1
|
Lu Q, Luo W. Comparative analysis of the complete mitochondrial genomes of Firmiana danxiaensis and F. kwangsiensis (Malvaceae), two endangered Firmiana species in China. PLANTA 2025; 261:107. [PMID: 40205193 DOI: 10.1007/s00425-025-04685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
MAIN CONCLUSION We reported the mitogenomes of F. danxiaensis and F. kwangsiensis for the first time. Mitogenome size and structure differ significantly between them. Firmiana danxiaensis and F. kwangsiensis belong to the Firmiana genus and are distributed in the Danxia and Karst regions of southern China. Both species have been designated as endangered. Currently, the chloroplast genomes of F. danxiaensis and F. kwangsiensis have been sequenced, but the mitochondrial genome (mitogenome) of these two species has not been reported. To further understand the mitogenome characteristics, evolution, and phylogeny of F. danxiaensis and F. kwangsiensis, we assembled the mitogenomes of these two species based on a combination of Illumina and Nanopore sequencing methods. The mitogenome of F. danxiaensis exhibits a branching structure consisting of nine circular molecules with a total length of 938,890 bp, while the F. kwangsiensis has a circular structure with a length of 736,334 bp. Compared to F. kwangsiensis, F. danxiaensis has more tRNA genes, SSRs, tandem repeats, and dispersed repeats, while the codon use patterns are similar in these two species. There were 24 and 23 homologous sequences between mitogenome and chloroplast genome of F. danxiaensis and F. kwangsiensis, accounting for 0.37% and 0.49% of the mitogenome, respectively. In addition, the Ka/Ks ratio and the nucleic acid diversity analysis revealed that most of the mitochondria protein-coding genes in F. danxiaensis and F. kwangsiensis are highly conserved and may have undergone purifying selection. Furthermore, the collinear and comparative analysis showed that extensive genomic rearrangement events existed among the Malvaceae species. Lastly, a phylogenetic tree based on shared mitochondrial PCGs of 29 species revealed that F. danxiaensis and F. kwangsiensis form a sister group with high support values. Overall, the current study reports two mitogenomes (F. danxiaensis and F. kwangsiensis) in the Firmiana genus for the first time, which will help enhance comprehension of the mitogenome evolutionary patterns within Firmiana and promote the evolutionary and comparative genomic analyses within Malvaceae species.
Collapse
Affiliation(s)
- Qifeng Lu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Wenhua Luo
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China.
| |
Collapse
|
2
|
Warren JM, Ceriotti LF, Sanchez-Puerta MV, Sloan DB. Fungal-Derived tRNAs Are Expressed and Aminoacylated in Orchid Mitochondria. Mol Biol Evol 2025; 42:msaf025. [PMID: 39882964 PMCID: PMC11827590 DOI: 10.1093/molbev/msaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Plant mitochondrial genomes (mitogenomes) experience remarkable levels of horizontal gene transfer, including the recent discovery that orchids anciently acquired DNA from fungal mitogenomes. Thus far, however, there is no evidence that any of the genes from this interkingdom horizontal gene transfer are functional in orchid mitogenomes. Here, we applied a specialized sequencing approach to the orchid Corallorhiza maculata and found that some fungal-derived tRNA genes in the transferred region are transcribed, post-transcriptionally modified, and aminoacylated. In contrast, all the transferred protein-coding sequences appear to be pseudogenes. These findings show that fungal horizontal gene transfer has altered the composition of the orchid mitochondrial tRNA pool and suggest that these foreign tRNAs function in translation. The exceptional capacity of tRNAs for horizontal gene transfer and functional replacement is further illustrated by the diversity of tRNA genes in the C. maculata mitogenome, which also include genes of plastid and bacterial origin in addition to their native mitochondrial counterparts.
