1
|
Mirbagheri VS, Alishahi A, Ahmadian G, Petroudi SHH, Ojagh SM, Romanazzi G. Recent findings in molecular reactions of E. coli as exposed to alkylated, nano- and ordinary chitosans. Int J Biol Macromol 2023; 253:127006. [PMID: 37734522 DOI: 10.1016/j.ijbiomac.2023.127006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The antibacterial effects of chitosan have been widely studied, but the underlying molecular mechanisms are not fully understood. We investigated the molecular responses of Escherichia coli MG1655 cell, a model gram-negative bacterium, upon exposure to chitosan (Cs), alkylated Cs (AlkCs), and chitosan nanoparticles (CsNPs). Nine target genes involved in relevant signaling pathways (ompF, ompC, ompA, mrcA, mrcB, mgtA, glnA, kdpA, lptA) were selected for analysis. A significant reduction in the expression of mrcA, mgtA, glnA, and lptA genes was observed in the cells treated with Cs. Those treated with Cs, AlkCs, and CsNPs revealed an increase in ompF gene expression, but the expression level was lower in the cells treated with AlkCs and CsNPs compared to Cs. This increase in porin expression suggests compromised membrane integrity and disrupted nutrient transport. In addition, the changes in the expression of mgtA, kdpA, and glnA are related to different effects on membrane permeability. The higher expression in the genes mrcA and mrcB is associated with morphological changes of cells treated with AlkCs and CsNPs. These findings contribute to our understanding of the molecular mechanisms underlying chitosan-induced stress responses and provide insights for the development of safer antimicrobial compounds in the future.
Collapse
Affiliation(s)
- Vasighe Sadat Mirbagheri
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
| | - Alireza Alishahi
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran.
| | - Gholamreza Ahmadian
- Department of Industrial Environmental and Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Seyyed Hamidreza Hashemi Petroudi
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, PO Box 578, Sari, Iran
| | - Seyed Mahdi Ojagh
- Faculty of Fisheries and Environment Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan, Iran
| | | |
Collapse
|
2
|
Romeo A, Sonnleitner E, Sorger-Domenigg T, Nakano M, Eisenhaber B, Bläsi U. Transcriptional regulation of nitrate assimilation in Pseudomonas aeruginosa occurs via transcriptional antitermination within the nirBD–PA1779–cobA operon. Microbiology (Reading) 2012; 158:1543-1552. [DOI: 10.1099/mic.0.053850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alessandra Romeo
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Theresa Sorger-Domenigg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Masayuki Nakano
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
3
|
Versatile metabolic adaptations of Ralstonia eutropha H16 to a loss of PdhL, the E3 component of the pyruvate dehydrogenase complex. Appl Environ Microbiol 2011; 77:2254-63. [PMID: 21296938 DOI: 10.1128/aem.02360-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutant Ralstonia eutropha H1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-type R. eutropha H16 but similar growth behavior. Insertion of Tn5 was localized in the pdhL gene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence of R. eutropha H16, observations were verified and further detailed analyses and experiments were done. In silico genome analysis revealed that R. eutropha possesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5 in pdhL of mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhL deletion mutant of R. eutropha exhibited the same phenotype as the Tn5 mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5 mutant H1482. However, insertion of Tn5 or deletion of pdhL decreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components of R. eutropha H16 or of other bacteria, like Burkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component of B. cepacia possesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations of R. eutropha H1482 to the loss of PdhL on the cellular level.
Collapse
|
4
|
Hervás AB, Canosa I, Santero E. Regulation of glutamate dehydrogenase expression in Pseudomonas putida results from its direct repression by NtrC under nitrogen-limiting conditions. Mol Microbiol 2011; 78:305-19. [PMID: 20735780 DOI: 10.1111/j.1365-2958.2010.07329.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen-regulated genes in enterobacteria are positively controlled by the transcriptional activator of σ(N) -dependent promoters NtrC, either directly or indirectly, through the dual regulator Nac. Similar to enterobacteria, gdhA encoding glutamate dehydrogenase from Pseudomonas putida is one of the few genes that is induced by excess nitrogen. In P. putida, the binding of NtrC to the gdhA promoter region and in vitro transcription suggest that, unlike its enterobacterial homologue that is repressed by Nac, gdhA is directly repressed by NtrC. Footprinting analyses demonstrated that NtrC binds to four distinct sites in the gdhA promoter. NtrC dimers bind cooperatively, and those bound closer to the promoter interact with the dimers bound further upstream, thus producing a proposed repressor loop in the DNA. The formation of the higher-order complex and the repressor loop appears to be important for repression but not absolutely essential. Both the phosphorylated and the non-phosphorylated forms of NtrC efficiently repressed gdhA transcription in vitro and in vivo. Therefore, NtrC repression of gdhA under nitrogen-limiting conditions does not depend on the phosphorylation of the regulator; rather, it relies on an increase in the repressor concentration under these conditions.
Collapse
Affiliation(s)
- Ana B Hervás
- Centro Andaluz de Biología del Desarrollo/ CSIC/ Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013 Seville, Spain
| | | | | |
Collapse
|
5
|
Schwab S, Souza EM, Yates MG, Persuhn DC, Steffens MBR, Chubatsu LS, Pedrosa FO, Rigo LU. The glnAntrBC operon of Herbaspirillum seropedicae is transcribed by two oppositely regulated promoters upstream of glnA. Can J Microbiol 2007; 53:100-5. [PMID: 17496955 DOI: 10.1139/w06-113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.
Collapse
Affiliation(s)
- Stefan Schwab
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju MVVS, Rajagopalan M. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 2006; 60:643-57. [PMID: 16629667 DOI: 10.1111/j.1365-2958.2006.05137.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M. tuberculosis from multiplying in macrophages, mice lungs and spleens, but did not affect its growth in broth. Intracellular trafficking analysis revealed that a vast majority of MtrA overproducing merodiploids were associated with lysosomal associated membrane protein (LAMP-1) positive vacuoles, indicating that intracellular growth attenuation is, in part, due to an impaired ability to block phagosome-lysosome fusion. A merodiploid strain producing elevated levels of phosphorylation-defective MtrA (MtrA(D53N)) was partially replicative in macrophages, but was attenuated in mice. Quantitative real-time PCR analyses revealed that expression of dnaA, an essential replication gene, was sharply upregulated during intramacrophage growth in the MtrA overproducer in a phosphorylation-dependent manner. Chromatin immunoprecipitation using anti-MtrA antibodies provided direct evidence that MtrA regulator binds to dnaA promoter in vivo indicating that dnaA promoter is a MtrA target. Simultaneous overexpression of mtrA regulator and its cognate mtrB kinase neither inhibited growth nor sharply increased the expression levels of dnaA in macrophages. We propose that proliferation of M. tuberculosis in vivo depends, in part, on the optimal ratio of phosphorylated to non-phosphorylated MtrA response regulator.
