficult to ensure that methods to visualize ROP in live cells do not affect ROP function. Here, motivated by work in fission yeast (Schizosaccharomyces pombe), we generated a fluorescent moss (Physcomitrium [Physcomitrella] patens) ROP4 fusion protein by inserting mNeonGreen after Gly-134. Plants harboring tagged ROP4 and no other ROP genes were phenotypically normal. Plants lacking all four ROP genes comprised an unpatterned clump of spherical cells that were unable to form gametophores, demonstrating that ROP is essentially for spatial patterning at the cellular and tissue levels. The functional ROP fusion protein formed a steep gradient at the apical plasma membranes of growing tip cells. ROP also predicted the site of branch formation in the apical cell at the onset of mitosis, which occurs one to two cell cycles before a branch cell emerges. While fluorescence recovery after photobleaching studies demonstrated that ROP dynamics do not depend on the cytoskeleton, acute depolymerization of the cytoskeleton removed ROP from the membrane only in recently divided cells, pointing to a feedback mechanism between the cell cycle, cytoskeleton, and ROP.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Bethany W Mwaura
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
11
|
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol 2020; 60:828-861. [PMID: 32815221 DOI: 10.1002/jobm.202000370] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are diverse groups of plant-associated microorganisms, which can reduce the severity or incidence of disease during antagonism among bacteria and soil-borne pathogens, as well as by influencing a systemic resistance to elicit defense response in host plants. An amalgamation of various strains of PGPR has improved the efficacy by enhancing the systemic resistance opposed to various pathogens affecting the crop. Many PGPR used with seed treatment causes structural improvement of the cell wall and physiological/biochemical changes leading to the synthesis of proteins, peptides, and chemicals occupied in plant defense mechanisms. The major determinants of PGPR-mediated induced systemic resistance (ISR) are lipopolysaccharides, lipopeptides, siderophores, pyocyanin, antibiotics 2,4-diacetylphoroglucinol, the volatile 2,3-butanediol, N-alkylated benzylamine, and iron-regulated compounds. Many PGPR inoculants have been commercialized and these inoculants consequently aid in the improvement of crop growth yield and provide effective reinforcement to the crop from disease, whereas other inoculants are used as biofertilizers for native as well as crops growing at diverse extreme habitat and exhibit multifunctional plant growth-promoting attributes. A number of applications of PGPR formulation are needed to maintain the resistance levels in crop plants. Several microarray-based studies have been done to identify the genes, which are associated with PGPR-induced systemic resistance. Identification of these genes associated with ISR-mediating disease suppression and biochemical changes in the crop plant is one of the essential steps in understanding the disease resistance mechanisms in crops. Therefore, in this review, we discuss the PGPR-mediated innovative methods, focusing on the mode of action of compounds authorized that may be significant in the development contributing to enhance plant growth, disease resistance, and serve as an efficient bioinoculants for sustainable agriculture. The review also highlights current research progress in this field with a special emphasis on challenges, limitations, and their environmental and economic advantages.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yashoda Nandan Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan-Block B, New Campus, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Ram Sanmukh Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Engelhardt S, Trutzenberg A, Hückelhoven R. Regulation and Functions of ROP GTPases in Plant-Microbe Interactions. Cells 2020; 9:E2016. [PMID: 32887298 PMCID: PMC7565977 DOI: 10.3390/cells9092016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins of plants (ROPs) form a specific clade of Rho GTPases, which are involved in either plant immunity or susceptibility to diseases. They are intensively studied in grass host plants, in which ROPs are signaling hubs downstream of both cell surface immune receptor kinases and intracellular nucleotide-binding leucine-rich repeat receptors, which activate major branches of plant immune signaling. Additionally, invasive fungal pathogens may co-opt the function of ROPs for manipulation of the cytoskeleton, cell invasion and host cell developmental reprogramming, which promote pathogenic colonization. Strikingly, mammalian bacterial pathogens also initiate both effector-triggered susceptibility for cell invasion and effector-triggered immunity via Rho GTPases. In this review, we summarize central concepts of Rho signaling in disease and immunity of plants and briefly compare them to important findings in the mammalian research field. We focus on Rho activation, downstream signaling and cellular reorganization under control of Rho proteins involved in disease progression and pathogen resistance.