Collapse
Affiliation(s)
- Jessica M Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Cui J, Yang Q, Zhang J, Ju C, Cui S. Mitochondrial Genome Insights into Evolution and Gene Regulation in Phragmites australis. Int J Mol Sci 2025; 26:546. [PMID: 39859262 PMCID: PMC11764873 DOI: 10.3390/ijms26020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
As a globally distributed perennial Gramineae, Phragmites australis can adapt to harsh ecological environments and has significant economic and environmental values. Here, we performed a complete assembly and annotation of the mitogenome of P. australis using genomic data from the PacBio and BGI platforms. The P. australis mitogenome is a multibranched structure of 501,134 bp, divided into two circular chromosomes of 325,493 bp and 175,641 bp, respectively. A sequence-simplified succinate dehydrogenase 4 gene was identified in this mitogenome, which is often translocated to the nuclear genome in the mitogenomes of gramineous species. We also identified tissue-specific mitochondrial differentially expressed genes using RNAseq data, providing new insights into understanding energy allocation and gene regulatory strategies in the long-term adaptive evolution of P. australis mitochondria. In addition, we studied the mitogenome features of P. australis in more detail, including repetitive sequences, gene Ka/Ks analyses, codon preferences, intracellular gene transfer, RNA editing, and multispecies phylogenetic analyses. Our results provide an essential molecular resource for understanding the genetic characterisation of the mitogenome of P. australis and provide a research basis for population genetics and species evolution in Arundiaceae.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Qianhui Yang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
| | - Jiyue Zhang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| |
Collapse
|
4
|
Li J, Ni Y, Yang H, Lu Q, Chen H, Liu C. Analysis of the complete mitochondrial genome of Panax quinquefolius reveals shifts from cis-splicing to trans-splicing of intron cox2i373. Gene 2024; 930:148869. [PMID: 39153707 DOI: 10.1016/j.gene.2024.148869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Panax quinquefolius is a perennial plant with medicinal values. In this study, we assembled the complete mitochondrial genome (mitogenome) of P. quinquefolius using PMAT assembler. The total length of P. quinquefolius mitogenome is 573,154 bp. We annotated a total of 34 protein-coding genes (PCGs), 35 tRNA genes, and 6 rRNA genes in this mitogenome. The analysis of repetitive elements shows that there are 153 SSRs, 24 tandem repeats and 242 pairs of dispersed repeats this mitogenome. Also, we found 24 homologous sequences with a total length of 64,070 bp among its mitogenome and plastome, accounting for 41.05 % of the plastome, and 11.18 % of the mitogenome, showing a remarkable frequent sequence dialogue between plastome and mitogenomes. Besides, a total of 583 C to U RNA editing sites on 34 PCGs of high confidence were predicted by using Deepred-mt. We also inferred the phylogenetic relationships of P. quinquefolius and other angiosperms based on mitochondrial PCGs. Finally, we observed a shift from cis- to trans-splicing in P. quinquefolius for two mitochondrial introns, namely cox2i373 and nad1i728, and a pair of 48 bp short repetitive sequences may be associated with the breaking and rearrangement of the cox2i373 intron. The fragmentation of the cox2i373 intron was further confirmed by our PCR amplification experiments. In summary, our report on the P. quinquefolius mitogenome provides a new perspective on the intron evolution of the mitogenome.
Collapse
Affiliation(s)
- Jingling Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yang Ni
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Heyu Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qianqi Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haimei Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Chang Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Li Z, Ran Z, Xiao X, Yan C, Xu J, Tang M, An M. Comparative analysis of the whole mitochondrial genomes of four species in sect. Chrysantha (Camellia L.), endemic taxa in China. BMC PLANT BIOLOGY 2024; 24:955. [PMID: 39395971 PMCID: PMC11475203 DOI: 10.1186/s12870-024-05673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Collapse
Affiliation(s)
- Zhi Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Jian Xu
- Guizhou Botanical Garden, Guiyang, 550000, China
| | - Ming Tang
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Liu GH, Zuo YW, Shan Y, Yu J, Li JX, Chen Y, Gong XY, Liao XM. Structural analysis of the mitochondrial genome of Santalum album reveals a complex branched configuration. Genomics 2024; 116:110935. [PMID: 39243912 DOI: 10.1016/j.ygeno.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be descried by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.
