1
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67054-67072. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
2
|
EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Degen G, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wright M, Andreoli C, Bastos M, Benford D, Bignami M, Bolognesi C, Cheyns K, Corsini E, Crebelli R, Dusemund B, Fitzgerald R, Gaffet E, Loeschner K, Marcon F, Mast J, Mirat M, Mortensen A, Oomen A, Schlatter J, Turck D, Ulbrich B, Undas A, Vleminckx C, Woelfle D, Woutersen R, Barmaz S, Dino B, Gagliardi G, Levorato S, Mazzoli E, Nathanail A, Rincon AM, Ruggeri L, Smeraldi C, Tard A, Vermeiren S, Gundert‐Remy U. Re-evaluation of silicon dioxide (E 551) as a food additive in foods for infants below 16 weeks of age and follow-up of its re-evaluation as a food additive for uses in foods for all population groups. EFSA J 2024; 22:e8880. [PMID: 39421729 PMCID: PMC11483555 DOI: 10.2903/j.efsa.2024.8880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The present opinion is the follow-up of the conclusions and recommendations of the Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive relevant to the safety assessment for all age groups. In addition, the risk assessment of silicon dioxide (E 551) for its use in food for infants below 16 weeks of age is performed. Based on the newly available information on the characterisation of the SAS used as E 551 and following the principles of the 2021 EFSA Guidance on Particle-TR, the conventional safety assessment has been complemented with nano-specific considerations. Given the uncertainties resulting from the limitations of the database and in the absence of genotoxicity concern, the Panel considered that it is not appropriate to derive an acceptable daily intake (ADI) but applied the margin of exposure (MOE) approach for the risk assessment. The Panel concluded that the MOE should be at least 36 for not raising a safety concern. The calculated MOEs considering the dietary exposure estimates for all population groups using the refined non-brand loyal scenario, estimated at the time of the 2018 re-evaluation, were all above 36. The Panel concluded that E 551 does not raise a safety concern in all population groups at the reported uses and use levels. The use of E 551 in food for infants below 16 weeks of age in FC 13.1.1 and FC 13.1.5.1 does not raise a safety concern at the current exposure levels. The Panel also concluded that the technical data provided support an amendment of the specifications for E 551 laid down in Commission Regulation (EU) No 231/2012. The paucity of toxicological studies with proper dispersion protocol (with the exception of the genotoxicity studies) creates uncertainty in the present assessment of the potential toxicological effects related to the exposure to E 551 nanosize aggregates.
Collapse
|
3
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Encinas-Gimenez M, Martin-Duque P, Martín-Pardillos A. Cellular Alterations Due to Direct and Indirect Interaction of Nanomaterials with Nucleic Acids. Int J Mol Sci 2024; 25:1983. [PMID: 38396662 PMCID: PMC10889090 DOI: 10.3390/ijms25041983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Deoxyribonucleic acid (DNA) represents the main reservoir of genetic information in the cells, which is why it is protected in the nucleus. Entry into the nucleus is, in general, difficult, as the nuclear membrane is a selective barrier to molecules longer than 40 kDa. However, in some cases, the size of certain nanoparticles (NPs) allows their internalization into the nucleus, thus causing a direct effect on the DNA structure. NPs can also induce indirect effects on DNA through reactive oxygen species (ROS) generation. In this context, nanomaterials are emerging as a disruptive tool for the development of novel therapies in a broad range of biomedical fields; although their effect on cell viability is commonly studied, further interactions with DNA or indirect alterations triggered by the internalization of these materials are not always clarified, since the small size of these materials makes them perfectly suitable for interaction with subcellular structures, such as the nucleus. In this context, and using as a reference the predicted interactions presented in a computational model, we describe and discuss the observed direct and indirect effects of the implicated nanomaterials on DNA.
Collapse
Affiliation(s)
- Miguel Encinas-Gimenez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Martin-Duque
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Centro de Terapias Avanzadas, Instituto de Salud Carlos lll, 28222 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (M.E.-G.); (A.M.-P.)
- Department of Chemical Engineering and Environmental Technology (IQTMA), University of Zaragoza, 50018 Zaragoza, Spain
- Ciber Bioingeniería y Biomateriales (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Mentana A, Orsière T, Malard V, Lamartiniere Y, Grisolia C, Tassistro V, Iaria O, Guardamagna I, Lonati L, Baiocco G. Gaining insight into genotoxicity with the comet assay in inhomogenoeous exposure scenarios: The effects of tritiated steel and cement particles on human lung cells in an inhalation perspective. Toxicol In Vitro 2023; 92:105656. [PMID: 37532108 DOI: 10.1016/j.tiv.2023.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The comet assay was recently applied for the first time to test the genotoxicity of micrometric stainless steel and cement particles, representative of those produced in the dismantling of nuclear power plants. A large dataset was obtained from in vitro exposure of BEAS-2B lung cells to different concentrations of hydrogenated (non-radiative control) and tritiated particles, to assess the impact of accidental inhalation. Starting from the distributions of the number of nuclei scored at different extent of DNA damage (% tail DNA values), we propose a new comet data treatment designed to consider the inhomogeneity of the action of such particles. Indeed, due to particle behavior in biological media and concentration, a large fraction of cells remains undamaged, and standard averaging of genotoxicity indicators leads to a misinterpretation of experimental results. The analysis we propose reaches the following goals: genotoxicity in human lung cells is assessed for stainless steel and cement microparticles; the role of radiative damage due to tritium is disentangled from particulate stress; the fraction of damaged cells and their average level of DNA damage are assessed separately, which is essential for carcinogenesis implications and sets the basis for a better-informed risk management for human exposure to radioactive particles.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, F-13005 Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, IPM, F-13108 Saint Paul-Lez-Durance, France
| | | | | | - Virginie Tassistro
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, F-13005 Marseille, France
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
7
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
8
|
Coskun E, Singh N, Scanlan LD, Jaruga P, Doak SH, Dizdaroglu M, Nelson BC. Inhibition of human APE1 and MTH1 DNA repair proteins by dextran-coated γ-Fe 2O 3 ultrasmall superparamagnetic iron oxide nanoparticles. Nanomedicine (Lond) 2022; 17:2011-2021. [PMID: 36853189 PMCID: PMC10031551 DOI: 10.2217/nnm-2022-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Erdem Coskun
- Institute for Bioscience & Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Leona D Scanlan
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1001 I Street, Sacramento, CA 95814, USA
| | - Pawel Jaruga
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Shareen H Doak
- Institute of Life Science, Center for NanoHealth, Swansea University Medical School, Wales, SA2 8PP, UK
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Bryant C Nelson
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
9
|
El Yamani N, Rundén-Pran E, Collins AR, Longhin EM, Elje E, Hoet P, Vinković Vrček I, Doak SH, Fessard V, Dusinska M. The miniaturized enzyme-modified comet assay for genotoxicity testing of nanomaterials. FRONTIERS IN TOXICOLOGY 2022; 4:986318. [PMID: 36310692 PMCID: PMC9597874 DOI: 10.3389/ftox.2022.986318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
The in vitro comet assay is a widely applied method for investigating genotoxicity of chemicals including engineered nanomaterials (NMs). A big challenge in hazard assessment of NMs is possible interference between the NMs and reagents or read-out of the test assay, leading to a risk of biased results. Here, we describe both the standard alkaline version of the in vitro comet assay with 12 mini-gels per slide for detection of DNA strand breaks and the enzyme-modified version that allows detection of oxidized DNA bases by applying lesion-specific endonucleases (e.g., formamidopyrimidine DNA glycosylase or endonuclease III). We highlight critical points that need to be taken into consideration when assessing the genotoxicity of NMs, as well as basic methodological considerations, such as the importance of carrying out physicochemical characterization of the NMs and investigating uptake and cytotoxicity. Also, experimental design-including treatment conditions, cell number, cell culture, format and volume of medium on the plate-is crucial and can have an impact on the results, especially when testing NMs. Toxicity of NMs depends upon physicochemical properties that change depending on the environment. To facilitate testing of numerous NMs with distinct modifications, the higher throughput miniaturized version of the comet assay is essential.