Collapse
Affiliation(s)
- Marek Fol
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 U.S. Hwy @271, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Moreira LM, de Souza RF, Almeida NF, Setubal JC, Oliveira JCF, Furlan LR, Ferro JA, da Silva ACR. Comparative genomics analyses of citrus-associated bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:163-184. [PMID: 15283664 DOI: 10.1146/annurev.phyto.42.040803.140310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xylella fastidiosa 9a5c (XF-9a5c) and Xanthomonas axonopodis pv. citri (XAC) are bacteria that infect citrus plants. Sequencing of the genomes of these strains is complete and comparative analyses are now under way with the genomes of other bacteria of the same genera. In this review, we present an overview of this comparative genomic work. We also present a detailed genomic comparison between XF-9a5a and XAC. Based on this analysis, genes and operons were identified that might be relevant for adaptation to citrus. XAC has two copies of a type II secretion system, a large number of cell wall-degrading enzymes and sugar transporters, a complete energy metabolism, a whole set of avirulence genes associated with a type III secretion system, and a complete flagellar and chemotatic system. By contrast, XF-9a5c possesses more genes involved with type IV pili biosynthesis than does XAC, contains genes encoding for production of colicins, and has 4 copies of Type I restriction/modification system while XAC has only one.
Collapse
Affiliation(s)
- Leandro M Moreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
Collapse
Affiliation(s)
- A M Stock
- Center for Advanced Biotechnology and Medicine and Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
9
|
Ikegami A, Nakasone K, Kato C, Usami R, Horikoshi K. Structural analysis of the ntrBC genes of deep-sea piezophilic Shewanella violacea. Biosci Biotechnol Biochem 2000; 64:915-8. [PMID: 10830521 DOI: 10.1271/bbb.64.915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ntrBC genes coding for the bacterial signal-transducing protein NtrB and the bacterial enhancer-binding protein NtrC of deep-sea piezophilic Shewanella violacea were cloned and their nucleotide sequences were analyzed. The conserved regions of NtrB and those of NtrC are well conserved in the case of the ntrBC products of S. violacea.
Collapse
Affiliation(s)
- A Ikegami
- Department of Applied Chemistry, Faculty of Engineering, Toyo University, Saitama, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
Signal transduction in microorganisms and plants is often mediated by His-Asp phosphorelay systems. Two conserved families of proteins are centrally involved: histidine protein kinases and phospho-aspartyl response regulators. The kinases generally function in association with sensory elements that regulate their activities in response to environmental signals. A sequence analysis with 348 histidine kinase domains reveals that this family consists of distinct subgroups. A comparative sequence analysis with 298 available receiver domain sequences of cognate response regulators demonstrates a significant correlation between kinase and regulator subfamilies. These findings suggest that different subclasses of His-Asp phosphorelay systems have evolved independently of one another.
Collapse
Affiliation(s)
- T W Grebe
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|
11
|
Yang C, Kaplan HB. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J Bacteriol 1997; 179:7759-67. [PMID: 9401035 PMCID: PMC179739 DOI: 10.1128/jb.179.24.7759-7767.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression.
Collapse
Affiliation(s)
- C Yang
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 77030, USA
| | | |
Collapse
|
12
|
Abstract
Seventeen genes specifically required for nitrogen fixation are clustered on the chromosome of
Klebsiella pneumoniae
and form a complex regulon that is organized into eight transcriptional units. The
nif
promoters are representative of a new class of promoter, the members of which lack the consensus sequences normally found in prokaryotic promoters,
nif
gene transcription is positively controlled and requires: (1) the
ntrA
gene product, which replaces the
rpoD
-encoded sigma subunit of RNA polymerase to allow recognition of
nif
promoter sequences; and (2) the product of either the nitrogen regulation gene
ntrC
or the specific
nif
regulatory gene,
nifA
, which are both transcriptional activators. Most
nif
promoters require an upstream activator sequence (UAS) for
nifA
-mediated activation. The UAS acts independently of orientation and can function when placed 2 kilobases upstream from the transcription start site. Current evidence suggests that activation requires an interaction between proteins bound at the UAS and at the downstream
nif
promoter consensus, possibly via a loop in the DNA structure. Transcription of
nif
is modulated by the
ntrB
and
nifL
gene products. Both proteins can ‘sense’ environmental changes:
ntrB
prevents activation by
ntrC
in response to excess nitrogen whereas
nifL
prevents activation by
nifA
in response to fixed nitrogen and oxygen. The C-terminal end of
ntrB
shows clear homology at the amino acid level with a number of diverse control proteins involved in regulation or sensory transduction. Each member of this family interacts with another protein component showing homology to the N-terminal sequence of
ntrC
, but not to
nifA
. The significance of these protein homologies is discussed.
Collapse
|
13
|
Entian KD, de Vos WM. Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics. Antonie Van Leeuwenhoek 1996; 69:109-17. [PMID: 8775971 DOI: 10.1007/bf00399416] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several peptide antibiotics have been described as potent inhibitors of bacterial growth. With respect to their biosynthesis, they can be divided into two classes: (i) those that are synthesized by a non-ribosomal mechanism, and (ii) those that are ribosomally synthesized. Subtilin and nisin belong to the ribosomally synthesized peptide antibiotics. They contain the rare amino acids dehydroalanine, dehydrobutyrine, meso-lanthionine, and 3-methyllanthionine. They are derived from prepeptides which are post-translationally modified and have been termed lantibiotics because of their characteristic lanthionine bridges (Schnell et al. 1988). Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain gram-positive bacteria (Mattick & Hirsch 1944, 1947; Rayman & Hurst 1984). It is produced by Lactococcus lactis strains belonging to serological group N. The potent bactericidal activities of nisin and other lantibiotics are based on depolarization of energized bacterial cytoplasmic membranes. Breakdown of the membrane potential is initiated by the formation of pores through which molecules of low molecular weight are released. A trans-negative membrane potential of 50 to 100 mV is necessary for pore formation by nisin (Ruhr & Sahl 1985; Sahl et al. 1987). Nisin occurs as a partially amphiphilic molecule (Van de Ven et al. 1991). Apart from the detergent-like effect of nisin on cytoplasmic membranes, an inhibition of murein synthesis has also been discussed as the primary effect (Reisinger et al. 1980). In several countries nisin is used to prevent the growth of clostridia in cheese and canned food. The nisin peptide structure was first described by Gross & Morall (1971), and its structural gene was isolated in 1988 (Buchman et al. 1988; Kaletta & Entian 1989). Nisin has two natural variants, nisin A, and nisin Z, which differ in a single amino acid residue at position 27 (histidin in nisin A is replaced by asparagin in nisin Z (Mulders et al. 1991; De Vos et al. 1993). Subtilin is produced by Bacillus subtilis ATCC 6633. Its chemical structure was first unravelled by Gross & Kiltz (1973) and its structural gene was isolated in 1988 (Banerjee & Hansen 1988). Subtilin shares strong similarities to nisin with an identical organization of the lanthionine ring structures (Fig. 1), and both lantibiotics possess similar antibiotic activities. Due to its easy genetic analysis B. subtilis became a very suitable model organism for the identification and characterization of genes and proteins involved in lantibiotic biosynthesis. The pathway by which nisin is produced is very similar to that of subtilin, and the proteins involved share significant homologies over the entire proteins (for review see also De Vos et al. 1995b). The respective genes have been identified adjacent to the structural genes, and are organized in operon-like structures (Fig. 2). These genes are responsible for post-translational modification, transport of the modified prepeptide, proteolytic cleavage, and immunity which prevents toxic effects on the producing bacterium. In addition to this, biosynthesis of subtilin and nisin is strongly regulated by a two-component regulatory system which consists of a histidin kinase and a response regulator protein.