Collapse
Affiliation(s)
- Guang-Hua Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, 418008 Huaihua, Hunan, China.; College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - You-Wei Zuo
- Center for Biodiversity Conservation and Utilization, Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 400715 Beibei, Chongqing, China.
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Jia-Xi Li
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Ying Chen
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Xin-Yi Gong
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Xiao-Min Liao
- Hunan University of Medicine General Hospital, 418008 Huaihua, Hunan, China..
| |
Collapse
|
7
|
Hao Z, Jiang X, Pan L, Guo J, Chen Y, Li J, Liu B, Guo A, Luo L, Jia R. The complete mitochondrial genome of Pontederia crassipes: using HiFi reads to investigate genome recombination and gene transfer from chloroplast genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1407309. [PMID: 39006960 PMCID: PMC11240117 DOI: 10.3389/fpls.2024.1407309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Water hyacinth (Pontederia crassipes Mart.) is a monocotyledonous aquatic plant renowned for its rapid growth, extensive proliferation, biological invasiveness, and ecological resilience to variations in pH, nutrients, and temperature. The International Union for Conservation of Nature (IUCN) has listed P. crassipes among the top 100 invasive species. However, comprehensive genomic information, particularly concerning its mitochondrial genome (mitogenome), remains surprisingly limited. In this study, the complete mitogenome of P. crassipes was analyzed using bioinformatics approaches. The mitogenome is 399,263 bp long and contains 38 protein-coding genes (PCGs), 24 tRNA genes, and 3 rRNA genes. Sequence analysis revealed that the complete mitogenome of the species contains 3,289 dispersed repeats, and 765 RNA editing sites in protein-coding genes. The P. crassipes mitogenome possessed un-conserved structures, including extensive sequence transfer between its chloroplasts and mitochondria. Our study on the mitogenome of P. crassipes offers critical insights into its evolutionary patterns and phylogenetic relationships with related taxa. This research enhances our understanding of this invasive species, known for its significant biomass and rapid overgrowth in aquatic environments.
Collapse
Affiliation(s)
- Zhigang Hao
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaoqi Jiang
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Lei Pan
- CAIQ Center for Biosafety in Sanya, Sanya, Hainan, China
| | - Jingyuan Guo
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Yi Chen
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Biao Liu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Anping Guo
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Ruizong Jia
- Sanya Research Institution, Chinese Academy of Tropical Agriculture Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya, Hainan, China
| |
Collapse
|
8
|
Hao Z, Zhang Z, Zhang J, Cui X, Li J, Luo L, Li Y. The complete mitochondrial genome of Aglaia odorata, insights into its genomic structure and RNA editing sites. FRONTIERS IN PLANT SCIENCE 2024; 15:1362045. [PMID: 38510436 PMCID: PMC10950942 DOI: 10.3389/fpls.2024.1362045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Aglaia odorata, native to Guangdong, Guangxi, and Hainan provinces in China, has long been utilized as an herbal remedy in ancient China. In this study, we assembled and annotated the complete mitochondrial genome (mitogenome) of A. odorata, which spans a total length of 537,321 bp. Conformation of the A. odorata recombination was verified through PCR experiments and Sanger sequencing. We identified and annotated 35 protein-coding genes (PCGs), 22 tRNA genes, and 3 rRNA genes within the mitogenome. Analysis of repeated elements revealed the presence of 192 SSRs, 29 pairs of tandem repeats, and 333 pairs of dispersed repeats in the A. odorata mitogenome. Additionally, we analyzed codon usage and mitochondrial plastid DNAs (MTPTs). Twelve MTPTs between the plastome and mitogenome of A. odorata were identified, with a combined length of 2,501 bp, accounting for 0.47% of the mitogenome. Furthermore, 359 high-confidence C to U RNA editing sites were predicted on PCGs, and four selected RNA editing sites were specially examined to verify the creation of start and/or stop codons. Extensive genomic rearrangement was observed between A. odorata and related mitogenomes. Phylogenetic analysis based on mitochondrial PCGs were conducted to elucidate the evolutionary relationships between A. odorata and other angiosperms.