Collapse
Affiliation(s)
| | | | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany; (S.E.); (A.T.)
| |
Collapse
|
13
|
Islam MT, Gan HM, Ziemann M, Hussain HI, Arioli T, Cahill D. Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2020; 11:852. [PMID: 32765538 PMCID: PMC7381280 DOI: 10.3389/fpls.2020.00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species Ascophyllum nodosum or Durvillaea potatorum to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from A. nodosum and D. potatorum to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of Arabidopsis thaliana following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen Phytophthora cinnamomi. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (PR1, PR5, and NPR1) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed P. cinnamomi growth within the roots of inoculated A. thaliana by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.
Collapse
Affiliation(s)
- Md Tohidul Islam
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Han Ming Gan
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | | | - Tony Arioli
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Seasol International R&D Department, Bayswater, VIC, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| |
Collapse
|
14
|
Kka N, Rookes J, Cahill D. The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:323-330. [PMID: 29929127 DOI: 10.1016/j.plaphy.2018.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
Cell division is a fundamental biological process governed by molecular networks that are initiated in the apical meristems of plants. l-ascorbic acid (AsA) commonly known as vitamin C is a crucial molecular modulator involved in cell proliferation. In this study, we used AsA application to Arabidopsis and four AsA pathway mutants to investigate the influence of AsA on the root apical meristem (RAM) and root growth. Treatment of seeds of wild-type Col-0 with AsA prior to sowing showed a significant increase in the activity of cell division of the RAM, root growth rate and root length when compared with untreated seeds. Seedlings of the AsA pathway mutant vtc1-1 showed a significant reduction in the level of AsA and a significant increase in the number of quiescent cells in the RAM when compared with Col-0. Cell proliferation was reduced in the AsA pathway mutants vtc1-1, dhar1, vtc5-1, apx1, respectively, however, root growth decreased significantly only in vtc1-1 when compared with Col-0. In addition, hydrogen peroxide (H2O2) levels were shown to increase in the AsA pathway mutants, with the highest level of H2O2 found in vtc1-1. AsA is also shown to have an indirect influence in inducing periclinal division as a reduced level was found in vtc1-1. Therefore, in this study, we found that AsA had an influence on cell proliferation and root growth and VTC1 was shown to be a key modulator of H2O2 levels. These findings open the door for further studies to reveal the involvement of AsA in cell proliferation and the interaction between AsA and H2O2 on cell polarity in the RAM and potentially the shoot apical meristem.
Collapse
Affiliation(s)
- Noura Kka
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3220, Australia
| | - James Rookes
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3220, Australia.
| | - David Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3220, Australia
| |
Collapse
|
15
|
Han X, Shi Y, Liu G, Guo Y, Yang Y. Activation of ROP6 GTPase by Phosphatidylglycerol in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:347. [PMID: 29599797 PMCID: PMC5862815 DOI: 10.3389/fpls.2018.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Plant Rho-like GTPases (ROPs) are switch-like proteins which play essential roles in controlling cell polarity development and cellular activities. ROPs are regulated by many factors, such as auxin, light, and RopGEFs and RopGAPs proteins. However, it has not been reported yet whether small molecules play a role in the regulation of ROP activity. Here, we showed that AtROP6 specially bound to a phospholipid, phosphatidylglycerol (PG), by the protein-lipid overlay and liposome sedimentation assays, and further MST assay gave a dissociation constant (Kd) of 4.8 ± 0.4 μM for binding of PG to His-AtROP6. PG profile analysis in Arabidopsis revealed that PG existed both in leaves and roots but with distinctive fatty acyl chain patterns. By evaluating AtROP6 activity using RIC1 effector binding-based assay, we found that PG stimulated AtROP6 activity. In the FM4-64 uptake experiment, PG inhibited AtROP6-mediated endocytosis process. By evaluating internalization of PIN2, PG was shown to regulate endocytosis process coordinately with NAA. Further root gravitropism experiment revealed that PG enhanced the AtROP6-mediated root gravity response. These results suggest that the phospholipid PG physically binds AtROP6, stimulates its activity and influences AtROP6-mediated root gravity response in Arabidopsis.
