1
|
Du L, Wang Q, Ding L, Li F, Fang C, Qu H, Wang C, Jiang P, Chen B, Qin Z, Kang Z, Mao H. TaDTGIP1-TaDTG6-B Del574-TaPIF1 module regulates drought stress response in wheat. THE NEW PHYTOLOGIST 2025; 246:2118-2136. [PMID: 40195617 DOI: 10.1111/nph.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Drought is a major environmental constraint to wheat production, yet the genetic and molecular mechanisms underlying drought tolerance remain poorly understood. A gain-of-function protein variant TaDTG6-BDel574 has been identified and positively regulates TaPIF1 transcription to enhance wheat drought tolerance. However, the precise molecular pathways driving this response are yet to be fully characterized. In this study, we demonstrate that TaPIF1 plays a crucial role in mediating wheat drought tolerance by regulating stomatal aperture to control transpiration. RNA sequencing combined with biochemical assays revealed that TaPIF1 directly binds to E-box elements to activate the expression of key stress-responsive genes, including TaABI5, TaRD17, and TaP5CS1. Notably, overexpression of TaABI5 enhances wheat drought tolerance by promoting stomatal closure, thereby reducing water loss. Furthermore, TaPIF1 interacts with TaABI5 and the bHLH transcription factor TaAKS1 to synergistically enhancing the transcriptional activation of TaABI5, TaRD17, and TaP5CS1. Additionally, our findings verified that TaDTGIP1 interacts with TaDTG6-BDel574 to attenuate its binding affinity and regulatory activity on the TaPIF1 promoter, thereby negatively regulating drought tolerance. Together, our findings unveil the molecular mechanisms underlying wheat drought stress response mediated by the TaDTGIP1-TaDTG6-BDel574-TaPIF1/TaABI5/TaAKS1-target regulatory module and identify potential candidate genes for breeding elite drought-tolerant wheat varieties.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiannan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangfang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunhao Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanxiao Qu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Qin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Cho S, Choi G. Phytochrome B regulates cortical microtubule arrangement to control cotyledon polar expansion by repressing LONGIFOLIAs. PLANT PHYSIOLOGY 2025; 198:kiaf162. [PMID: 40272438 DOI: 10.1093/plphys/kiaf162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Light promotes the expansion and controls the directionality of expansion in cotyledons, transforming small oval cotyledons into larger orbicular shapes. However, the cellular basis underlying this polar expansion remains unclear. We report that cotyledon polar expansion in Arabidopsis (Arabidopsis thaliana) is primarily associated with the polar expansion of pavement cells, rather than with polar cell proliferation. Phytochrome B (phyB) promotes this polar expansion by inhibiting PHYTOCHROME INTERACTING FACTORs (PIFs), which normally suppress expansion and inversely regulate its directionality. PIFs exert their control over directionality partly through the activation of their target genes, LONGIFOLIAs (LNGs). At the cellular level, phyB decreases the number of transversely arranged cortical microtubules, while increasing the number of longitudinally arranged microtubules. This phyB-induced change in microtubule arrangement would strengthen transverse expansion while weakening longitudinal expansion. In contrast, PIFs regulate microtubule arrangements in the opposite manner. Downstream of the phyB-PIF pathway, LNGs preferentially increase transversely arranged cortical microtubules. Overall, our data support that the regulation of cortical microtubule orientation by the phyB-PIF-LNG pathway underlies how phyB weakens longitudinal expansion relative to transverse expansion while promoting pavement cell expansion to make orbicular cotyledons in the light.
Collapse
Affiliation(s)
- Sangwon Cho
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
3
|
Zhang N, Liu H. Switch on and off: Phospho-events in light signaling pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40243236 DOI: 10.1111/jipb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Light is a fundamental environmental cue that dynamically orchestrates plant growth and development through spatiotemporally regulated molecular networks. Among these, phosphorylation, a key post-translational modification, plays a crucial role in controlling the function, stability, subcellular localization, and protein-protein interactions of light signaling components. This review systematically examines phosphorylation-dependent regulatory events within the Arabidopsis light signaling cascade, focusing on its regulatory mechanisms, downstream functional consequences, and crosstalk with other signaling pathways. We underscore the pivotal role of phosphorylation in light signaling transduction, elucidating how the phosphorylation-decoding framework transduces light information into growth and developmental plasticity to modulate plant-environment interactions.
Collapse
Affiliation(s)
- Nan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
4
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
5
|
Cai X, Huq E. Shining light on plant growth: recent insights into phytochrome-interacting factors. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:646-663. [PMID: 38877836 DOI: 10.1093/jxb/erae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix-loop-helix transcription factors known as phytochrome-interacting factors (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade of events leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination, and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of histone 3 lysine 9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding the role of PIFs in regulating various signaling pathways, with a major focus on photomorphogenesis.
Collapse
Affiliation(s)
- Xingbo Cai
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Sellaro R, Durand M, Aphalo PJ, Casal JJ. Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:712-729. [PMID: 39101508 PMCID: PMC11805590 DOI: 10.1093/jxb/erae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/06/2024]
Abstract
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
Collapse
Affiliation(s)
- Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Maxime Durand
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
7
|
Zhang Z, Li ZY, Zhang FJ, Zheng PF, Ma N, Li L, Li H, Sun P, Zhang S, Wang XF, Lu XY, You CX. A viroid-derived small interfering RNA targets bHLH transcription factor MdPIF1 to regulate anthocyanin biosynthesis in Malus domestica. PLANT, CELL & ENVIRONMENT 2024; 47:4664-4682. [PMID: 39049759 DOI: 10.1111/pce.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Zhenlu Zhang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhao-Yang Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fu-Jun Zhang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Peng-Fei Zheng
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ning Ma
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Lianzhen Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Haojian Li
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ping Sun
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Wheat Improvement, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Yan Lu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Cai X, Lee S, Gómez Jaime AP, Tang W, Sun Y, Huq E. PHOSPHATASE 2A dephosphorylates PHYTOCHROME-INTERACTING FACTOR3 to modulate photomorphogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4457-4471. [PMID: 38996075 PMCID: PMC11449053 DOI: 10.1093/plcell/koae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The phytochrome (phy) family of sensory photoreceptors modulates developmental programs in response to ambient light. Phys also control gene expression in part by directly interacting with the bHLH class of transcription factors, PHYTOCHROME-INTERACTING FACTORS (PIFs), and inducing their rapid phosphorylation and degradation. Several kinases have been shown to phosphorylate PIFs and promote their degradation. However, the phosphatases that dephosphorylate PIFs are less understood. In this study, we describe 4 regulatory subunits of the Arabidopsis (Arabidopsis thaliana) protein PHOSPHATASE 2A (PP2A) family (B'α, B'β, B″α, and B″β) that interact with PIF3 in yeast 2-hybrid, in vitro and in vivo assays. The pp2ab″αβ and b″αβ/b'αβ mutants display short hypocotyls, while the overexpression of the B subunits induces longer hypocotyls compared with the wild type (WT) under red light. The light-induced degradation of PIF3 is faster in the b″αβ/b'αβ quadruple mutant compared with that in the WT. Consistently, immunoprecipitated PP2A A and B subunits directly dephosphorylate PIF3-MYC in vitro. An RNA-sequencing analysis shows that B″α and B″β alter global gene expression in response to red light. PIFs (PIF1, PIF3, PIF4, and PIF5) are epistatic to these B subunits in regulating hypocotyl elongation under red light. Collectively, these data show an essential function of PP2A in dephosphorylating PIF3 to modulate photomorphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Xingbo Cai
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sanghwa Lee
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Paola Gómez Jaime
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Enamul Huq
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Gautrat P, Buti S, Romanowski A, Lammers M, Matton SEA, Buijs G, Pierik R. Phytochrome-dependent responsiveness to root-derived cytokinins enables coordinated elongation responses to combined light and nitrate cues. Nat Commun 2024; 15:8489. [PMID: 39353942 PMCID: PMC11445486 DOI: 10.1038/s41467-024-52828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Plants growing at high densities can detect competitors through changes in the composition of light reflected by neighbours. In response to this far-red-enriched light, plants elicit adaptive shade avoidance responses for light capture, but these need to be balanced against other input signals, such as nutrient availability. Here, we investigated how Arabidopsis integrates shade and nitrate signalling. We unveiled that nitrate modulates shade avoidance via a previously unknown shade response pathway that involves root-derived trans-zeatin (tZ) signal and the BEE1 transcription factor as an integrator of light and cytokinin signalling. Under nitrate-sufficient conditions, tZ promotes hypocotyl elongation specifically in the presence of supplemental far-red light. This occurs via PIF transcription factors-dependent inhibition of type-A ARRs cytokinin response inhibitors. Our data thus reveal how plants co-regulate responses to shade cues with root-derived information about nutrient availability, and how they restrict responses to this information to specific light conditions in the shoot.
