1
|
Bai C, Zhang T, Wu T, Wang Y, Yao S, Wang C, Tan J, Huang R, Zhou P. Aptamer selection of radiation-sensitive protein p21 and electrical impedance detection-based applications in radiation dose assessment. Biosens Bioelectron 2025; 282:117447. [PMID: 40253803 DOI: 10.1016/j.bios.2025.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Radiation dose assessment is the main basis for the diagnosis of acute radiation sickness. At present, there is a lack of rapid and portable dose assessment methods, which has an important impact on the rapid diagnosis and precise treatment of radiation accident patients and nuclear practitioners. We selected and obtained specific aptamers for radiation-sensitive protein p21 protein by the magnetic cross-linking precipitation (MCP)-SELEX procedure. The aptamer has a high affinity for binding to the p21 protein and its Kd value is 2.21 × 10-7 mol/L. We subsequently established a new method for radiation dose assessment of an electrochemical impedance (EIS) aptasensor with screen-printed electrode chips. There was a good dose-effect relationship between the p21 protein expression level in PBMCs in human peripheral blood detected by this method within the dose range of 0-10 Gy, and detection limit of radiation dose is 0.38 Gy (LOD, S/N = 3). This dose range covers the diagnostic range of acute radiation sickness in the bone marrow. This method is not only portable but also fast, saving hours to days compared with the previous dose assessment method based on radiation sensitive protein. It can be applied to the rapid and portable diagnosis of acute radiation sickness.
Collapse
Affiliation(s)
- Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Tinghui Zhang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Tao Wu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yuting Wang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Cui Wang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jinpeng Tan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, PR China.
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
2
|
Wei W, Cao L, Li J, Chen L. An efficient cell micronucleus classification network based on multi-layer perception attention mechanism. Sci Rep 2025; 15:7961. [PMID: 40055416 PMCID: PMC11889248 DOI: 10.1038/s41598-025-93158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 05/13/2025] Open
Abstract
Cellular micronucleus detection plays an important role in pathological toxicology detection and early cancer diagnosis. To address the challenges of tiny targets, high inter-class similarity, limited sample data and class imbalance in the field of cellular micronucleus image detection, this paper proposes a lightweight network called MobileViT-MN (Micronucleus), which integrates a multilayer perceptual attention mechanism. Considering that limited data and class imbalance may lead to overfitting of the model, we employ data augmentation to mitigate this problem. Additionally, based on domain adaptation, we innovatively introduce transfer learning. Furthermore, a novel Deep Separation-Decentralization module is designed to implement the reconstruction of the network, which employs attention mechanisms and an alternative strategy of deep separable convolution. Numerous ablation experiments are performed to validate the effectiveness of our method. The experimental results show that MobileViT-MN obtains outstanding performance on the augmented cellular micronucleus dataset. Avg_Acc reaches 0.933, F1 scores 0.971, and ROC scores 0.965. Compared with other classical algorithms, MobileViT-MN is more superior in classification performance.
Collapse
Affiliation(s)
- Weiyi Wei
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
| | - Linfeng Cao
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China.
| | - Jingyu Li
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
| | - Luheng Chen
- College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
3
|
Tichy A, Carpenter AD, Li Y, Rydlova G, Rehulka P, Markova M, Milanova M, Chmil V, Cheema AK, Singh VK. Radiation Signature in Plasma Metabolome of Total-Body Irradiated Nonhuman Primates and Clinical Patients. Int J Mol Sci 2024; 25:9208. [PMID: 39273157 PMCID: PMC11395250 DOI: 10.3390/ijms25179208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
Collapse
Affiliation(s)
- Ales Tichy
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gabriela Rydlova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Biology and Pathology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Králové, Czech Republic
| | - Marketa Markova
- Department of Haematology and Blood Transfusion, University Hospital Na Bulovce, 128 00 Prague, Czech Republic
| | - Marcela Milanova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Vojtech Chmil
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, 662 10 Brno, Czech Republic
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 2057, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Beaton-Green LA, Mayenburg JM, Marro L, Sanchez SC, Lachapelle S, Wilkins RC. Multiparameter imaging flow cytometry-based cytokinesis-block micronucleus assay: Reduction of culture time and blood volume for improved efficiency. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503792. [PMID: 39147444 PMCID: PMC11370997 DOI: 10.1016/j.mrgentox.2024.503792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
In the event of a large-scale incident involving radiological or nuclear exposures, there is a potential for large numbers of individuals to have received doses of radiation sufficient to cause adverse health effects. It is imperative to quickly identify these individuals in order to provide information to the medical community to assist in making decisions about their treatment. The cytokinesis-block micronucleus assay is a well-established method for performing biodosimetry. This assay has previously been adapted to imaging flow cytometry and has been validated as a high-throughput option for providing dose estimates in the range of 0-10 Gy. The goal of this study was to test the ability to further optimize the assay by reducing the time of culture to 48 h from 68 h as well as reducing the volume of blood required for the analysis to 200 μL from 2 mL. These modifications would provide efficiencies in time and ease of processing impacting the ability to manage large numbers of samples and provide dose estimates in a timely manner. Results demonstrated that either the blood volume or the culture time could be reduced while maintaining dose estimates with sufficient accuracy for triage analysis. Reducing both the blood volume and culture time, however, resulted in poor dose estimates. In conclusion, depending on the needs of the scenario, either culture time or the blood volume could be reduced to improve the efficiency of analysis for mass casualty scenarios.
Collapse
Affiliation(s)
- Lindsay A Beaton-Green
- Environmental and Radiation Health Sciences Directorate, Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON K1A 1C1, Canada
| | - Jessica M Mayenburg
- Environmental and Radiation Health Sciences Directorate, Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON K1A 1C1, Canada
| | - Leonora Marro
- Environmental and Radiation Health Sciences Directorate, Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON K1A 1C1, Canada
| | - Sarita Cuadros Sanchez
- Environmental and Radiation Health Sciences Directorate, Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON K1A 1C1, Canada; University of Ottawa, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Sylvie Lachapelle
- Environmental and Radiation Health Sciences Directorate, Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON K1A 1C1, Canada
| | - Ruth C Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada, 775 Brookfield Road, PL 6303B, Ottawa, ON K1A 1C1, Canada.
| |
Collapse
|
5
|
Unal D, Kiraz A, Aydogan S, Sarica ZS, Celik H, Akay E, Eroglu C, Kaplan B. Effect of radiation dose rates and cisplatin on cytogenetic damage in rats receiving head-neck radiotherapy. J Cancer Res Ther 2024; 20:1595-1598. [PMID: 39412925 DOI: 10.4103/jcrt.jcrt_2006_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/23/2022] [Indexed: 10/18/2024]
Abstract
BACKGROUND We aimed to investigate effect of radiotherapy (RT) applications with different dose rates on cytogenetic damages, which focused on micronucleus (MN) formation, and evaluate how this damage varies by cisplatin in rats receiving head-neck RT. MATERIAL AND METHODS Thirty-six Sprague Dawley rats were divided into five groups. The first and second groups were irradiated at a dose rate of 300 monitor unit/minute (MU/min) and 600 MU/min, respectively. The third group was irradiated at a dose rate of 300 MU/min and given cisplatin. The fourth group was irradiated at a dose rate of 600 MU/min and given cisplatin. The fifth group received neither irradiation nor cisplatin (control group). One thousand polychromatic erythrocytes were scored, and MN frequency in polychromatic erythrocytes was determined for each rat. RESULTS There was a significant difference among five groups in terms of the number of MN (p: 0.001). The number of MN was significantly higher in the 600 MU/min + cisplatin group (fourth group) compared to the control group [9.5 (1.0-23.0) vs. 1.5 (1.0-2.0), respectively]. It was also significantly higher in 600 MU/min + cisplatin group (fourth group) compared to 300 MU/min group (first group) [9.5 (1.0-23.0) vs. 2.0 (1.0-3.0), respectively]. On the other hand, there was no significant difference among other groups. CONCLUSIONS Our findings suggest that RT given at a higher dose rate causes more cytogenetic damage, and this damage is increased by concurrent administration of cisplatin.
Collapse
Affiliation(s)
- Dilek Unal
- Department of Radiation Oncology, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey
| | - Aslihan Kiraz
- Department of Medical Genetic, Kayseri Research and Education Hospital, Kayseri, Turkey
| | - Serhat Aydogan
- Department of Anesthesiology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Zeynep Soyer Sarica
- Erciyes University Experimental Research and Application Center, Kayseri, Turkey
| | - Harun Celik
- Department of Radiation Oncology, Acıbadem Kayseri Hospital, Kayseri, Turkey
| | - Ebru Akay
- Department of Pathology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Celalettin Eroglu
- Department of Radiation Oncology, Erciyes University Medical School, Kayseri, Turkey
| | - Bunyamin Kaplan
- Department of Radiation Oncology, Acıbadem Kayseri Hospital, Kayseri, Turkey
| |
Collapse
|
6
|
Ladeira C. The use of effect biomarkers in chemical mixtures risk assessment - Are they still important? MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503768. [PMID: 38821670 DOI: 10.1016/j.mrgentox.2024.503768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Human epidemiological studies with biomarkers of effect play an invaluable role in identifying health effects with chemical exposures and in disease prevention. Effect biomarkers that measure genetic damage are potent tools to address the carcinogenic and/or mutagenic potential of chemical exposures, increasing confidence in regulatory risk assessment decision-making processes. The micronucleus (MN) test is recognized as one of the most successful and reliable assays to assess genotoxic events, which are associated with exposures that may cause cancer. To move towards the next generation risk assessment is crucial to establish bridges between standard approaches, new approach methodologies (NAMs) and tools for increase the mechanistically-based biological plausibility in human studies, such as the adverse outcome pathways (AOPs) framework. This paper aims to highlight the still active role of MN as biomarker of effect in the evolution and applicability of new methods and approaches in human risk assessment, with the positive consequence, that the new methods provide a deeper knowledge of the mechanistically-based biology of these endpoints.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC, Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon 1990-096, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Lisbon, Portugal.
| |
Collapse
|
7
|
Irnidayanti Y, Azzahra M, Lusiyanti Y, Tetriana D, Yusuf D. Genotoxicity of Gamma Radiation Against Lymphocytes of Radiation Workers: The Cytokinesis-Block Micronucleus Assay. Pak J Biol Sci 2024; 27:276-282. [PMID: 38840468 DOI: 10.3923/pjbs.2024.276.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
<b>Background and Objective:</b> Gamma irradiation induces genotoxicity, characterized by the formation of extra-nuclear bodies and left behind during the anaphase stage of cell division, often referred to as a micronucleus (MN). The present work aims to monitor exposure to ionizing radiation as a genotoxic agent in the lymphocytes of workers at radiation energy centers. <b>Materials and Methods:</b> The lymphocyte cytokinesis block micronucleus assay used and analyzed the correlation between the Nuclear Division Index (NDI), age, blood type and the number of micronuclei (MN). Blood samples were collected from 20 volunteers in heparin tubes, exposed to 2 Gy gamma rays and cultured <i>in vitro</i>. <b>Results:</b> A significant difference in the number of micronuclei between blood group A and blood groups A, B and AB. The Nuclear Division Index (NDI) value for lymphocytes of radiation energy center workers after gamma radiation was significant (1.74±0.1) but still within the normal range. Neither MN frequency nor NDI values correlated with age, but MN frequency showed a correlation with blood type. <b>Conclusion:</b> The gamma irradiation did not induce a cytostatic effect but proved genotoxic to the lymphocytes of radiation energy center workers. Notably, blood type A demonstrated higher sensitivity to gamma radiation.