Collapse
Affiliation(s)
- Zhigang Hao
- Department of Pesticide Science, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
| | - Zhiping Zhang
- Department of Pesticide Science, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinan Zhang
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
| | - Xiufen Cui
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| | - Jianqiang Li
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, China
| | - Laixin Luo
- Hainan Seed Industry Laboratory, Sanya, Hainan, China
- MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yingbin Li
- Department of Pesticide Science, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Zhu H, Shan Y, Li J, Zhang X, Yu J, Wang H. Assembly and comparative analysis of the complete mitochondrial genome of Viburnum chinshanense. BMC PLANT BIOLOGY 2023; 23:487. [PMID: 37821817 PMCID: PMC10566092 DOI: 10.1186/s12870-023-04493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Viburnum chinshanense is an endemic species found exclusively in the North-Central and South-Central regions of China. This species is a lush garden ornamental tree and is extensively utilized for vegetation restoration in rocky desertification areas. RESULTS In this study, we obtained 13.96 Gb of Oxford Nanopore data for the whole genome, and subsequently, by combining Illumina short-reads, we successfully assembled the complete mitochondrial genome (mitogenome) of the V. chinshanense using a hybrid assembly strategy. The assembled genome can be described as a circular genome. The total length of the V. chinshanense mitogenome measures 643,971 bp, with a GC content of 46.18%. Our annotation efforts have revealed a total of 39 protein-coding genes (PCGs), 28 tRNA genes, and 3 rRNA genes within the V. chinshanense mitogenome. The analysis of repeated elements has identified 212 SSRs, 19 long tandem repeat elements, and 325 pairs of dispersed repeats in the V. chinshanense mitogenome. Additionally, we have investigated mitochondrial plastid DNAs (MTPTs) and identified 21 MTPTs within the mitogenome and plastidial genome. These MTPTs collectively span a length of 9,902 bp, accounting for 1.54% of the mitogenome. Moreover, employing Deepred-mt, we have confidently predicted 623 C to U RNA editing sites across the 39 protein-coding genes. Furthermore, extensive genomic rearrangements have been observed between V. chinshanense and the mitogenomes of related species. Interestingly, we have also identified a bacterial-derived tRNA gene (trnC-GCA) in the V. chinshanense mitogenome. Lastly, we have inferred the phylogenetic relationships of V. chinshanense with other angiosperms based on mitochondrial PCGs. CONCLUSIONS This study marks the first report of a mitogenome from the Viburnum genus, offering a valuable genomic resource for exploring the evolution of mitogenomes within the Dipsacales order.
Collapse
Affiliation(s)
- Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| | - Haiyang Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Shan Y, Li J, Zhang X, Yu J. The complete mitochondrial genome of Amorphophallus albus and development of molecular markers for five Amorphophallus species based on mitochondrial DNA. FRONTIERS IN PLANT SCIENCE 2023; 14:1180417. [PMID: 37416891 PMCID: PMC10322194 DOI: 10.3389/fpls.2023.1180417] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Introduction Amorphophallus albus is an herbaceous, cormous, perennial plant used as a food source and traditional medicine in Asia. Methods In this study, we assembled and annotated the complete mitochondrial genome (mitogenome) of A. albus. Then we analyzed the repeated elements and mitochondrial plastid sequences (MTPTs), predicted RNA editing sites in mitochondrial protein-coding genes (PCGs). Lastly, we inferred the phylogenetic relationships of A. albus and other angiosperms based on mitochondrial PCGs, and designed two molecular markers based on mitochondrial DNA. Results and discussion The complete mitogenome of A. albus consists of 19 circular chromosomes. And the total length of A. albus mitogenome is 537,044 bp, with the longest chromosome measuring 56,458 bp and the shortest measuring 12,040 bp. We identified and annotated a total of 36 protein-coding genes (PCGs), 21 tRNA genes, and 3 rRNA genes in the mitogenome. Additionally, we analyzed mitochondrial plastid DNAs (MTPTs) and identified 20 MTPTs between the two organelle genomes, with a combined length of 22,421 bp, accounting for 12.76% of the plastome. Besides, we predicted a total of 676 C to U RNA editing sites on 36 protein-coding genes of high confidence using Deepred-mt. Furthermore, extensive genomic rearrangement was observed between A. albus and the related mitogenomes. We conducted phylogenetic analyses based on mitochondrial PCGs to determine the evolutionary relationships between A. albus and other angiosperms. Finally, we developed and validated two molecular markers, Ai156 and Ai976, based on two intron regions (nad2i156 and nad4i976) respectively. The discrimination success rate was 100 % in validation experiments for five widely grown konjac species. Our results reveal the multi-chromosome mitogenome of A. albus, and the developed markers will facilitate molecular identification of this genus.