Collapse
Affiliation(s)
- Pierre Gautrat
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | - Sara Buti
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Andrés Romanowski
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Michiel Lammers
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Guido Buijs
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Song Z, Ye W, Jiang Q, Lin H, Hu Q, Xiao Y, Bian Y, Zhao F, Dong J, Xu D. BBX9 forms feedback loops with PIFs and BBX21 to promote photomorphogenic development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1934-1952. [PMID: 39041924 DOI: 10.1111/jipb.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Light is one of the most essential environmental factors that tightly and precisely control various physiological and developmental processes in plants. B-box CONTAINING PROTEINs (BBXs) play central roles in the regulation of light-dependent development. In this study, we report that BBX9 is a positive regulator of light signaling. BBX9 interacts with the red light photoreceptor PHYTOCHROME B (phyB) and transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs). phyB promotes the stabilization of BBX9 in light, while BBX9 inhibits the transcriptional activation activity of PIFs. In turn, PIFs directly bind to the promoter of BBX9 to repress its transcription. On the other hand, BBX9 associates with the positive regulator of light signaling, BBX21, and enhances its biochemical activity. BBX21 associates with the promoter regions of BBX9 and transcriptionally up-regulates its expression. Collectively, this study unveiled that BBX9 forms a negative feedback loop with PIFs and a positive one with BBX21 to ensure that plants adapt to fluctuating light conditions.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanying Ye
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuntao Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengyue Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Michael R, Ranjan A, Gautam S, Trivedi PK. HY5 and PIF antagonistically regulate HMGR expression and sterol biosynthesis in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112168. [PMID: 38914157 DOI: 10.1016/j.plantsci.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear. Previous studies indicate that ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor, is pivotal in skotomorphogenesis to photomorphogenesis transition. Additionally, PHYTOCHROME INTERACTING FACTORs (PIFs), bHLH transcription factors, act as negative regulators. To unveil the light-dependent regulation of the mevalonic acid (MVA) pathway, a precursor for sterol biosynthesis, mutants of light signaling components, specifically hy5-215 and the pifq quadruple mutant (pif 1,3,4, and 5), were analyzed in Arabidopsis thaliana. Gene expression analysis in wild-type and mutants implicates HY5 and PIFs in regulating sterol biosynthesis genes. DNA-protein interaction analysis confirms their interaction with key genes like AtHMGR2 in the rate-limiting pathway. Results strongly suggest HY5 and PIFs' pivotal role in light-dependent MVA pathway regulation, including the sterol biosynthetic branch, in Arabidopsis, highlighting a diverse array of light signaling components finely tuning crucial growth pathways.
Collapse
Affiliation(s)
- Rahul Michael
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India
| | - Avriti Ranjan
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Picnic Spot Road, Lucknow 226015, India
| | - Swati Gautam
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India
| | - Prabodh Kumar Trivedi
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Picnic Spot Road, Lucknow 226015, India.
| |
Collapse
|
12
|
Liu W, Lowrey H, Xu A, Leung CC, Adamchek C, He J, Du J, Chen M, Gendron JM. A circadian clock output functions independently of phyB to sustain daytime PIF3 degradation. Proc Natl Acad Sci U S A 2024; 121:e2408322121. [PMID: 39163340 PMCID: PMC11363348 DOI: 10.1073/pnas.2408322121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Harper Lowrey
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Anxu Xu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Christopher Adamchek
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| | - Jiangman He
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Juan Du
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
| |
Collapse
|
13
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Gao L, Xu S, Zhang J, Kang J, Zhong S, Shi H. Promotion of seedling germination in Arabidopsis by B-box zinc-finger protein BBX32. Curr Biol 2024; 34:3152-3164.e6. [PMID: 38971148 DOI: 10.1016/j.cub.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.
Collapse
Affiliation(s)
- Lulu Gao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Sheng Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinming Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Jing Kang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China.
| |
Collapse
|
15
|
Takahashi M, Sakamoto A, Morikawa H. Atmospheric nitrogen dioxide suppresses the activity of phytochrome interacting factor 4 to suppress hypocotyl elongation. PLANTA 2024; 260:42. [PMID: 38958765 PMCID: PMC11222245 DOI: 10.1007/s00425-024-04468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.
Collapse
Affiliation(s)
- Misa Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan.
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| | - Hiromichi Morikawa
- School of Science, Hiroshima University, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
16
|
Sun F, Cheng H, Song Z, Yan H, Liu H, Xiao X, Zhang Z, Luo M, Wu F, Lu J, Luo K, Wei H. Phytochrome-interacting factors play shared and distinct roles in regulating shade avoidance responses in Populus trees. PLANT, CELL & ENVIRONMENT 2024; 47:2058-2073. [PMID: 38404129 DOI: 10.1111/pce.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Plants adjust their growth and development in response to changing light caused by canopy shade. The molecular mechanisms underlying shade avoidance responses have been widely studied in Arabidopsis and annual crop species, yet the shade avoidance signalling in woody perennial trees remains poorly understood. Here, we first showed that PtophyB1/2 photoreceptors serve conserved roles in attenuating the shade avoidance syndrome (SAS) in poplars. Next, we conducted a systematic identification and characterization of eight PtoPIF genes in Populus tomentosa. Knocking out different PtoPIFs led to attenuated shade responses to varying extents, whereas overexpression of PtoPIFs, particularly PtoPIF3.1 and PtoPIF3.2, led to constitutive SAS phenotypes under normal light and enhanced SAS responses under simulated shade. Notably, our results revealed that distinct from Arabidopsis PIF4 and PIF5, which are major regulators of SAS, the Populus homologues PtoPIF4.1 and PtoPIF4.2 seem to play a minor role in controlling shade responses. Moreover, we showed that PtoPIF3.1/3.2 could directly activate the expression of the auxin biosynthetic gene PtoYUC8 in response to shade, suggesting a conserved PIF-YUC-auxin pathway in modulating SAS in tree. Overall, our study provides insights into shared and divergent functions of PtoPIF members in regulating various aspects of the SAS in Populus.