Collapse
|
8
|
Pham ND, Tran TM, Anderson D, Che QT, Pham HTK. Baseline micronucleus frequencies and 60Co cytokinesis-block micronucleus assay dose-response curve for biodosimetry in Vietnam. RADIATION PROTECTION DOSIMETRY 2024; 200:221-228. [PMID: 37807769 DOI: 10.1093/rpd/ncad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
This study aims to establish baseline micronucleus (MN) frequencies from various populations of residents in Vietnam and develop a 60Co dose-response curve for the cytokinesis-block micronucleus (CBMN) assay. Blood samples were exposed in vitro to a 60Co source at a dose rate of 275 mGy per min in a range of 0.1 to 4.0 Gy. MN background frequencies were 4.5 ± 3.2, 7.3 ± 4.6, 7.0 ± 3.8 and 13.1 ± 6.7 in 1000 binucleated (BN) cells for 96 healthy donors, 22 male radiation workers and 12 breast cancer patients, respectively. Blood samples from three healthy donors were used to generate the MN dose-response curve: y = C + (0.0496 ± 0.0069)D + (0.0143 ± 0.0026)D2. This curve was verified through an inter-laboratory comparison (RENEB ILC 2021). Our findings highlight the significance of the CBMN assay as an additional essential tool for biodosimetry in Vietnam.
Collapse
Affiliation(s)
- Ngoc Duy Pham
- Radiation Technology and Biotechnology Center, Dalat Nuclear Research Institute, No. 01, Nguyen Tu Luc Street, Dalat City, Lamdong Province 66000, Vietnam
| | - Thanh Mai Tran
- Radiation Technology and Biotechnology Center, Dalat Nuclear Research Institute, No. 01, Nguyen Tu Luc Street, Dalat City, Lamdong Province 66000, Vietnam
| | - Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Quang Tuan Che
- Radiation Technology and Biotechnology Center, Dalat Nuclear Research Institute, No. 01, Nguyen Tu Luc Street, Dalat City, Lamdong Province 66000, Vietnam
| | - Ho Thuat Khoa Pham
- Radiation Technology and Biotechnology Center, Dalat Nuclear Research Institute, No. 01, Nguyen Tu Luc Street, Dalat City, Lamdong Province 66000, Vietnam
| |
Collapse
|
9
|
Çobanoğlu H, Çayır A. Occupational exposure to radiation among health workers: Genome integrity and predictors of exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503726. [PMID: 38272632 DOI: 10.1016/j.mrgentox.2024.503726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The current study aimed to investigate genomic instabilities in healthcare workers who may experience varying levels of radiation exposure through various radiological procedures. It also sought to determine if factors related to the work environment and dosimeter reading could effectively explain the observed genomic instabilities. Utilizing the cytokinesis-block micronucleus assay (CBMN) on peripheral blood lymphocytes, we assessed a spectrum of genomic aberrations, including nucleoplasmic bridge (NPB), nuclear budding (NBUD), micronucleus (MN) formation, and total DNA damage (TDD). The study uncovered a statistically significant increase in the occurrence of distinct DNA anomalies among radiology workers (with a significance level of P < 0.0001 for all measurements). Notably, parameters such as total working hours, average work duration, and time spent in projection radiography exhibited significant correlations with MN and TDD levels in these workers. The dosimeter readings demonstrated a positive correlation with the frequency of NPB and NBUD, indicating a substantial association between radiation exposure and these two genomic anomalies. Our multivariable models identified the time spent in projection radiography as a promising parameter for explaining the overall genomic instability observed in these professionals. Thus, while dosimeters alone may not fully explain elevated total DNA damage, intrinsic work environment factors hold potential in indicating exposure levels for these individuals, providing a complementary approach to monitoring.
Collapse
Affiliation(s)
- Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
| |
Collapse
|
10
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
11
|
Karmanova EE, Chernikov AV, Popova NR, Sharapov MG, Ivanov VE, Bruskov VI. Metformin mitigates radiation toxicity exerting antioxidant and genoprotective properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2449-2460. [PMID: 36961549 PMCID: PMC10036983 DOI: 10.1007/s00210-023-02466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
The antidiabetic drug metformin (MF) exhibits redox-modulating effects in various pathologies associated with oxidative stress and mitigates ionizing radiation-induced toxicity, but the underlying mechanisms remain to be elucidated. Thus, we studied some radiomitigatory effects of MF and explored the possible mechanisms behind them. Highly sensitive luminescence methods and non-competitive enzyme-linked immunosorbent assay (ELISA) were used in in vitro studies, and in vivo the damage to bone marrow cells and its repair were assessed by the micronucleus test. In a solution, MF at concentrations exceeding 0.1 µM effectively intercepts •OH upon X-ray-irradiation, but does not react directly with H2O2. MF accelerates the decomposition of H2O2 catalyzed by copper ions. MF does not affect the radiation-induced formation of H2O2 in the solution of bovine gamma-globulin (BGG), but has a modulating effect on the generation of H2O2 in the solution of bovine serum albumin (BSA). MF at 0.05-1 mM decreases the radiation-induced formation of 8-oxoguanine in a DNA solution depending on the concentration of MF with a maximum at 0.25 mM. MF at doses of 3 mg/kg body weight (bw) and 30 mg/kg bw administered to mice after irradiation, but not before irradiation, reduces the frequency of micronucleus formation in polychromatophilic erythrocytes of mouse red bone marrow. Our work has shown that the radiomitigatory properties of MF are mediated by antioxidant mechanisms of action, possibly including its ability to chelate polyvalent metal ions.
Collapse
Affiliation(s)
- Ekaterina E Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anatoly V Chernikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia.
| | - Nelli R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Federal Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vladimir E Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
12
|
Schunck C, Lörch T, Kowalski R, Porter M, Mahnke R, Capaccio C, Perrier J, Damer K. A standardized and automated CBMN assay for biological dosimetry: the CytoRADx™ system. RADIATION PROTECTION DOSIMETRY 2023; 199:1516-1519. [PMID: 37721072 DOI: 10.1093/rpd/ncad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/06/2022] [Accepted: 01/25/2023] [Indexed: 09/19/2023]
Abstract
Major nuclear accidents can result in many casualties, and it is important to assess the absorbed radiation dose to support treatment decisions. Biological dosimetry (BD) allows retrospective determination of dose using biological markers. To achieve consistent cytogenetic assay results across labs, the current practice requires each lab to generate periodic, unique calibration curves using in vitro dose-effect experiments. Here, we present CytoRADx™, a standardized biodosimetry system that integrates automated dose calculation in a high-throughput platform without the need for lab-specific calibration curves. CytoRADx consists of an improved, standardized Cytokinesis Block Micronucleus assay combined with automated analysis utilizing an established slide scanning device. We tested CytoRADx for accuracy and reproducibility across different instruments, sites, days and operators. Our results demonstrate that CytoRADx eliminates the time-consuming, lab-specific calibration curves, allowing multiple laboratories to obtain consistent results and to distribute the testing burden in the event of a large-scale accident.
Collapse
Affiliation(s)
| | - Thomas Lörch
- MetaSystems Hard & Software GmbH, Altlussheim, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Bertucci A, Wilkins RC, Lachapelle S, Turner HC, Brenner DJ, Garty G. Comparison of Isolated Lymphocyte and Whole Blood-Based CBMN Assays for Radiation Triage. Cytogenet Genome Res 2023; 163:110-120. [PMID: 37573770 PMCID: PMC10859551 DOI: 10.1159/000533488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Following a mass-casualty nuclear/radiological event, there will be an important need for rapid and accurate estimation of absorbed dose for biological triage. The cytokinesis-block micronucleus (CBMN) assay is an established and validated cytogenetic biomarker used to assess DNA damage in irradiated peripheral blood lymphocytes. Here, we describe an intercomparison experiment between two biodosimetry laboratories, located at Columbia University (CU) and Health Canada (HC) that performed different variants of the human blood CBMN assay to reconstruct dose in human blood, with CU performing the assay on isolated lymphocytes and using semi-automated scoring whereas HC used the more conventional whole blood assay. Although the micronucleus yields varied significantly between the two assays, the predicted doses closely matched up to 4 Gy - the range from which the HC calibration curve was previously established. These results highlight the importance of a robust calibration curve(s) across a wide age range of donors that match the exposure scenario as closely as possible and that will account for differences in methodology between laboratories. We have seen that at low doses, variability in the results may be attributed to variation in the processing while at higher doses the variation is dominated by inter-individual variation in cell proliferation. This interlaboratory collaboration further highlights the usefulness of the CBMN endpoint to accurately reconstruct absorbed dose in human blood after ionizing radiation exposure.
Collapse
Affiliation(s)
- Antonella Bertucci
- Center for Radiological Research, Columbia University, New York, NY, USA
- Currently at: Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Sylvie Lachapelle
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Helen C. Turner
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Beaton-Green LA, Mayenburg JM, Marro L, Hassan EM, Cuadros Sanchez S, Darwish R, Lachapelle S, Adam N, Burtt JJ, Van Den Hanenberg C, Rodrigues MA, Wang Q, Brenner DJ, Turner HC, Wilkins RC. Application of the Cytokinesis-Block Micronucleus Assay for High-Dose Exposures Using Imaging Flow Cytometry. Cytogenet Genome Res 2023; 163:131-142. [PMID: 37527635 DOI: 10.1159/000532124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The cytokinesis-block micronucleus assay is a well-established method to assess radiation-induced genetic damage in human cells. This assay has been adapted to imaging flow cytometry (IFC), allowing automated analysis of many cells, and eliminating the need to create microscope slides. Furthermore, to improve the efficiency of assay performance, a small-volume method previously developed was employed. Irradiated human blood samples were cultured, stained, and analyzed by IFC to produce images of the cells. Samples were run using both manual and 96-well plate automated acquisition. Multiple parameter-based image features were collected for each sample, and the results were compared to confirm that these acquisition methods are functionally identical. This paper details the multi-parametric analysis developed and the resulting calibration curves up to 10 Gy. The calibration curves were created using a quadratic random coefficient model with Poisson errors, as well as a logistic discriminant function. The curves were then validated with blinded, irradiated samples, using relative bias and relative mean square error. Overall, the accuracy of the dose estimates was adequate for triage dosimetry (within 1 Gy of the true dose) over 90% of the time for lower doses and about half the time for higher doses, with the lowest success rate between 5 and 6 Gy where the calibration curve reached its peak and there was the smallest change in MN/BNC with dose. This work describes the application of a novel multi-parametric analysis that fits the calibration curves and allows dose estimates up to 10 Gy, which were previously limited to 4 Gy. Furthermore, it demonstrates that the results from samples acquired manually and with the autosampler are functionally similar.