Collapse
|
11
|
Liu Q, Yuan H, Xu J, Cui D, Xiong G, Schwarzacher T, Heslop-Harrison JS. The mitochondrial genome of the diploid oat Avena longiglumis. BMC PLANT BIOLOGY 2023; 23:218. [PMID: 37098475 PMCID: PMC10131481 DOI: 10.1186/s12870-023-04217-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Avena longiglumis Durieu (2n = 2x = 14) is a wild relative of cultivated oat (Avena sativa, 2n = 6x = 42) with good agronomic and nutritional traits. The plant mitochondrial genome has a complex organization and carries genetic traits of value in exploiting genetic resources, not least male sterility alleles used to generate F1 hybrid seeds. Therefore, we aim to complement the chromosomal-level nuclear and chloroplast genome assemblies of A. longiglumis with the complete assembly of the mitochondrial genome (mitogenome) based on Illumina and ONT long reads, comparing its structure with Poaceae species. RESULTS The complete mitochondrial genome of A. longiglumis can be represented by one master circular genome being 548,445 bp long with a GC content of 44.05%. It can be represented by linear or circular DNA molecules (isoforms or contigs), with multiple alternative configurations mediated by long (4,100-31,235 bp) and medium (144-792 bp) size repeats. Thirty-five unique protein-coding genes, three unique rRNA genes, and 11 unique tRNA genes are identified. The mitogenome is rich in duplications (up to 233 kb long) and multiple tandem or simple sequence repeats, together accounting for more than 42.5% of the total length. We identify homologous sequences between the mitochondrial, plastid and nuclear genomes, including the exchange of eight plastid-derived tRNA genes, and nuclear-derived retroelement fragments. At least 85% of the mitogenome is duplicated in the A. longiglumis nuclear genome. We identify 269 RNA editing sites in mitochondrial protein-coding genes including stop codons truncating ccmFC transcripts. CONCLUSIONS Comparative analysis with Poaceae species reveals the dynamic and ongoing evolutionary changes in mitochondrial genome structure and gene content. The complete mitochondrial genome of A. longiglumis completes the last link of the oat reference genome and lays the foundation for oat breeding and exploiting the biodiversity in the genus.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Hongyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Xu
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Dongli Cui
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
12
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Li Y, Gu M, Liu X, Lin J, Jiang H, Song H, Xiao X, Zhou W. Sequencing and analysis of the complete mitochondrial genomes of Toona sinensis and Toona ciliata reveal evolutionary features of Toona. BMC Genomics 2023; 24:58. [PMID: 36726084 PMCID: PMC9893635 DOI: 10.1186/s12864-023-09150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Toona is a critical genus in the Meliaceae, and the plants of this group are an asset for both restorative and restorative purposes, the most flexible of which are Toona sinensis and Toona ciliata. To concentrate on the advancement of mitochondrial(Mt) genome variety in T.sinensis and T.ciliata, the Mt genomes of the two species were sequenced in high throughput independently, after de novo assembly and annotation to construct a Mt genome map for comparison in genome structure. Find their repetitive sequences and analyze them in comparison with the chloroplast genome, along with Maximum-likelihood(ML) phylogenetic analysis with 16 other relatives. RESULTS (1) T. sinensis and T.ciliata are both circular structures with lengths of 683482 bp and 68300 bp, respectively. They share a high degree of similarity in encoding genes and have AT preferences. All of them have the largest Phe concentration and are the