Collapse
Affiliation(s)
- Fan Sun
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongli Cheng
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhi Song
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Huiting Yan
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Huajie Liu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyue Xiao
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhichao Zhang
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengting Luo
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Feier Wu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Jun Lu
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongbin Wei
- School of Life Sciences, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Rovira A, Veciana N, Basté-Miquel A, Quevedo M, Locascio A, Yenush L, Toledo-Ortiz G, Leivar P, Monte E. PIF transcriptional regulators are required for rhythmic stomatal movements. Nat Commun 2024; 15:4540. [PMID: 38811542 PMCID: PMC11137129 DOI: 10.1038/s41467-024-48669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Stomata govern the gaseous exchange between the leaf and the external atmosphere, and their function is essential for photosynthesis and the global carbon and oxygen cycles. Rhythmic stomata movements in daily dark/light cycles prevent water loss at night and allow CO2 uptake during the day. How the actors involved are transcriptionally regulated and how this might contribute to rhythmicity is largely unknown. Here, we show that morning stomata opening depends on the previous night period. The transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) accumulate at the end of the night and directly induce the guard cell-specific K+ channel KAT1. Remarkably, PIFs and KAT1 are required for blue light-induced stomata opening. Together, our data establish a molecular framework for daily rhythmic stomatal movements under well-watered conditions, whereby PIFs are required for accumulation of KAT1 at night, which upon activation by blue light in the morning leads to the K+ intake driving stomata opening.
Collapse
Affiliation(s)
- Arnau Rovira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Aina Basté-Miquel
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Martí Quevedo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- Department of biomedical science, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, Alfara del Patriarca (Valencia), Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Gabriela Toledo-Ortiz
- James Hutton Institute, Cell and Molecular Sciences, Errol Road Invergowrie, Dundee, UK
| | - Pablo Leivar
- Laboratory of Biochemistry, Institut Químic de Sarrià (IQS), Universitat Ramon Llull, Barcelona, Spain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
18
|
Li H, Xue M, Zhang H, Zhao F, Li X, Yu S, Jiang D. A warm temperature-released negative feedback loop fine-tunes PIF4-mediated thermomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100833. [PMID: 38327058 PMCID: PMC11121753 DOI: 10.1016/j.xplc.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Plants can sense temperature changes and adjust their growth accordingly. In Arabidopsis, high ambient temperatures stimulate stem elongation by activating a key thermoresponsive regulator, PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Here, we show that warmth promotes the nighttime transcription of GI, which is necessary for the high temperature-induced transcription of TOC1. Genetic analyses suggest that GI prevents excessive thermoresponsive growth by inhibiting PIF4, with this regulatory mechanism being partially reliant on TOC1. GI transcription is repressed by ELF3 and HY5, which concurrently inhibit PIF4 expression and activity. Temperature elevation causes the deactivation or degradation of ELF3 and HY5, leading to PIF4 activation and relief of GI transcriptional repression at high temperatures. This allows PIF4 to further activate GI transcription in response to elevated temperatures. GI, in turn, inhibits PIF4, establishing a negative feedback loop that fine-tunes PIF4 activity. In addition, we demonstrate that ELF3, HY5, and PIF4 regulate GI transcription by modulating the enrichment of histone variant H2A.Z at the GI locus. Together, our findings suggest that thermal release of a negative feedback loop finely adjusts plant thermomorphogenesis.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengyue Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
20
|
Cao J, Qin Z, Cui G, Chen Z, Cheng X, Peng H, Yao Y, Hu Z, Guo W, Ni Z, Sun Q, Xin M. Natural variation of STKc_GSK3 kinase TaSG-D1 contributes to heat stress tolerance in Indian dwarf wheat. Nat Commun 2024; 15:2097. [PMID: 38453935 PMCID: PMC10920922 DOI: 10.1038/s41467-024-46419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.
Collapse
Affiliation(s)
- Jie Cao
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Guangxian Cui
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaoyan Chen
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Xuejiao Cheng
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers science center for molecular design breeding, Key Laboratory of Crop Heterosis Utilization (MOE), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Hur YS, Oh J, Kim N, Kim S, Son O, Kim J, Um JH, Ji Z, Kim MH, Ko JH, Ohme-Takagi M, Choi G, Cheon CI. Arabidopsis transcription factor TCP13 promotes shade avoidance syndrome-like responses by directly targeting a subset of shade-responsive gene promoters. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:241-257. [PMID: 37824096 DOI: 10.1093/jxb/erad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeonghwa Oh
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Namuk Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Ora Son
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jiyoung Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Ji-Hyun Um
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Zuowei Ji
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
22
|
Han X, Zhang Y, Lou Z, Li J, Wang Z, Gao C, Liu Y, Ren Z, Liu W, Li B, Pan W, Zhang H, Sang Q, Wan M, He H, Deng XW. Time series single-cell transcriptional atlases reveal cell fate differentiation driven by light in Arabidopsis seedlings. NATURE PLANTS 2023; 9:2095-2109. [PMID: 37903986 PMCID: PMC10724060 DOI: 10.1038/s41477-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/19/2023] [Indexed: 11/01/2023]
Abstract
Light serves as the energy source for plants as well as a signal for growth and development during their whole life cycle. Seedling de-etiolation is the most dramatic manifestation of light-regulated plant development processes, as massive reprogramming of the plant transcriptome occurs at this time. Although several studies have reported about organ-specific development and expression induced by light, a systematic analysis of cell-type-specific differentiation and the associated transcriptional regulation is still lacking. Here we obtained single-cell transcriptional atlases for etiolated, de-etiolating and light-grown Arabidopsis thaliana seedlings. Informative cells from shoot and root tissues were grouped into 48 different cell clusters and finely annotated using multiple markers. With the determination of comprehensive developmental trajectories, we demonstrate light modulation of cell fate determination during guard cell specialization and vasculature development. Comparison of expression atlases between wild type and the pifq mutant indicates that phytochrome-interacting factors (PIFs) are involved in distinct developmental processes in endodermal and stomatal lineage cells via controlling cell-type-specific expression of target genes. These results provide information concerning the light signalling networks at the cell-type resolution, improving our understanding of how light regulates plant development at the cell-type and genome-wide levels. The obtained information could serve as a valuable resource for comprehensively investigating the molecular mechanism of cell development and differentiation in response to light.