Collapse
|
16
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
17
|
Bakshi M, Sherameti I, Meichsner D, Thürich J, Varma A, Johri AK, Yeh KW, Oelmüller R. Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation. Front Microbiol 2017; 8:1262. [PMID: 28747898 PMCID: PMC5506084 DOI: 10.3389/fmicb.2017.01262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Piriformospora indica is an endophytic fungus of Sebacinaceae which colonizes the roots of many plant species and confers benefits to the hosts. We demonstrate that approximately 75% of the genes, which respond to P. indica in Arabidopsis roots, differ among seedlings grown on normal phosphate (Pi) or Pi limitation conditions, and among wild-type and the wrky6 mutant impaired in the regulation of the Pi metabolism. Mapman analyses suggest that the fungus activates different signaling, transport, metabolic and developmental programs in the roots of wild-type and wrky6 seedlings under normal and low Pi conditions. Under low Pi, P. indica promotes growth and Pi uptake of wild-type seedlings, and the stimulatory effects are identical for mutants impaired in the PHOSPHATE TRANSPORTERS1;1, -1;2 and -1;4. The data suggest that the fungus does not stimulate Pi uptake, but adapts the expression profiles to Pi limitation in Pi metabolism mutants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Doreen Meichsner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Johannes Thürich
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National UniversityTaipei, Taiwan
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
18
|
Islam MT, Rookes JE, Cahill DM. Active defence by an Australian native host, Lomandra longifolia, provides resistance against Phytophthora cinnamomi. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:386-399. [PMID: 32480572 DOI: 10.1071/fp16266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 05/05/2023]
Abstract
Resistance is rare against the oomycete plant pathogen Phytophthora cinnamomi Rands. Only a limited number of species have been recorded as field-resistant species in Australia. However, understanding the nature of resistance of those species when grown under controlled conditions is challenging because of their slow growth and the inherent difficulties of working with a root pathogen. We assessed the Australian native species, Lomandra longifolia Labill., as a resistant species by analysing in detail the response of roots to infection by P. cinnamomi in a series of comparative tests with Lupinus angustifolius L., a highly susceptible species. Following inoculation of L. longifolia roots, lesion length and colonisation percentage were significantly less than in roots of the susceptible species. Moreover, there was no statistical difference in root growth rate, whole-plant FW and leaf relative chlorophyll content between controls and inoculated L. longifolia. We then examined three key cellular responses that are related to resistance: the production of the reactive oxygen species, H2O2, callose formation and lignin deposition in L. longifolia roots following inoculation with P. cinnamomi. The upregulation of these resistance-related components in the early hours after inoculation suggested their involvement in resistance and that this is controlled by the coordinated response of multiple components. Resistance assessment and a detailed investigation of cellular resistance components along with gene expression analysis provides a platform for further understanding of the mechanisms of resistance against this generalist pathogen and presents opportunities for manipulating susceptible species for disease resistance.