Collapse
Affiliation(s)
- Lindsay A Beaton-Green
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jessica M Mayenburg
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Leonora Marro
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Eman M Hassan
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sarita Cuadros Sanchez
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Riham Darwish
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sylvie Lachapelle
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nadine Adam
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Julie J Burtt
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Cyndi Van Den Hanenberg
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Qi Wang
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Ruth C Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Cimci M, Batar B, Bostanci M, Durmaz E, Karayel B, Raimoglou D, Guven M, Karadag B. The Long-Term Impact of Ionizing Radiation on DNA Damage in Patients Undergoing Multiple Cardiac Catheterizations. Cardiovasc Toxicol 2023; 23:278-283. [PMID: 37458898 DOI: 10.1007/s12012-023-09801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/18/2023]
Abstract
Ionizing radiation (IR) exposures have increased exponentially in recent years due to the rise in diagnostic and therapeutic interventions. A number of small-scale studies investigated the long-term effect of IR on health workers or immediate effects of IR on patients undergoing catheterization procedures; however, the long-term impact of multiple cardiac catheterizations on DNA damage on a patient population is not known. In this study, the effects of IR on DNA damage, based on micronuclei (MN) frequency and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as markers in peripheral lymphocytes, were evaluated in patients who previously underwent multiple cardiac catheterization procedures. Moreover, genetic polymorphisms in genes PARP1 Val762Ala, OGG1 Ser326Cys, and APE1 Asn148Glu as a measure of sensitivity to radiation exposure were also investigated in the same patient population. The patients who underwent ≥ 3 cardiac catheterization procedures revealed higher DNA injury in comparison to the patients who underwent ≤ 2 procedures, documented with the presence of higher level of MN frequency (6.4 ± 4.8 vs. 9.1 ± 4.3, p = 0.002) and elevated serum 8-OHdG levels (33.7 ± 3.8 ng/mL vs. 17.4 ± 1.9 ng/mL, p = 0.001). Besides, OGG1 Ser326Cys and APE1 Asn148Glu heterozygous and homozygous polymorphic types, which are related with DNA repair mechanisms, were significantly associated with MN frequency levels (p = 0.006 for heterozygous and p = 0.001 for homozygous with respect to OGG1 Ser326Cys, p = 0.007 for heterozygous and p = 0.001 for homozygous with respect to APE1 Asn148Glu). There was no significant difference in terms of PARP1 Val762Ala gene polymorphism between two groups.
Collapse
Affiliation(s)
- Murat Cimci
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Bahadir Batar
- Department of Medical Biology, Tekirdag Namik Kemal University School of Medicine, Tekirdaǧ, Turkey
| | - Merve Bostanci
- Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eser Durmaz
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Karayel
- Department of Internal Medicine, Health Science University, Kartal Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Damla Raimoglou
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Guven
- Department of Medical Biology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bilgehan Karadag
- Department of Cardiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
16
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
17
|
Lee Y, Jin YW, Seong KM, Wilkins RC, Jang S. Improving radiation dosimetry with an automated micronucleus scoring system: correction of automated scoring errors. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01030-7. [PMID: 37195317 DOI: 10.1007/s00411-023-01030-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Radiation dose estimations performed by automated counting of micronuclei (MN) have been studied for their utility for triage following large-scale radiological incidents; although speed is essential, it also is essential to estimate radiation doses as accurately as possible for long-term epidemiological follow-up. Our goal in this study was to evaluate and improve the performance of automated MN counting for biodosimetry using the cytokinesis-block micronucleus (CBMN) assay. We measured false detection rates and used them to improve the accuracy of dosimetry. The average false-positive rate for binucleated cells was 1.14%; average false-positive and -negative MN rates were 1.03% and 3.50%, respectively. Detection errors seemed to be correlated with radiation dose. Correction of errors by visual inspection of images used for automated counting, called the semi-automated and manual scoring method, increased accuracy of dose estimation. Our findings suggest that dose assessment of the automated MN scoring system can be improved by subsequent error correction, which could be useful for performing biodosimetry on large numbers of people rapidly, accurately, and efficiently.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, Korea Institute of Radiological and Medical Sciences, National Radiation Emergency Medical Center, Seoul, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Young Woo Jin
- Korea Institute of Radiological and Medical Sciences, National Radiation Emergency Medical Center, Seoul, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, Korea Institute of Radiological and Medical Sciences, National Radiation Emergency Medical Center, Seoul, Republic of Korea
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, Korea Institute of Radiological and Medical Sciences, National Radiation Emergency Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
18
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
19
|
Hernández A, Endesfelder D, Einbeck J, Puig P, Benadjaoud MA, Higueras M, Ainsbury E, Gruel G, Oestreicher U, Barrios L, Barquinero JF. Biodose Tools: an R shiny application for biological dosimetry. Int J Radiat Biol 2023; 99:1378-1390. [PMID: 36731491 DOI: 10.1080/09553002.2023.2176564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION In the event of a radiological accident or incident, the aim of biological dosimetry is to convert the yield of a specific biomarker of exposure to ionizing radiation into an absorbed dose. Since the 1980s, various tools have been used to deal with the statistical procedures needed for biological dosimetry, and in general those who made several calculations for different biomarkers were based on closed source software. Here we present a new open source program, Biodose Tools, that has been developed under the umbrella of RENEB (Running the European Network of Biological and retrospective Physical dosimetry). MATERIALS AND METHODS The application has been developed using the R programming language and the shiny package as a framework to create a user-friendly online solution. Since no unique method exists for the different mathematical processes, several meetings and periodic correspondence were held in order to reach a consensus on the solutions to be implemented. RESULTS The current version 3.6.1 supports dose-effect fitting for dicentric and translocation assay. For dose estimation Biodose Tools implements those methods indicated in international guidelines and a specific method to assess heterogeneous exposures. The app can include information on the irradiation conditions to generate the calibration curve. Also, in the dose estimate, information about the accident can be included as well as the explanation of the results obtained. Because the app allows generating a report in various formats, it allows traceability of each biological dosimetry study carried out. The app has been used globally in different exercises and training, which has made it possible to find errors and improve the app itself. There are some features that still need consensus, such as curve fitting and dose estimation using micronucleus analysis. It is also planned to include a package dedicated to interlaboratory comparisons and the incorporation of Bayesian methods for dose estimation. CONCLUSION Biodose Tools provides an open-source solution for biological dosimetry laboratories. The consensus reached helps to harmonize the way in which uncertainties are calculated. In addition, because each laboratory can download and customize the app's source code, it offers a platform to integrate new features.
Collapse
Affiliation(s)
- Alfredo Hernández
- Department of Animal Biology, Plant Biology and Ecology (BABVE), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Jochen Einbeck
- Department of Mathematical Sciences, and Durham Research Methods Centre, Durham University, Durham, UK
| | - Pedro Puig
- Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Mohamed Amine Benadjaoud
- Radiobiology and Regenerative Medicine Research Service (SERAMED), Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Manuel Higueras
- Scientific Computation & Technological Innovation Center (SCoTIC), Universidad de La Rioja, Logroño, Spain
| | | | - Gaëtan Gruel
- Radiobiology of Accidental Exposure Laboratory (LRAcc), Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ursula Oestreicher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Leonardo Barrios
- Department of Cell Biology, Physiology and Immunology (BCFI), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Francesc Barquinero
- Department of Animal Biology, Plant Biology and Ecology (BABVE), Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
20
|
Dhillon VS, Deo P, Fenech M. Effect of Selenium and Lycopene on Radiation Sensitivity in Prostate Cancer Patients Relative to Controls. Cancers (Basel) 2023; 15:cancers15030979. [PMID: 36765936 PMCID: PMC9913686 DOI: 10.3390/cancers15030979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Almost half of prostate cancer (PC) patients receive radiation therapy as primary curative treatment. In spite of advances in our understanding of both nutrition and the genomics of prostate cancer, studies on the effects of nutrients on the radiation sensitivity of PC patients are lacking. We tested the hypothesis that low plasma levels of selenium and lycopene have detrimental effects on ionising radiation-induced DNA damage in prostate cancer patients relative to healthy individuals. The present study was performed in 106 PC patients and 132 age-matched controls. We found that the radiation-induced micronucleus (MN) and nuclear buds (NBuds) frequencies were significantly higher in PC patients with low selenium (p = 0.008 and p = 0.0006 respectively) or low lycopene (p = 0.007 and p = 0.0006 respectively) levels compared to the controls. The frequency of NBuds was significantly higher (p < 0.0001) in PC patients who had low levels of both selenium and lycopene compared to (i) controls with low levels of both selenium and lycopene and (ii) PC patients with high levels of both selenium and lycopene (p = 0.0001). Our results support the hypothesis that low selenium and lycopene levels increase the sensitivity to radiation-induced DNA damage and suggest that nutrition-based treatment strategies are important to minimise the DNA-damaging effects in PC patients receiving radiotherapy.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Correspondence: (V.S.D.); (M.F.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
- Correspondence: (V.S.D.); (M.F.)
| |
Collapse
|
21
|
Shuryak I, Royba E, Repin M, Turner HC, Garty G, Deoli N, Brenner DJ. A machine learning method for improving the accuracy of radiation biodosimetry by combining data from the dicentric chromosomes and micronucleus assays. Sci Rep 2022; 12:21077. [PMID: 36473912 PMCID: PMC9726929 DOI: 10.1038/s41598-022-25453-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A large-scale malicious or accidental radiological event can expose vast numbers of people to ionizing radiation. The dicentric chromosome (DCA) and cytokinesis-block micronucleus (CBMN) assays are well-established biodosimetry methods for estimating individual absorbed doses after radiation exposure. Here we used machine learning (ML) to test the hypothesis that combining automated DCA and CBMN assays will improve dose reconstruction accuracy, compared with using either cytogenetic assay alone. We analyzed 1349 blood sample aliquots from 155 donors of different ages (3-69 years) and sexes (49.1% males), ex vivo irradiated with 0-8 Gy at dose rates from 0.08 Gy/day to ≥ 600 Gy/s. We compared the performances of several state-of-the-art ensemble ML methods and found that random forest generated the best results, with R2 for actual vs. reconstructed doses on a testing data subset = 0.845, and mean absolute error = 0.628 Gy. The most important predictor variables were CBMN and DCA frequencies, and age. Removing CBMN or DCA data from the model significantly increased squared errors on testing data (p-values 3.4 × 10-8 and 1.1 × 10-6, respectively). These findings demonstrate the promising potential of combining CBMN and DCA assay data to reconstruct radiation doses in realistic scenarios of heterogeneous populations exposed to a mass-casualty radiological event.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA.
| | - Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
22
|
Meng QQ, Zhang RF, Zhang ZX, Yang Y, Chai DL, Yuan YY, Ren Y, Dong JC, Dang XH. ESTABLISHMENT OF THE IN VITRO DOSE-RESPONSE CALIBRATION CURVE FOR X-RAY-INDUCED MICRONUCLEI IN HUMAN LYMPHOCYTES. RADIATION PROTECTION DOSIMETRY 2022; 198:1338-1345. [PMID: 35961020 DOI: 10.1093/rpd/ncac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The cytokinesis-block micronucleus assay has proven to be a reliable technique for biological dosimetry. This study aimed to establish the dose-response curve for X-ray-induced micronucleus. Peripheral blood samples from three healthy donors were irradiated with various doses and scoring criteria by the micronuclei (MN) in binucleated cells. The results showed that the frequency of MN increased with the elevation of radiation dose. CABAS and Dose Estimate software were used to fit the MN and dose into a linear quadratic model, and the results were compared. The linear and quadratic coefficients obtained by the two software were basically the same and were comparable with published curves of similar radiation quality and dose rates by other studies. The dose-response curve established in this study can be used as an alternative method for in vitro dose reconstruction and provides a reliable tool for biological dosimetry in accidental or occupational radiation exposures.