Collapse
Affiliation(s)
- Xue Han
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Yilin Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Zhiying Lou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Jian Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Zheng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Chunlei Gao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Yi Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Zizheng Ren
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Weimin Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Bosheng Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Qing Sang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
23
|
Liu L, Heidecker M, Depuydt T, Manosalva Perez N, Crespi M, Blein T, Vandepoele K. Transcription factors KANADI 1, MYB DOMAIN PROTEIN 44, and PHYTOCHROME INTERACTING FACTOR 4 regulate long intergenic noncoding RNAs expressed in Arabidopsis roots. PLANT PHYSIOLOGY 2023; 193:1933-1953. [PMID: 37345955 DOI: 10.1093/plphys/kiad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Thousands of long intergenic noncoding RNAs (lincRNAs) have been identified in plant genomes. While some lincRNAs have been characterized as important regulators in different biological processes, little is known about the transcriptional regulation for most plant lincRNAs. Through the integration of 8 annotation resources, we defined 6,599 high-confidence lincRNA loci in Arabidopsis (Arabidopsis thaliana). For lincRNAs belonging to different evolutionary age categories, we identified major differences in sequence and chromatin features, as well as in the level of conservation and purifying selection acting during evolution. Spatiotemporal gene expression profiles combined with transcription factor (TF) chromatin immunoprecipitation (ChIP) data were used to construct a TF-lincRNA regulatory network containing 2,659 lincRNAs and 15,686 interactions. We found that properties characterizing lincRNA expression, conservation, and regulation differ between plants and animals. Experimental validation confirmed the role of 3 TFs, KANADI 1, MYB DOMAIN PROTEIN 44, and PHYTOCHROME INTERACTING FACTOR 4, as key regulators controlling root-specific lincRNA expression, demonstrating the predictive power of our network. Furthermore, we identified 58 lincRNAs, regulated by these TFs, showing strong root cell type-specific expression or chromatin accessibility, which are linked with genome-wide association studies genetic associations related to root system development and growth. The multilevel genome-wide characterization covering chromatin state information, promoter conservation, and chromatin immunoprecipitation-based TF binding, for all detectable lincRNAs across 769 expression samples, permits rapidly defining the biological context and relevance of Arabidopsis lincRNAs through regulatory networks.
Collapse
Affiliation(s)
- Li Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Michel Heidecker
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, 91190 Gif-sur-Yvette, France
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nicolas Manosalva Perez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Martin Crespi
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, 91190 Gif-sur-Yvette, France
| | - Thomas Blein
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Cité, 91190 Gif-sur-Yvette, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
24
|
Liu W, Lowrey H, Leung CC, Adamchek C, Du J, He J, Chen M, Gendron JM. The circadian clock regulates PIF3 protein stability in parallel to red light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558326. [PMID: 37781622 PMCID: PMC10541125 DOI: 10.1101/2023.09.18.558326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.
Collapse
|
25
|
Leung CC, Tarté DA, Oliver LS, Wang Q, Gendron JM. Systematic characterization of photoperiodic gene expression patterns reveals diverse seasonal transcriptional systems in Arabidopsis. PLoS Biol 2023; 21:e3002283. [PMID: 37699055 PMCID: PMC10497145 DOI: 10.1371/journal.pbio.3002283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a complete picture of the transcriptional networks and cellular processes that are photoperiodic. We performed a transcriptomics experiment on Arabidopsis plants grown in 3 different photoperiods and found that thousands of genes show photoperiodic alteration in gene expression. Gene clustering, daily expression integral calculations, and cis-element analysis then separate photoperiodic genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the possibility that many photoperiod measurement systems work in parallel in Arabidopsis. Then, functional enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene expression data, and demonstrated that photoperiod intersects with 2 major phenylpropanoid pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a new app that visualizes photoperiod transcriptomic data for the wider community.
Collapse
Affiliation(s)
- Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Daniel A. Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Lilijana S. Oliver
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Qingqing Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
26
|
Lee SW, Choi D, Moon H, Kim S, Kang H, Paik I, Huq E, Kim DH. PHYTOCHROME-INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA-QUINE STARCH in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:110-123. [PMID: 36710626 DOI: 10.1111/tpj.16124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.
Collapse
Affiliation(s)
- Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sujeong Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Inyup Paik
- Department of Molecular Biosciences, the University of Texas at Austin, Texas, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, the University of Texas at Austin, Texas, 78712, USA
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
27
|
Kim C, Kwon Y, Jeong J, Kang M, Lee GS, Moon JH, Lee HJ, Park YI, Choi G. Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat Commun 2023; 14:1708. [PMID: 36973259 PMCID: PMC10042835 DOI: 10.1038/s41467-023-37421-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Phytochrome B (phyB) is a plant photoreceptor that forms a membraneless organelle called a photobody. However, its constituents are not fully known. Here, we isolated phyB photobodies from Arabidopsis leaves using fluorescence-activated particle sorting and analyzed their components. We found that a photobody comprises ~1,500 phyB dimers along with other proteins that could be classified into two groups: The first includes proteins that directly interact with phyB and localize to the photobody when expressed in protoplasts, while the second includes proteins that interact with the first group proteins and require co-expression of a first-group protein to localize to the photobody. As an example of the second group, TOPLESS interacts with PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and localizes to the photobody when co-expressed with PCH1. Together, our results support that phyB photobodies include not only phyB and its primary interacting proteins but also its secondary interacting proteins.
Collapse
Affiliation(s)
- Chanhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Yongmin Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Jaehoon Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Minji Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Ga Seul Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28160, Korea
| | - Jeong Hee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
28
|
Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, Kou X, Deng XW, Zhong S. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 2023; 186:1230-1243.e14. [PMID: 36931246 DOI: 10.1016/j.cell.2023.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China.
| |
Collapse
|
29
|
Sng BJR, Van Vu K, Choi IKY, Chin HJ, Jang IC. LONG HYPOCOTYL IN FAR-RED 1 mediates a trade-off between growth and defense under shade in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad088. [PMID: 36882154 DOI: 10.1093/jxb/erad088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/18/2023]
Abstract
Plants respond to vegetative shade with developmental and physiological changes that is collectively known as shade avoidance syndrome (SAS). Although LONG HYPOCOTYL IN FAR-RED 1 (HFR1) is known to be a negative regulator of SAS by forming heterodimers with other basic helix-loop-helix (bHLH) transcription factors to inhibit them, its function in genome-wide transcriptional regulation is not fully elucidated. Here, we performed RNA-sequencing analyses of hfr1-5 and HFR1 overexpression line (HFR1(ΔN)-OE) to comprehensively identify HFR1-regulated genes at different time points of shade treatment. We found that HFR1 mediates the trade-off between shade-induced growth and shade-repressed defense, by regulating the expression of relevant genes in shade. Genes involved in promoting growth, such as for auxin biosynthesis, transport, signaling and response were induced by shade but suppressed by HFR1 at both short and long durations of shade. Likewise, most ethylene-related genes were shade-induced and HFR1-repressed. On the other hand, shade suppressed defense-related genes while HFR1 induced their expression, especially under long duration of shade treatment. We demonstrated that HFR1 confers increased resistance to bacterial infection under shade.
Collapse
Affiliation(s)
- Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Kien Van Vu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hui Jun Chin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
30
|
Choi DM, Kim SH, Han YJ, Kim JI. Regulation of Plant Photoresponses by Protein Kinase Activity of Phytochrome A. Int J Mol Sci 2023; 24:ijms24032110. [PMID: 36768431 PMCID: PMC9916439 DOI: 10.3390/ijms24032110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Extensive research has been conducted for decades to elucidate the molecular and regulatory mechanisms for phytochrome-mediated light signaling in plants. As a result, tens of downstream signaling components that physically interact with phytochromes are identified, among which negative transcription factors for photomorphogenesis, PHYTOCHROME-INTERACTING FACTORs (PIFs), are well known to be regulated by phytochromes. In addition, phytochromes are also shown to inactivate an important E3 ligase complex consisting of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSORs OF phyA-105 (SPAs). This inactivation induces the accumulation of positive transcription factors for plant photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5). Although many downstream components of phytochrome signaling have been studied thus far, it is not fully elucidated which intrinsic activity of phytochromes is necessary for the regulation of these components. It should be noted that phytochromes are autophosphorylating protein kinases. Recently, the protein kinase activity of phytochrome A (phyA) has shown to be important for its function in plant light signaling using Avena sativa phyA mutants with reduced or increased kinase activity. In this review, we highlight the function of phyA as a protein kinase to explain the regulation of plant photoresponses by phyA.