most frequently used codons. (2) Both of their Mt genome are highly preserved in terms of structural and functional genes, while the main variability is reflected in the length of tRNA, the number of genes, and the value of RSCU. (3) T. siniensis and T. ciliata were detected to have 94 and 87 SSRs, respectively, of which mononucleotides accounted for the absolute proportion. Besides, the vast majority of their SSRs were found to be poly-A or poly-T. (4)10 and 11 migrating fragments were identified in the comparison with the chloroplast genome, respectively. (5) In the ML evolutionary tree, T.sinensis and T.ciliata clustered individually into a small branch with 100% support, reflecting two species of Toona are very similarly related to each other. CONCLUSIONS This research provides a basis for the exploitation of T.sinensis and T.ciliata in terms of medicinal, edible, and timber resources to avoid confusion; at the same time, it can explore the evolutionary relationship between the Toona and related species, which does not only have an important practical value, but also provides a theoretical basis for future hybrid breeding of forest trees, molecular markers, and evolutionary aspects of plants, which has great scientific significance.
Collapse
Affiliation(s)
- Youli Li
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| | - Min Gu
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| | - Xuanzhe Liu
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| | - Jianna Lin
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| | - Huier Jiang
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| | - Huiyun Song
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| | - Xingcui Xiao
- grid.464457.00000 0004 0445 3867Sichuan Academy of Forestry Sciences, Chengdu, 61008 Sichuan China
| | - Wei Zhou
- grid.20561.300000 0000 9546 5767College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 51000 Guangdong China
| |
Collapse
|
14
|
Yu J, Ran Z, Zhang J, Wei L, Ma W. Genome-Wide Insights Into the Organelle Translocation of Photosynthetic NDH-1 Genes During Evolution. Front Microbiol 2022; 13:956578. [PMID: 35910652 PMCID: PMC9326235 DOI: 10.3389/fmicb.2022.956578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Translocation of chloroplast-located genes to mitochondria or nucleus is considered to be a safety strategy that impedes mutation of photosynthetic genes and maintains their household function during evolution. The organelle translocation strategy is also developed in photosynthetic NDH-1 (pNDH-1) genes but its understanding is still far from complete. Here, we found that the mutation rate of the conserved pNDH-1 genes was gradually reduced but their selection pressure was maintained at a high level during evolution from cyanobacteria to angiosperm. By contrast, oxygenic photosynthesis-specific (OPS) pNDH-1 genes had an opposite trend, explaining the reason why they were transferred from the reactive oxygen species (ROS)-enriched chloroplast to the ROS-barren nucleus. Further, genome-wide sequence analysis supported the possibility that all conserved pNDH-1 genes lost in chloroplast genomes of Chlorophyceae and Pinaceae were transferred to the ROS-less mitochondrial genome as deduced from their truncated pNDH-1 gene fragments. Collectively, we propose that the organelle translocation strategy of pNDH-1 genes during evolution is necessary to maintain the function of the pNDH-1 complex as an important antioxidant mechanism for efficient photosynthesis.
Collapse
|
15
|
Shtratnikova VY, Schelkunov MI, Penin AA, Logacheva MD. Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa, its structure, gene expression and RNA editing. PeerJ 2020; 8:e9309. [PMID: 32601550 PMCID: PMC7307570 DOI: 10.7717/peerj.9309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.
