1
|
Kuang X, Chen H, Xiang J, Zeng J, Liu Q, Su Y, Huang C, Wang R, Lin W, Huang Z. HDC1 Promotes Primary Root Elongation by Regulating Auxin and K + Homeostasis in Response to Low-K + Stress. BIOLOGY 2025; 14:57. [PMID: 39857288 PMCID: PMC11762372 DOI: 10.3390/biology14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
Plants frequently encounter relatively low and fluctuating potassium (K+) concentrations in soil, with roots serving as primary responders to this stress. Histone modifications, such as de-/acetylation, can function as epigenetic markers of stress-inducible genes. However, the signaling network between histone modifications and low-K+ (LK) response pathways remains unclear. This study investigated the regulatory role of Histone Deacetylase Complex 1 (HDC1) in primary root growth of Arabidopsis thaliana under K+ deficiency stress. Using a hdc1-2 mutant line, we observed that HDC1 positively regulated root growth under LK conditions. Compared to wild-type (WT) plants, the hdc1-2 mutant exhibited significantly inhibited primary root growth under LK conditions, whereas HDC1-overexpression lines displayed opposite phenotypes. No significant differences were observed under HK conditions. Further analysis revealed that the inhibition of hdc1-2 on root growth was due to reduced apical meristem cell proliferation rather than cell elongation. Notably, the root growth of hdc1-2 showed reduced sensitivity compared to WT after auxin treatment under LK conditions. HDC1 may regulate root growth by affecting auxin polar transport and subsequent auxin signaling, as evidenced by the altered expression of auxin transport genes. Moreover, the organ-specific RT-qPCR analyses unraveled that HDC1 negatively regulates the expression of CBL-CIPK-K+ channel-related genes such as CBL1, CBL2, CBL3, AKT1, and TPK1, thereby establishing a molecular link between histone deacetylation, auxin signaling, and CBLs-CIPKs pathway in response to K+ deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.K.); (H.C.); (J.X.); (J.Z.); (Q.L.); (Y.S.); (C.H.); (R.W.)
| | - Zhigang Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (X.K.); (H.C.); (J.X.); (J.Z.); (Q.L.); (Y.S.); (C.H.); (R.W.)
| |
Collapse
|
2
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
3
|
Wei Z, Wei H. Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation. HORTICULTURE RESEARCH 2024; 11:uhad281. [PMID: 38344650 PMCID: PMC10857936 DOI: 10.1093/hr/uhad281] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 04/29/2025]
Abstract
Wood quality is predominantly determined by the amount and the composition of secondary cell walls (SCWs). Consequently, unraveling the molecular regulatory mechanisms governing SCW formation is of paramount importance for genetic engineering aimed at enhancing wood properties. Although SCW formation is known to be governed by a hierarchical gene regulatory network (HGRN), our understanding of how a HGRN operates and regulates the formation of heterogeneous SCWs for plant development and adaption to ever-changing environment remains limited. In this review, we examined the HGRNs governing SCW formation and highlighted the significant key differences between herbaceous Arabidopsis and woody plant poplar. We clarified many confusions in existing literatures regarding the HGRNs and their orthologous gene names and functions. Additionally, we revealed many network motifs including feed-forward loops, feed-back loops, and negative and positive autoregulation in the HGRNs. We also conducted a thorough review of post-transcriptional and post-translational aspects, protein-protein interactions, and epigenetic modifications of the HGRNs. Furthermore, we summarized how the HGRNs respond to environmental factors and cues, influencing SCW biosynthesis through regulatory cascades, including many regulatory chains, wiring regulations, and network motifs. Finally, we highlighted the future research directions for gaining a further understanding of molecular regulatory mechanisms underlying SCW formation.
Collapse
Affiliation(s)
- Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministhry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
4
|
Aggarwal B, Karlowski WM, Nuc P, Jarmolowski A, Szweykowska-Kulinska Z, Pietrykowska H. MiRNAs differentially expressed in vegetative and reproductive organs of Marchantia polymorpha - insights into their expression pattern, gene structures and function. RNA Biol 2024; 21:1-12. [PMID: 38303117 PMCID: PMC10841014 DOI: 10.1080/15476286.2024.2303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.