Collapse
Affiliation(s)
- Da-Min Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hyeon Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence:
| |
Collapse
|
31
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
32
|
Abdullah M, Ahmad F, Zang Y, Jin S, Ahmed S, Li J, Islam F, Ahmad M, Zhang Y, Hu Y, Guan X, Zhang T. HEAT-RESPONSIVE PROTEIN regulates heat stress via fine-tuning ethylene/auxin signaling pathways in cotton. PLANT PHYSIOLOGY 2023; 191:772-788. [PMID: 36342207 PMCID: PMC9806630 DOI: 10.1093/plphys/kiac511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Plants sense and respond to fluctuating temperature and light conditions during the circadian cycle; however, the molecular mechanism underlying plant adaptability during daytime warm conditions remains poorly understood. In this study, we reveal that the ectopic regulation of a HEAT RESPONSIVE PROTEIN (GhHRP) controls the adaptation and survival of cotton (Gossypium hirsutum) plants in response to warm conditions via modulating phytohormone signaling. Increased ambient temperature promptly enhanced the binding of the phytochrome interacting factor 4 (GhPIF4)/ethylene-insensitive 3 (GhEIN3) complex to the GhHRP promoter to increase its mRNA level. The ectopic expression of GhHRP promoted the temperature-dependent accumulation of GhPIF4 transcripts and hypocotyl elongation by triggering thermoresponsive growth-related genes. Notably, the upregulation of the GhHRP/GhPIF4 complex improved plant growth via modulating the abundance of Arabidopsis thaliana auxin biosynthetic gene YUCCA8 (AtYUC8)/1-aminocyclopropane-1-carboxylate synthase 8 (AtACS8) for fine-tuning the auxin/ethylene interplay, ultimately resulting in decreased ethylene biosynthesis. GhHRP thus protects chloroplasts from photo-oxidative bursts via repressing AtACS8 and AtACS7 and upregulating AtYUC8 and the heat shock transcription factors (HSFA2), heat shock proteins (HSP70 and HSP20). Strikingly, the Δhrp disruption mutant exhibited compromised production of HSP/YUC8 that resulted in an opposite phenotype with the loss of the ability to respond to warm conditions. Our results show that GhHRP is a heat-responsive signaling component that assists plants in confronting the dark phase and modulates auxin signaling to rescue growth under temperature fluctuations.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Furqan Ahmad
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Yihao Zang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shangkun Jin
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sulaiman Ahmed
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Li
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Faisal Islam
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mudassar Ahmad
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yaoyao Zhang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianzhen Zhang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Hwang Y, Han S, Yoo CY, Hong L, You C, Le BH, Shi H, Zhong S, Hoecker U, Chen X, Chen M. Anterograde signaling controls plastid transcription via sigma factors separately from nuclear photosynthesis genes. Nat Commun 2022; 13:7440. [PMID: 36460634 PMCID: PMC9718756 DOI: 10.1038/s41467-022-35080-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Light initiates chloroplast biogenesis in Arabidopsis by eliminating PHYTOCHROME-INTERACTING transcription FACTORs (PIFs), which in turn de-represses nuclear photosynthesis genes, and synchronously, generates a nucleus-to-plastid (anterograde) signal that activates the plastid-encoded bacterial-type RNA polymerase (PEP) to transcribe plastid photosynthesis genes. However, the identity of the anterograde signal remains frustratingly elusive. The main challenge has been the difficulty to distinguish regulators from the plethora of necessary components for plastid transcription and other essential chloroplast functions, such as photosynthesis. Here, we show that the genome-wide induction of nuclear photosynthesis genes is insufficient to activate the PEP. PEP inhibition is imposed redundantly by multiple PIFs and requires PIF3's activator activity. Among the nuclear-encoded components of the PEP holoenzyme, we identify four light-inducible, PIF-repressed sigma factors as anterograde signals. Together, our results elucidate that light-dependent inhibition of PIFs activates plastid photosynthesis genes via sigma factors as anterograde signals in parallel with the induction of nuclear photosynthesis genes.
Collapse
Affiliation(s)
- Youra Hwang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Soeun Han
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
- School of Biological Sciences, University of Utah, Salt Lake City, 84112, UT, USA
| | - Liu Hong
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
- Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Brandon H Le
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Hui Shi
- College of Life Sciences, Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, 92521, CA, USA.
| |
Collapse
|
34
|
Bajracharya A, Xi J, Grace KF, Bayer EE, Grant CA, Clutton CH, Baerson SR, Agarwal AK, Qiu Y. PHYTOCHROME-INTERACTING FACTOR 4/HEMERA-mediated thermosensory growth requires the Mediator subunit MED14. PLANT PHYSIOLOGY 2022; 190:2706-2721. [PMID: 36063057 PMCID: PMC9706435 DOI: 10.1093/plphys/kiac412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 05/19/2023]
Abstract
While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix-loop-helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes. While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.
Collapse
Affiliation(s)
| | - Jing Xi
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Oxford, Mississippi, USA
| | - Karlie F Grace
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Eden E Bayer
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Chloe A Grant
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Caroline H Clutton
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Scott R Baerson
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Oxford, Mississippi, USA
| | - Ameeta K Agarwal
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
- Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | | |
Collapse
|
35
|
Ponnu J. What plants do in the shadows: Gene transcription precedes histone methylation during shade responses. PLANT PHYSIOLOGY 2022; 190:1552-1553. [PMID: 35980282 PMCID: PMC9614437 DOI: 10.1093/plphys/kiac380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jathish Ponnu
- AG Hoecker, Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, 50674, Cologne, Germany
| |
Collapse
|
36
|
Calderon RH, Dalton J, Zhang Y, Quail PH. Shade triggers posttranscriptional PHYTOCHROME-INTERACTING FACTOR-dependent increases in H3K4 trimethylation. PLANT PHYSIOLOGY 2022; 190:1915-1926. [PMID: 35674379 PMCID: PMC9614472 DOI: 10.1093/plphys/kiac282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The phytochrome (phy)-PHYTOCHROME-INTERACTING FACTOR (PIF) sensory module perceives and transduces light signals to direct target genes (DTGs), which then drive the adaptational responses in plant growth and development appropriate to the prevailing environment. These signals include the first exposure of etiolated seedlings to sunlight upon emergence from subterranean darkness and the change in color of the light that is filtered through, or reflected from, neighboring vegetation ("shade"). Previously, we identified three broad categories of rapidly signal-responsive genes: those repressed by light and conversely induced by shade; those repressed by light, but subsequently unresponsive to shade; and those responsive to shade only. Here, we investigate the potential role of epigenetic chromatin modifications in regulating these contrasting patterns of phy-PIF module-induced expression of DTGs in Arabidopsis (Arabidopsis thaliana). Using RNA-seq and ChIP-seq to determine time-resolved profiling of transcript and histone 3 lysine 4 trimethylation (H3K4me3) levels, respectively, we show that, whereas the initial dark-to-light transition triggers a rapid, apparently temporally coincident decline of both parameters, the light-to-shade transition induces similarly rapid increases in transcript levels that precede increases in H3K4me3 levels. Together with other recent findings, these data raise the possibility that, rather than being causal in the shade-induced expression changes, H3K4me3 may function to buffer the rapidly fluctuating shade/light switching that is intrinsic to vegetational canopies under natural sunlight conditions.