Collapse
Affiliation(s)
- N. El Yamani
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - E. Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - A. R. Collins
- Comet Biotech AS, Department of Nutrition, University of Oslo, Oslo, Norway
| | - E. M. Longhin
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - E. Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - P. Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - I. Vinković Vrček
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - S. H. Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - V. Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, Fougères, France
| | - M. Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
10
|
Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models. Int J Mol Sci 2022; 23:ijms231810398. [PMID: 36142309 PMCID: PMC9499181 DOI: 10.3390/ijms231810398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
During the decommissioning of nuclear facilities, the tritiated materials must be removed. These operations generate tritiated steel and cement particles that could be accidentally inhaled by workers. Thus, the consequences of human exposure by inhalation to these particles in terms of radiotoxicology were investigated. Their cyto-genotoxicity was studied using two human lung models: the BEAS-2B cell line and the 3D MucilAirTM model. Exposures of the BEAS-2B cell line to particles (2 and 24 h) did not induce significant cytotoxicity. Nevertheless, DNA damage occurred upon exposure to tritiated and non-tritiated particles, as observed by alkaline comet assay. Tritiated particles only induced cytostasis; however, both induced a significant increase in centromere negative micronuclei. Particles were also assessed for their effects on epithelial integrity and metabolic activity using the MucilAirTM model in a 14-day kinetic mode. No effect was noted. Tritium transfer through the epithelium was observed without intracellular accumulation. Overall, tritiated and non-tritiated stainless steel and cement particles were associated with moderate toxicity. However, these particles induce DNA lesions and chromosome breakage to which tritium seems to contribute. These data should help in a better management of the risk related to the inhalation of these types of particles.
Collapse
|
11
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Samuel Raj V, Chang CM, Priyadarshini A. Synthesis and Biological Characterization of Phyto-Fabricated Silver Nanoparticles from Azadirachta indica. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) have garnered a lot of interest in sectors like medicine, cosmetics, food, and pharmaceuticals for antibacterial catalytic properties, reduced toxicity, and easy production. Biological synthesis of silver nanoparticle (AgNPs) is considered as green, eco-friendly,
and cost-effective approach; therefore, Azadirachta indica extracts were utilized for a dual role of fabrication and functionalization of AgNPs. Optical and physical characterizations were achieved for confirming the biosynthesized AgNPs. SEM images detected quasi-spherical AgNPs of
44.04 to 66.50 nm. Some of potent phytochemicals like flavonoids and proteins from Azadirachta indica formed a strong coating or capping on the AgNPs without affecting their secondary structure by interacting with Ag+ and NPs for the formation of AgNPs. AgNPs exhibited strong
antibacterial activity (MIC 10 μg/ml) against multidrug-resistant bacteria Enterococcus faecalis; at different concentrations, no IC50 values were recorded for AgNPs as well as Azadirachta indica signifying low cytotoxicity in the exposed concentration range. The DNA
degradation activity of AgNPs through the TUNEL assay revealed no significant increase in the overall FITC mean fluorescence intensity as well as a DNA fragmentation index with 5.45% DNA damage (10 μg/ml AgNPs). Drug uptake of AgNPs was also investigated through a permeability assay
via Caco-2 cell lines at test concentrations where apparent permeability was detected as moderate.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - V. Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist. Taoyuan City, 33302, Taiwan (R.O.C.)
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana 131029, India
| |
Collapse
|
12
|
Racovita AD. Titanium Dioxide: Structure, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095681. [PMID: 35565075 PMCID: PMC9104107 DOI: 10.3390/ijerph19095681] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/27/2022]
Abstract
Titanium dioxide, first manufactured a century ago, is significant in industry due to its chemical inertness, low cost, and availability. The white mineral has a wide range of applications in photocatalysis, in the pharmaceutical industry, and in food processing sectors. Its practical uses stem from its dual feature to act as both a semiconductor and light scatterer. Optical performance is therefore of relevance in understanding how titanium dioxide impacts these industries. Recent breakthroughs are summarised herein, focusing on whether restructuring the surface properties of titanium dioxide either enhances or inhibits its reactivity, depending on the required application. Its recent exposure as a potential carcinogen to humans has been linked to controversies around titanium dioxide's toxicity; this is discussed by illustrating discrepancies between experimental protocols of toxicity assays and their results. In all, it is important to review the latest achievements in fast-growing industries where titanium dioxide prevails, while keeping in mind insights into its disputed toxicity.
Collapse
Affiliation(s)
- Anca Diana Racovita
- Department of Chemistry, Faculty of Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
13
|
Leudjo Taka A, Tata CM, Klink MJ, Mbianda XY, Mtunzi FM, Naidoo EB. A Review on Conventional and Advanced Methods for Nanotoxicology Evaluation of Engineered Nanomaterials. Molecules 2021; 26:6536. [PMID: 34770945 PMCID: PMC8588160 DOI: 10.3390/molecules26216536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/17/2023] Open
Abstract
Nanotechnology can be defined as the field of science and technology that studies material at nanoscale (1-100 nm). These nanomaterials, especially carbon nanostructure-based composites and biopolymer-based nanocomposites, exhibit excellent chemical, physical, mechanical, electrical, and many other properties beneficial for their application in many consumer products (e.g., industrial, food, pharmaceutical, and medical). The current literature reports that the increased exposure of humans to nanomaterials could toxicologically affect their environment. Hence, this paper aims to present a review on the possible nanotoxicology assays that can be used to evaluate the toxicity of engineered nanomaterials. The different ways humans are exposed to nanomaterials are discussed, and the recent toxicity evaluation approaches of these nanomaterials are critically assessed.
Collapse
Affiliation(s)
- Anny Leudjo Taka
- Department of Chemistry/Biotechnology, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (F.M.M.); (E.B.N.)
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng 1983, South Africa
| | - Charlotte Mungho Tata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.M.T.); (X.Y.M.)
- Department of Biochemistry, University of Bamenda, Bambili 00237, Cameroon
| | - Michael John Klink
- Department of Chemistry/Biotechnology, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (F.M.M.); (E.B.N.)
| | - Xavier Yangkou Mbianda
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (C.M.T.); (X.Y.M.)
| | - Fanyana Moses Mtunzi
- Department of Chemistry/Biotechnology, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (F.M.M.); (E.B.N.)
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng 1983, South Africa
| | - Eliazer Bobby Naidoo
- Department of Chemistry/Biotechnology, Vaal University of Technology, Vanderbijlpark 1900, South Africa; (F.M.M.); (E.B.N.)