Collapse
Affiliation(s)
- Qian-Qian Meng
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Rui-Feng Zhang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Zhong-Xin Zhang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Yi Yang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Dong-Liang Chai
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Ya-Yi Yuan
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Yue Ren
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Juan-Cong Dong
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Xu-Hong Dang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| |
Collapse
|
23
|
Changes in Radiosensitivity to Gamma-Rays of Lymphocytes from Hyperthyroid Patients Treated with I-131. Int J Mol Sci 2022; 23:ijms231710156. [PMID: 36077557 PMCID: PMC9456272 DOI: 10.3390/ijms231710156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the peripheral blood lymphocytes (PBL) response to a dose of γ-rays in patients treated with radioiodine (I-131) for hyperthyroidism vs. healthy controls, to gain information about the individual lymphocytes’ radio-sensitivity. Blood samples were taken from 18 patients and 10 healthy donors. Phosphorylated histone variant H2AX (γ-H2AX) and micronuclei (MN) induction were used to determine the change in PBL radio-sensitivity and the correlations between the two types of damage. The two assays showed large inter-individual variability in PBL background damage and in radio-sensitivity (patients vs. healthy donors). In particular, they showed an increased radio-sensitivity in 36% and 33% of patients, decrease in 36% and 44%, respectively. There was a scarce correlation between the two assays and no dependence on age or gender. A significant association was found between high radio-sensitivity conditions and induced hypothyroidism. PBL radio-sensitivity in the patient group was not significantly affected by treatment with I-131, whereas there were significant changes inter-individually. The association found between clinical response and PBL radio-sensitivity suggests that the latter could be used in view of the development of personalized treatments.
Collapse
|
24
|
Lierová A, Milanová M, Pospíchal J, Novotný J, Storm J, Andrejsová L, Šinkorová Z. BIOLOGICAL EFFECTS OF LOW-DOSE RADIATION FROM CT IMAGING. RADIATION PROTECTION DOSIMETRY 2022; 198:514-520. [PMID: 36005951 DOI: 10.1093/rpd/ncac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/21/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The dramatic rise in diagnostic procedures, radioisotope-based scans and intervention procedures has created a very valid concern regarding the long-term biological consequences from exposure to low doses of ionizing radiation. Despite its unambiguous medical benefits, additional knowledge on the health outcome of its use is essential. This review summarizes the available information regarding the biological consequences of low-dose radiation (LDR) exposure in humans (e.g. cytogenetic changes, cancer risk and radiation-induced cataracts. However, LDR studies remain relatively new and thus an encompassing view of its biological effects and relevant mechanisms in the human body is still needed.
Collapse
Affiliation(s)
- Anna Lierová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Marcela Milanová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Jan Pospíchal
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Jan Novotný
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Jaroslav Storm
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Lenka Andrejsová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| |
Collapse
|
25
|
Vaziri S, Mirzaei M, Saba F, Salehi Zahabi K, Salehi Zahabi S, Arab-Zozani M. Hematological parameters and X-ray exposure among medical radiation workers: a systematic review and meta-analysis. Expert Rev Hematol 2022; 15:645-656. [PMID: 35786240 DOI: 10.1080/17474086.2022.2096001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The aim of this study was to explore the effect of occupational exposure to X-ray on hematological parameters. RESEARCH DESIGN AND METHODS A systematic search was conducted in the Scopus, PubMed, Web of Science, and Embase databases up to April 2020. The methodological quality was assessed by the 10-item Joanna Briggs Institute (JBI) Critical Appraisal Checklist for case-control studies. The random-effects model was used to estimate the effect size (standard difference in means (SDMs)). RESULTS Out of 1750 identified citations, ten studies met the inclusion criteria and were included in the meta-analysis. The overall effect size did not show any significant difference between the two groups (SMDs ranged from -0.382±0.29 for white blood cells (WBC), 0.213±0.40 for platelet, -0.323±0.0.16 for mean corpuscular volume (MCV), 0.553±0.41 for mean corpuscular hemoglobin concentration (MCHC), -1.615±1.41 for monocyte, 0.418±0.49 for lymphocyte (P-value>0.05). Only the effect size of red blood cells was significantly higher than that of the control group (SMD= 1.06±0.28; 95% CI: 0.504, 1.615; P-value=0.001). CONCLUSION The long-term and low-dose radiation may have no significant effect on blood parameters. Future studies are suggested to use other tests such as dicentric chromosome assay (DCA), cytogenetic tests, and modern tests besides blood count parameters.
Collapse
Affiliation(s)
- Siavash Vaziri
- Department of Infectious Diseases, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Mirzaei
- School of Rehabilitation Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fakhredin Saba
- Department of Medical Laboratory Science, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kharaman Salehi Zahabi
- Clinical Research Development Center, Taleghani and Imam Ali Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saleh Salehi Zahabi
- Radiology and nuclear medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Arab-Zozani
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
26
|
Akh LA, Ishak MO, Harris JF, Glaros TG, Sasiene ZJ, Mach PM, Lilley LM, McBride EM. -Omics potential of in vitro skin models for radiation exposure. Cell Mol Life Sci 2022; 79:390. [PMID: 35776214 PMCID: PMC11073334 DOI: 10.1007/s00018-022-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, specifically, the search for biomarkers within the low-dose range.
Collapse
Affiliation(s)
- Leyla A Akh
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mohammad O Ishak
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jennifer F Harris
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Trevor G Glaros
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Zachary J Sasiene
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Phillip M Mach
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Ethan M McBride
- Bioenergy and Biome Sciences Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
27
|
Antioxidant and Genoprotective Properties of α-Lipoic (Thioctic) Acid in Blood Serum Under X-Ray Exposure. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System. Bioengineering (Basel) 2022; 9:bioengineering9050214. [PMID: 35621492 PMCID: PMC9137836 DOI: 10.3390/bioengineering9050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as a potential class of biomolecules for diagnostic biomarker applications. miRNAs are small non-coding RNA molecules, produced and released by cells in response to various stimuli, that demonstrate remarkable stability in a wide range of biological fluids, in extreme pH fluctuations, and after multiple freeze–thaw cycles. Given these advantages, identification of miRNA-based biomarkers for radiation exposures can contribute to the development of reliable biological dosimetry methods, especially for low-dose radiation (LDR) exposures. In this study, an miRNAome next-generation sequencing (NGS) approach was utilized to identify novel radiation-induced miRNA gene changes within the CGL1 human cell line. Here, irradiations of 10, 100, and 1000 mGy were performed and the samples were collected 1, 6, and 24 h post-irradiation. Corroboration of the miRNAome results with RT-qPCR verification confirmed the identification of numerous radiation-induced miRNA expression changes at all doses assessed. Further evaluation of select radiation-induced miRNAs, including miR-1228-3p and miR-758-5p, as well as their downstream mRNA targets, Ube2d2, Ppp2r2d, and Id2, demonstrated significantly dysregulated reciprocal expression patterns. Further evaluation is needed to determine whether the candidate miRNA biomarkers identified in this study can serve as suitable targets for radiation biodosimetry applications.
Collapse
|
29
|
Heaven CJ, Wanstall HC, Henthorn NT, Warmenhoven JW, Ingram SP, Chadwick AL, Santina E, Honeychurch J, Schmidt CK, Kirkby KJ, Kirkby NF, Burnet NG, Merchant MJ. The suitability of micronuclei as markers of relative biological effect. Mutagenesis 2022; 37:3-12. [PMID: 35137176 PMCID: PMC8976228 DOI: 10.1093/mutage/geac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.
Collapse
Affiliation(s)
- Charlotte J Heaven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Hannah C Wanstall
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Nicholas T Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - John-William Warmenhoven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Samuel P Ingram
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Jamie Honeychurch
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Christine K Schmidt
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
| | - Karen J Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Norman F Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Neil G Burnet
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, M20 4BX Manchester, United Kingdom
| |
Collapse
|
30
|
Transcriptomics of Wet Skin Biopsies Predict Early Radiation-Induced Hematological Damage in a Mouse Model. Genes (Basel) 2022; 13:genes13030538. [PMID: 35328091 PMCID: PMC8952434 DOI: 10.3390/genes13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
The lack of an easy and fast radiation-exposure testing method with a dosimetric ability complicates triage and treatment in response to a nuclear detonation, radioactive material release, or clandestine exposure. The potential of transcriptomics in radiation diagnosis and prognosis were assessed here using wet skin (blood/skin) biopsies obtained at hour 2 and days 4, 7, 21, and 28 from a mouse radiation model. Analysis of significantly differentially transcribed genes (SDTG; p ≤ 0.05 and FC ≥ 2) during the first post-exposure week identified the glycoprotein 6 (GP-VI) signaling, the dendritic cell maturation, and the intrinsic prothrombin activation pathways as the top modulated pathways with stable inactivation after lethal exposures (20 Gy) and intermittent activation after sublethal (1, 3, 6 Gy) exposure time points (TPs). Interestingly, these pathways were inactivated in the late TPs after sublethal exposure in concordance with a delayed deleterious effect. Modulated transcription of a variety of collagen types, laminin, and peptidase genes underlay the modulated functions of these hematologically important pathways. Several other SDTGs related to platelet and leukocyte development and functions were identified. These results outlined genetic determinants that were crucial to clinically documented radiation-induced hematological and skin damage with potential countermeasure applications.
Collapse
|
31
|
Raines K, Copplestone JGD, Lim J. Biomarkers and Ecological indicators for Environmental Radioactivity in Invertebrates. NATO SCIENCE FOR PEACE AND SECURITY SERIES A: CHEMISTRY AND BIOLOGY 2022:245-270. [DOI: 10.1007/978-94-024-2101-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Satyamitra M, Reyes Turcu FE, Pantoja-Galicia N, Wathen L. Challenges and Strategies in the Development of Radiation Biodosimetry Tests for Patient Management. Radiat Res 2021; 196:455-467. [PMID: 34143223 PMCID: PMC9923779 DOI: 10.1667/rade-21-00072.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/28/2021] [Indexed: 11/03/2022]
Abstract
The public health and medical response to a radiological or nuclear incident requires the capability to sort, assess, treat, triage and ultimately discharge, as well as to refer or transport people to their next step in medical care. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE), directed by the U.S. Department of Health and Human Services (HHS), facilitates a comprehensive, multi-agency effort to develop and deploy radiation biodosimetry tests. Within HHS, discovery and development of biodosimetry tests includes the National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), the Office of the Assistant Secretary of Preparedness and Response (ASPR), Biomedical Advanced Research and Development Authority (BARDA), and the Food and Drug Administration (FDA) as primary partners in this endeavor. The study of radiation biodosimetry has advanced significantly, with expansion into the fields of cytogenetics, genomics, proteomics, metabolomics, lipidomics and transcriptomics. In addition, expansion of traditional cytogenetic assessment methods using automated platforms, and development of laboratory surge capacity networks have helped to advance biodefense preparedness. This article describes various programs and coordinating efforts between NIAID, BARDA and FDA in the development of radiation biodosimetry approaches to respond to radiological and nuclear threats.