Collapse
Affiliation(s)
- Md Tohidul Islam
- Deakin University, Geelong Waurn Ponds Campus, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Vic., 3216, Australia
| | - James E Rookes
- Deakin University, Geelong Waurn Ponds Campus, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Vic., 3216, Australia
| | - David M Cahill
- Deakin University, Geelong Waurn Ponds Campus, Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Vic., 3216, Australia
| |
Collapse
|
19
|
Rodriguez-Furlán C, Salinas-Grenet H, Sandoval O, Recabarren C, Arraño-Salinas P, Soto-Alvear S, Orellana A, Blanco-Herrera F. The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1081. [PMID: 27507978 PMCID: PMC4961009 DOI: 10.3389/fpls.2016.01081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/08/2016] [Indexed: 05/23/2023]
Abstract
Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) in plants (SYP), have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment) lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR) in order to trigger trigger induced systemic response (ISR). Plants with a defective SYP123 function were unable to mount a systemic acquired resistance in response to bacterial pathogen infection and ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors can affect the number, anatomy and physiology of root hairs. Here, we presented evidence that indicates that interactions with soil PGPR could be closely regulated by signaling involving secretory and/or endocytic trafficking at the root hair tip as a quick way to response to changing environmental conditions.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlán
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Omar Sandoval
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Camilo Recabarren
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Paulina Arraño-Salinas
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| |
Collapse
|
20
|
Bakshi M, Vahabi K, Bhattacharya S, Sherameti I, Varma A, Yeh KW, Baldwin I, Johri AK, Oelmüller R. WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:305. [PMID: 26718529 PMCID: PMC4697310 DOI: 10.1186/s12870-015-0673-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/03/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis root growth is stimulated by Piriformospora indica, phosphate limitation and inactivation of the WRKY6 transcription factor. Combinations of these factors induce unexpected alterations in root and shoot growth, root architecture and root gene expression profiles. RESULTS The results demonstrate that P. indica promotes phosphate uptake and root development under Pi limitation in wrky6 mutant. This is associated with the stimulation of PHOSPHATE1 expression and ethylene production. Expression profiles from the roots of wrky6 seedlings identified genes involved in hormone metabolism, transport, meristem, cell and plastid proliferation, and growth regulation. 25 miRNAs were also up-regulated in these roots. We generated and discuss here a list of common genes which are regulated in growing roots and which are common to all three growth stimuli investigated in this study. CONCLUSION Since root development of wrky6 plants exposed to P. indica under phosphate limitation is strongly promoted, we propose that common genes which respond to all three growth stimuli are central for the control of root growth and architecture. They can be tested for optimizing root growth in model and agricultural plants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Khabat Vahabi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Samik Bhattacharya
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Ajit Varma
- Amity Institute of Microbial Technology, AUUP, Noida, India.
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National University, Taipei, Taiwan.
| | - Ian Baldwin
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
21
|
Burkart GM, Baskin TI, Bezanilla M. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion. J Cell Sci 2015; 128:2553-64. [PMID: 26045445 DOI: 10.1242/jcs.172445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 01/22/2023] Open
Abstract
In plants, the ROP family of small GTPases has been implicated in the polarized growth of tip-growing cells, such as root hairs and pollen tubes; however, most of the data derive from overexpressing ROP genes or constitutively active and dominant-negative isoforms, whereas confirmation by using loss-of-function studies has generally been lacking. Here, in the model moss Physcomitrella patens, we study ROP signaling during tip growth by using a loss-of-function approach based on RNA interference (RNAi) to silence the entire moss ROP family. We find that plants with reduced expression of ROP genes, in addition to failing to initiate tip growth, have perturbed cell wall staining, reduced cell adhesion and have increased actin-filament dynamics. Although plants subjected to RNAi against the ROP family also have reduced microtubule dynamics, this reduction is not specific to loss of ROP genes, as it occurs when actin function is compromised chemically or genetically. Our data suggest that ROP proteins polarize the actin cytoskeleton by suppressing actin-filament dynamics, leading to an increase in actin filaments at the site of polarized secretion.