Collapse
Affiliation(s)
- K D Entian
- Institute for Microbiology, University of Frankfurt, Germany
| | | |
Collapse
|
14
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
15
|
Woodley P, Drummond M. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes. Mol Microbiol 1994; 13:619-26. [PMID: 7997174 DOI: 10.1111/j.1365-2958.1994.tb00456.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The NifL protein of Azotobacter vinelandii inhibits NifA, the activator of nif (nitrogen fixation) transcription, in response to oxygen and fixed nitrogen. NifL shows strong homology in its C-terminal domain to the histidine autokinase domains of the canonical two-component sensor proteins, including the region around His-304, which corresponds to the residue known to be phosphorylated in other systems. To examine the mechanism of sensory transduction by NifL, mutations encoding 10 substitutions for His-304 were introduced into the A. vinelandii chromosome. Regulation of nif transcription was measured using acetylene reduction and RNA blots. The substitutions His-304-->Arg and His-304-->Pro impaired regulation by both fixed nitrogen and oxygen, but substitution of Ala, Phe, Ile, Lys, Asn, Ser, Thr, Val had no effect. None of the mutants, including His-304-->Arg and His-304-->Pro, excreted ammonium during diazotrophy, a phenotype of nifL deletion mutants, suggesting that the molecular basis of this effect differs from that responsible for the inhibition of nif transcription. The data show conclusively that phosphorylation of His-304 is not essential for any of the known functions of A. vinelandii NifL. Homology to the family of histidine autokinases is therefore inadequate evidence for a mechanism of sensory transduction involving phosphorylation of the conserved histidine residue.
Collapse
Affiliation(s)
- P Woodley
- AFRC IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | |
Collapse
|
16
|
Abstract
Post-transcriptional mechanisms operate in regulation of gene expression in bacteria, the amount of a given gene product being also dependent on the inactivation rate of its own message. Moreover, segmental differences in mRNA stability of polycistronic transcripts may be responsible for differential expression of genes clustered in operons. Given the absence of 5' to 3' exoribonucleolytic activities in prokaryotes, both endoribonucleases and 3' to 5' exoribonucleases are involved in chemical decay of mRNA. As the 3' to 5' exoribonucleolytic activities are readily blocked by stem-loop structures which are usual at the 3' ends of bacterial messages, the rate of decay is primarily determined by the rate of the first endonucleolytic cleavage within the transcripts, after which the resulting mRNA intermediates are degraded by the 3' to 5' exoribonucleases. Consequently, the stability of a given transcript is determined by the accessibility of suitable target sites to endonucleolytic activities. A considerable number of bacterial messages decay with a net 5' to 3' directionality. Two different alternative models have been proposed to explain such a finding, the first invoking the presence of functional coupling between degradation and the movement of the ribosomes along the transcripts, the second one implying the existence of a 5' to 3' processive '5' binding nuclease'. The different systems by which these two current models of mRNA decay have been tested will be presented with particular emphasis on polycistronic transcripts.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli Federico II, Italy
| | | | | |
Collapse
|
17
|
Elsen S, Richaud P, Colbeau A, Vignais PM. Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 1993; 175:7404-12. [PMID: 8226687 PMCID: PMC206885 DOI: 10.1128/jb.175.22.7404-7412.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hupT gene, which represses hydrogenase gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus, has been identified and sequenced. The nucleotide sequence of hupT and of the contiguous downstream open reading frame, hupU, is reported. The HupT protein of 456 amino acids (48,414 Da) has sequence similarity with the FixL, DctB, NtrB, and ArcB proteins and is predicted to be a soluble sensor kinase. Insertional inactivation of the hupT gene led to deregulation of transcriptional control, so that the hydrogenase structural operon hupSLC became overexpressed in cells grown anaerobically or aerobically. The HupT- mutants were complemented in trans by a plasmid containing an intact copy of the hupT gene. The hupU open reading frame, capable of encoding a protein of 84,879 Da, shared identity with [NiFe]hydrogenase subunits; the strongest similarity was observed with the periplasmic hydrogenase of Desulfovibrio baculatus.
Collapse
Affiliation(s)
- S Elsen
- Laboratoire de Biochimie Microbienne (Centre National de la Recherche Scientifique Unité 1130 Alliée à l'Institut National de la Santé et de la Recherche Médicale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
18
|
Patriarca EJ, Riccio A, Taté R, Colonna-Romano S, Iaccarino M, Defez R. The ntrBC genes of Rhizobium leguminosarum are part of a complex operon subject to negative regulation. Mol Microbiol 1993; 9:569-77. [PMID: 8412703 DOI: 10.1111/j.1365-2958.1993.tb01717.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report here that ntrB and ntrC genes of Rhizobium leguminosarum biovar phaseoli are cotranscribed with an open reading frame (called ORF1) of unknown function. The promoter region of the ORF1-ntrB-ntrC operon was mapped immediately upstream of ORF1 and two in vivo transcription initiation sites were identified, both preceded by -35/-10 promoter consensus sequences. Some major aspects differentiate R. leguminosarum from the enteric nitrogen regulatory system: the ntrBC genes are cotranscribed with ORF1 which is homologous to an ORF located upstream of ntrBC of R. capsulatus and to the ORF1 located upstream of the fis gene of Escherichia coli; ntrBC are not transcribed from a -24/-12 promoter and are only autogenously repressed. Moreover, the intracellular concentration of the NtrC protein increases when the bacterium is grown on ammonium salts, while under the same conditions the promoter of one of its target genes, glnII, is 12 times less active.