Collapse
Affiliation(s)
- Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Maciej Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Teano G, Concia L, Wolff L, Carron L, Biocanin I, Adamusová K, Fojtová M, Bourge M, Kramdi A, Colot V, Grossniklaus U, Bowler C, Baroux C, Carbone A, Probst AV, Schrumpfová PP, Fajkus J, Amiard S, Grob S, Bourbousse C, Barneche F. Histone H1 protects telomeric repeats from H3K27me3 invasion in Arabidopsis. Cell Rep 2023; 42:112894. [PMID: 37515769 DOI: 10.1016/j.celrep.2023.112894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/02/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.
Collapse
Affiliation(s)
- Gianluca Teano
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Lorenzo Concia
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léopold Carron
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Ivona Biocanin
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France; Université Paris-Saclay, 91190 Orsay, France
| | - Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Bourge
- Cytometry Facility, Imagerie-Gif, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Amira Kramdi
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vincent Colot
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Chris Bowler
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Célia Baroux
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Aline V Probst
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Petra Procházková Schrumpfová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Amiard
- CNRS UMR6293, Université Clermont Auvergne, INSERM U1103, GReD, CRBC, Clermont-Ferrand, France
| | - Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
6
|
Makai D, Cseh A, Sepsi A, Makai S. A Multigraph-Based Representation of Hi-C Data. Genes (Basel) 2022; 13:genes13122189. [PMID: 36553456 PMCID: PMC9778156 DOI: 10.3390/genes13122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Chromatin-chromatin interactions and three-dimensional (3D) spatial structures are involved in transcriptional regulation and have a decisive role in DNA replication and repair. To understand how individual genes and their regulatory elements function within the larger genomic context, and how the genome reacts to environmental stimuli, the linear sequence information needs to be interpreted in three-dimensional space, which is still a challenging task. Here, we propose a novel, heuristic approach to represent Hi-C datasets by a whole-genomic pseudo-structure in 3D space. The baseline of our approach is the construction of a multigraph from genomic-sequence data and Hi-C interaction data, then applying a modified force-directed layout algorithm. The resulting layout is a pseudo-structure. While pseudo-structures are not based on direct observation and their details are inherent to settings, surprisingly, they demonstrate interesting, overall similarities of known genome structures of both barley and rice, namely, the Rabl and Rosette-like conformation. It has an exciting potential to be extended by additional omics data (RNA-seq, Chip-seq, etc.), allowing to visualize the dynamics of the pseudo-structures across various tissues or developmental stages. Furthermore, this novel method would make it possible to revisit most Hi-C data accumulated in the public domain in the last decade.
Collapse
Affiliation(s)
- Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| | - Szabolcs Makai
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
- Department of Cereal Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
- Correspondence:
| |
Collapse
|
7
|
Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:ijms23042160. [PMID: 35216276 PMCID: PMC8874411 DOI: 10.3390/ijms23042160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
The Chromatin Assembly Factor 1 is a heterotrimeric complex responsible for the nucleosome assembly during DNA replication and DNA repair. In humans, the largest subunit P150 is the major actor of this process. It has been recently considered as a tumor-associated protein due to its overexpression in many malignancies. Structural and functional studies targeting P150 are still limited and only scarce information about this subunit is currently available. Literature data and bioinformatics analysis assisted the identification of a stable DNA binding domain, encompassing residues from 721 to 860 of P150 within the full-length protein. This domain was recombinantly produced and in vitro investigated. An acidic region modulating its DNA binding ability was also identified and characterized. Results showed similarities and differences between the P150 and its yeast homologue, namely Cac-1, suggesting that, although sharing a common biological function, the two proteins may also possess different features.