Collapse
Affiliation(s)
- Robert H Calderon
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
| | - Jutta Dalton
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720, USA
- Plant Gene Expression Center, Agriculture Research Service, US Department of Agriculture, Albany, California, 94710, USA
| |
Collapse
|
37
|
Xue H, Meng J, Lei P, Cao Y, An X, Jia M, Li Y, Liu H, Sheen J, Liu X, Yu F. ARF2-PIF5 interaction controls transcriptional reprogramming in the ABS3-mediated plant senescence pathway. EMBO J 2022; 41:e110988. [PMID: 35942625 PMCID: PMC9531305 DOI: 10.15252/embj.2022110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
One of the hallmarks of plant senescence is the global transcriptional reprogramming coordinated by a plethora of transcription factors (TFs). However, mechanisms underlying the interactions between different TFs in modulating senescence remain obscure. Previously, we discovered that plant ABS3 subfamily MATE transporter genes regulate senescence and senescence-associated transcriptional changes. In a genetic screen for mutants suppressing the accelerated senescence phenotype of the gain-of-function mutant abs3-1D, AUXIN RESPONSE FACTOR 2 (ARF2) and PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) were identified as key TFs responsible for transcriptional regulation in the ABS3-mediated senescence pathway. ARF2 and PIF5 (as well as PIF4) interact directly and function interdependently to promote senescence, and they share common target genes such as key senescence promoting genes ORESARA 1 (ORE1) and STAY-GREEN 1 (SGR1) in the ABS3-mediated senescence pathway. In addition, we discovered reciprocal regulation between ABS3-subfamily MATEs and the ARF2 and PIF5/4 TFs. Taken together, our findings reveal a regulatory paradigm in which the ARF2-PIF5/4 functional module facilitates the transcriptional reprogramming in the ABS3-mediated senescence pathway.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jingjing Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yongxin Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Xue An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Present address:
Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCAUSA
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Department of Molecular Biology and Centre for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
38
|
Siemiatkowska B, Chiara M, Badiger BG, Riboni M, D'Avila F, Braga D, Salem MAA, Martignago D, Colanero S, Galbiati M, Giavalisco P, Tonelli C, Juenger TE, Conti L. GIGANTEA Is a Negative Regulator of Abscisic Acid Transcriptional Responses and Sensitivity in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:1285-1297. [PMID: 35859344 DOI: 10.1093/pcp/pcac102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Transcriptional reprogramming plays a key role in drought stress responses, preceding the onset of morphological and physiological acclimation. The best-characterized signal regulating gene expression in response to drought is the phytohormone abscisic acid (ABA). ABA-regulated gene expression, biosynthesis and signaling are highly organized in a diurnal cycle, so that ABA-regulated physiological traits occur at the appropriate time of day. The mechanisms that underpin such diel oscillations in ABA signals are poorly characterized. Here we uncover GIGANTEA (GI) as a key gatekeeper of ABA-regulated transcriptional and physiological responses. Time-resolved gene expression profiling by RNA sequencing under different irrigation scenarios indicates that gi mutants produce an exaggerated ABA response, despite accumulating wild-type levels of ABA. Comparisons with ABA-deficient mutants confirm the role of GI in controlling ABA-regulated genes, and the analysis of leaf temperature, a read-out for transpiration, supports a role for GI in the control of ABA-regulated physiological processes. Promoter regions of GI/ABA-regulated transcripts are directly targeted by different classes of transcription factors (TFs), especially PHYTOCHROME-INTERACTING FACTOR and -BINDING FACTOR, together with GI itself. We propose a model whereby diel changes in GI control oscillations in ABA responses. Peak GI accumulation at midday contributes to establishing a phase of reduced ABA sensitivity and related physiological responses, by gating DNA binding or function of different classes of TFs that cooperate or compete with GI at target regions.
Collapse
Affiliation(s)
- Beata Siemiatkowska
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Bhaskara G Badiger
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Matteo Riboni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Francesca D'Avila
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì, 8, Milano 20142, Italy
| | - Daniele Braga
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì, 8, Milano 20142, Italy
| | - Mohamed Abd Allah Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Damiano Martignago
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Sara Colanero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Massimo Galbiati
- Istituto di Biologia e Biotecnologia Agraria-IBBA, CNR, Via Edoardo Bassini, 15, Milano 20133, Italy
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, Cologne 50931, Germany
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, Milano 20133, Italy
| |
Collapse
|
39
|
Kim DH, Lee SW, Moon H, Choi D, Kim S, Kang H, Kim J, Choi G, Huq E. ABI3- and PIF1-mediated regulation of GIG1 enhances seed germination by detoxification of methylglyoxal in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1578-1591. [PMID: 35365944 DOI: 10.1111/tpj.15755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Methylglyoxal (MG) is a toxic by-product of the glycolysis pathway in most living organisms and was previously shown to inhibit seed germination. MG is detoxified by glyoxalase I and II family proteins in plants. MG is abundantly produced during early embryogenesis in Arabidopsis seeds. However, the mechanism that alleviates the toxic effect of MG in maturing seeds is poorly understood. In this study, by T-DNA mutant population screening, we found that mutations in a glyoxalase I gene (named GERMINATION-IMPAIRED GLYOXALASE 1, GIG1) led to significantly impaired germination compared with wild-type seeds. Transformation of full-length GIG1 cDNA under the constitutively active cauliflower mosaic virus 35S promoter in the gig1 background completely recovered the seed germination phenotype. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that GIG1 is uniquely expressed in seeds and is upregulated by abscisic acid (ABA) and downregulated by gibberellic acid (GA) during seed germination. An ABA signaling component, ABI3, directly activated GIG1 in maturing seeds. In addition, PHYTOCHROME INTERACTING FACTOR 1 (PIF1) also plays cooperatively with ABI3 in the regulation of GIG1 expression in the early stage of imbibed seeds. Furthermore, GIG1 expression is stably silenced by epigenetic repressors such as polycomb repressor complexes. Altogether, our results indicate that light and ABA signaling cooperate to enhance seed germination by the upregulation of GIG1 to detoxify MG in maturing seeds.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sujeong Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jungtae Kim
- Department of Plant Science and Technology, College of Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Enamul Huq
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
40
|
Behr M, Speeckaert N, Kurze E, Morel O, Prévost M, Mol A, Mahamadou Adamou N, Baragé M, Renaut J, Schwab W, El Jaziri M, Baucher M. Leaf necrosis resulting from downregulation of poplar glycosyltransferase UGT72A2. TREE PHYSIOLOGY 2022; 42:1084-1099. [PMID: 34865151 DOI: 10.1093/treephys/tpab161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.