Collapse
Affiliation(s)
- Merriline Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Rockville, Maryland 20892-9828
| | - Francisca E. Reyes Turcu
- United States Food and Drug Administration (U.S. FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland 20993-0002
| | - Norberto Pantoja-Galicia
- United States Food and Drug Administration (U.S. FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland 20993-0002
| | - Lynne Wathen
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS), Washington, DC 20201
| |
Collapse
|
33
|
Capaccio C, Perrier JR, Cunha L, Mahnke RC, Lörch T, Porter M, Smith CL, Damer K, Bourland JD, Frizzell B, Torelli J, Vasquez M, Brower JB, Doyle-Eisele M, Taveras M, Turner H, Brenner DJ, Kowalski R. CytoRADx: A High-Throughput, Standardized Biodosimetry Diagnostic System Based on the Cytokinesis-Block Micronucleus Assay. Radiat Res 2021; 196:523-534. [PMID: 34515768 DOI: 10.1667/rade-20-00030.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/26/2021] [Indexed: 11/03/2022]
Abstract
In a large-scale catastrophe, such as a nuclear detonation in a major city, it will be crucial to accurately diagnose large numbers of people to direct scarce medical resources to those in greatest need. Currently no FDA-cleared tests are available to diagnose radiation exposures, which can lead to complex, life-threatening injuries. To address this gap, we have achieved substantial advancements in radiation biodosimetry through refinement and adaptation of the cytokinesis-block micronucleus (CBMN) assay as a high throughput, quantitative diagnostic test. The classical CBMN approach, which quantifies micronuclei (MN) resulting from DNA damage, suffers from considerable time and expert labor requirements, in addition to a lack of universal methodology across laboratories. We have developed the CytoRADx™ System to address these drawbacks by implementing a standardized reagent kit, optimized assay protocol, fully automated microscopy and image analysis, and integrated dose prediction. These enhancements allow the CytoRADx System to obtain high-throughput, standardized results without specialized labor or laboratory-specific calibration curves. The CytoRADx System has been optimized for use with both humans and non-human primates (NHP) to quantify radiation dose-dependent formation of micronuclei in lymphocytes, observed using whole blood samples. Cell nuclei and resulting MN are fluorescently stained and preserved on durable microscope slides using materials provided in the kit. Up to 1,000 slides per day are subsequently scanned using the commercially based RADxScan™ Imager with customized software, which automatically quantifies the cellular features and calculates the radiation dose. Using less than 1 mL of blood, irradiated ex vivo, our system has demonstrated accurate and precise measurement of exposures from 0 to 8 Gy (90% of results within 1 Gy of delivered dose). These results were obtained from 636 human samples (24 distinct donors) and 445 NHP samples (30 distinct subjects). The system demonstrated comparable results during in vivo studies, including an investigation of 43 NHPs receiving single-dose total-body irradiation. System performance is repeatable across laboratories, operators, and instruments. Results are also statistically similar across diverse populations, considering various demographics, common medications, medical conditions, and acute injuries associated with radiological disasters. Dose calculations are stable over time as well, providing reproducible results for at least 28 days postirradiation, and for blood specimens collected and stored at room temperature for at least 72 h. The CytoRADx System provides significant advancements in the field of biodosimetry that will enable accurate diagnoses across diverse populations in large-scale emergency scenarios. In addition, our technological enhancements to the well-established CBMN assay provide a pathway for future diagnostic applications, such as toxicology and oncology.
Collapse
Affiliation(s)
| | - Jay R Perrier
- ASELL, LLC, Owings Mills, Maryland
- Columbia University, Center for Radiological Research, New York, New York
| | - Lídia Cunha
- Columbia University, Center for Radiological Research, New York, New York
| | | | | | | | | | | | - J Daniel Bourland
- Wake Forest School of Medicine, Departments of Radiation Oncology, Physics, and Biomedical Engineering, Winston-Salem, North Carolina
| | - Bart Frizzell
- Wake Forest School of Medicine, Departments of Radiation Oncology, Physics, and Biomedical Engineering, Winston-Salem, North Carolina
| | | | | | - Jeremy B Brower
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| | | | - Maria Taveras
- Columbia University, Center for Radiological Research, New York, New York
| | - Helen Turner
- Columbia University, Center for Radiological Research, New York, New York
| | - David J Brenner
- Columbia University, Center for Radiological Research, New York, New York
| | | |
Collapse
|
34
|
Dicu T, Virag P, Brie I, Perde-Schrepler M, Fischer-Fodor E, Victor B, Cucoș A, Burghele BD. A comparative study of genotoxicity endpoints for women exposed to different levels of indoor radon concentrations. Int J Radiat Biol 2021; 98:18-29. [PMID: 34586971 DOI: 10.1080/09553002.2021.1987559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Radon and its radioactive progenies are the most important source of ionizing radiation of natural origin, being classified as a Group 1 carcinogen. The aim of this study is to investigate the genotoxic effects of a wide range of indoor radon concentrations, as well as the kinetics of the process of repairing DNA-induced lesions by a challenging dose of gamma irradiation. MATERIAL AND METHODS Female subjects residing in the Băiţa-Ştei radon priority area were selected as the exposed group. The reference group was comprised of women from the same county (Bihor), but located in an area with an average indoor radon concentration typical of the county from which they were taken. Radon concentration values of 300 Bq/m3 and 148 Bq/m3, respectively, were chosen as a threshold in order to capture the impact of radon exposure between the groups. The alkaline comet assay was used in order to measure the DNA damage, as well as the repair kinetics at 2 and 24 h after 2 Gy challenging doses of gamma irradiation using peripheral blood lymphocytes. From the serum of the subjects, the oxidative damage by 8-hydroxydeoxyguanosine as well as the PARP induction was evaluated. The chromosomal aberrations were evaluated using the Cytokinesis Block MicroNucleus Assay. RESULTS A statistically significant increase was observed in terms of DNA-induced lesions assessed by comet assay for the exposed group compared to the reference group. A positive correlation was obtained between DNA damage and the annual effective dose, respectively with the radon progenies concentrations. A statistically significant difference was also observed for the frequency of the micronuclei between the exposed - reference groups. Significantly faster repair kinetics of DNA-induced lesions was recorded for the first 2 h after gamma irradiation in the reference group compared to the exposed group. Using the threshold of 300 Bq/m3 for radon concentration, faster kinetics of DNA damage repair for people exposed to low radon concentrations, compared to those exposed to higher concentrations for the second phase of DNA repair kinetics was observed. CONCLUSION An increased radiosensitivity of lymphocytes, as well as slower repair kinetics, may be associated with exposure to higher indoor radon concentrations.
Collapse
Affiliation(s)
- Tiberius Dicu
- "Constantin Cosma" Radon Laboratory (LiRaCC), Faculty of Environmental Science and Engineering, "Babeş-Bolyai" University, Cluj-Napoca, Romania
| | - Piroska Virag
- The Oncology Institute Prof. Dr. I. Chiricuţă, Cluj-Napoca, Romania
| | - Ioana Brie
- The Oncology Institute Prof. Dr. I. Chiricuţă, Cluj-Napoca, Romania
| | | | | | - Bogdan Victor
- The Oncology Institute Prof. Dr. I. Chiricuţă, Cluj-Napoca, Romania
| | - Alexandra Cucoș
- "Constantin Cosma" Radon Laboratory (LiRaCC), Faculty of Environmental Science and Engineering, "Babeş-Bolyai" University, Cluj-Napoca, Romania
| | - Bety-Denissa Burghele
- "Constantin Cosma" Radon Laboratory (LiRaCC), Faculty of Environmental Science and Engineering, "Babeş-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Gnanasekaran TS. Cytogenetic biological dosimetry assays: recent developments and updates. Radiat Oncol J 2021; 39:159-166. [PMID: 34610654 PMCID: PMC8497872 DOI: 10.3857/roj.2021.00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
Biological dosimetry is the measurement of radiation-induced changes in the human to measure short and long-term health risks. Biodosimetry offers an independent means of obtaining dose information and also provides diagnostic information on the potential for "partial-body" exposure information using biological indicators and otherwise based on computer modeling, dose reconstruction, and physical dosimetry. A variety of biodosimetry tools are available and some features make some more valuable than others. Among the available biodosimetry tool, cytogenetic biodosimetry methods occupy an exclusive and advantageous position. The cytogenetic analysis can complement physical dosimetry by confirming or ruling out an accidental radiological exposure or overexposures. We are discussing the recent developments and adaptability of currently available cytogenetic biological dosimetry assays.
Collapse
|
36
|
Kot P, Yasuhara T, Shibata A, Hirakawa M, Abe Y, Yamauchi M, Matsuda N. Mechanism of chromosome rearrangement arising from single-strand breaks. Biochem Biophys Res Commun 2021; 572:191-196. [PMID: 34375929 DOI: 10.1016/j.bbrc.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Chromosome rearrangements, which are structural chromosomal abnormalities commonly found in human cancer, result from the misrejoining between two or more DNA double-strand breaks arising at different genomic regions. Consequently, chromosome rearrangements can generate fusion genes that promote tumorigenesis. The mechanisms of chromosome rearrangement have been studied using exogenous double-strand break inducers, such as radiation and nucleases. However, the mechanism underlying the occurrence of chromosome rearrangements in the absence of exogenous double-strand break-inducing stimuli is unclear. This study aimed to identify the major source of chromosome rearrangements and the DNA repair pathway that suppresses them. DNA repair factors that potentially suppress gene fusion were screened using The Cancer Genome Atlas dataset. In total, 22 repair factors whose expression levels were negatively correlated with the frequency of gene fusion were identified. More than 60% of these repair factors are involved in homologous recombination, a major double-strand break repair pathway. We hypothesized that DNA single-strand breaks are the source of double-strand breaks that lead to chromosome rearrangements. This study demonstrated that hydrogen peroxide (H2O2)-induced single-strand breaks gave rise to double-strand breaks in a replication-dependent manner. Additionally, H2O2 induced the formation of RPA and RAD51 foci, which indicated that double-strand breaks derived from single-strand breaks were repaired through homologous recombination. Moreover, treatment with H2O2 promoted the formation of radial chromosomes, a type of chromosome rearrangements, only upon the downregulation of homologous recombination factors, such as BRCA1 and CtIP. Thus, single-strand breaks are the major source of chromosome rearrangements when the expression of homologous recombination factors is downregulated.