Collapse
|
8
|
Gu W, Yu D, Guan Y, Wang H, Qin T, Sun P, Hu Y, Wei J, Zheng H. The dynamic transcriptome of waxy maize (Zea mays L. sinensis Kulesh) during seed development. Genes Genomics 2020; 42:997-1010. [PMID: 32676852 DOI: 10.1007/s13258-020-00967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Waxy maize (Zea mays L. sinensis Kulesh) is a mutant of maize (Zea mays L.) with a mutation at Waxy1 (Wx1) gene locus. The seed of waxy maize has higher viscosity compared to regular maize. By now, we know little about the expression patterns of genes that involved in the seed development of waxy maize. OBJECTIVE By analyzing the transcriptome data during waxy maize seed development, we attempt to dig out the genes that may influence the seed development of waxy maize. METHODS The seeds of waxy maize inbred line SWL01 from six phases after pollination were used to do RNA-seq. Bioinformatics methods were used to analyze the expression patterns of the expressed genes, to identify the genes involved in waxy maize seed development. RESULTS A total of 24,546 genes including 1611 transcription factors (TFs) were detected during waxy maize seed development. Coexpression analysis of expressed genes revealed the dynamic processes of waxy maize seed development. Particularly, 2457 genes including 177 TFs were specially expressed in waxy maize seed, some of which mainly involved in the process of seed dormancy and maturation. In addition, 2681, 5686, 4491, 4386, 3669 and 4624 genes were identified to be differential expressed genes (DEGs) at six phases compared to regular maize B73, and 113 DEGs among them may be key genes that lead the difference of seed development between waxy and regular maizes in milk stage. CONCLUSION In summary, we elucidated the expression patterns of expressed genes during waxy maize seed development globally. A series of genes that associated with seed development were identified in our research, which may provide an important resource for functional study of waxy maize seed development to help molecular assisted breeding.
Collapse
Affiliation(s)
- Wei Gu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Diansi Yu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yuan Guan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hui Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Tao Qin
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Pingdong Sun
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yingxiong Hu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Jihui Wei
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Hongjian Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China. .,CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
9
|
Xu JM, Wang ZQ, Wang JY, Li PF, Jin JF, Chen WW, Fan W, Kochian LV, Zheng SJ, Yang JL. Low phosphate represses histone deacetylase complex1 to regulate root system architecture remodeling in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1732-1745. [PMID: 31608986 DOI: 10.1111/nph.16264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/04/2019] [Indexed: 05/21/2023]
Abstract
The mechanisms involved in the regulation of gene expression in response to phosphate (Pi) deficiency have been extensively studied, but their chromatin-level regulation remains poorly understood. We examined the role of histone acetylation in response to Pi deficiency by using the histone deacetylase complex1 (hdc1) mutant. Genes involved in root system architecture (RSA) remodeling were analyzed by quantitative real-time polymerase chain reaction (qPCR) and chromatin immunoprecipitation qPCR. We demonstrate that histone H3 acetylation increased under Pi deficiency, and the hdc1 mutant was hypersensitive to Pi deficiency, with primary root growth inhibition and increases in root hair number. Concomitantly, Pi deficiency repressed HDC1 protein abundances. Under Pi deficiency, hdc1 accumulated higher concentrations of Fe3+ in the root tips and had higher expression of genes involved in RSA remodeling, such as ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1), LOW PHOSPHATE ROOT1 (LPR1), and LPR2 compared with wild-type plants. Furthermore, Pi deficiency enriched the histone H3 acetylation of ALMT1 and LPR1. Finally, genetic evidence showed that LPR1/2 was epistatic to HDC1 in regulating RSA remodeling. Our results suggest a chromatin-level control of Pi starvation responses in which HDC1-mediated histone H3 deacetylation represses the transcriptional activation of genes involved in RSA remodeling in Arabidopsis.
Collapse
Affiliation(s)
- Jia Meng Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, 250100, China
| | - Zhan Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Fei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
DNA Methylation and Histone H1 Jointly Repress Transposable Elements and Aberrant Intragenic Transcripts. Mol Cell 2020; 77:310-323.e7. [DOI: 10.1016/j.molcel.2019.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
|
11
|