Collapse
Affiliation(s)
- Viktoria Yu Shtratnikova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Aleksey A Penin
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
16
|
Warren JM, Sloan DB. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 2020; 52:144-156. [PMID: 32184120 DOI: 10.1016/j.mito.2020.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
Transfer RNAs (tRNAs) remain one of the very few classes of genes still encoded in the mitochondrial genome. These key components of the protein translation system must interact with a large enzymatic network of nuclear-encoded gene products to maintain mitochondrial function. Plants have an evolutionarily dynamic mitochondrial tRNA population, including ongoing tRNA gene loss and replacement by both horizontal gene transfer from diverse sources and import of nuclear-expressed tRNAs from the cytosol. Thus, plant mitochondria represent an excellent model for understanding how anciently divergent genes can act as "interchangeable parts" during the evolution of complex molecular systems. In particular, understanding the integration of the mitochondrial translation system with elements of the corresponding machinery used in cytosolic protein synthesis is a key area for eukaryotic cellular evolution. Here, we review the increasingly detailed phylogenetic data about the evolutionary history of mitochondrial tRNA gene loss, transfer, and functional replacement that has created extreme variation in mitochondrial tRNA populations across plant species. We describe emerging tRNA-seq methods with promise for refining our understanding of the expression and subcellular localization of tRNAs. Finally, we summarize current evidence and identify open questions related to coevolutionary changes in nuclear-encoded enzymes that have accompanied turnover in mitochondrial tRNA populations.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, Boykin LM, Dixon KW, Small I. Plastome-Wide Rearrangements and Gene Losses in Carnivorous Droseraceae. Genome Biol Evol 2019; 11:472-485. [PMID: 30629170 PMCID: PMC6380313 DOI: 10.1093/gbe/evz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
The plastid genomes of four related carnivorous plants (Drosera regia, Drosera erythrorhiza, Aldrovanda vesiculosa, and Dionaea muscipula) were sequenced to examine changes potentially induced by the transition to carnivory. The plastid genomes of the Droseraceae show multiple rearrangements, gene losses, and large expansions or contractions of the inverted repeat. All the ndh genes are lost or nonfunctional, as well as in some of the species, clpP1, ycf1, ycf2 and some tRNA genes. Uniquely, among land plants, the trnK gene has no intron. Carnivory in the Droseraceae coincides with changes in plastid gene content similar to those induced by parasitism and mycoheterotrophy, suggesting parallel changes in chloroplast function due to the similar switch from autotrophy to (mixo-) heterotrophy. A molecular phylogeny of the taxa based on all shared plastid genes indicates that the "snap-traps" of Aldrovanda and Dionaea have a common origin.
Collapse
Affiliation(s)
- Paul G Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Adam T Cross
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Kings Park and Botanic Garden, Kings Park, Western Australia, Australia
| | - Anna V Williams
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Xiao Zhong
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kingsley W Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
18
|
Park S, Ruhlman TA, Sabir JSM, Mutwakil MHZ, Baeshen MN, Sabir MJ, Baeshen NA, Jansen RK. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genomics 2014; 15:405. [PMID: 24884625 PMCID: PMC4045975 DOI: 10.1186/1471-2164-15-405] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. Results The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Conclusions Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution among angiosperms. The genomic data have enabled a rigorous examination of the gene transfer events. Rhazya is unique among the eight sequenced asterids in the types of events that have shaped the evolution of its mitochondrial genome. Furthermore, the organelle genomes of R. stricta provide valuable genomic resources for utilizing this important medicinal plant in biotechnology applications. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-405) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Burton RS, Pereira RJ, Barreto FS. Cytonuclear Genomic Interactions and Hybrid Breakdown. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135758] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Ricardo J. Pereira
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Felipe S. Barreto
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| |
Collapse
|
20
|
Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol 2013. [PMID: 23587068 DOI: 10.1186/2f1741-7007-11-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. RESULTS We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. CONCLUSIONS Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.
Collapse
|
21
|
Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol 2013; 11:29. [PMID: 23587068 PMCID: PMC3646698 DOI: 10.1186/1741-7007-11-29] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. RESULTS We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. CONCLUSIONS Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.
Collapse
|
22
|
Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One 2013; 8:e56502. [PMID: 23431381 PMCID: PMC3576410 DOI: 10.1371/journal.pone.0056502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.