Collapse
Affiliation(s)
- E J Patriarca
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Blanco G, Drummond M, Woodley P, Kennedy C. Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Mol Microbiol 1993; 9:869-79. [PMID: 8231815 DOI: 10.1111/j.1365-2958.1993.tb01745.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In both Klebsiella pneumoniae and Azotobacter vinelandii the nifL gene, which encodes a negative regulator of nitrogen fixation, lies immediately upstream of nifA. We have sequenced the A. vinelandii nifL gene and found that it is more homologous in its C-terminal domain to the histidine protein kinases (HPKs) than is K. pneumoniae NifL. In particular A. vinelandii NifL contains a conserved histidine at a position shown to be phosphorylated in other systems. Both NifL proteins are homologous in their N-termini to a part of the Halobacterium halobium bat gene product; Bat is involved in regulation of bacterio-opsin, the expression of which is oxygen sensitive. The same region showed homology to the haem-binding N-terminal domain of the Rhizobium meliloti fixL gene product, an oxygen-sensing protein. Like K. pneumoniae NifL, A. vinelandii NifL is shown here to prevent expression of nif genes in the presence of NH+4 or oxygen. The sequences found homologous in the C-terminal regions of NifL, FixL and Bat might therefore be involved in oxygen binding or sensing. An in-frame deletion mutation in the nifL coding region resulted in loss of repression by NH+4 and the mutant excreted high amounts of ammonia during nitrogen fixation, thus confirming a phenotype reported earlier for an insertion mutation. In addition, nifLA are cotranscribed in A. vinelandii as in K. pneumoniae, but expression from the A. vinelandii promoter requires neither RpoN nor NtrC.
Collapse
Affiliation(s)
- G Blanco
- AFRC Institute of Plant Science Research, Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | | | | | |
Collapse
|
20
|
Liang YY, Arsène F, Elmerich C. Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:188-96. [PMID: 8355653 DOI: 10.1007/bf00277056] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 7.1 kb EcoRI fragment from Azospirillum brasilense, that hybridized with a probe carrying the ntrBC genes from Bradyrhizobium japonicum, was cloned. The nucleotide sequence of a 3.8 kb subfragment was established. This led to the identification of two open reading frames, encoding polypeptides of 401 and 481 amino acids, that were similar to NtrB and NtrC, respectively. A broad host range plasmid containing the putative Azospirillum ntrC gene was shown to restore nitrogen fixation under free-living conditions to a ntrC-Tn5 mutant of Azorhizobium caulinodans. Several Tn5 insertion mutants were isolated in the ntrBC coding region in A brasilense. These mutants were prototrophic and Nif+. However, their nitrogenase activity was slightly lower than in the wild type and they were unable to grow on nitrate as sole nitrogen source. Under microaerobiosis and in the absence of ammonia, a nifA-lacZ fusion was expressed in the mutants at about 60% of the level in the wild type. In the presence of ammonia, the fusion was similarly expressed (60% of the maximum) both in the wild type and mutants. Addition of ammonia to a nitrogen-fixing culture of ntrBC mutants did not abolish nitrogenase activity, in contrast with the wild type. It thus appears that in Azospirillum the ntrBC genes are not essential for nitrogen fixation, although NtrC controls nifA expression to some extent. They are, however, required for the switch-off of nitrogenase activity.
Collapse
Affiliation(s)
- Y Y Liang
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
21
|
Sidoti C, Harwood G, Ackerman R, Coppard J, Merrick M. Characterisation of mutations in the Klebsiella pneumoniae nitrogen fixation regulatory gene nifL which impair oxygen regulation. Arch Microbiol 1993; 159:276-81. [PMID: 8481091 DOI: 10.1007/bf00248484] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nifL gene product of Klebsiella pneumoniae inhibits the activity of the positive activator protein NifA in response to increased levels either of fixed nitrogen or of oxygen in the medium. In order to demonstrate that the responses to these two effectors are discrete we have subjected nifL to hydroxylamine mutagenesis and isolated nifL mutants that are impaired in their ability to respond to oxygen but not to fixed nitrogen. Two such mutations were sequenced and shown to be single base pair changes located in different parts of nifL. The amino acid sequence of NifL shows limited homology to the histidine protein kinases which comprise the sensing component of bacterial two-component regulatory systems. In the light of the location of one of the oxygen-insensitive mutations (Leu294Phe) we have reassessed this homology and we suggest that the Gln273-Leu317 region of NifL may facilitate interactions between NifL and NifA.
Collapse
Affiliation(s)
- C Sidoti
- AFRC IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | | | | | | | |
Collapse
|
22
|
Hobbs M, Collie ES, Free PD, Livingston SP, Mattick JS. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1993; 7:669-82. [PMID: 8097014 DOI: 10.1111/j.1365-2958.1993.tb01158.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transposon mutagenesis was used to identify genes necessary for the expression of Pseudomonas aeruginosa type 4 fimbriae. In a library of 12,700 mutants, 147 were observed to have lost the spreading colony morphology associated with the presence of functional fimbriae. Of these, 28 had also acquired resistance to the fimbrial-specific bacteriophage PO4. The mutations conferring this phage resistance were found to have occurred at at least six different loci, including the three that had been previously shown to be required for fimbrial biosynthesis or function: the structural subunit (pilA) and adjacent genes (pilB,C,D), the twitching motility gene (pilT), and the sigma 54 RNA polymerase initiation factor gene (rpoN). One novel group of phage-resistant mutants was identified in which the transposon had inserted near sequences that cross-hybridized to an oligonucleotide probe designed against conserved domains in regulators of RpoN-dependent promoters. These mutants had no detectable transcription of pilA and did not produce fimbriae. A probe derived from inverse polymerase chain reaction was used to isolate the corresponding wild-type sequences from a P. aeruginosa PAO cosmid reference library, and two adjacent genes affected by transposon insertions, pilS and pilR, were located and sequenced. These genes were shown to be capable of complementing the corresponding mutants, both at the level of restoring the phenotypes associated with functional fimbriae and by the restoration of pilA transcription. The pilSR operon was physically mapped to Spel fragment 5 (corresponding to about 72-75/0 min on the genetic map), and shown to be located approximately 25 kb from pilA-D. PilS and PilR clearly belong to the family of two-component transcriptional regulatory systems which have been described in many bacterial species. PilS is predicted to be a sensor protein which when stimulated by the appropriate environmental signals activates PilR through kinase activity. PilR then activates transcription of pilA, probably by interacting with RNA polymerase containing RpoN. The identification of pilS and pilR makes possible a more thorough examination of the signal transduction systems controlling expression of virulence factors in P. aeruginosa.
Collapse
Affiliation(s)
- M Hobbs
- Centre for Molecular Biology and Biotechnology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
23
|
Steglitz-Mörsdorf U, Mörsdorf G, Kaltwasser H. Cloning, heterologous expression, and sequencing of the Proteus vulgaris glnAntrBC operon and implications of nitrogen control on heterologous urease expression. FEMS Microbiol Lett 1993; 106:157-64. [PMID: 8095910 DOI: 10.1111/j.1574-6968.1993.tb05952.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli. The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris. Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.