Riaz S, Niaz Z, Khan S, Liu Y, Sui Z. Detection, characterization and expression dynamics of histone proteins in the dinoflagellate Alexandrium pacificum during growth regulation. HARMFUL ALGAE 2019; 87:101630. [PMID: 31349883 DOI: 10.1016/j.hal.2019.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Histones are the most abundant proteins associated with eukaryotic nuclear DNA. The exception is dinoflagellates, which have histone protein expression that is mostly reported to be below detectable levels. In this study, we investigated the presence of histone proteins and their functions in the dinoflagellate, Alexandrium pacificum. Histone protein sequences were analyzed, focusing on phylogenetic analysis and histone code. Histone expression was analyzed during the cell cycle and under nutritionally enhanced conditions using quantitative-PCR and western blots. Acid-soluble proteins were subjected to mass spectrometry analysis. To our knowledge, this is the first report of immunological detection of histone proteins (H2B and H4) in any dinoflagellate species. Absolute quantification of histone transcript in activily dividing cells revealed significant transcription in cells. The stable expression of histones during the cell cycle suggested that the histone genes in A. pacificum belonged to a replication-independent class and appeared to have a limited role in DNA packaging. The conservation of numerous post-translationally modified residues of multiple histone variants and differential expression of histones under nutritionally enhanced conditions suggested their functional significance in dinoflagellates. However, we detected histone H2B protein only via mass spectrometry. Histone-like protein was identified as most abundant acid-soluble protein of the cells.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, University of Central Punjab, Lahore, Pakistan
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
12
|
Rodrigues AS, De Vega JJ, Miguel CM. Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC PLANT BIOLOGY 2018; 18:379. [PMID: 30594130 PMCID: PMC6310951 DOI: 10.1186/s12870-018-1564-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/22/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND There are clear differences in embryo development between angiosperm and gymnosperm species. Most of the current knowledge on gene expression and regulation during plant embryo development has derived from studies on angiosperms species, in particular from the model plant Arabidopsis thaliana. The few published studies on transcript profiling of conifer embryogenesis show the existence of many putative embryo-specific transcripts without an assigned function. In order to extend the knowledge on the transcriptomic expression during conifer embryogenesis, we sequenced the transcriptome of zygotic embryos for several developmental stages that cover most of Pinus pinaster (maritime pine) embryogenesis. RESULTS Total RNA samples collected from five zygotic embryo developmental stages were sequenced with Illumina technology. A de novo transcriptome was assembled as no genome sequence is yet published for Pinus pinaster. The transcriptome of reference for the period of zygotic embryogenesis in maritime pine contains 67,429 transcripts, which likely encode 58,527 proteins. The annotation shows a significant percentage, 31%, of predicted proteins exclusively present in pine embryogenesis. Functional categories and enrichment analysis of the differentially expressed transcripts evidenced carbohydrate transport and metabolism over-representation in early embryo stages, as highlighted by the identification of many putative glycoside hydrolases, possibly associated with cell wall modification, and carbohydrate transport transcripts. Moreover, the predominance of chromatin remodelling events was detected in early to middle embryogenesis, associated with an active synthesis of histones and their post-translational modifiers related to increased transcription, as well as silencing of transposons. CONCLUSIONS Our results extend the understanding of gene expression and regulation during zygotic embryogenesis in conifers and are a valuable resource to support further improvements in somatic embryogenesis for vegetative propagation of conifer species. Specific transcripts associated with carbohydrate metabolism, monosaccharide transport and epigenetic regulation seem to play an important role in pine early embryogenesis and may be a source of reliable molecular markers for early embryogenesis.
Collapse
Affiliation(s)
- Andreia S. Rodrigues
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José J. De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Célia M. Miguel
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
13
|
Charbonnel C, Rymarenko O, Da Ines O, Benyahya F, White CI, Butter F, Amiard S. The Linker Histone GH1-HMGA1 Is Involved in Telomere Stability and DNA Damage Repair. PLANT PHYSIOLOGY 2018; 177:311-327. [PMID: 29622687 PMCID: PMC5933147 DOI: 10.1104/pp.17.01789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 05/19/2023]
Abstract
Despite intensive searches, few proteins involved in telomere homeostasis have been identified in plants. Here, we used pull-down assays to identify potential telomeric interactors in the model plant species Arabidopsis (Arabidopsis thaliana). We identified the candidate protein GH1-HMGA1 (also known as HON4), an uncharacterized linker histone protein of the High Mobility Group Protein A (HMGA) family in plants. HMGAs are architectural transcription factors and have been suggested to function in DNA damage repair, but their precise biological roles remain unclear. Here, we show that GH1-HMGA1 is required for efficient DNA damage repair and telomere integrity in Arabidopsis. GH1-HMGA1 mutants exhibit developmental and growth defects, accompanied by ploidy defects, increased telomere dysfunction-induced foci, mitotic anaphase bridges, and degraded telomeres. Furthermore, mutants have a higher sensitivity to genotoxic agents such as mitomycin C and γ-irradiation. Our work also suggests that GH1-HMGA1 is involved directly in the repair process by allowing the completion of homologous recombination.