- Institute of Chemical & Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng 1983, South Africa
| |
Collapse
|
14
|
Grzesiakowska A, Kasprowicz MJ, Kuchta-Gładysz M, Rymuza K, Szeleszczuk O. Genotoxicity of physical silver nanoparticles, produced by the HVAD method, for Chinchilla lanigera genome. Sci Rep 2021; 11:18473. [PMID: 34531461 PMCID: PMC8446028 DOI: 10.1038/s41598-021-97926-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Each year, growing demand for silver nanoparticles (AgNP) contributes to the search for alternative methods of their production. Stable AgNP with antibacterial properties, low toxicity to the environment and living organisms are especially valued. In the study presented here, an attempt was made to assess the toxicity of two AgNP solutions produced using the HVAD method to the Chinchilla lanigera genome. The AgNO3 solution was the indicator and reference for the harmfulness of AgNP. The study was carried out in vitro on bone marrow cells isolated from Chinchilla lanigera bones. The genotoxicity was assessed by comet assay, following the treatment of cells with three silver solutions: unstable and sodium citrate-stabilized silver nanoparticles, as well as silver nitrate at three concentrations (5, 10 and 20 µg/L), after 3, 6 and 24 h. Based on the percentage of the DNA content in the comet tail and the tail moment, an increase in cell DNA integrity disruption was demonstrated in all tested variants: of solution, exposure time and concentration, compared to the control sample. A statistically significant correlation was determined between the level of induced DNA breaks and the concentration of the active solutions and the duration of their activity. A solution of silver nanoparticles stabilized with sodium citrate was shown to have the most harmful effect on bone marrow cells. Silver nitrate demonstrated a level of toxicity similar to these particles. Further studies are necessary to directly compare the genotoxic properties of AgNP produced using the HVAD method and the chemical method under the same conditions.
Collapse
Affiliation(s)
- Anna Grzesiakowska
- Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059, Kraków, Poland.
| | - Marek Jan Kasprowicz
- Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Mickiewicza Av. 21, 31-120, Kraków, Poland
| | - Marta Kuchta-Gładysz
- Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059, Kraków, Poland.
| | - Katarzyna Rymuza
- Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, ul. B. Prusa 14, 08-110, Siedlce, Poland
| | - Olga Szeleszczuk
- Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059, Kraków, Poland
| |
Collapse
|
15
|
Valdiglesias V, Fernández-Bertólez N, Lema-Arranz C, Rodríguez-Fernández R, Pásaro E, Reis AT, Teixeira JP, Costa C, Laffon B. Salivary Leucocytes as In Vitro Model to Evaluate Nanoparticle-Induced DNA Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1930. [PMID: 34443762 PMCID: PMC8400528 DOI: 10.3390/nano11081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Metal oxide nanoparticles (NPs) have a wide variety of applications in many consumer products and biomedical practices. As a result, human exposure to these nanomaterials is highly frequent, becoming an issue of concern to public health. Recently, human salivary leucocytes have been proposed as an adequate non-invasive alternative to peripheral blood leucocytes to evaluate genotoxicity in vitro. The present study focused on proving the suitability of salivary leucocytes as a biomatrix in the comet assay for in vitro nanogenotoxicity studies, by testing some of the metal oxide NPs most frequently present in consumer products, namely, titanium dioxide (TiO2), zinc oxide (ZnO), and cerium dioxide (CeO2) NPs. Primary and oxidative DNA damage were evaluated by alkaline and hOGG1-modified comet assay, respectively. Any possible interference of the NPs with the methodological procedure or the hOGG1 activity was addressed before performing genotoxicity evaluation. Results obtained showed an increase of both primary and oxidative damage after NPs treatments. These data support the use of salivary leucocytes as a proper and sensitive biological sample for in vitro nanogenotoxicity studies, and contribute to increase the knowledge on the impact of metal oxide NPs on human health, reinforcing the need for a specific regulation of the nanomaterials use.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
| | - Natalia Fernández-Bertólez
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Carlota Lema-Arranz
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
| | - Raquel Rodríguez-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Eduardo Pásaro
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (A.T.R.); (J.P.T.); (C.C.)
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A Coruña, Spain; (N.F.-B.); (R.R.-F.); (E.P.); (B.L.)
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| |
Collapse
|
16
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
17
|
Yu H, Gao Y, Zhou R. Oxidative Stress From Exposure to the Underground Space Environment. Front Public Health 2020; 8:579634. [PMID: 33194980 PMCID: PMC7609794 DOI: 10.3389/fpubh.2020.579634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
There are a growing number of people entering underground spaces. However, underground spaces have unique environmental characteristics, and little is known about their effects on human health. It is crucial to elucidate the effects of the underground space environment on the health of humans and other organisms. This paper reviews the effects of hypoxia, toxic atmospheric particles, and low background radiation in the underground space environment on living organisms from the perspective of oxidative stress. Most studies have revealed that living organisms maintained in underground space environments exhibit obvious oxidative stress, which manifests as changes in oxidants, antioxidant enzyme activity, genetic damage, and even disease status. However, there are few relevant studies, and the pathophysiological mechanisms have not been fully elucidated. There remains an urgent need to focus on the biological effects of other underground environmental factors on humans and other organisms as well as the underlying mechanisms. In addition, based on biological research, exploring means to protect humans and living organisms in underground environments is also essential.
Collapse
Affiliation(s)
- Hongbiao Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, China
| | - Yijie Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Martínez-Zapata D, Santamaria R. The damage of the Watson-Crick base pairs by nickel nanoparticles: A first-principles molecular dynamics study. Comput Biol Chem 2020; 87:107262. [PMID: 32623022 DOI: 10.1016/j.compbiolchem.2020.107262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
The nickel nanoparticles are harmful atmospheric pollutants, and the damage caused by them in humans has become a topic of great relevance. In this study we investigate the interaction of the Ni2 and Ni3 clusters with the AT and GC Watson-Crick base pairs in an aqueous medium. Molecular dynamics in combination with density functional theory are employed. A novel method is implemented to create realistic thermodynamic conditions (NVT) in the simulations. The energies, the charges of the interacting compounds, the temperature changes, and the geometric rearrangements are reported. The results show the formation of stable organometallic compounds of the nickel nanoparticles with the DNA nucleic acid bases. In this respect, the biological processes where the DNA is implicated may be altered by the formation of such super-structures.
Collapse
Affiliation(s)
| | - Ruben Santamaria
- Department of Theoretical Physics, Institute of Physics, UNAM, Mexico.