Collapse
Affiliation(s)
- U Steglitz-Mörsdorf
- Lehrstuhl für Mikrobiologie der Universität des Saarlandes, Saarbrücken, FRG
| | | | | |
Collapse
|
24
|
Klein C, Kaletta C, Entian KD. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl Environ Microbiol 1993; 59:296-303. [PMID: 8439156 PMCID: PMC202094 DOI: 10.1128/aem.59.1.296-303.1993] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Subtilin is a lanthionine-containing peptide antibiotic (lantibiotic) which is produced by Bacillus subtilis ATCC 6633. Upstream from the structural gene of subtilin, spaS, three genes (spaB, spaT, and spaC) which are involved in the biosynthesis of subtilin have been identified (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58:132-142, 1992). By using a hybridization probe specific for these genes, the DNA region downstream from spaS was isolated. Further subcloning revealed a 5.2-kb KpnI-HindIII fragment on which two open reading frames, spaR and spaK, were identified approximately 3 kb downstream from spaS. The spaR gene encodes an open reading frame of 220 amino acids with a predicted molecular mass of 25.6 kDa. SpaR shows 35% similarity to positive regulatory factors OmpR and PhoB. The spaK gene encodes an open reading frame of 387 amino acids with a predicted molecular mass of 44.6 kDa and was highly similar to histidine kinases previously described (PhoM, PhoR, and NtrB). Hydrophobicity blots suggested two membrane-spanning regions. Thus, spaR and spaK belong to a recently identified family of environmentally responsive regulators. These results indicated a regulatory function of spaR and spaK in subtilin biosynthesis. Indeed, batch culture experiments confirmed the regulation of subtilin biosynthesis starting in the mid-logarithmic growth phase and reaching its maximum in the early stationary growth phase. Gene deletions within spaR and spaK yielded subtilin-negative mutants, which confirms that subtilin biosynthesis is under the control of a two-component regulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Klein
- Institute for Microbiology, Johann Wolfgang Goeth-Universität, Frankfurt, Germany
| | | | | |
Collapse
|
25
|
|
26
|
Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42179-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825-34. [PMID: 1713281 DOI: 10.1111/j.1365-2958.1991.tb00755.x] [Citation(s) in RCA: 324] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a family of highly conserved, Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences, 14 of which have been identified in Escherichia coli and Salmonella typhimurium and a further three in other enterobacterial species (Yersinia pseudotuberculosis, Klebsiella pneumoniae and Vibrio cholerae). ERIC sequences are 126 bp long and appear to be restricted to transcribed regions of the genome, either in intergenic regions of polycistronic operons or in untranslated regions upstream or downstream of open reading frames. ERIC sequences are highly conserved at the nucleotide sequence level but their chromosomal locations differ between species. Several features of ERIC sequences resemble those of REP sequences (Stern et al., 1984) although the nucleotide sequence is entirely different. The question of whether ERICs have a specific function, or represent a form of 'selfish' DNA, is discussed.
Collapse
Affiliation(s)
- C S Hulton
- Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
28
|
Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 1991; 173:1845-54. [PMID: 2001989 PMCID: PMC207712 DOI: 10.1128/jb.173.6.1845-1854.1991] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Random Tn5 mutagenesis of the regulatory region of megaplasmid pHG1 of Alcaligenes eutrophus led to the identification of three distinct loci designated hoxA, hoxD, and hoxE. Sequencing of the hoxA locus revealed an open reading frame which could code for a polypeptide of 482 amino acids with a molecular mass of 53.5 kDa. A protein of comparable apparent molecular mass was detected in heterologous expression studies with a plasmid-borne copy of the hoxA gene. Amino acid alignments revealed striking homologies between HoxA and the transcriptional activators NifA and NtrC of Klebsiella pneumoniae and HydG of Escherichia coli. HoxA- mutants of A. eutrophus lacked both NAD-reducing soluble hydrogenase and membrane-bound hydrogenase. In HoxA- mutants, the synthesis of beta-galactosidase from a hoxS'-'lacZ operon fusion was drastically reduced, indicating that HoxA is essential for the transcription of hydrogenase genes. Mutants defective in hoxD and hoxE also lacked the catalytic activities of the two hydrogenases; however, in contrast to HoxA- mutants, they contained immunologically detectable NAD-reducing soluble hydrogenase and membrane-bound hydrogenase proteins, although at a reduced level. The low hydrogenase content in the HoxD- and HoxE- mutants correlated with a decrease in beta-galactosidase synthesized under the direction of a hoxS'-'lacZ operon fusion. Thus, hoxD and hoxE apparently intervene both in the regulation of hydrogenase synthesis and in subsequent steps leading to the formation of catalytically active enzymes.
Collapse
|
29
|
Taha MK, Dupuy B, Saurin W, So M, Marchal C. Control of pilus expression in Neisseria gonorrhoeae as an original system in the family of two-component regulators. Mol Microbiol 1991; 5:137-48. [PMID: 1849604 DOI: 10.1111/j.1365-2958.1991.tb01834.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously reported the identification of two genes, pilA and pilB, which act in trans to regulate pilus expression in Neisseria gonorrhoeae. Here we show that PilA and PilB have amino acid sequence similarities with members of the two component 'sensor-regulator' family of proteins. PilB has homology with histidine kinase sensors. Alkaline phosphatase fusions to the predicted sensor and transmitter domains are described. Their PhoA activity and cellular location suggest that PilB is inserted in the cytoplasmic membrane and predict periplasmic and cytoplasmic locations for the sensor and the transmitter domains, respectively. PilA has homology with response regulators in its N-terminal part, and with components of the eukaryotic protein secretory apparatus (SRP 54 and SRP receptor) as well as two Escherichia coli gene products in its C-terminal part. In particular, it contains a putative GTP-binding site. Mini-transposon insertions into different regions of pilA were obtained. The phenotypes and genotypes of these mutants and preliminary biochemical studies of the gene products of two of these mutants lend further support to the hypothesis that PilA is a DNA-binding response regulator and confirm that it participates in an essential function in the bacterium.