Collapse
Affiliation(s)
- Marc Behr
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nathanael Speeckaert
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Oriane Morel
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Martine Prévost
- Unité de recherche Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Adeline Mol
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Nassirou Mahamadou Adamou
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Moussa Baragé
- Laboratoire de Biotechnologie Végétale et Amélioration des Plantes (LABAP), Université Abdou Moumouni de Niamey, Niamey, Niger
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, 85354 Freising, Germany
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université libre de Bruxelles, 12 rue des Profs Jeener et Brachet, Gosselies 6041, Belgium
| |
Collapse
|
41
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
42
|
Li C, Qi L, Zhang S, Dong X, Jing Y, Cheng J, Feng Z, Peng J, Li H, Zhou Y, Wang X, Han R, Duan J, Terzaghi W, Lin R, Li J. Mutual upregulation of HY5 and TZP in mediating phytochrome A signaling. THE PLANT CELL 2022; 34:633-654. [PMID: 34741605 PMCID: PMC8774092 DOI: 10.1093/plcell/koab254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Phytochrome A (phyA) is the far-red (FR) light photoreceptor in plants that is essential for seedling de-etiolation under FR-rich environments, such as canopy shade. TANDEM ZINC-FINGER/PLUS3 (TZP) was recently identified as a key component of phyA signal transduction in Arabidopsis thaliana; however, how TZP is integrated into the phyA signaling networks remains largely obscure. Here, we demonstrate that ELONGATED HYPOCOTYL5 (HY5), a well-characterized transcription factor promoting photomorphogenesis, mediates FR light induction of TZP expression by directly binding to a G-box motif in the TZP promoter. Furthermore, TZP physically interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), an E3 ubiquitin ligase targeting HY5 for 26S proteasome-mediated degradation, and this interaction inhibits COP1 interaction with HY5. Consistent with those results, TZP post-translationally promotes HY5 protein stability in FR light, and in turn, TZP protein itself is destabilized by COP1 in both dark and FR light conditions. Moreover, tzp hy5 double mutants display an additive phenotype relative to their respective single mutants under high FR light intensities, indicating that TZP and HY5 also function in largely independent pathways. Together, our data demonstrate that HY5 and TZP mutually upregulate each other in transmitting the FR light signal, thus providing insights into the complicated but delicate control of phyA signaling networks.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoman Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziyi Feng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Peng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Run Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766, USA
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Zhang Z, Xu C, Zhang S, Shi C, Cheng H, Liu H, Zhong B. Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization. PLANT PHYSIOLOGY 2022; 188:332-346. [PMID: 34662425 PMCID: PMC8774840 DOI: 10.1093/plphys/kiab486] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses and acclimation to UV-B radiation by regulating the transcription of a series of transcription factors (TFs). However, the origin and evolution of UVR8-mediated signaling pathways remain largely unknown. In this study, we investigated the origin and evolution of the major components of the UVR8-mediated signaling pathway (UVR8, REPRESSOR OF UV-B PHOTOMORPHOGENESIS [RUP], BRI1-EMS-SUPPRESSOR1 [BES1], BES1-INTERACTING MYC-LIKE 1 (BIM1), WRKY DNA-BINDING PROTEIN 36 (WRKY36), MYB DOMAIN PROTEIN 73/77/13 [MYB73/MYB77/MYB13], and PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 and PIF5]) using comparative genomics and phylogenetic approaches. We showed that the central regulator UVR8 presented a conservative evolutionary route during plant evolution, and the evolutionary history of downstream negative regulators and TFs was different from that of green plant phylogeny. The canonical UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC 1(COP1)/SUPPRESSOR OF PHYA-105 (SPA)-ELONGATED HYPOCOTYL 5 (HY5)-RUP signaling pathway originated in chlorophytes and conferred green algae the additional ability to cope with UV-B radiation. Moreover, the emergence of multiple UVR8-mediated signaling pathways in charophytes laid the foundations for the cross-talk between UV-B signals and endogenous hormone responses. Importantly, we observed signatures that reflect plant adaptations to high UV-B irradiance in subaerial/terrestrial environments, including positive selection in UVR8 and RUPs and increased copy number of some vital TFs. These results revealed that green plants not only experienced adaptive modifications in the canonical UVR8-COP1/SPA-HY5-RUP signaling pathway, but also diversified their UV-B signal transduction mechanisms through increasing cross-talk with other pathways, such as those associated with brassinosteroids and auxin. This study greatly expands our understanding of molecular evolution and adaptive mechanisms underlying plant UV-B acclimation.
Collapse
Affiliation(s)
- Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chen Shi
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Cheng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
44
|
Shen Z, Chen M. Deciphering Novel Transcriptional Regulators of Soybean Hypocotyl Elongation Based on Gene Co-expression Network Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:837130. [PMID: 35273629 PMCID: PMC8902393 DOI: 10.3389/fpls.2022.837130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
Hypocotyl elongation is the key step of soybean seed germination, as well an important symbol of seedling vitality, but the regulatory mechanisms remain largely elusive. To address the problem, bioinformatics approaches along with the weighted gene co-expression network analysis (WGCNA) were carried out to elucidate the regulatory networks and identify key regulators underlying soybean hypocotyl elongation at transcriptional level. Combining results from WGCNA, yeast one hybridization, and phenotypic analysis of transgenic plants, a cyan module significantly associated with hypocotyl elongation was discerned, from which two novel regulatory submodules were identified as key candidates underpinning soybean hypocotyl elongation by modulating auxin and light responsive signaling pathways. Taken together, our results constructed the regulatory network and identified novel transcriptional regulators of soybean hypocotyl elongation based on WGCNA, which provide new insights into the global regulatory basis of soybean hypocotyl elongation and offer potential targets for soybean improvement to acquire cultivars with well-tuned hypocotyl elongation and seed germination vigor.
Collapse
Affiliation(s)
- Zhikang Shen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Min Chen
| |
Collapse
|
45
|
González-Grandío E, Álamos S, Zhang Y, Dalton-Roesler J, Niyogi KK, García HG, Quail PH. Chromatin Changes in Phytochrome Interacting Factor-Regulated Genes Parallel Their Rapid Transcriptional Response to Light. FRONTIERS IN PLANT SCIENCE 2022; 13:803441. [PMID: 35251080 PMCID: PMC8891703 DOI: 10.3389/fpls.2022.803441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 05/11/2023]
Abstract
As sessile organisms, plants must adapt to a changing environment, sensing variations in resource availability and modifying their development in response. Light is one of the most important resources for plants, and its perception by sensory photoreceptors (e.g., phytochromes) and subsequent transduction into long-term transcriptional reprogramming have been well characterized. Chromatin changes have been shown to be involved in photomorphogenesis. However, the initial short-term transcriptional changes produced by light and what factors enable these rapid changes are not well studied. Here, we define rapidly light-responsive, Phytochrome Interacting Factor (PIF) direct-target genes (LRP-DTGs). We found that a majority of these genes also show rapid changes in Histone 3 Lysine-9 acetylation (H3K9ac) in response to the light signal. Detailed time-course analysis of transcript and chromatin changes showed that, for light-repressed genes, H3K9 deacetylation parallels light-triggered transcriptional repression, while for light-induced genes, H3K9 acetylation appeared to somewhat precede light-activated transcript accumulation. However, direct, real-time imaging of transcript elongation in the nucleus revealed that, in fact, transcriptional induction actually parallels H3K9 acetylation. Collectively, the data raise the possibility that light-induced transcriptional and chromatin-remodeling processes are mechanistically intertwined. Histone modifying proteins involved in long term light responses do not seem to have a role in this fast response, indicating that different factors might act at different stages of the light response. This work not only advances our understanding of plant responses to light, but also unveils a system in which rapid chromatin changes in reaction to an external signal can be studied under natural conditions.