Collapse
Affiliation(s)
- Cyril Charbonnel
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | | | - Olivier Da Ines
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | - Fatiha Benyahya
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | - Falk Butter
- Institute of Molecular Biology, 455128 Mainz, Germany
| | - Simon Amiard
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Chen D, Jin C. Histone variants in environmental-stress-induced DNA damage repair. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:55-60. [PMID: 31395349 DOI: 10.1016/j.mrrev.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 01/27/2023]
Abstract
Environmental stress such as genotoxic agents can cause DNA damage either indirectly through the generation of reactive oxygen species or directly by interactions with the DNA molecule. Damage to the genetic material may cause mutations and ultimately cancer. Genotoxic mutation can be prevented either by apoptosis or DNA repair. In response to DNA damage, cells have evolved DNA damage responses (DDR) to detect, signal, and repair DNA lesions. Epigenetic mechanisms play critically important roles in DDR, which requires changes in chromatin structure and dynamics to modulate DNA accessibility. Incorporation of histone variants into chromatin is considered as an epigenetic mechanism. Canonical histones can be replaced with variant histones that change chromatin structure, stability, and dynamics. Recent studies have demonstrated involvement of nearly all histone variants in environmental-stress-induced DNA damage repair through various mechanisms, including affecting nucleosome dynamics, carrying variant-specific modification, promoting transcriptional competence or silencing, mediating rearrangement of chromosomes, attracting specific repair proteins, among others. In this review, we will focus on the role of histone variants in DNA damage repair after exposure to environmental genotoxic agents. Understanding the mechanisms regulating environmental exposure-induced epigenetic changes, including replacement of canonical histones with histone variants, will promote the development of strategies to prevent or reverse these changes.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10987, USA
| | - Chunyuan Jin
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY 10987, USA.
| |
Collapse
|
16
|
Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin 2017; 10:39. [PMID: 28784182 PMCID: PMC5547466 DOI: 10.1186/s13072-017-0146-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. RESULTS Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). CONCLUSIONS Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.
Collapse
|
17
|
Proteomic fingerprinting of mistletoe ( Viscum album L.) via combinatorial peptide ligand libraries and mass spectrometry analysis. J Proteomics 2017; 164:52-58. [DOI: 10.1016/j.jprot.2017.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 11/18/2022]
|
18
|
Kotliński M, Knizewski L, Muszewska A, Rutowicz K, Lirski M, Schmidt A, Baroux C, Ginalski K, Jerzmanowski A. Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain. PLANT PHYSIOLOGY 2017; 174:27-34. [PMID: 28298478 PMCID: PMC5411143 DOI: 10.1104/pp.16.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species.
Collapse
Affiliation(s)
- Maciej Kotliński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Lukasz Knizewski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Anna Muszewska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Kinga Rutowicz
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Maciej Lirski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Anja Schmidt
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Célia Baroux
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.);
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.);
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.);
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Krzysztof Ginalski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.);
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.);
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.);
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| |
Collapse
|
19
|
Soler M, Plasencia A, Larbat R, Pouzet C, Jauneau A, Rivas S, Pesquet E, Lapierre C, Truchet I, Grima-Pettenati J. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation. THE NEW PHYTOLOGIST 2017; 213:287-299. [PMID: 27500520 DOI: 10.1111/nph.14129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/03/2016] [Indexed: 05/21/2023]
Abstract
Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified secondary cell walls. The mechanisms needed to control the extent of lignin deposition depending on the cell type and the differentiation stage are far from being fully understood. We found that the Eucalyptus transcription factor EgMYB1, which is known to repress lignin biosynthesis, interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1's target genes, strongly limiting the amount of lignin deposited in xylem cell walls. The expression profiles of EgMYB1 and EgH1.3 overlap in xylem cells at early stages of their differentiation as well as in mature parenchymatous xylem cells, which have no or only thin lignified secondary cell walls. This suggests that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space. We also demonstrate a role for a linker histone variant in the regulation of a specific developmental process through interaction with a transcription factor, illustrating that plant linker histones have other functions beyond chromatin organization.