Collapse
Affiliation(s)
- M K Taha
- Unité des Antigénes Bactériens, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Ninfa AJ. Protein Phosphorylation and the Regulation of Cellular Processes by the Homologous Two-Component Regulatory Systems of Bacteria. GENETIC ENGINEERING 1991; 13:39-72. [PMID: 1369339 DOI: 10.1007/978-1-4615-3760-1_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- A J Ninfa
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
31
|
Sharples GJ, Lloyd RG. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 1990; 18:6503-8. [PMID: 2251112 PMCID: PMC332602 DOI: 10.1093/nar/18.22.6503] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a novel group of highly conserved DNA sequences located within the intergenic regions of the chromosomes of Escherichia coli, Salmonella typhimurium and other bacteria. These intergenic repeat units (IRUs) are 124-127 nucleotides long and have the potential to form stable stem-loop structures. The location of these sequences within the intergenic regions is variable with respect to known or putative signals for transcription and translation of the flanking genes. Some of the IRU sequences are transcribed, others are probably not. The structure and possible functions of these sequences are discussed in relation to palindromic units and other repeated DNA sequences in bacteria.
Collapse
Affiliation(s)
- G J Sharples
- Department of Genetics, University of Nottingham, Medical School, Queens Medical Centre, UK
| | | |
Collapse
|
32
|
Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 1990; 172:5326-34. [PMID: 1975583 PMCID: PMC213196 DOI: 10.1128/jb.172.9.5326-5334.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphinothricyl-alanyl-alanine (PTT), also known as bialaphos, contains phosphinothricin, a potent inhibitor of glutamine synthetase (GS). A 2.75-kilobase NcoI fragment of the Streptomyces viridochromogenes PTT-resistant mutant ES2 cloned on a multicopy vector mediated PTT resistance to S. lividans and to S. viridochromogenes. Nucleotide sequence analysis of the 2.75-kb NcoI fragment revealed the presence of three open reading frames. Open reading frame 3 was termed glnII since significant similarity was found between its deduced amino acid sequence and those from GS of eucaryotes and GSII of members of the family Rhizobiaceae. Subcloning experiments showed that PTT resistance is mediated by overexpression of glnII encoding a 37.3-kilodalton protein of 343 amino acids. A three- to fourfold increase in gamma-glutamyltransferase activity could be observed in S. lividans transformants carrying the glnII gene on a multicopy plasmid. For S. viridochromogenes it was shown that PTT resistance conferred by the 2.75-kb NcoI fragment was dependent on its multicopy state. GS activity encoded by glnII was found to be heat labile. Southern hybridization with seven different Streptomyces strains suggested that they all carry two types of GS genes, glnA and glnII.
Collapse
|
33
|
Iuchi S, Matsuda Z, Fujiwara T, Lin EC. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol 1990; 4:715-27. [PMID: 2201868 DOI: 10.1111/j.1365-2958.1990.tb00642.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The arcA (dye) and arcB genes of Escherichia coli are responsible for anaerobic repression of target operons and regulons of aerobic function (the arc modulon). The amino acid sequence of ArcA (Dye) indicated that it is the regulator protein of a two-component control system. Here we show that ArcB is a membrane sensor protein on the basis of its deduced amino acid sequence (778 residues), hydropathicity profile, and cellular distribution. On the carboxyl end of the ArcB sequence there is an additional domain showing homology with conserved regions of regulator proteins. Deletion into this domain destroyed ArcB function. ArcB conserved a histidine residue for autophosphorylation of the sensor proteins, and aspartic residues important for the regulator proteins.
Collapse
Affiliation(s)
- S Iuchi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Massachusetts 02115
| | | | | | | |
Collapse
|
34
|
Göttfert M, Grob P, Hennecke H. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 1990; 87:2680-4. [PMID: 2320582 PMCID: PMC53754 DOI: 10.1073/pnas.87.7.2680] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bradyrhizobium japonicum is the root nodule endosymbiont of soybean (Glycine max), mung bean (Vigna radiata), cowpea (Vigna unguiculata), and Siratro (Macroptilium atropurpureum). We report the characteristics of a nodulation-gene region of B. japonicum that contributes only marginally to the bacterium's ability to nodulate soybean but is essential for the nodulation of the three alternative hosts. This DNA region consists of two open reading frames designated nodV and nodW. The predicted amino acid sequences of the NodV and NodW proteins suggest that they are members of the family of two-component regulatory systems, which supports the hypothesis that NodV responds to an environmental stimulus and, after signal transduction, NodW may be required to positively regulate the transcription of one or several unknown genes involved in the nodulation process. It seems likely that all host plants produce the necessary signal, whereas host specificity may be brought about by the product(s) of the gene(s) activated by NodW.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450-90. [PMID: 2556636 PMCID: PMC372749 DOI: 10.1128/mr.53.4.450-490.1989] [Citation(s) in RCA: 915] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry.
Collapse
|
36
|
Abstract
Bacteria can respond to a variety of environmental stimuli by means of systems generally composed of two proteins. The first protein (sensor or transmitter) is usually a transmembrane protein with cytoplasmic and extracytoplasmic domains. The extracytoplasmic domain (sensor) senses the environment and transfers the signal through the transmembrane domain to the cytoplasmic domain (transmitter), which has kinase activity. The second protein is located in the cytoplasm and contains an amino-terminal domain (receiver), which can be phosphorylated by the transmitter, and a carboxy-terminal region (regulator), which regulates gene expression by binding to DNA. The transmitter and receiver modules (the kinase and its target) are conserved in all signal-transducing systems and are the 'core structure' of this two-component system. The sensors and the regulators vary according to the stimuli they respond to and the DNA structure they interact with. On the basis of their sequence homology, the proteins belonging to such two-component systems can be classified into different families, which are summarized in this review.
Collapse
Affiliation(s)
- R Gross
- Sclavo Research Centre, Siena, Italy
| | | | | |
Collapse
|
37
|
Aricó B, Miller JF, Roy C, Stibitz S, Monack D, Falkow S, Gross R, Rappuoli R. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci U S A 1989; 86:6671-5. [PMID: 2549542 PMCID: PMC297907 DOI: 10.1073/pnas.86.17.6671] [Citation(s) in RCA: 219] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bvg locus of Bordetella pertussis is required for coordinate regulation of several factors associated with virulence. The control system is modulated by various environmental signals, including low temperature, MgSO4, and nicotinic acid. The nucleotide sequence of the bvg region has been determined and three open reading frames, bvgA, bvgB, and bvgC, are present. Twelve-base-pair linker insertion mutations in any of these open reading frames result in a Bvg- phenotype. The predicted protein products of bvgA and bvgC share homology with a family of prokaryotic regulatory proteins that respond to environmental stimuli and are members of two-component sensory transduction systems. We propose a model in which BvgB and the N-terminal portion of BvgC are localized in the periplasm. Environmental signals are recognized, transduced to the cytoplasmic portion of BvgC, and then transmitted to BvgA, a positive regulator of transcription.