Collapse
Affiliation(s)
- Palina Kot
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research, Maebashi, Gunma, 371-8511, Japan
| | - Miyako Hirakawa
- Radioisotope Research Center, Life Science Support Center, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yu Abe
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Naoki Matsuda
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| |
Collapse
|
37
|
Habibi M, Karyofyllis PK, Nikolakopoulou A, Papagiannis P, Karaiskos P, Georgakilas AG, Hatzi VI, Malakos I, Kollaros N, Mastorakou I, Voudris V, Terzoudi GI. The Use of Genotoxicity Endpoints as Biomarkers of Low Dose Radiation Exposure in Interventional Cardiology. Front Public Health 2021; 9:701878. [PMID: 34368064 PMCID: PMC8342993 DOI: 10.3389/fpubh.2021.701878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of the reportedly low ionizing radiation doses, such as those very often delivered to patients in interventional cardiology, remains ambiguous. As interventional cardiac procedures may have a significant impact on total collective effective dose, there are radiation protection concerns for patients and physicians regarding potential late health effects. Given that very low doses (<100 mSv) are expected to be delivered during these procedures, the purpose of this study was to assess the potency and suitability of current genotoxicity biomarkers to detect and quantitate biological effects essential for risk estimation in interventional cardiology. Specifically, the biomarkers γ-H2AX foci, dicentric chromosomes, and micronuclei, which underpin radiation-induced DNA damage, were studied in blood lymphocytes of 25 adult patients before and after interventional cardiac procedures. Even though the mean values of all patients as a group for all three endpoints tested show increased yields relative to baseline following medical exposure, our results demonstrate that only the γ-H2AX biomarker enables detection of statistically significant differences at the individual level (p < 0.001) for almost all patients (91%). Furthermore, 24 h after exposure, residual γ-H2AX foci were still detectable in irradiated lymphocytes. Their decline was found to vary significantly among the individuals and the repair kinetics of γ-H2AX foci was found to range from 25 to 95.6% of their maximum values obtained.
Collapse
Affiliation(s)
- Martha Habibi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Aggeliki Nikolakopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Vasiliki I Hatzi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis Malakos
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Irene Mastorakou
- Imaging Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vassilis Voudris
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Georgia I Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
38
|
Biomarkers of Genotoxicity in Medical Workers Exposed to Low-Dose Ionizing Radiation: Systematic Review and Meta-Analyses. Int J Mol Sci 2021; 22:ijms22147504. [PMID: 34299125 PMCID: PMC8304237 DOI: 10.3390/ijms22147504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Medical staff represent the largest group of workers occupationally exposed to ionizing radiation (IR). Chronic exposure to low-dose IR may result in DNA damage and genotoxicity associated with increased risk of cancer. This review aims to identify the genotoxicity biomarkers that are the most elevated in IR-exposed vs. unexposed health workers. A systematic review of the literature was performed to retrieve relevant studies with various biomarkers of genotoxicity. Subsequent meta-analyses produced a pooled effect size for several endpoints. The search procedure yielded 65 studies. Chromosome aberrations (CA) and micronuclei (MN) frequencies were significantly different between IR-exposed and unexposed workers (θpooled = 3.19, 95% CI 1.46–4.93; and θpooled = 1.41, 95% CI 0.97–1.86, for total aberrant cells and MN frequencies, respectively), which was not the case for ring chromosomes and nucleoplasmic bridges. Although less frequently used, stable translocations, sister chromatid exchanges (SCE) and comet assay endpoints were also statistically different between IR-exposed and unexposed workers. This review confirms the relevance of CA and MN as genotoxicity biomarkers that are consistently elevated in IR-exposed vs. unexposed workers. Other endpoints are strong candidates but require further studies to validate their usefulness. The integration of the identified biomarkers in future prospective epidemiological studies is encouraged.
Collapse
|
39
|
Tian XL, Lu X, Cai TJ, Lyu YM, Tian M, Liu QJ. Cytogenetic monitoring of peripheral blood lymphocytes from medical radiation professionals occupationally exposed to low-dose ionizing radiation. Mutat Res 2021; 867:503370. [PMID: 34266630 DOI: 10.1016/j.mrgentox.2021.503370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
In order to assess the health risk of low-dose radiation to radiation professionals, monitoring is performed through chromosomal aberration analysis and micronuclei (MN) analysis. MN formation has drawbacks for monitoring in the low-dose range. Nucleoplasmic bridge (NPB) analysis, with a lower background level, has good dose-response relationships at both high and relatively low dose ranges. Dicentric and ring chromosomes were analyzed in 199 medical radiation professionals, and NPB/MN yields were analyzed in 205 radiation professionals. The effects of sex, age of donor, types of work, and length of service on these cytogenetic endpoints were also analyzed. The yields of the three cytogenetic endpoints were significantly higher in radiation professionals versus controls. Frequencies of dicentric plus ring chromosomes were affected by length of service. NPB frequencies were influenced by type of work and length of service. MN yields were affected not only by types of work and length of service but also by donor sex and age. In conclusion, dicentric plus ring chromosomes, NPB, and MN can be induced by low-dose radiation in radiation professionals. NPB is a potential biomarker to assess the health risk of occupational low-dose radiation exposure.
Collapse
Affiliation(s)
- Xue-Lei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, PR China
| | - Xue Lu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, PR China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, PR China
| | - Yu-Min Lyu
- Laboratory of Toxicology, Henan Institute of Occupational Medicine, Zheng Zhou, 450052, PR China
| | - Mei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, PR China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, PR China.
| |
Collapse
|
40
|
Rodrigues MA, Probst CE, Zayats A, Davidson B, Riedel M, Li Y, Venkatachalam V. The in vitro micronucleus assay using imaging flow cytometry and deep learning. NPJ Syst Biol Appl 2021; 7:20. [PMID: 34006858 PMCID: PMC8131758 DOI: 10.1038/s41540-021-00179-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
The in vitro micronucleus (MN) assay is a well-established assay for quantification of DNA damage, and is required by regulatory bodies worldwide to screen chemicals for genetic toxicity. The MN assay is performed in two variations: scoring MN in cytokinesis-blocked binucleated cells or directly in unblocked mononucleated cells. Several methods have been developed to score the MN assay, including manual and automated microscopy, and conventional flow cytometry, each with advantages and limitations. Previously, we applied imaging flow cytometry (IFC) using the ImageStream® to develop a rapid and automated MN assay based on high throughput image capture and feature-based image analysis in the IDEAS® software. However, the analysis strategy required rigorous optimization across chemicals and cell lines. To overcome the complexity and rigidity of feature-based image analysis, in this study we used the Amnis® AI software to develop a deep-learning method based on convolutional neural networks to score IFC data in both the cytokinesis-blocked and unblocked versions of the MN assay. We show that the use of the Amnis AI software to score imagery acquired using the ImageStream® compares well to manual microscopy and outperforms IDEAS® feature-based analysis, facilitating full automation of the MN assay.
Collapse
Affiliation(s)
| | | | - Artiom Zayats
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | - Bryan Davidson
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | - Michael Riedel
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | - Yang Li
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | | |
Collapse
|
41
|
Abstract
Tumor metastasis is a singularly important determinant of survival in most cancers. Historically, radiation therapy (RT) directed at a primary tumor mass was associated infrequently with remission of metastasis outside the field of irradiation. This away-from-target or "abscopal effect" received fringe attention because of its rarity. With the advent of immunotherapy, there are now increasing reports of abscopal effects upon RT in combination with immune checkpoint inhibition. This sparked investigation into underlying mechanisms and clinical trials aimed at enhancement of this effect. While these studies clearly attribute the abscopal effect to an antitumor immune response, the initial molecular triggers for its onset and specificity remain enigmatic. Here, we propose that DNA damage-induced inflammation coupled with neoantigen generation is essential during this intriguing phenomenon of systemic tumor regression and discuss the implications of this model for treatment aimed at triggering the abscopal effect in metastatic cancer.
Collapse
|
42
|
Jang S, Shin SG, Lee MJ, Han S, Choi CH, Kim S, Cho WS, Kim SH, Kang YR, Jo W, Jeong S, Oh S. Feasibility Study on Automatic Interpretation of Radiation Dose Using Deep Learning Technique for Dicentric Chromosome Assay. Radiat Res 2021; 195:163-172. [PMID: 33316052 DOI: 10.1667/rade-20-00167.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 11/03/2022]
Abstract
The interpretation of radiation dose is an important procedure for both radiological operators and persons who are exposed to background or artificial radiations. Dicentric chromosome assay (DCA) is one of the representative methods of dose estimation that discriminates the aberration in chromosomes modified by radiation. Despite the DCA-based automated radiation dose estimation methods proposed in previous studies, there are still limitations to the accuracy of dose estimation. In this study, a DCA-based automated dose estimation system using deep learning methods is proposed. The system is comprised of three stages. In the first stage, a classifier based on a deep learning technique is used for filtering the chromosome images that are not appropriate for use in distinguishing the chromosome; 99% filtering accuracy was achieved with 2,040 test images. In the second stage, the dicentric rate is evaluated by counting and identifying chromosomes based on the Feature Pyramid Network, which is one of the object detection algorithms based on deep learning architecture. The accuracies of the neural networks for counting and identifying chromosomes were estimated at over 97% and 90%, respectively. In the third stage, dose estimation is conducted using the dicentric rate and the dose-response curve. The accuracies of the system were estimated using two independent samples; absorbed doses ranging from 1- 4 Gy agreed well within a 99% confidential interval showing highest accuracy compared to those in previous studies. The goal of this study was to provide insights towards achieving complete automation of the radiation dose estimation, especially in the event of a large-scale radiation exposure incident.