| |
Collapse
|
19
|
Barreto A, Dias A, Duarte B, Pinto E, Almeida A, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Biological effects and bioaccumulation of gold in gilthead seabream (Sparus aurata) - Nano versus ionic form. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137026. [PMID: 32036137 DOI: 10.1016/j.scitotenv.2020.137026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The question of whether gold (Au) is more toxic as nanoparticles or in its ionic form remains unclear and controversial. The present work aimed to clarify the effects of 96 h exposure to 4, 80 and 1600 μg·L-1 of 7 nm gold nanoparticles (AuNPs) - (citrate coated (cAuNPs) or polyvinylpyrrolidone coated (PVP-AuNPs)) - and ionic Au (iAu) on gilthead seabream (Sparus aurata). Effects at different levels of biological organization (behaviour, neurotransmission, biotransformation, oxidative stress/damage and genotoxicity) were assessed. cAuNPs induced oxidative stress and damage (lipid peroxidation increase), even at 4 μg·L-1, and reduced the ability of S. aurata to swim against a water flow at 1600 μg·L-1. Exposure to cAuNPs induced more adverse effects than exposure to PVP-AuNPs. All tested concentrations of Au (nano or ionic form) induced DNA breaks and cytogenetic damage in erythrocytes of S. aurata. Generally, iAu induced significantly more effects in fish than the nano form, probably associated with the significantly higher accumulation in the fish tissues. No fish mortality was observed following exposure to AuNPs, but mortality was observed in the group exposed to 1600 μg·L-1 of iAu.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A Dias
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - B Duarte
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; Department of Environmental Health, School of Health, P.Porto. CISA/Research Center in Environment and Health, 4200-072 Porto, Portugal
| | - A Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO, Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Ferreira LAB, Garcia-Fossa F, Radaic A, Durán N, Fávaro WJ, de Jesus MB. Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer. Eur J Pharm Biopharm 2020; 151:162-170. [PMID: 32311428 DOI: 10.1016/j.ejpb.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/03/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023]
Abstract
Bladder cancer is the fifth most common disease in the United States, and the treatment and alternatives for patients have not changed in the last decades. Silver nanoparticles (AgNP) have been used in the treatment of various cancer, mainly because of the antineoplastic activity; however, their use and the molecular mechanisms towards bladder cancer still unexplored. Therefore, this work aims to evaluate the in vitro and in vivo antitumoral mechanisms of biogenic silver nanoparticles synthesized from Fusarium sp. First, AgNP showed cytotoxicity in a dose- and time-response relationship and detailed analysis demonstrated the induction of cell death via apoptosis, also inhibiting cell migration and proliferation in bladder carcinoma cell line 5637. Next, it was evaluated the antitumoral activity of AgNP against non-muscle invasive bladder cancer (NMIBC). Bladder cancer was chemically induced with N-methyl-N-nitrosourea (MNU) on C57BL/6JUnib female mice and treated by intravesical route with AgNP concentrations of 0.5, 0.2, and 0.05 mg/mL. Finally, treatment with AgNP (0.05 mg/mL) led to 57.13% of tumor regression, with 14.28% of the animals showing normal urothelium, and 42.85% showing flat hyperplasia, considered to be a benign lesion. Overall, these findings demonstrated that AgNP might be a cost-effective alternative and promising candidate for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Luiz Alberto Bandeira Ferreira
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Fernanda Garcia-Fossa
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Allan Radaic
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | - Nelson Durán
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo Bispo de Jesus
- Nano-cell Interactions Lab., Department Biochemistry & Tissue Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Halder AK, Melo A, Cordeiro MNDS. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. CHEMOSPHERE 2020; 244:125489. [PMID: 31812055 DOI: 10.1016/j.chemosphere.2019.125489] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Nanomaterials (NMs) are an ever-increasing field of interest, due to their wide range of applications in science and technology. However, despite providing solutions to many societal problems and challenges, NMs are associated with adverse effects with potential severe damages towards biological species and their ecosystems. Particularly, it has been confirmed that NMs may induce serious genotoxic effects on various biological targets. Given the difficulties of experimental assays for estimating the genotoxicity of many NMs on diverse biological targets, development of alternative methodologies is crucial to establish their level of safety. In silico modelling approaches, such as Quantitative Structure-Toxicity Relationships (QSTR), are now considered a promising solution for such purpose. In this work, a perturbation theory machine learning (PTML) based QSTR approach is proposed for predicting the genotoxicity of metal oxide NMs under various experimental assay conditions. The application of such perturbation approach to 6084 NM-NM pair cases, set up from 78 unique NMs, afforded a final PTML-QSTR model with an accuracy better than 96% for both training and test sets. This model was then used to predict the genotoxicity of some NMs not included in the modelling dataset. The results for this independent data set were in excellent agreement with the experimental ones. Overall, that thus suggests that the derived PTML-QSTR model is a reliable in silico tool to rapidly and cost-efficiently assess the genotoxicity of metal oxide NMs. Finally, and most importantly, the model provides important insights regarding the mechanism of the genotoxicity triggered by these NMs.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal.
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
22
|
Rodriguez-Garraus A, Azqueta A, Vettorazzi A, López de Cerain A. Genotoxicity of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E251. [PMID: 32023837 PMCID: PMC7075128 DOI: 10.3390/nano10020251] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in diverse sectors such as medicine, food, cosmetics, household items, textiles and electronics. Given the extent of human exposure to AgNPs, information about the toxicological effects of such products is required to ensure their safety. For this reason, we performed a bibliographic review of the genotoxicity studies carried out with AgNPs over the last six years. A total of 43 articles that used well-established standard assays (i.e., in vitro mouse lymphoma assays, in vitro micronucleus tests, in vitro comet assays, in vivo micronucleus tests, in vivo chromosome aberration tests and in vivo comet assays), were selected. The results showed that AgNPs produce genotoxic effects at all DNA damage levels evaluated, in both in vitro and in vivo assays. However, a higher proportion of positive results was obtained in the in vitro studies. Some authors observed that coating and size had an effect on both in vitro and in vivo results. None of the studies included a complete battery of assays, as recommended by ICH and EFSA guidelines, and few of the authors followed OECD guidelines when performing assays. A complete genotoxicological characterization of AgNPs is required for decision-making.
Collapse
Affiliation(s)
- Adriana Rodriguez-Garraus
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
23
|
Oliveira CR, Garcia TD, Franco-Belussi L, Salla RF, Souza BFS, de Melo NFS, Irazusta SP, Jones-Costa M, Silva-Zacarin ECM, Fraceto LF. Pyrethrum extract encapsulated in nanoparticles: Toxicity studies based on genotoxic and hematological effects in bullfrog tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1009-1020. [PMID: 31434178 DOI: 10.1016/j.envpol.2019.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The environment receives about 2.7 kg.ha-1 annually of pesticides, used in crop production. Pesticides may have a negative impact on environmental biodiversity and potentially induce physiological effects on non-target species. Advances in technology and nanocarrier systems for agrochemicals led to new alternatives to minimize these impacts, such as nanopesticides, considered more efficient, safe and sustainable. However, it is important to evaluate the risk potential, action and toxicity of nanopesticides in aquatic and terrestrial organisms. This study aims to evaluate genotoxic and hematological biomarkers in bullfrog tadpoles (Lithobates catesbeianus) submitted to acute exposure (48 h) to pyrethrum extract (PYR) and solid lipid nanoparticles loaded with PYR. Results showed increased number of leukocytes during acute exposure, specifically eosinophils in nanoparticle-exposed groups, and basophil in PYR-exposed group. Hematological analysis showed that PYR encapsulated in nanoparticles significantly increased the erythrocyte number compared to the other exposed groups. Data from the comet assay indicated an increase in frequency of the classes that correspond to more severe DNA damages in exposed groups, being that the PYR-exposed group showed a high frequency of class-4 DNA damage. Moreover, erythrocyte nuclear abnormalities were triggered by short-time exposure in all treatments, which showed effects significantly higher than the control group. These results showed genotoxic responses in tadpoles, which could trigger cell death pathways. Concluding, these analyses are important for applications in assessment of contaminated aquatic environments and their biomonitoring, which will evaluate the potential toxicity of xenobiotics, for example, the nanoparticles and pyrethrum extract in frog species. However, further studies are needed to better understand the effects of nanopesticides and botanical insecticides on non-target organisms, in order to contribute to regulatory aspects of future uses for these systems.