Collapse
Affiliation(s)
- B Aricó
- Sclavo Research Center, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jones R, Haselkorn R. The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues required for nitrogen fixation. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:507-16. [PMID: 2710108 DOI: 10.1007/bf00427050] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have determined the DNA sequence for the genes nifR1, nifR2 and nifR4 in the photosynthetic bacterium Rhodobacter capsulatus. These genes regulate transcription of the nifHDK operon and so limit the expression of nitrogen fixation activity to periods of low environmental concentrations of both oxygen and fixed nitrogen. The sequences of these three genes are similar to components of the ntr regulation system in Escherichia coli and Klebsiella pneumoniae. The two-component regulatory system of ntrB and ntrC in E. coli is represented by nifR2 and nifR1 in R. capsulatus and nifR4 in R. capsulatus is the equivalent of the E. coli ntr-related sigma factor ntrA.
Collapse
Affiliation(s)
- R Jones
- Department of Molecular Genetics and Cell Biology, University of Chicago, IL 60637
| | | |
Collapse
|
39
|
Higgins CF, McLaren RS, Newbury SF. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 1988; 72:3-14. [PMID: 3072249 DOI: 10.1016/0378-1119(88)90122-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Repetitive extragenic palindromic (REP) sequences are highly conserved inverted repeats present in up to 1000 copies on the Escherichia coli chromosome. We have shown both in vivo and in vitro that REP sequences can stabilize upstream mRNA by blocking the processive action of 3'----5' exonucleases. In a number of operons, mRNA stabilization by REP sequences plays an important role in the control of gene expression. Furthermore, differential mRNA stability mediated by the REP sequences can be responsible for differential gene expression within polycistronic operons. Despite the key role of REP sequences in mRNA stability and gene expression in a number of operons, several lines of evidence suggest that this is unlikely to be the primary reason for the exceptionally high degree of sequence conservation between REP sequences. Other possible functions for REP sequences are discussed. We propose that REP sequences may be a prokaryotic equivalent of 'selfish DNA' and that gene conversion may play a role in the evolution and maintenance of REP sequences.
Collapse
Affiliation(s)
- C F Higgins
- Department of Biochemistry, University of Dundee, U.K
| | | | | |
Collapse
|
40
|
Martin GB, Chapman KA, Chelm BK. Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (glnII). J Bacteriol 1988; 170:5452-9. [PMID: 2903856 PMCID: PMC211637 DOI: 10.1128/jb.170.12.5452-5459.1988] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We isolated the ntrC gene from Bradyrhizobium japonicum, the endosymbiont of soybean (Glycine max), and examined its role in regulating nitrogen assimilation. Two independent ntrC mutants were constructed by gene replacement techniques. One mutant was unable to produce NtrC protein, while the other constitutively produced a stable, truncated NtrC protein. Both ntrC mutants were unable to utilize potassium nitrate as a sole nitrogen source. In contrast to wild-type B. japonicum, the NtrC null mutant lacked glnII transcripts in aerobic, nitrogen-starved cultures. However, the truncated-NtrC mutant expressed glnII in both nitrogen-starved and nitrogen-excess cultures. Both mutants expressed glnII under oxygen-limited culture conditions and in symbiotic cells. These results suggest that nitrogen assimilation in B. japonicum is regulated in response to both nitrogen limitation and oxygen limitation and that separate regulatory networks exist in free-living and symbiotic cells.
Collapse
Affiliation(s)
- G B Martin
- MSU/DOE Plant Research Laboratory, Michigan State University, East Lansing 48824-1312
| | | | | |
Collapse
|
41
|
Abstract
The nucleotide sequence of phoR, the positive and negative regulatory gene for alkaline phosphatase and phosphodiesterase formation in Bacillus subtilis, was determined. The sequence data predicted an open reading frame of 1,740 base pairs (579 amino acids) which overlaps the 5 base pairs of the preceding phoP coding sequence. The deduced amino acid sequence was significantly homologous with that of the Escherichia coli phoR gene product, which is the sensory element for the pho regulon.
Collapse
Affiliation(s)
- T Seki
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
Makino K, Shinagawa H, Amemura M, Kimura S, Nakata A, Ishihama A. Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol 1988; 203:85-95. [PMID: 3054125 DOI: 10.1016/0022-2836(88)90093-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the genes in the phosphate regulon, including the pstS (phoS) and phoB genes, is positively regulated by PhoB protein when phosphate is limited. We purified PhoB protein from overproducing cells and studied its interaction with the pstS gene. It binds specifically to the DNA fragment containing the promoter region of pstS. The transcription initiation site of the gene in vivo was identified by S1 nuclease mapping and primer-extension experiments. In-vitro transcription of pstS was activated by the PhoB protein, and the initiation site of transcription agreed with the in-vivo initiation site. Activation of in-vitro transcription by PhoB protein required both the normal sigma factor (sigma 70) and core RNA polymerase. PhoB protein binding sites on the promoter regions of pstS and phoB were determined by footprinting experiments with DNase I and a methylating agent. In both cases the protein binds to the pho box, the concensus sequence shared by regulatory regions of genes in the phosphate regulon. Our findings indicate that PhoB protein recognizes and binds to the pho box and activates transcription of the genes in the phosphate regulon.
Collapse
Affiliation(s)
- K Makino
- Department of Experimental Chemotherapy, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 1988; 54:671-83. [PMID: 2842062 DOI: 10.1016/s0092-8674(88)80012-6] [Citation(s) in RCA: 293] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the discovery of two genes from Rhizobium meliloti, fixL and fixJ, which are positive regulators of symbiotic expression of diverse nitrogen fixation (nif and fix) genes. nif gene regulation is shown to consist of a cascade: the fixLJ genes activate nifA, which in turn activates nifHDK and fixABCX. Like nifA, fixN can be induced in free-living microaerobic cultures of R. meliloti, indicating a major physiological role for oxygen in nif and fix gene regulation. Microaerobic expression of fixN and nifA depends on fixL and fixJ. The FixL and FixJ proteins belong to a family of two-component regulatory systems widely spread among prokaryotes and responsive to the cell environment. We propose that FixL, which has features of a transmembrane protein, senses an environmental signal and transduces it to FixJ, a transcriptional activator of nif and fix genes.
Collapse
Affiliation(s)
- M David
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes CNRS-INRA, BP27, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kofoid EC, Parkinson JS. Transmitter and receiver modules in bacterial signaling proteins. Proc Natl Acad Sci U S A 1988; 85:4981-5. [PMID: 3293046 PMCID: PMC281671 DOI: 10.1073/pnas.85.14.4981] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prokaryotes are capable of sophisticated sensory behaviors. We have detected sequence motifs in bacterial signaling proteins that may act as transmitter or receiver modules in mediating protein-protein communication. These modules appear to retain their functional identities in many protein hosts, implying that they are structurally independent elements. We propose that the fundamental activity characterizing these domains is specific recognition and association of matched modules, accompanied by conformational changes in one or both of the interacting elements. Signal propagation is a natural consequence of this behavior. The versatility of this information-processing strategy is evident in the chemotaxis machinery of Escherichia coli, where proteins containing transmitters or receivers are linked in "dyadic relays" to form complex signaling networks.