Collapse
Affiliation(s)
- Marçal Soler
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Anna Plasencia
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Romain Larbat
- UMR1121 'Agronomie et Environnement' Nancy-Colmar, Institute Nationale de la Recherche Agronomique (INRA), TSA 40602, 54518, Vandoeuvre Cedex, France
- UMR1121 'Agronomie et Environnement' Nancy-Colmar, Université de Lorraine, TSA 40602, 54518, Vandoeuvre Cedex, France
| | - Cécile Pouzet
- Fédération de Recherche 3450, Plateforme Imagerie, 31326, Castanet-Tolosan, France
| | - Alain Jauneau
- Fédération de Recherche 3450, Plateforme Imagerie, 31326, Castanet-Tolosan, France
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Edouard Pesquet
- Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Catherine Lapierre
- Jean-Pierre Bourgin Institute, INRA/AgroParisTech, UMR1318, Saclay Plant Science, 78026, Versailles, France
| | - Isabelle Truchet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326, Castanet-Tolosan, France
| |
Collapse
|
20
|
Kowalski A, Pałyga J. Modulation of chromatin function through linker histone H1 variants. Biol Cell 2016; 108:339-356. [PMID: 27412812 DOI: 10.1111/boc.201600007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
Abstract
In this review, the structural aspects of linker H1 histones are presented as a background for characterization of the factors influencing their function in animal and human chromatin. The action of H1 histone variants is largely determined by dynamic alterations of their intrinsically disordered tail domains, posttranslational modifications and allelic diversification. The interdependent effects of these factors can establish dynamic histone H1 states that may affect the organization and function of chromatin regions.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Jan Pałyga
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| |
Collapse
|
21
|
Luque A, Ozer G, Schlick T. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin. Biophys J 2016; 110:2309-2319. [PMID: 27276249 PMCID: PMC4906253 DOI: 10.1016/j.bpj.2016.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells condense their genetic material in the nucleus in the form of chromatin, a macromolecular complex made of DNA and multiple proteins. The structure of chromatin is intimately connected to the regulation of all eukaryotic organisms, from amoebas to humans, but its organization remains largely unknown. The nucleosome repeat length (NRL) and the concentration of linker histones (ρLH) are two structural parameters that vary among cell types and cell cycles; the NRL is the number of DNA basepairs wound around each nucleosome core plus the number of basepairs linking successive nucleosomes. Recent studies have found a linear empirical relationship between the variation of these two properties for different cells, but its underlying mechanism remains elusive. Here we apply our established mesoscale chromatin model to explore the mechanisms responsible for this relationship, by investigating chromatin fibers as a function of NRL and ρLH combinations. We find that a threshold of linker histone concentration triggers the compaction of chromatin into well-formed 30-nm fibers; this critical value increases linearly with NRL, except for long NRLs, where the fibers remain disorganized. Remarkably, the interaction patterns between core histone tails and chromatin elements are highly sensitive to the NRL and ρLH combination, suggesting a molecular mechanism that could have a key role in regulating the structural state of the fibers in the cell. An estimate of the minimized work and volume associated with storage of chromatin fibers in the nucleus further suggests factors that could spontaneously regulate the NRL as a function of linker histone concentration. Both the tail interaction map and DNA packing considerations support the empirical NRL/ρLH relationship and offer a framework to interpret experiments for different chromatin conditions in the cell.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Mathematics and Statistics, Viral Information Institute and Computational Science Research Center, San Diego State University, San Diego, California
| | - Gungor Ozer
- Department of Chemistry, New York University, New York, New York
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China.
| |
Collapse
|
22
|
Perrella G, Carr C, Asensi-Fabado MA, Donald NA, Páldi K, Hannah MA, Amtmann A. The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants. PLANT PHYSIOLOGY 2016; 171:62-70. [PMID: 26951436 PMCID: PMC4854681 DOI: 10.1104/pp.15.01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/02/2016] [Indexed: 05/20/2023]
Abstract
Intrinsically disordered proteins can adopt multiple conformations, thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex 1 (HDC1) protein from Arabidopsis (Arabidopsis thaliana) interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity, and several phenotypes, including abscisic acid sensitivity during germination, vegetative growth rate, and flowering time. HDC1-type proteins are ubiquitous in plants, but they contain no known structural or functional domains. Here, we explored the protein interaction spectrum of HDC1 using a quantitative bimolecular fluorescence complementation assay in tobacco (Nicotiana benthamiana) epidermal cells. In addition to binding histone deacetylases, HDC1 directly interacted with histone H3-binding proteins and corepressor-associated proteins but not with H3 or the corepressors themselves. Surprisingly, HDC1 also was able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. Thus, HDC1 provides a potential link between H1 and histone-modifying complexes.