Collapse
Affiliation(s)
- Seungsoo Jang
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sung-Gyun Shin
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Min-Jae Lee
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sangsoo Han
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea.,SierraBASE Co. Ltd., 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Chan-Ho Choi
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Sungkyum Kim
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Woo-Sung Cho
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Song-Hyun Kim
- Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea.,SierraBASE Co. Ltd., 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Korea
| | - Yeong-Rok Kang
- Dongnam Institute of Radiological and Medical Science, 40 Jwadong-Gil, Jangan-Eup, Gijang-Gun, Busan, Korea
| | - Wolsoon Jo
- Dongnam Institute of Radiological and Medical Science, 40 Jwadong-Gil, Jangan-Eup, Gijang-Gun, Busan, Korea
| | - Sookyung Jeong
- Dongnam Institute of Radiological and Medical Science, 40 Jwadong-Gil, Jangan-Eup, Gijang-Gun, Busan, Korea
| | - Sujung Oh
- Dongnam Institute of Radiological and Medical Science, 40 Jwadong-Gil, Jangan-Eup, Gijang-Gun, Busan, Korea
| |
Collapse
|
43
|
Meenakshi C, Venkatachalam P, Chandrasekaran S, Venkatraman B. Construction of dose response curve for 6 MV LINAC X-rays using Premature Chromosome Condensation assay for radiation dosimetry. Appl Radiat Isot 2021; 173:109729. [PMID: 33906115 DOI: 10.1016/j.apradiso.2021.109729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Quantification of chromosomal aberrations in the exposed personnel blood samples is considered as a 'gold standard' and sensitive biomarker in biological dosimetry. Despite technological developments, culture of cells for 48-52 h remains an unmet need in case of triage biodosimetry. Moreover, it is difficult to get sufficient number of metaphase spreads for scoring after high doses of exposures. The technique which causes condensation of chromatin before mitosis using biological or chemical agent is named as Premature Chromosome Condensation (PCC) assay. This assay is considered as an alternative to chromosome aberration assay, particularly at high acute doses of low and high LET radiation. To establish the PCC assay, blood samples were collected from healthy non-smoking individuals (n = 3) and exposed to various doses (0-20 Gy) of 6 MV X-rays at a dose rate of 5.6 Gy/min, using a high energy Linear accelerator (LINAC). Irradiated blood samples were subjected to Calyculin-A induced PCC. About 500 cells or more than 100 Ring Chromosomes (RC) were scored at each dose. Dicentric chromosomes (DC) and acentric fragments were also scored at each dose; the number of chromosomal aberrations in G1, M, G2/M and M/A phase of cell cycle were recorded and the frequency was used to construct the dose response curve. A dose dependent increase in RC and DC frequency were observed with a slope of 0.049 ± 0.002 and 0.30 ± 0.02 respectively. This study is first of its kind to construct a dose response curve for LINAC X-rays using a PCC assay.
Collapse
Affiliation(s)
- C Meenakshi
- Human Genetics Department, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - P Venkatachalam
- Human Genetics Department, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India.
| | - S Chandrasekaran
- Health, Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| | - B Venkatraman
- Health, Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| |
Collapse
|
44
|
Giovanetti A, Marconi R, Awad N, Abuzied H, Agamy N, Barakat M, Bartoleschi C, Bossi G, Canfora M, Elsaid AA, Ioannilli L, Ismail HM, Issa YA, Novelli F, Pardini MC, Pioli C, Pinnarò P, Sanguineti G, Tahoun MM, Turchi R, Strigari L. Validation of a biomarker tool capable of measuring the absorbed dose soon after exposure to ionizing radiation. Sci Rep 2021; 11:8118. [PMID: 33854097 PMCID: PMC8047015 DOI: 10.1038/s41598-021-87173-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 03/19/2021] [Indexed: 01/17/2023] Open
Abstract
A radiological or nuclear attack could involve such a large number of subjects as to overwhelm the emergency facilities in charge. Resources should therefore be focused on those subjects needing immediate medical attention and care. In such a scenario, for the triage management by first responders, it is necessary to count on efficient biological dosimetry tools capable of early detection of the absorbed dose. At present the validated assays for measuring the absorbed dose are dicentric chromosomes and micronuclei counts, which require more than 2–3 days to obtain results. To overcome this limitation the NATO SPS Programme funded an Italian–Egyptian collaborative project aimed at validating a fast, accurate and feasible tool for assessing the absorbed dose early after radiation exposure. Biomarkers as complete blood cell counts, DNA breaks and radio-inducible proteins were investigated on blood samples collected before and 3 h after the first fraction of radiotherapy in patients treated in specific target areas with doses/fraction of about: 2, 3.5 or > 5 Gy and compared with the reference micronuclei count. Based on univariate and multivariate multiple linear regression correlation, our results identify five early biomarkers potentially useful for detecting the extent of the absorbed dose 3 h after the exposure.
Collapse
Affiliation(s)
- Anna Giovanetti
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy.
| | - Raffaella Marconi
- Scientific Direction, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149, Rome, Italy
| | - Noha Awad
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Hala Abuzied
- Alexandria University Cancer Research Cluster, Alexandria, 21561, Egypt
| | - Neveen Agamy
- Nutrition Department, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Mohamed Barakat
- Alexandria University Cancer Research Cluster, Alexandria, 21561, Egypt
| | - Cecilia Bartoleschi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Gianluca Bossi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marco Canfora
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Amr A Elsaid
- Oncology Department, Faculty of Medicine, Alexandria University, Alexandria, 21561, Egypt
| | - Laura Ioannilli
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Horeya M Ismail
- Alexandria University Cancer Research Cluster, Alexandria, 21561, Egypt
| | - Yasmine Amr Issa
- Medical Biochemistry Department, Faculty of Medicine, University of Alexandria, Alexandria, 21561, Egypt
| | - Flavia Novelli
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Maria Chiara Pardini
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Claudio Pioli
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123, Rome, Italy
| | - Paola Pinnarò
- Departments of Radiation Oncology, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giuseppe Sanguineti
- Departments of Radiation Oncology, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Mohamed M Tahoun
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria, 21561, Egypt
| | - Riccardo Turchi
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Lidia Strigari
- IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy
| |
Collapse
|
45
|
Dröge LH, Hennies S, Lorenzen S, Conradi LC, Quack H, Liersch T, Helms C, Frank MA, Schirmer MA, Rave-Fränk M, Beißbarth T, Wolff HA. Prognostic value of the micronucleus assay for clinical endpoints in neoadjuvant radiochemotherapy for rectal cancer. BMC Cancer 2021; 21:219. [PMID: 33663399 PMCID: PMC7931609 DOI: 10.1186/s12885-021-07914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background The question whether lymphocyte radiosensitivity is representative of patients’ response to radiotherapy (RT) remains unsolved. We analyzed lymphocyte cytogenetic damage in patients who were homogeneously treated with preoperative radiochemotherapy (RCT) for rectal cancer within clinical trials. We tested for interindividual variation and consistent radiosensitivity after in-vivo and in-vitro irradiation, analyzed the effect of patients’ and RCT characteristics on cytogenetic damage, and tested for correlations with patients’ outcome in terms of tumor response, survival and treatment-related toxicity. Methods The cytokinesis-block micronucleus cytome (CBMNcyt) assay was performed on the peripheral blood lymphocytes (PBLCs) of 134 patients obtained before, during, at the end of RCT, and during the 2-year follow-up. A subset of PBLCs obtained before RCT was irradiated in-vitro with 3 Gy. RCT included 50.4 Gy of pelvic RT with 5-fluorouracil (5-FU) alone (n = 78) or 5-FU plus oxaliplatin (n = 56). The analyzed variables included patients’ age, gender, RT characteristics (planning target volume size [PTV size], RT technique), and chemotherapy characteristics (5-FU plasma levels, addition of oxaliplatin). Outcome was analyzed as tumor regression, patient survival, and acute and late toxicity. Results Cytogenetic damage increased significantly with the radiation dose and varied substantially between individuals. Women were more sensitive than men; no significant age-dependent differences were observed. There was a significant correlation between the cytogenetic damage after in-vitro irradiation and in-vivo RCT. We found a significant effect of the PTV size on the yields of cytogenetic damage after RCT, while the RT technique had no effect. Neither the addition of oxaliplatin nor the 5-FU levels influenced cytogenetic damage. We found no correlation between patient outcome and the cytogenetic damage. Conclusions We found consistent cytogenetic damage in lymphocytes after in-vivo RCT and in-vitro irradiation. Gender was confirmed as a well-known, and the PTV size was identified as a less well-known influencing variable on lymphocyte cytogenetic damage after partial-body irradiation. A consistent level of cytogenetic damage after in-vivo and in-vitro irradiation may indicate the importance of genetic factors for individual radiosensitivity. However, we found no evidence that in-vivo or in-vitro irradiation-induced cytogenetic damage is an adequate biomarker for the response to RCT in rectal cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07914-5.
Collapse
Affiliation(s)
- Leif Hendrik Dröge
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Steffen Hennies
- University Medical Center Göttingen, Göttingen, Germany.,Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80333, Munich, Germany
| | - Stephan Lorenzen
- Institute of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Henriette Quack
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Helms
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Miriam Alice Frank
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Markus Anton Schirmer
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Tim Beißbarth
- Institute of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Andreas Wolff
- University Medical Center Göttingen, Göttingen, Germany.,Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, 80333, Munich, Germany.,Department of Radiotherapy and Radiation Oncology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
46
|
Shuryak I, Turner HC, Pujol-Canadell M, Perrier JR, Garty G, Brenner DJ. Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures. Sci Rep 2021; 11:4022. [PMID: 33597632 PMCID: PMC7889851 DOI: 10.1038/s41598-021-83575-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 11/09/2022] Open
Abstract
We implemented machine learning in the radiation biodosimetry field to quantitatively reconstruct neutron doses in mixed neutron + photon exposures, which are expected in improvised nuclear device detonations. Such individualized reconstructions are crucial for triage and treatment because neutrons are more biologically damaging than photons. We used a high-throughput micronucleus assay with automated scanning/imaging on lymphocytes from human blood ex-vivo irradiated with 44 different combinations of 0-4 Gy neutrons and 0-15 Gy photons (542 blood samples), which include reanalysis of past experiments. We developed several metrics that describe micronuclei/cell probability distributions in binucleated cells, and used them as predictors in random forest (RF) and XGboost machine learning analyses to reconstruct the neutron dose in each sample. The probability of "overfitting" was minimized by training both algorithms with repeated cross-validation on a randomly-selected subset of the data, and measuring performance on the rest. RF achieved the best performance. Mean R2 for actual vs. reconstructed neutron doses over 300 random training/testing splits was 0.869 (range 0.761 to 0.919) and root mean squared error was 0.239 (0.195 to 0.351) Gy. These results demonstrate the promising potential of machine learning to reconstruct the neutron dose component in clinically-relevant complex radiation exposure scenarios.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA.
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
47
|
Galeano-Páez C, Espitia-Pérez P, Jimenez-Vidal L, Pastor-Sierra K, Salcedo-Arteaga S, Hoyos-Giraldo LS, Gioda A, Saint'Pierre TD, García SC, Brango H, Espitia-Pérez L. Dietary exposure to mercury and its relation to cytogenetic instability in populations from "La Mojana" region, northern Colombia. CHEMOSPHERE 2021; 265:129066. [PMID: 33293049 DOI: 10.1016/j.chemosphere.2020.129066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Fish consumption and chronic exposure to low doses of mercury (Hg) seems to activate several molecular mechanisms leading to carcinogenic and/or teratogenic processes. However, Hg genotoxic effects on humans are not completely described. In the present study, we assessed cytogenetic damage in isolated human peripheral lymphocytes using the cytokinesis-block micronucleus cytome assay (CBMN-Cyt), micronucleus formation with anti-kinetochore antibody (CREST staining), levels of total Hg in hair (T-Hg), fish consumption, and estimated Hg dose. The study comprised 39 non-exposed, and 73 residents from La Mojana region, an area with a well-documented Hg contamination. Data showed a significant increase in micronuclei (MNBN), nucleoplasmic bridges (NPB), and necrotic and apoptotic cell frequencies in residents of "La Mojana." The overall mean T-Hg level in hair for exposed residents was 1.12 ± 0.94 mg kg-1 and 0.15 ± 0.05 in individuals from the reference area. Approximately 40% of analyzed individuals showed T-Hg levels that exceeded US Environmental Protection Agency (USEPA) reference dose. Increased T-Hg levels in hair were related to increased MNBN frequencies and high fish consumption. Other cellular markers, such as necrotic and apoptotic cell frequencies, were also correlated with high fish intake and T-Hg contents. Results of the CREST staining demonstrated that in vivo exposure to Hg induces genetic instability by chromosome fragment loss (clastogenic). Additionally, a high average intake of some fish species, particularly with carnivorous habits like Caquetaia kraussii, Hoplias malabaricus, and Sorubin cuspicaudus, seems to increase MNBN frequencies significantly.