Collapse
Affiliation(s)
- E C Kofoid
- Biology Department, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
45
|
Contreras A, Drummond M. The effect on the function of the transcriptional activator NtrC from Klebsiella pneumoniae of mutations in the DNA-recognition helix. Nucleic Acids Res 1988; 16:4025-39. [PMID: 3287338 PMCID: PMC336572 DOI: 10.1093/nar/16.9.4025] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have constructed mutations in what we predict to be the DNA-recognition helix of Klebsiella pneumoniae NtrC, which regulates transcription from promoters under global nitrogen control. Mutations which disrupt the helix lead to complete loss of function. All point mutants tested were able to activate transcription from the sigma 54-dependent glnA promoter, but only those retaining some ability to recognise NtrC binding sites, as evidenced by their ability to repress the ntrB promoter and the upstream glnA promoter, were able to activate the nifL promoter. One mutant, which contained an amino acid substitution in the turn of the DNA-binding motif as well as in the recognition helix, suppressed mutations in the NtrC binding sites upstream from the nifL promoter, but only if both sites bore equivalent transitions. This confirms that the DNA-binding motif for this class of transcriptional activator has been correctly identified and suggests that binding of NtrC can be cooperative.
Collapse
Affiliation(s)
- A Contreras
- AFRC Institute of Plant Science Research, University of Sussex, Brighton, UK
| | | |
Collapse
|
46
|
Tung HY, Bargmann WJ, Bose HR. Serine phosphorylation of the v-rel oncogene product/pp40 complex. Biochem Biophys Res Commun 1988; 152:441-8. [PMID: 2833896 DOI: 10.1016/s0006-291x(88)80733-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transforming protein encoded by the v-rel oncogene of reticuloendotheliosis virus has been purified from REV-T transformed lymphoid cells by sequential DEAE-Sepharose and immunoaffinity chromatography. The purified preparation consisted of pp59v-rel and the 40 kDa cellular protein which is complexed with the v-rel oncogene product in transformed cells as well as some minor proteins. Incubation of this purified preparation in the presence of Mg2+ and (gamma-32P)ATP resulted in phosphorylation of both pp59v-rel and the 40 kDa protein. This preparation was also able to phosphorylate casein on serine residues. Immunoprecipitates obtained from extracts of REV-T transformed lymphoid cells labeled with 32P-orthophosphate contained 59 and 40 kDa phosphoproteins. Both pp59v-rel and the 40 kDa protein were phosphorylated on serine residues in transformed cells.
Collapse
Affiliation(s)
- H Y Tung
- Clayton Foundation Biochemical Institute, University of Texas, Austin 78712
| | | | | |
Collapse
|
47
|
Ronson CW, Astwood PM, Nixon BT, Ausubel FM. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucleic Acids Res 1987; 15:7921-34. [PMID: 3671068 PMCID: PMC306317 DOI: 10.1093/nar/15.19.7921] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have sequenced two genes dctB and dctD required for the activation of the C4-dicarboxylate transport structural gene dctA in free-living Rhizobium leguminosarum. The hydropathic profile of the dctB gene product (DctB) suggested that its N-terminal region may be located in the periplasm and its C-terminal region in the cytoplasm. The C-terminal region of DctB was strongly conserved with similar regions of the products of several regulatory genes that may act as environmental sensors, including ntrB, envZ, virA, phoR, cpxA, and phoM. The N-terminal domains of the products of several regulatory genes thought to be transcriptional activators, including ntrC, ompR, virG, phoB and sfrA. In addition, the central and C-terminal regions of DctD were strongly conserved with the products of ntrC and nifA, transcriptional activators that require the alternate sigma factor rpoN (ntrA) as co-activator. The central region of DctD also contained a potential ATP-binding domain. These results are consistent with recent results that show that rpoN product is required for dctA activation, and suggest that DctB plus DctD-mediated transcriptional activation of dctA may be mechanistically similar to NtrB plus NtrC-mediated activation of glnA in E. coli.
Collapse
Affiliation(s)
- C W Ronson
- Grasslands Division, Department of Scientific and Industrial Research, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
48
|
MacFarlane SA, Merrick MJ. Analysis of the Klebsiella pneumoniae ntrB gene by site-directed in vitro mutagenesis. Mol Microbiol 1987; 1:133-42. [PMID: 3329695 DOI: 10.1111/j.1365-2958.1987.tb00505.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A number of in-frame insertion and deletion mutations have been constructed in vitro in the Klebsiella pneumoniae ntrB gene and the effects of each mutant NtrB protein on NtrC activity have been assessed after reintroduction of the ntrB mutation into the glnA ntrBC operon. These experiments suggest that the phosphorylation of NtrC catalysed by NtrB not only makes NtrC competent as a transcriptional activator but also improves the DNA-binding properties and hence the negative control functions of NtrC. The variety of NtrB phenotypes obtained suggest a structure/function model for the protein.
Collapse
Affiliation(s)
- S A MacFarlane
- AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton, UK
| | | |
Collapse
|
49
|
Abstract
We described previously a family of dispersed palindromic sequences highly repeated in Escherichia coli and Salmonella typhimurium genomes. These sequences, called PU (palindromic units), are located outside structural genes. We report here observations suggesting that PU may have a role in bacterial speciation.
Collapse
Affiliation(s)
- E Gilson
- CNRS UA271, INSERM U163, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
50
|
Drummond MH, Wootton JC. Sequence of nifL from Klebsiella pneumoniae: mode of action and relationship to two families of regulatory proteins. Mol Microbiol 1987; 1:37-44. [PMID: 2838726 DOI: 10.1111/j.1365-2958.1987.tb00524.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present the nucleotide sequence of K. pneumoniae nifL, which negatively regulates nif transcription in response to oxygen and fixed nitrogen. It shows partial sequence homology to the general nitrogen regulatory proteins NtrB of K. pneumoniae and Bradyrhizobium parasponiae. This homology is weaker than that shown between the NifA and NtrC activator components of the nif and general nitrogen control systems. The N-terminal section of the NifL protein includes a structural duplication sharing sequence homology with part of NtrB, and a region containing a cysteine pair which might be implicated in redox control Unlike NtrB, NifL appears to lack a DNA-binding motif, consistent with evidence that NifL represses by interacting directly with NifA. The C-terminal section of NifL shows clear homology to NtrB and to a family of proteins involved in transcriptional control or chemotaxis, each of which probably interacts with a member of the family of regulatory proteins showing homology to NtrC.
Collapse
Affiliation(s)
- M H Drummond
- AFRC Unit of Nitrogen Fixation, University of Sussex, Brighton, UK
| | | |
Collapse
|