Collapse
Affiliation(s)
- C R Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - T D Garcia
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - L Franco-Belussi
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Biociências, Laboratório de Patologia Experimental, Avenida Costa e Silva, s/n, Bairro Universitário, 79002-970, Campo Grande, MS, Brazil
| | - R F Salla
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Animal, R. Monteiro Lobato, 255, Cidade Universitária, 13083-862, Campinas, SP, Brazil
| | - B F S Souza
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - N F S de Melo
- Faculdade de Medicina São Leopoldo Mandic, Campus Araras, Av. Dona Renata, 71, Santa Cândida, 13600-001, Araras, SP, Brazil
| | - S P Irazusta
- Faculdade de Tecnologia de Sorocaba (FATEC), Centro Estadual de Educação Tecnológica Paula Souza, Campus Sorocaba, Laboratório de Ecotoxicologia, Av. Eng. Carlos R. Mendes, 2015, Além Ponte, 18013-280, Sorocaba, SP, Brazil
| | - M Jones-Costa
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil.
| | - E C M Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Campus Sorocaba, Departamento de Biologia, Laboratório de Fisiologia da Conservação e Laboratório de Ecotoxicologia e Biomarcadores em Animais, Rodovia João Leme dos Santos km 110, Itinga, 18052-780, Sorocaba, SP, Brazil
| | - L F Fraceto
- Universidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia de Sorocaba, Laboratório de Nanotecnologia Ambiental, Av. Três de Março, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
24
|
Gemmi M, Serravalle E, Roberti di Sarsina P. A New Method Based on Electron Diffraction for Detecting Nanoparticles in Injectable Medicines. J Pharm Sci 2019; 109:891-899. [PMID: 31348938 DOI: 10.1016/j.xphs.2019.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
A new method for detecting and characterizing nanoparticles in an injectable pharmaceutical solution is presented. The method is based on the simultaneous use, on those nanoparticles that are crystalline, of three-dimensional electron diffraction tomography and energy dispersive X-ray spectrometry. With three-dimensional electron diffraction tomography, the unit cell and the crystal symmetry of the nanoparticles are determined, while with energy dispersive X-ray spectrometry, the chemical composition is derived. With these data, through an inspection of a crystallographic database, it is possible to determine the crystal phase of the nanoparticles. The knowledge of the crystal phase is a valuable element for understanding the provenance and the formation of the nanoparticles, helping the researcher in solving any quality control issue related to the presence of nanoparticles in an injectable solution.
Collapse
Affiliation(s)
- Mauro Gemmi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy.
| | - Eugenio Serravalle
- AsSIS, Associazione di Studi e Informazione sulla Salute, Via Firenze 8, Pisa, Italy
| | | |
Collapse
|
25
|
Åkerlund E, Islam MS, McCarrick S, Alfaro-Moreno E, Karlsson HL. Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology 2019; 13:1060-1072. [PMID: 31322448 DOI: 10.1080/17435390.2019.1640908] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticle-induced genotoxicity can arise through different mechanisms, and generally, primary and secondary genotoxicity can be distinguished where the secondary is driven by an inflammatory response. It is, however, yet unclear how a secondary genotoxicity can be detected using in vitro methods. The aim of this study was to investigate inflammation and genotoxicity caused by agglomerated nickel (Ni) and nickel oxide (NiO) nanoparticles and, furthermore, to explore the possibility to test secondary (inflammation-driven) genotoxicity in vitro. As a benchmark particle to compare with, we used crystalline silica (quartz). A proteome profiler antibody array was used to screen for changes in release of 105 different cytokines and the results showed an increased secretion of various cytokines including vascular endothelial growth factor (VEGF) following exposure of macrophages (differentiated THP-1 cells). Both Ni and NiO caused DNA damage (comet assay) following exposure of human bronchial epithelial cells (HBEC) and interestingly conditioned media (CM) from exposed macrophages also resulted in DNA damage (2- and 3-fold increase for Ni and NiO, respectively). Similar results were also found when using a co-culture system of macrophages and epithelial cells. In conclusion, this study shows that it is possible to detect a secondary genotoxicity in lung epithelial cells by using in vitro methods based on conditioned media or co-cultures. Further investigation is needed in order to find out what factors that are causing this secondary genotoxicity and whether such effects are caused by numerous nanoparticles.
Collapse
Affiliation(s)
- Emma Åkerlund
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Md Shafiqul Islam
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Ernesto Alfaro-Moreno
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden.,Man-Technology-Environment Research Centre (MTM), Örebro University , Örebro , Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
26
|
Bocchi C, Bazzini C, Fontana F, Pinto G, Martino A, Cassoni F. Characterization of urban aerosol: Seasonal variation of genotoxicity of the water-soluble portion of PM 2.5 and PM 1. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 841:23-30. [PMID: 31138407 DOI: 10.1016/j.mrgentox.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 01/23/2023]
Abstract
Urban particulate matter (PM) is a complex mixture of several classes of chemicals: elemental carbon, ammonium, sulfates, nitrates, organic compounds and metals. For a long time, numerous studies had shown that PM causes health problems and, in 2013, it has been classified by the International Agency for Research on Cancer as carcinogenic to humans (group 1). Furthermore, it's known that the fine fraction of PM is the most genotoxic, and that smaller particles are retained by the lower respiratory system, making fine particles a public health concern. In this study we characterize the water-soluble portion of urban aerosol from Bologna, a county town of Emilia-Romagna in the north of Italy, by collecting the finest fractions of airborne particles, PM2.5 and PM1, in three different seasons (winter, summer and autumn) over a three-year period. The genotoxicity of the water-soluble extracts was evaluated, both by a standard and a enzyme-modified Comet assay and also by the Micronucleus test, with lung adenocarcinoma epithelial cells (A549). In the same extracts, water-soluble metals (V, Ni, Cu, Cr, Fe) were detected and associations between the physicochemical parameters of PM and genotoxicity were evaluated. DNA strand breaks were found in summer and winter samples in the Comet experiments, whereas oxidative damage was induced by autumn extracts; winter samples induced chromosome breakage or loss in A549 cells. Iron and copper were the most abundant transition metals in both fractions and both were associated with micronuclei induction, whereas chromium is linked with oxidative damage. This study also shows that the water-soluble fraction of PM contributes to global genotoxicity and that transition metals play a role, therefore both organic and water-soluble fractions should be considered in an air-quality monitoring program.
Collapse
Affiliation(s)
- Clara Bocchi
- Agenzia Regionale Prevenzione Ambiente Energia dell'Emilia-Romagna, Sezione di Parma, Italy.
| | - Cristina Bazzini
- Agenzia Regionale Prevenzione Ambiente Energia dell'Emilia-Romagna, Sezione di Parma, Italy
| | - Federica Fontana
- Agenzia Regionale Prevenzione Ambiente Energia dell'Emilia-Romagna, Sezione di Parma, Italy
| | - Giancarlo Pinto
- Agenzia Regionale Prevenzione Ambiente Energia dell'Emilia-Romagna, Sezione di Parma, Italy
| | - Anna Martino
- Agenzia Regionale Prevenzione Ambiente Energia dell'Emilia-Romagna, Sezione di Parma, Italy
| | - Francesca Cassoni
- Agenzia Regionale Prevenzione Ambiente Energia dell'Emilia-Romagna, Sezione di Parma, Italy
| |
Collapse
|
27
|
Barik BK, Mishra M. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology 2018; 13:258-284. [DOI: 10.1080/17435390.2018.1530393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
28
|
Bessa MJ, Brandão F, Querido MM, Costa C, Pereira CC, Valdiglesias V, Laffon B, Carriere M, Teixeira JP, Fraga S. Optimization of the harvesting and freezing conditions of human cell lines for DNA damage analysis by the alkaline comet assay. Mutat Res 2018; 845:402994. [PMID: 31561887 DOI: 10.1016/j.mrgentox.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/06/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
The comet assay is a commonly used method for in vitro and in vivo genotoxicity assessment. This versatile assay can be performed in a wide range of tissues and cell types. Although most of the studies use samples immediately processed after collection, frozen biological samples can also be used. The present study aimed to optimize a collection and freezing protocol to minimize the DNA damage associated with these procedures in human cell line samples for comet assay analysis. This study was conducted in glial A172 and lung alveolar epithelial A549 cells. Two cell detachment methods (mechanical vs enzymatic) and two cryoprotective media [FBS + 10% DMSO vs Cell Culture Media (CCM) + 10% DMSO] were tested, and DNA damage assessed at four time points following storage at -80 °C (one, two, four and eight weeks). In both cell lines, no differences in % tail intensity were detected between fresh and frozen cells up to eight weeks, irrespective of the harvesting method and freezing medium used. However, freshly isolated A172 cells exhibited a significant lower DNA damage when resuspended in CCM + 10% DMSO, while for A549 fresh cells the preferable harvesting method was the enzymatic one since it induced less DNA damage. Although both harvesting methods and cryoprotective media tested were found suitable, our data indicate that enzymatic harvesting and cryopreservation in CCM + 10% DMSO is a preferable method for DNA integrity preservation of human cell line samples for comet assay analysis. Our data also suggest that CCM is a preferable and cost-effective alternative to FBS in cryopreservation media. This optimized protocol allows the analysis of in vitro cell samples collected and frozen at different locations, with minimal interference on the basal DNA strand break levels in samples kept frozen up to eight weeks.