Collapse
Affiliation(s)
- Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Craig Carr
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Maria A Asensi-Fabado
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Naomi A Donald
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Katalin Páldi
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Matthew A Hannah
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow G12 8QQ, United Kingdom (G.P., C.C., M.A.A.-F., N.A.D., K.P., A.A.); andBayer CropScience, B-9052 Ghent, Belgium (M.A.H.)
| |
Collapse
|
23
|
Antosch M, Schubert V, Holzinger P, Houben A, Grasser KD. Mitotic lifecycle of chromosomal 3xHMG-box proteins and the role of their N-terminal domain in the association with rDNA loci and proteolysis. THE NEW PHYTOLOGIST 2015; 208:1067-1077. [PMID: 26213803 DOI: 10.1111/nph.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 05/21/2023]
Abstract
The high mobility group (HMG)-box is a DNA-binding domain characteristic of various eukaryotic DNA-binding proteins. 3xHMG-box proteins (containing three copies of the HMG-box domain and a unique basic N-terminal domain) are specific for plants and the Arabidopsis genome encodes two versions termed 3xHMG-box1 and 3xHMG-box2, whose expression is cell cycle-dependent, peaking during mitosis. Here, we analysed in detail the spatiotemporal expression, subcellular localisation and chromosome association of the Arabidopsis thaliana 3xHMG-box proteins. Live cell imaging and structured illumination microscopy revealed that the expression of the 3xHMG-box proteins is induced in late G2 phase of the cell cycle and upon nuclear envelope breakdown in prophase they rapidly associate with the chromosomes. 3xHMG-box1 associates preferentially with 45S rDNA loci and the basic N-terminal domain is involved in the targeting of rDNA loci. Shortly after mitosis the 3xHMG-box proteins are degraded and an N-terminal destruction-box mediates the proteolysis. Ectopic expression/localisation of 3xHMG-box1 in interphase nuclei results in reduced plant growth and various developmental defects including early bolting and abnormal flower morphology. The remarkable conservation of 3xHMG-box proteins within the plant kingdom, their characteristic expression during mitosis, and their striking association with chromosomes, suggest that they play a role in the organisation of plant mitotic chromosomes.
Collapse
Affiliation(s)
- Martin Antosch
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, D-06466, Stadt Seeland, Germany
| | - Philipp Holzinger
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, D-06466, Stadt Seeland, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
24
|
King GJ. Crop epigenetics and the molecular hardware of genotype × environment interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:968. [PMID: 26594221 PMCID: PMC4635209 DOI: 10.3389/fpls.2015.00968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/22/2015] [Indexed: 05/04/2023]
Abstract
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
Collapse
Affiliation(s)
- Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Crops for the Future, Biotechnology and Breeding Systems, Semenyih, Malaysia
| |
Collapse
|
25
|
Joshi AD, Mustafa MG, Lichti CF, Elferink CJ. Homocitrullination Is a Novel Histone H1 Epigenetic Mark Dependent on Aryl Hydrocarbon Receptor Recruitment of Carbamoyl Phosphate Synthase 1. J Biol Chem 2015; 290:27767-78. [PMID: 26424795 DOI: 10.1074/jbc.m115.678144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a regulator of xenobiotic toxicity, is a member of the eukaryotic Per-Arnt-Sim domain protein family of transcription factors. Recent evidence identified a novel AhR DNA recognition sequence called the nonconsensus xenobiotic response element (NC-XRE). AhR binding to the NC-XRE in response to activation by the canonical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin resulted in concomitant recruitment of carbamoyl phosphate synthase 1 (CPS1) to the NC-XRE. Studies presented here demonstrate that CPS1 is a bona fide nuclear protein involved in homocitrullination (hcit), including a key lysine residue on histone H1 (H1K34hcit). H1K34hcit represents a hitherto unknown epigenetic mark implicated in enhanced gene expression of the peptidylarginine deiminase 2 gene, itself a chromatin-modifying protein. Collectively, our data suggest that AhR activation promotes CPS1 recruitment to DNA enhancer sites in the genome, resulting in a specific enzyme-independent post-translational modification of the linker histone H1 protein (H1K34hcit), pivotal in altering local chromatin structure and transcriptional activation.