Collapse
Affiliation(s)
- Eduardo González-Grandío
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
- *Correspondence: Eduardo González-Grandío,
| | - Simón Álamos
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Jutta Dalton-Roesler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Hernán G. García
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Physics, University of California, Berkeley, Berkeley, CA, United States
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, United States
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
- Peter H. Quail,
| |
Collapse
|
46
|
López-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, Franco-Zorrilla JM. DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. PLANT COMMUNICATIONS 2021; 2:100232. [PMID: 34778747 PMCID: PMC8577090 DOI: 10.1016/j.xplc.2021.100232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 05/22/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to cis-regulatory sequences in the promoters of target genes. Recent research is helping to decipher in part the cis-regulatory code in eukaryotes, including plants, but it is not yet fully understood how paralogous TFs select their targets. Here we addressed this question by studying several proteins of the basic helix-loop-helix (bHLH) family of plant TFs, all of which recognize the same DNA motif. We focused on the MYC-related group of bHLHs, that redundantly regulate the jasmonate (JA) signaling pathway, and we observed a high correspondence between DNA-binding profiles in vitro and MYC function in vivo. We demonstrated that A/T-rich modules flanking the MYC-binding motif, conserved from bryophytes to higher plants, are essential for TF recognition. We observed particular DNA-shape features associated with A/T modules, indicating that the DNA shape may contribute to MYC DNA binding. We extended this analysis to 20 additional bHLHs and observed correspondence between in vitro binding and protein function, but it could not be attributed to A/T modules as in MYCs. We conclude that different bHLHs may have their own codes for DNA binding and specific selection of targets that, at least in the case of MYCs, depend on the TF-DNA interplay.
Collapse
Affiliation(s)
- Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Marta Godoy
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Joaquín Grau
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - María Peñuelas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - José M. Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Corresponding author
| |
Collapse
|
47
|
Liu H, Shu Q, Lin-Wang K, Allan AC, Espley RV, Su J, Pei M, Wu J. The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. MOLECULAR HORTICULTURE 2021; 1:14. [PMID: 37789406 PMCID: PMC10514999 DOI: 10.1186/s43897-021-00018-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 09/10/2021] [Indexed: 10/05/2023]
Abstract
Some cultivars of pear (Pyrus L.) show attractive red fruit skin due to anthocyanin accumulation. This pigmentation can be affected by environmental conditions, especially light. To explore the light-induced regulation network for anthocyanin biosynthesis and fruit coloration in pear, small RNA libraries and mRNA libraries from fruit skins of 'Yunhongyihao' pear were constructed to compare the difference between bagging and debagging treatments. Analysis of RNA-seq of fruit skins with limited light (bagged) and exposed to light (debagged), showed that PyPIF5 was down-regulated after bag removal. PymiR156a was also differentially expressed between bagged and debagged fruit skins. We found that PyPIF5 negatively regulated PymiR156a expression in bagged fruits by directly binding to the G-box motif in its promoter. In addition, PymiR156a overexpression promoted anthocyanin accumulation in both pear skin and apple calli. We confirmed that PymiR156a mediated the cleavage of PySPL9, and that the target PySPL9 protein could form heterodimers with two key anthocyanin regulators (PyMYB114/PyMYB10). We proposed a new module of PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10. When the bagged fruits were re-exposed to light, PyPIF5 was down-regulated and its inhibitory effect on PymiR156a was weakened, which leads to degradation of the target PySPL, thus eliminating the blocking effect of PySPL on the formation of the regulatory MYB complexes. Ultimately, this promotes anthocyanin biosynthesis in pear skin.
Collapse
Affiliation(s)
- Hainan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang, 471023, China
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Maosong Pei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Jiang A, Guo Z, Pan J, Yang Y, Zhuang Y, Zuo D, Hao C, Gao Z, Xin P, Chu J, Zhong S, Li L. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. THE PLANT CELL 2021; 33:1506-1529. [PMID: 33616669 PMCID: PMC8254493 DOI: 10.1093/plcell/koab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/11/2021] [Indexed: 05/15/2023]
Abstract
Light-dependent seed germination is a vital process for many seed plants. A decisive event in light-induced germination is degradation of the central repressor PHYTOCHROME INTERACTING FACTOR 1 (PIF1). The balance between gibberellic acid (GA) and abscisic acid (ABA) helps to control germination. However, the cellular mechanisms linking PIF1 turnover to hormonal balancing remain elusive. Here, employing far-red light-induced Arabidopsis thaliana seed germination as the experimental system, we identified PLANTACYANIN (PCY) as an inhibitor of germination. It is a blue copper protein associated with the vacuole that is both highly expressed in mature seeds and rapidly silenced during germination. Molecular analyses showed that PIF1 binds to the miR408 promoter and represses miR408 accumulation. This in turn posttranscriptionally modulates PCY abundance, forming the PIF1-miR408-PCY repression cascade for translating PIF1 turnover to PCY turnover during early germination. Genetic analysis, RNA-sequencing, and hormone quantification revealed that PCY is necessary and sufficient to maintain the PIF1-mediated seed transcriptome and the low-GA-high-ABA state. Furthermore, we found that PCY domain organization and regulation by miR408 are conserved features in seed plants. These results revealed a cellular mechanism whereby PIF1-relayed external light signals are converted through PCY turnover to internal hormonal profiles for controlling seed germination.
Collapse
Affiliation(s)
- Anlong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Daqing Zuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
49
|
Alvarez JM, Brooks MD, Swift J, Coruzzi GM. Time-Based Systems Biology Approaches to Capture and Model Dynamic Gene Regulatory Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:105-131. [PMID: 33667112 PMCID: PMC9312366 DOI: 10.1146/annurev-arplant-081320-090914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets-at both the local and genome-wide levels-and how they are used to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology.
Collapse
Affiliation(s)
- Jose M Alvarez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Matthew D Brooks
- Global Change and Photosynthesis Research Unit, US Department of Agriculture Agricultural Research Service, Urbana, Illinois 61801, USA
| | - Joseph Swift
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA;
| |
Collapse
|
50
|
Cañibano E, Bourbousse C, García-León M, Garnelo Gómez B, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. MOLECULAR PLANT 2021; 14:963-982. [PMID: 33711490 DOI: 10.1101/2020.09.30.318253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 05/23/2023]
Abstract
DE-ETIOLATED 1 (DET1) and CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) are two essential repressors of Arabidopsis photomorphogenesis. These proteins can associate with CULLIN4 to form independent CRL4-based E3 ubiquitin ligases that mediate the degradation of several photomorphogenic transcription factors, including ELONGATED HYPOCOTYL 5 (HY5), thereby controlling multiple gene-regulatory networks. Despite extensive biochemical and genetic analyses of their multi-subunit complexes, the functional links between DET1 and COP1 have long remained elusive. Here, we report that DET1 associates with COP1 in vivo, enhances COP1-HY5 interaction, and promotes COP1 destabilization in a process that dampens HY5 protein abundance. By regulating its accumulation, DET1 avoids HY5 association with hundreds of second-site genomic loci, which are also frequently targeted by the skotomorphogenic transcription factor PHYTOCHROME-INTERACTING FACTOR 3. Accordingly, ectopic HY5 chromatin enrichment favors local gene repression and can trigger fusca-like phenotypes. This study therefore shows that DET1-mediated regulation of COP1 stability tunes down the HY5 cistrome, avoiding hyper-photomorphogenic responses that might compromise plant viability.
Collapse
Affiliation(s)
- Esther Cañibano
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain
| | - Clara Bourbousse
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Borja Garnelo Gómez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Léa Wolff
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | | | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Fredy Barneche
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain.
| |
Collapse
|