Collapse
Affiliation(s)
- Maria João Bessa
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| | - Fátima Brandão
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| | - Micaela Machado Querido
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| | - Carla Costa
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| | - Cristiana Costa Pereira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| | - Vanessa Valdiglesias
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Coruña, Spain.
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Coruña, Spain.
| | - Marie Carriere
- Université Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), France.
| | - João Paulo Teixeira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| | - Sónia Fraga
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal.
| |
Collapse
|
29
|
Senapati VA, Kansara K, Shanker R, Dhawan A, Kumar A. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona. Mutagenesis 2018; 32:479-490. [PMID: 29048576 DOI: 10.1093/mutage/gex028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Engineered nanoparticles (ENPs) possess different physical and chemical properties compared to their bulk counterparts. These unique properties have found application in various products in the area of therapeutics, consumer goods, environmental remediation, optical and electronic fields. This has also increased the likelihood of their release into the environment thereby affecting human health and ecosystem. ENPs, when in contact with the biological system have various physical and chemical interactions with cellular macromolecules including proteins. These interactions lead to the formation of protein corona around the ENPs. Consequently, living systems interact with the protein-coated ENP rather than with a bare ENP. This ENP-protein interaction influences uptake, accumulation, distribution and clearance and thereby affecting the cytotoxic and genotoxic responses. Although there are few studies which discussed the fate of ENPs, there is a need for extensive research in the field of ENPs, to understand the interaction of ENPs with biological systems for their safe and productive application.
Collapse
Affiliation(s)
- Violet Aileen Senapati
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India
| | - Krupa Kansara
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India
| | - Rishi Shanker
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, PO Box 80, Lucknow 226001, Uttar Pradesh, India
| | - Alok Dhawan
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, PO Box 80, Lucknow 226001, Uttar Pradesh, India
| | - Ashutosh Kumar
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
30
|
Golbamaki A, Golbamaki N, Sizochenko N, Rasulev B, Leszczynski J, Benfenati E. Genotoxicity induced by metal oxide nanoparticles: a weight of evidence study and effect of particle surface and electronic properties. Nanotoxicology 2018; 12:1113-1129. [PMID: 29888633 DOI: 10.1080/17435390.2018.1478999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The genetic toxicology of nanomaterials is a crucial toxicology issue and one of the least investigated topics. Substantially, the genotoxicity of metal oxide nanomaterials' data is resulting from in vitro comet assay. Current contributions to the genotoxicity data assessed by the comet assay provide a case-by-case evaluation of different types of metal oxides. The existing inconsistency in the literature regarding the genotoxicity testing data requires intelligent assessment strategies, such as weight of evidence evaluation. Two main tasks were performed in the present study. First, the genotoxicity data from comet assay for 16 noncoated metal oxide nanomaterials with different core composition were collected. An evaluation criterion was applied to establish which of these individual lines of evidence were of sufficient quality and what weight could have been given to them in inferring genotoxic results. The collected data were surveyed on (1) minimum necessary characterization points for nanomaterials and (2) principals of correct comet assay testing for nanomaterials. Second, in this study the genotoxicity effect of metal oxide nanomaterials was investigated by quantitative nanostructure-activity relationship approach. A set of quantum-chemical descriptors was developed for all investigated metal oxide nanomaterials. A classification model based on decision tree was developed for the investigated dataset. Thus, three descriptors were identified as the most responsible factors for genotoxicity effect: heat of formation, molecular weight, and surface area of the oxide cluster based on the conductor-like screening model. Conclusively, the proposed genotoxicity assessment strategy is useful to prioritize the study of the nanomaterials for further risk assessment evaluations.
Collapse
Affiliation(s)
- Azadi Golbamaki
- a Department of Environmental Health Sciences , Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Nazanin Golbamaki
- a Department of Environmental Health Sciences , Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Natalia Sizochenko
- b Interdisciplinary Center for Nanotoxicity , Jackson State University , Jackson , MS , USA.,c Department of Computer Science , Dartmouth College, Sudikoff Lab , Hanover , NH , USA
| | - Bakhtiyor Rasulev
- b Interdisciplinary Center for Nanotoxicity , Jackson State University , Jackson , MS , USA.,d Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Jerzy Leszczynski
- b Interdisciplinary Center for Nanotoxicity , Jackson State University , Jackson , MS , USA
| | - Emilio Benfenati
- a Department of Environmental Health Sciences , Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|
31
|
Åkerlund E, Cappellini F, Di Bucchianico S, Islam S, Skoglund S, Derr R, Odnevall Wallinder I, Hendriks G, Karlsson HL, Johnson G. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:211-222. [PMID: 29243303 PMCID: PMC5888189 DOI: 10.1002/em.22163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 05/11/2023]
Abstract
Nickel (Ni) compounds are classified as carcinogenic to humans but the underlying mechanisms are still poorly understood. Furthermore, effects related to nanoparticles (NPs) of Ni have not been fully elucidated. The aim of this study was to investigate genotoxicity and mutagenicity of Ni and NiO NPs and compare the effect to soluble Ni from NiCl2 . We employed different models; i.e., exposure of (1) human bronchial epithelial cells (HBEC) followed by DNA strand break analysis (comet assay and γ-H2AX staining); (2) six different mouse embryonic stem (mES) reporter cell lines (ToxTracker) that are constructed to exhibit fluorescence upon the induction of various pathways of relevance for (geno)toxicity and cancer; and (3) mES cells followed by mutagenicity testing (Hprt assay). The results showed increased DNA strand breaks (comet assay) for the NiO NPs and at higher doses also for the Ni NPs whereas no effects were observed for Ni ions/complexes from NiCl2 . By employing the reporter cell lines, oxidative stress was observed as the main toxic mechanism and protein unfolding occurred at cytotoxic doses for all three Ni-containing materials. Oxidative stress was also detected in the HBEC cells following NP-exposure. None of these materials induced the reporter related to direct DNA damage and stalled replication forks. A small but statistically significant increase in Hprt mutations was observed for NiO but only at one dose. We conclude that Ni and NiO NPs show more pronounced (geno)toxic effects compared to Ni ions/complexes, indicating more serious health concerns. Environ. Mol. Mutagen. 59:211-222, 2018. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Emma Åkerlund
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Francesca Cappellini
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Sebastiano Di Bucchianico
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Shafiqul Islam
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | - Sara Skoglund
- Division of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
| | - Remco Derr
- Toxys, Robert Boyleweg 4, 2333 CGLeidenthe Netherlands
| | - Inger Odnevall Wallinder
- Division of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
| | - Giel Hendriks
- Toxys, Robert Boyleweg 4, 2333 CGLeidenthe Netherlands
| | - Hanna L. Karlsson
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska InstitutetStockholm171 77Sweden
| | | |
Collapse
|
32
|
Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C. Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 2018; 12:357-374. [DOI: 10.1080/17435390.2018.1451567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sandrine Charles
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Valérie Fessard
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Laboratoire de Fougères, Unité Toxicologie des Contaminants, Javené, France
| | - Emilie Bigorgne-Vizade
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Christophe Rousselle
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Cécile Michel
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| |
Collapse
|
33
|
de Souza TAJ, Rocha TL, Franchi LP. Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:215-226. [DOI: 10.1007/978-3-319-72041-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
34
|
|
35
|
Qiu TA, Clement PL, Haynes CL. Linking nanomaterial properties to biological outcomes: analytical chemistry challenges in nanotoxicology for the next decade. Chem Commun (Camb) 2018; 54:12787-12803. [DOI: 10.1039/c8cc06473c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article provides our perspective on the analytical challenges in nanotoxicology as the field is entering its third decade.