Collapse
Affiliation(s)
- Aditya D Joshi
- From the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555 and
| | | | - Cheryl F Lichti
- From the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Cornelis J Elferink
- From the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555 and
| |
Collapse
|
26
|
Tao H, Shi KH, Yang JJ, Li J. Epigenetic mechanisms in atrial fibrillation: New insights and future directions. Trends Cardiovasc Med 2015; 26:306-18. [PMID: 26475117 DOI: 10.1016/j.tcm.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. AF is a complex disease that results from genetic and environmental factors and their interactions. In recent years, numerous studies have shown that epigenetic mechanisms significantly participate in AF pathogenesis. Even though a poor understanding of the molecular and electrophysiologic mechanisms of AF, accumulated evidence has suggested that the relevance of epigenetic changes in the development of AF. The aim of this review is to describe the present knowledge about the epigenetic regulatory features significantly participates in AF, and look ahead on new perspectives of epigenetic mechanisms research. Epigenetic regulatory features such as DNA methylation, histone modification, and microRNA influence gene expression by epigenetic mechanisms and by directly binding to various factor response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of factors-induced epigenetic alterations as informative factors in the risk assessment process. In this review, new insight into the epigenetic mechanisms in AF pathogenesis is discussed, with special emphasis on DNA methylation, histone modification, and microRNA. Further studies are needed to reveal the potential targets of epigenetic mechanisms, and it can be developed as a therapeutic target for AF.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China; Cardiovascular Research Center, Anhui Medical University, Hefei, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Donà M, Mittelsten Scheid O. DNA Damage Repair in the Context of Plant Chromatin. PLANT PHYSIOLOGY 2015; 168:1206-18. [PMID: 26089404 PMCID: PMC4528755 DOI: 10.1104/pp.15.00538] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 05/03/2023]
Abstract
The integrity of DNA molecules is constantly challenged. All organisms have developed mechanisms to detect and repair multiple types of DNA lesions. The basic principles of DNA damage repair (DDR) in prokaryotes and unicellular and multicellular eukaryotes are similar, but the association of DNA with nucleosomes in eukaryotic chromatin requires mechanisms that allow access of repair enzymes to the lesions. This is achieved by chromatin-remodeling factors, and their necessity for efficient DDR has recently been demonstrated for several organisms and repair pathways. Plants share many features of chromatin organization and DNA repair with fungi and animals, but they differ in other, important details, which are both interesting and relevant for our understanding of genome stability and genetic diversity. In this Update, we compare the knowledge of the role of chromatin and chromatin-modifying factors during DDR in plants with equivalent systems in yeast and humans. We emphasize plant-specific elements and discuss possible implications.
Collapse
Affiliation(s)
- Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
28
|
Mendenhall AR, Tedesco PM, Sands B, Johnson TE, Brent R. Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation. PLoS One 2015; 10:e0124289. [PMID: 25946008 PMCID: PMC4422670 DOI: 10.1371/journal.pone.0124289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/07/2015] [Indexed: 11/22/2022] Open
Abstract
In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, “classical” multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex phenotypic outcomes in multicellular organisms.
Collapse
Affiliation(s)
- Alexander R. Mendenhall
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (RB); (ARM)
| | - Patricia M. Tedesco
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| | - Bryan Sands
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Thomas E. Johnson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States of America
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (RB); (ARM)
| |
Collapse
|
29
|
Talbert PB, Henikoff S. Environmental responses mediated by histone variants. Trends Cell Biol 2014; 24:642-50. [PMID: 25150594 DOI: 10.1016/j.tcb.2014.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
Fluctuations in the ambient environment can trigger chromatin disruptions, involving replacement of nucleosomes or exchange of their histone subunits. Unlike canonical histones, which are available only during S-phase, replication-independent histone variants are present throughout the cell cycle and are adapted for chromatin repair. The H2A.Z variant mediates responses to environmental perturbations including fluctuations in temperature and seasonal variation. Phosphorylation of histone H2A.X rapidly marks double-strand DNA breaks for chromatin repair, which is mediated by both H2A and H3 histone variants. Other histones are used as weapons in conflicts between parasites and their hosts, which suggests broad involvement of histone variants in environmental responses beyond chromatin repair.
Collapse
Affiliation(s)
- Paul B Talbert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
30
|
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40. [PMID: 24889195 DOI: 10.1002/pmic.201400073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | |
Collapse
|
31
|
Chen X, Qi Y, Sung ZR. Special issue on plant epigenetics. MOLECULAR PLANT 2014; 7:453. [PMID: 24596050 DOI: 10.1093/mp/ssu011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|