Collapse
Affiliation(s)
- Graham M Burkart
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA Plant Biology Graduate Program, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Magdalena Bezanilla
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
22
|
Calcium is an organizer of cell polarity in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2168-72. [PMID: 25725133 DOI: 10.1016/j.bbamcr.2015.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Cell polarity is a fundamental property of pro- and eukaryotic cells. It is necessary for coordination of cell division, cell morphogenesis and signaling processes. How polarity is generated and maintained is a complex issue governed by interconnected feed-back regulations between small GTPase signaling and membrane tension-based signaling that controls membrane trafficking, and cytoskeleton organization and dynamics. Here, we will review the potential role for calcium as a crucial signal that connects and coordinates the respective processes during polarization processes in plants. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
23
|
Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. FRONTIERS IN PLANT SCIENCE 2015; 6:667. [PMID: 26441999 PMCID: PMC4585188 DOI: 10.3389/fpls.2015.00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular colonization of root cells and intracellular sporulation by P. indica occurred in CSG mutants of the legume Lotus japonicus and in Arabidopsis thaliana, which belongs to the Brassicaceae, a family that has lost the ability to form AM as well as a core set of CSGs. A. thaliana mutants of homologs of CSGs (HCSGs) interacted with P. indica similar to the wild-type. Moreover, increased biomass of A. thaliana evoked by P. indica was unaltered in HCSG mutants. We conclude that colonization and growth promotion by P. indica are independent of the CSGs and that AM fungi and P. indica exploit different host pathways for infection.
Collapse
Affiliation(s)
- Aline Banhara
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Regina Kühner
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Cluster of Excellence on Plant Sciences, Botanical Institute, University of CologneCologne, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
- *Correspondence: Martin Parniske, Genetics, Faculty of Biology, University of Munich (LMU), Großhaderner Strasse 4, 82152 Martinsried, Germany
| |
Collapse
|
24
|
Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R. Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. THE NEW PHYTOLOGIST 2014; 204:815-22. [PMID: 25168837 DOI: 10.1111/nph.12978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/16/2014] [Indexed: 05/07/2023]
Abstract
Plant cells dynamically change their architecture and molecular composition following encounters with beneficial or parasitic microbes, a process referred to as host cell reprogramming. Cell-autonomous defense reactions are typically polarized to the plant cell periphery underneath microbial contact sites, including de novo cell wall biosynthesis. Alternatively, host cell reprogramming converges in the biogenesis of membrane-enveloped compartments for accommodation of beneficial bacteria or invasive infection structures of filamentous microbes. Recent advances have revealed that, in response to microbial encounters, plasma membrane symmetry is broken, membrane tethering and SNARE complexes are recruited, lipid composition changes and plasma membrane-to-cytoskeleton signaling is activated, either for pre-invasive defense or for microbial entry. We provide a critical appraisal on recent studies with a focus on how plant cells re-structure membranes and the associated cytoskeleton in interactions with microbial pathogens, nitrogen-fixing rhizobia and mycorrhiza fungi.
Collapse
Affiliation(s)
- Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, D-53115, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Vahabi K, Camehl I, Sherameti I, Oelmüller R. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. PLANT SIGNALING & BEHAVIOR 2013; 8:e26301. [PMID: 24047645 PMCID: PMC4091356 DOI: 10.4161/psb.26301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+ -dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.
Collapse
|
26
|
Lapin D, Van den Ackerveken G. Susceptibility to plant disease: more than a failure of host immunity. TRENDS IN PLANT SCIENCE 2013; 18:546-54. [PMID: 23790254 DOI: 10.1016/j.tplants.2013.05.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 05/23/2023]
Abstract
Susceptibility to infectious diseases caused by pathogens affects most plants in their natural habitat and leads to yield losses in agriculture. However, plants are not helpless because their immune system can deal with the vast majority of attackers. Nevertheless, adapted pathogens are able to circumvent or avert host immunity making plants susceptible to these uninvited guests. In addition to the failure of the plant immune system, there are other host processes that contribute to plant disease susceptibility. In this review, we discuss recent studies that show the active role played by the host in supporting disease, focusing mainly on biotrophic stages of infection. Plants attract pathogens, enable their entry and accommodation, and facilitate nutrient provision.
Collapse
Affiliation(s)
- Dmitry Lapin
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|