Collapse
Affiliation(s)
- Tian A. Qiu
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | | |
Collapse
|
36
|
Latvala S, Vare D, Karlsson HL, Elihn K. In vitro genotoxicity of airborne Ni-NP in air-liquid interface. J Appl Toxicol 2017; 37:1420-1427. [PMID: 28815640 PMCID: PMC5697686 DOI: 10.1002/jat.3510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022]
Abstract
Studies using advanced toxicological methods enabling in vitro conditions that are more realistic are currently needed for understanding the risks of pulmonary exposure to airborne nanoparticles. Owing to the carcinogenicity of certain nickel compounds, the increased production of nickel nanoparticles (Ni-NPs) raises occupational safety concerns. The aim of this study was to investigate the genotoxicity of airborne Ni-NPs using a recently developed air-liquid interface exposure system. The wild-type Chinese hamster lung fibroblast cell line (V79) was used and cytotoxicity, DNA damage and mutagenicity were studied by testing colony forming efficiency, alkaline DNA unwinding and HPRT mutation assays, respectively. Additionally, co-exposure to a PARP-1 inhibitor was performed to test possible involvement of base excision repair (BER) in repair of Ni-induced DNA damage. The results showed that cell viability was reduced significantly (to 45% and 46%) after 48 hours Ni-NP exposure at concentrations of 0.15 and 0.32 μg cm-2 . DNA damage was significantly increased after Ni-NP exposure in the presence of the BER inhibitor indicating that Ni-NP-induced DNA damages are subsequently repaired by BER. Furthermore, there was no increased HPRT mutation frequency following Ni-NP exposure. In conclusion, this study shows that Ni-NP treatment of lung fibroblasts in an air-liquid interface system that mimics real-life exposure, results in increased DNA strand breaks and reduced cellular viability. These DNA lesions were repaired with BER in an error-free manner without resulting in mutations. This study also underlines the importance of appropriate quantification of the actual exposure concentrations during air-liquid interface exposure studies.
Collapse
Affiliation(s)
- Siiri Latvala
- Stockholm UniversityDepartment of Environmental Science and Analytical Chemistry, Atmospheric Science UnitSE‐106 91StockholmSweden
| | - Daniel Vare
- Stockholm University, The Wenner‐Gren InstituteDepartment of Molecular BiosciencesSE‐106 91StockholmSweden
| | - Hanna L. Karlsson
- Karolinska Institutet, Institute of Environmental MedicineDivision of Biochemical ToxicologySE‐171 77StockholmSweden
| | - Karine Elihn
- Stockholm UniversityDepartment of Environmental Science and Analytical Chemistry, Atmospheric Science UnitSE‐106 91StockholmSweden
| |
Collapse
|
37
|
Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. NANOMATERIALS 2017; 7:nano7100307. [PMID: 28984829 PMCID: PMC5666472 DOI: 10.3390/nano7100307] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Fine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse respiratory outcomes, whereas other studies suggest that iron oxide is biologically benign. Iron oxide nanoparticles (IONPs), which are less than 100 nm in diameter, have recently surged in use as components of novel drug delivery systems, unique imaging protocols, as environmental catalysts, and for incorporation into thermoplastics. However, the adverse outcomes associated with occupational exposure to IONPs remain relatively unknown. Relevant in vivo studies suggest that pulmonary exposure to IONPs may induce inflammation, pulmonary fibrosis, genotoxicity, and extra-pulmonary effects. This correlates well with in vitro studies that utilize relevant dose, cell type(s), and meaningful end points. A majority of these adverse outcomes are attributed to increased oxidative stress, most likely caused by particle internalization, dissolution, release of free iron ions, and disruption of iron homeostasis. However, because the overall toxicity profile of IONPs is not well understood, it is difficult to set safe exposure limit recommendations that would be adequate for the protection of at-risk workers. This review article will focus on known risks following IONPs exposure supported by human, animal, and cell culture-based studies, the potential challenges intrinsic to IONPs toxicity assessment, and how these may contribute to the poorly characterized IONPs toxicity profile.
Collapse
|
38
|
Møller P, Jantzen K, Løhr M, Andersen MH, Jensen DM, Roursgaard M, Danielsen PH, Jensen A, Loft S. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis 2017; 33:9-19. [DOI: 10.1093/mutage/gex015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Mille Løhr
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Maria Helena Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| |
Collapse
|
39
|
Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 2017; 58:297-317. [DOI: 10.1080/10408398.2016.1160363] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aditi Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, Bihar, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chidambaram Ramalingam
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
40
|
Collins A, El Yamani N, Dusinska M. Sensitive detection of DNA oxidation damage induced by nanomaterials. Free Radic Biol Med 2017; 107:69-76. [PMID: 28161308 DOI: 10.1016/j.freeradbiomed.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/02/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
From a toxicological point of view, nanomaterials are of interest; because - on account of their great surface area relative to mass - they tend to be more reactive than the bulk chemicals from which they are derived. They might in some cases have the potential to damage DNA directly, or could act via the induction of oxidative stress. The comet assay (single cell gel electrophoresis) is widely used to measure DNA strand breaks and also oxidised bases, by including in the procedure digestion with lesion-specific enzymes such as formamidopyrimidine DNA glycosylase (which converts oxidised purines to breaks) or endonuclease III (recognising oxidised pyrimidines). We summarise reports in which these enzymes have been used to study a variety of nanomaterials in diverse cell types. We also stress that it is important to carry out tests of cell viability alongside the genotoxicity assay, since cytotoxicity can lead to adventitious DNA damage. Different concentrations of nanomaterials should be investigated, concentrating on a non-cytotoxic range; and incubating for short and longer periods can give valuable information about the mode of damage induction. The use of lesion-specific enzymes can substantially enhance the sensitivity of the comet assay in detecting genotoxic effects.