Collapse
Affiliation(s)
- Claudia Galeano-Páez
- Facultad de Ciencias de La Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad Del Sinú, Montería, Córdoba, Colombia
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de La Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad Del Sinú, Montería, Córdoba, Colombia.
| | - Luisa Jimenez-Vidal
- Facultad de Ciencias de La Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad Del Sinú, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de La Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad Del Sinú, Montería, Córdoba, Colombia
| | - Shirley Salcedo-Arteaga
- Facultad de Ciencias de La Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad Del Sinú, Montería, Córdoba, Colombia
| | - Luz Stella Hoyos-Giraldo
- Departamento de Biología, Grupo de Investigación en Genética Toxicológica y Citogenética, Facultad de Ciencias Naturales y Exactas de La Educación, Universidad Del Cauca, Popayán, Cauca, Colombia
| | - Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Dillenburg Saint'Pierre
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Solange Cristina García
- Laboratório de Toxicologia (LATOX), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Lyda Espitia-Pérez
- Facultad de Ciencias de La Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad Del Sinú, Montería, Córdoba, Colombia.
| |
Collapse
|
48
|
Brendt J, Lackmann C, Heger S, Velki M, Crawford SE, Xiao H, Thalmann B, Schiwy A, Hollert H. Using a high-throughput method in the micronucleus assay to compare animal-free with rat-derived S9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142269. [PMID: 33182016 DOI: 10.1016/j.scitotenv.2020.142269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
This study presents a high-throughput (HTP) micronucleus assay in multi-well plates with an automated evaluation for risk assessment applications. The evaluation of genotoxicity via the micronucleus assays according to international guidelines ISO 21427-2 with Chinese hamster (Cricetulus griseus) V79 cells was the starting point to develop our methodology. A drawback of this assay is that it is very time consuming and cost intensive. Our HTP micronucleus assay in a 48-well plate format allows for the simultaneous assessment of five different sample-concentrations with additional positive, negative and solvent controls with six technical replicates each within a quarter of the time required for the equivalent evaluation using the traditional slide method. In accordance with the 3R principle, animal compounds should be replaced with animal-free alternatives. However, traditional cell culture-based methods still require animal derived compounds like rat-liver derived S9-fraction, which is used to simulate the mammalian metabolism in in vitro assays that do show intrinsic metabolization capabilities. In the present study, a recently developed animal-free biotechnological alternative (ewoS9R) was investigated in the new high-throughput micronucleus assay. In total, 12 different mutagenic or genotoxic chemicals were investigated to assess the potential use of the animal-free metabolization system (ewoS9R) in comparison to a common rat-derived product. Out of the 12 compounds, one compound did not induce micronuclei in any treatment and 2 substances showed a genotoxic potential without the need for a metabolization system. EwoS9R demonstrated promising potential for future applications as it shows comparable results to the rat-derived S9 for 6 of the 9 pro-genotoxic substances tested. The remaining 3 substances (2-Acetamidofluorene, Benzo[a]pyrene, Cyclophosphamide) were only metabolized by rat-derived S9. A potential explanation is that ewoS9R was investigated with an approx. 10-fold lower enzyme concentration and was only optimized for CYP1A metabolization that may be improved with a modified production procedure. Future applications of ewoS9R go beyond the micronucleus assay, but further research is necessary.
Collapse
Affiliation(s)
- Julia Brendt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Carina Lackmann
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sebastian Heger
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Sarah E Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Andreas Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany.
| |
Collapse
|
49
|
Kašuba V, Milić M, Želježić D, Mladinić M, Pizent A, Kljaković-Gašpić Z, Balija M, Jukić I. Biomonitoring findings for occupational lead exposure in battery and ceramic tile workers using biochemical markers, alkaline comet assay, and micronucleus test coupled with fluorescence in situ hybridisation. Arh Hig Rada Toksikol 2020; 71:339-352. [PMID: 33410779 PMCID: PMC7968510 DOI: 10.2478/aiht-2020-71-3427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/01/2020] [Accepted: 11/01/2020] [Indexed: 01/19/2023] Open
Abstract
Manufacture of lead-containing products has long been associated with various health risks. To get an insight into the related genotoxic risks, we conducted a biomonitoring study in 50 exposed workers and 48 matched controls using a battery of endpoints that sensitively detect the extent of genome instability in peripheral blood lymphocytes. The levels of primary DNA damage were estimated with the alkaline comet assay, while cytogenetic abnormalities were determined with the cytokinesis-block micronucleus (CBMN) cytome assay. Additionally, CBMN slides of 20 exposed and 16 control participants were subjected to fluorescence in situ hybridisation (FISH), coupled with pancentromeric probes to establish the incidence of centromere-positive micronuclei, nuclear buds, and nucleoplasmic bridges. Blood lead levels (B-Pb) were measured with atomic absorption spectrometry. To further characterise cumulative effects of occupational exposure, we measured erythrocyte protoporphyrin (EP) concentrations and delta-aminolevulinic acid dehydratase (ALAD) activity in blood. We also assessed the influence of serum folate (S-folate) and vitamin B12 (S-B12) on genome stability. Compared to controls, occupationally exposed workers demonstrated significantly higher B-Pb (298.36±162.07 vs 41.58±23.02), MN frequency (18.71±11.06 vs 8.98±7.50), centromere positive MN (C+ MN) (8.15±1.8 vs 3.69±0.47), and centromere negative MN (C- MN) (14.55±1.80 vs 4.56±0.89). Exposed women had significantly higher comet tail intensity (TI) and length (TL) than control women. Furthermore, workers showed a positive correlation between age and nuclear buds and MN, between MN and years of exposure, and between S-B12 levels and TI and ALAD activity, while a negative correlation was found between TI and B-Pb. These findings suggest that occupational settings in the manufacture of lead-containing products pose significant genotoxic risks, which calls for developing more effective work safety programmes, including periodical monitoring of B-Pb and genetic endpoints.
Collapse
Affiliation(s)
- Vilena Kašuba
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | - Davor Želježić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia
| | | | - Alica Pizent
- Institute for Medical Research and Occupational Health, Analytical Toxicology and Mineral Metabolism Unit, Zagreb, Croatia
| | - Zorana Kljaković-Gašpić
- Institute for Medical Research and Occupational Health, Analytical Toxicology and Mineral Metabolism Unit, Zagreb, Croatia
| | - Melita Balija
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
| | - Irena Jukić
- Croatian Institute for Transfusion Medicine, Zagreb, Croatia
| |
Collapse
|
50
|
Udroiu I, Sgura A, Chendi A, Lasagni L, Bertolini M, Fioroni F, Piccagli V, Moramarco A, Romano MG, Fontana L, D'Alessio D, Bruzzaniti V, Rosi A, Grande S, Palma A, Giliberti C, Iori M, Piergallini L, Sumini M, Isolan L, Cucchi G, Compagnone G, Strigari L. DNA damage in lens epithelial cells exposed to occupationally-relevant X-ray doses and role in cataract formation. Sci Rep 2020; 10:21693. [PMID: 33303795 PMCID: PMC7728785 DOI: 10.1038/s41598-020-78383-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
The current framework of radiological protection of occupational exposed medical workers reduced the eye-lens equivalent dose limit from 150 to 20 mSv per year requiring an accurate dosimetric evaluation and an increase understanding of radiation induced effects on Lens cells considering the typical scenario of occupational exposed medical operators. Indeed, it is widely accepted that genomic damage of Lens epithelial cells (LEC) is a key mechanism of cataractogenesis. However, the relationship between apoptosis and cataractogenesis is still controversial. In this study biological and physical data are combined to improve the understanding of radiation induced effects on LEC. To characterize the occupational exposure of medical workers during angiographic procedures an INNOVA 4100 (General Electric Healthcare) equipment was used (scenario A). Additional experiments were conducted using a research tube (scenario B). For both scenarios, the frequencies of binucleated cells, micronuclei, p21-positive cells were assessed with different doses and dose rates. A Monte-Carlo study was conducted using a model for the photon generation with the X-ray tubes and with the Petri dishes considering the two different scenarios (A and B) to reproduce the experimental conditions and validate the irradiation setups to the cells. The simulation results have been tallied using the Monte Carlo code MCNP6. The spectral characteristics of the different X-ray beams have been estimated. All irradiated samples showed frequencies of micronuclei and p21-positive cells higher than the unirradiated controls. Differences in frequencies increased with the delivered dose measured with Gafchromic films XR-RV3. The spectrum incident on eye lens and Petri, as estimated with MCNP6, was in good agreement in the scenario A (confirming the experimental setup), while the mean energy spectrum was higher in the scenario B. Nevertheless, the response of LEC seemed mainly related to the measured absorbed dose. No effects on viability were detected. Our results support the hypothesis that apoptosis is not responsible for cataract induced by low doses of X-ray (i.e. 25 mGy) while the induction of transient p21 may interfere with the disassembly of the nuclear envelop in differentiating LEC, leading to cataract formation. Further studies are needed to better clarify the relationship we suggested between DNA damage, transient p21 induction and the inability of LEC enucleation.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Agnese Chendi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy.,Postgraduate School in Medical Physics, University of Bologna, Bologna, Italy
| | - Lorenzo Lasagni
- Postgraduate School in Medical Physics, University of Firenze, Florence, Italy
| | - Marco Bertolini
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Federica Fioroni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Vando Piccagli
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Antonio Moramarco
- Ophthalmology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | | | - Luigi Fontana
- Ophthalmology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Daniela D'Alessio
- Department of Medical Physics, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Vicente Bruzzaniti
- Laboratory of Medical Physics and Expert Systems, Regina Elena Cancer Institute IRCCS, Rome, Italy
| | - Antonella Rosi
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Rome, Italy
| | - Sveva Grande
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Rome, Italy
| | - Alessandra Palma
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Rome, Italy
| | - Claudia Giliberti
- Inail-Dipartimento Innovazioni Tecnologiche e Sicurezza degli Impianti, Prodotti ed Insediamenti Antropici, Rome, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy
| | - Lorenzo Piergallini
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio, Italy.,Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy
| | - Marco Sumini
- Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy.,INFN, Bologna, Italy.,Interdepartmental Center "L. Galvani" CIG, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Lorenzo Isolan
- Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" CIG, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giorgio Cucchi
- Montecuccolino Laboratory, Industrial Engineering Department, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" CIG, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gaetano Compagnone
- Department of Medical Physics, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, St. Orsola-Malpighi University Hospital, Bologna, Italy.
| |
Collapse
|