Collapse
Affiliation(s)
- Andrew Collins
- University of Oslo, Department of Nutrition, Oslo, Norway; NorGenotech AS, Skreia, Norway.
| | - Naouale El Yamani
- NorGenotech AS, Skreia, Norway; Norwegian Institute for Air Research, Department of Environmental Chemistry, Kjeller, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research, Department of Environmental Chemistry, Kjeller, Norway
| |
Collapse
|
41
|
Gonzalez L, Cundari E, Leyns L, Kirsch-Volders M. Towards a New Paradigm in Nano-Genotoxicology: Facing Complexity of Nanomaterials' Cellular Interactions and Effects. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:23-29. [PMID: 27813321 DOI: 10.1111/bcpt.12698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
Abstract
Changes in paradigm contribute to advances in research. The current paradigms for the evaluation of toxicity of chemicals refer to linear or curvilinear dose-response curves with or without threshold and to surface-dependent induction of oxidative damage for particles. The unique physicochemical properties and biological/genotoxic activity of engineered nanomaterials (NMs) require the development of a new paradigm. Because of their unusual dosimetry and their multiple interactions at NM level (agglomeration/aggregation) and at different cellular and extracellular levels, NMs are likely to have complex modes of action (multiple hits at multiple targets) leading to complex thresholded-non-thresholded dose-response curves. Understanding their cellular targets and their modes of action will contribute to the production of safe-by-design NMs. An integrative, cell-by-cell approach for genotoxic effects should be applied to tackle this emerging paradigm in nano-genotoxicology.
Collapse
Affiliation(s)
- Laetitia Gonzalez
- Laboratory of Cell Genetics, Free University of Brussels (VUB), Brussels, Belgium
| | - Enrico Cundari
- Institute for Molecular Biology and Pathology, CNR, Rome, Italy
| | - Luc Leyns
- Laboratory of Cell Genetics, Free University of Brussels (VUB), Brussels, Belgium
| | | |
Collapse
|
42
|
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016; 38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - Natalia Fernández-Bertólez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain; Department of Cell and Molecular Biology, Universidade da Coruña, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain
| | - Gözde Kiliç
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Solange Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Sonia Fraga
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Maria Joao Bessa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain.
| |
Collapse
|
43
|
Biola-Clier M, Beal D, Caillat S, Libert S, Armand L, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles. Mutagenesis 2016; 32:161-172. [DOI: 10.1093/mutage/gew055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
44
|
Carriere M, Sauvaigo S, Douki T, Ravanat JL. Impact of nanoparticles on DNA repair processes: current knowledge and working hypotheses. Mutagenesis 2016; 32:203-213. [PMID: 27794034 DOI: 10.1093/mutage/gew052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The potential health effects of exposure to nanomaterials (NMs) is currently heavily studied. Among the most often reported impact is DNA damage, also termed genotoxicity. While several reviews relate the DNA damage induced by NMs and the techniques that can be used to prove such effects, the question of impact of NMs on DNA repair processes has never been specifically reviewed. The present review article proposes to fill this gap of knowledge by critically describing the DNA repair processes that could be affected by nanoparticle (NP) exposure, then by reporting the current state of the art on effects of NPs on DNA repair, at the level of protein function, gene induction and post-transcriptional modifications, and taking into account the advantages and limitations of the different experimental approaches. Since little is known about this impact, working hypothesis for the future are then proposed.
Collapse
Affiliation(s)
- Marie Carriere
- Laboratoire Lésions des Acides Nucléiques, Université Grenoble Alpes, INAC, LCIB, 38000 Grenoble, France, .,Laboratoire Lésions des Acides Nucléiques, CEA, INAC, SYMMES, 38000 Grenoble, France and
| | | | - Thierry Douki
- Laboratoire Lésions des Acides Nucléiques, Université Grenoble Alpes, INAC, LCIB, 38000 Grenoble, France.,Laboratoire Lésions des Acides Nucléiques, CEA, INAC, SYMMES, 38000 Grenoble, France and
| | - Jean-Luc Ravanat
- Laboratoire Lésions des Acides Nucléiques, Université Grenoble Alpes, INAC, LCIB, 38000 Grenoble, France.,Laboratoire Lésions des Acides Nucléiques, CEA, INAC, SYMMES, 38000 Grenoble, France and
| |
Collapse
|
45
|
Role of recombinant human erythropoietin loading chitosan-tripolyphosphate nanoparticles in busulfan-induced genotoxicity: Analysis of DNA fragmentation via comet assay in cultured HepG2 cells. Toxicol In Vitro 2016; 36:46-52. [DOI: 10.1016/j.tiv.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/25/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
|
46
|
Gonzalez L, Kirsch-Volders M. Reprint of “Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead”. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:204-216. [DOI: 10.1016/j.mrrev.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
|
47
|
Latvala S, Hedberg J, Di Bucchianico S, Möller L, Odnevall Wallinder I, Elihn K, Karlsson HL. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles. PLoS One 2016; 11:e0159684. [PMID: 27434640 PMCID: PMC4951072 DOI: 10.1371/journal.pone.0159684] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/05/2016] [Indexed: 02/04/2023] Open
Abstract
Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies.
Collapse
Affiliation(s)
- Siiri Latvala
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Jonas Hedberg
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Stockholm, Sweden
| | - Sebastiano Di Bucchianico
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Möller
- Analytical Toxicology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Hanna L. Karlsson
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson HL. Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 2016; 32:127-137. [PMID: 27382040 PMCID: PMC5180169 DOI: 10.1093/mutage/gew030] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50–150nm), NM101 (anatase, 5–8nm) and NM103 (rutile, 20–28nm) for 3, 24 or 48h mainly at concentrations 1–30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles.
Collapse
Affiliation(s)
- Sebastiano Di Bucchianico
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Francesca Cappellini
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Florane Le Bihanic
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Yuning Zhang
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and.,Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, School of Chemical Science and Engineering, Teknikringen 42, 100 44 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77 Stockholm, Sweden and
| |
Collapse
|
49
|
Zhao X, Takabayashi F, Ibuki Y. Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:213-222. [PMID: 27383448 DOI: 10.1016/j.jphotobiol.2016.06.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
Owing to the wide application of silver nanoparticles (AgNPs), the assessment of health risks associated with their use is of great importance. In this study, we revealed that the potential genotoxicity of AgNPs was enhanced by ultraviolet A (UVA) exposure. Three cultured cell lines were treated with AgNPs, followed by exposure to UVA. AgNPs induced phosphorylation of histone H2AX (γ-H2AX) following the formation of DNA double-strand breaks (DSBs), which was synergistically enhanced by UVA exposure. Enhanced γ-H2AX was observed only in cell lines that positively took up AgNPs, and microsized Ag particles, which were difficult to incorporate into cells, showed no γ-H2AX. Incorporation of AgNPs was not increased by UVA exposure. AgNO3 treatment followed by UVA exposure also induced a marked increase in γ-H2AX, indicating that the enhanced γ-H2AX was attributed to Ag ions released from AgNPs. Ag ions reacted with the -SH group of antioxidant molecules, such as glutathione, and induced intracellular oxidative conditions. 8-Hydroxy-2'-deoxyguanosine was formed in the cells treated with AgNPs, which was augmented by UVA irradiation, suggesting that intracellular oxidation caused oxidative DNA damage, leading to the enhanced formation of DSBs and γ-H2AX. Ag has been considered a safe metal; however, our results provide important insights into the influence of sunlight on the genotoxic potency of AgNPs.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Fumiyo Takabayashi
- School of Nursing, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan.
| |
Collapse
|
50
|
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016; 10:1021-40. [DOI: 10.1080/17435390.2016.1189614] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Jui-Chen Tsai
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Chun-Wan Chen
- Institute of Labor, Occupational Safety and Health Ministry of Labor, Sijhih District, New Taipei City, Taiwan ROC,
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan ROC,
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan,
- Department of Biomedical Informatics, Asia University, Wufeng District, Taichung City, Taiwan ROC,
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan ROC
| |
Collapse
|