Collapse
Affiliation(s)
- Shengxin Chang
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yankun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiangjie Lu
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jijie Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pu Chu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Choi B, Acero MM, Bonen L. Mapping of wheat mitochondrial mRNA termini and comparison with breakpoints in DNA homology among plants. PLANT MOLECULAR BIOLOGY 2012; 80:539-552. [PMID: 22956245 DOI: 10.1007/s11103-012-9966-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 05/27/2023]
Abstract
Mitochondrial DNA rearrangements occur very frequently in flowering plants and when close to genes there must be concomitant acquisition of new regulatory cis-elements. To explore whether there might be limits to such DNA shuffling, we have mapped the termini of mitochondrial mRNAs in wheat, a monocot, and compared them to the known positions for counterpart genes in the eudicot Arabidopsis. Nine genes share homologous 3' UTRs over their full-length and for six of them, the termini map very close to the site of wheat/Arabidopsis DNA rearrangements. Only one such case was seen for comparisons of 5' UTRs, and the 5' ends of mRNAs are typically more heterogeneous than 3' termini. Approximately half of the thirty-one wheat mitochondrial transcriptional units are preceded by CRTA promoter-like motifs, and of the potential stem-loop or tRNA-like structures identified as candidate RNA processing/stability signals near the 5' or 3' ends, several are shared with Arabidopsis. Comparison of the mitochondrial gene flanking sequences from normal fertile wheat (Triticum aestivum) with those of Aegilops kotschyi which is the source of mitochondria present in K-type cytoplasmic male sterile wheat, revealed six cases where mRNAs are precluded from sharing full-length homologous UTRs because of genomic reorganization events, and the presence of short repeats located at the sites of discontinuity points to a reciprocal recombination-mediated mode of rearrangement.
Collapse
Affiliation(s)
- Boyoung Choi
- Biology Department, University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
24
|
Byers E, Bonen L. Potential role of tRNAs in wheat and Lolium mitochondrial rps7 transcript processing. Genome 2012; 55:615-21. [DOI: 10.1139/g2012-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The wheat mitochondrial gene for ribosomal protein S7 exhibits multiple transcripts that share the same 3′ terminus but range in overall length from 3.4 to 0.7 kb because of 5′end-maturation events. The longest detectable precursor RNA maps precisely to the 3′ end of a chloroplast-origin tRNA-Phe gene, consistent with it providing signals for endonucleolytic cleavage. Steady-state levels of precursor RNAs were seen to be lower in seedlings than in germinating embryos, although the degree of editing within untranslated regions (UTRs) was higher in seedlings. In another grass, Lolium multiflorum Lam., rps7 displays transcripts of 1.3 and 0.7 kb, and although the distal 5′ UTRs are unrelated in sequence to those of wheat, the 5′ terminus of the longer transcript also maps to a tRNA gene, in this case the native mitochondrial-type tRNA-Ser. Our findings illustrate the plasticity of plant mitochondrial transcriptional units and the recruitment of chloroplast-origin sequences for the expression of mitochondrial genes.
Collapse
Affiliation(s)
- Evan Byers
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Linda Bonen
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
25
|
Goremykin VV, Lockhart PJ, Viola R, Velasco R. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:615-26. [PMID: 22469001 DOI: 10.1111/j.1365-313x.2012.05014.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.
Collapse
Affiliation(s)
- Vadim V Goremykin
- IASMA Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy.
| | | | | | | |
Collapse
|
26
|
Kim E, Archibald JM. Diversity and Evolution of Plastids and Their Genomes. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Goremykin VV, Salamini F, Velasco R, Viola R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 2008; 26:99-110. [PMID: 18922764 DOI: 10.1093/molbev/msn226] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.
Collapse
Affiliation(s)
- Vadim V Goremykin
- Istituto Agrario San Michele all'Adige Research Center, San Michele all'Adige (TN), Italy.
| | | | | | | |
Collapse
|
28
|
Wesselink M, Kuiper I. Species identification of botanical trace evidence using molecular markers. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2008. [DOI: 10.1016/j.fsigss.2007.10.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
|
30
|
Tian X, Zheng J, Hu S, Yu J. The Discriminatory Transfer Routes of tRNA Genes Among Organellar and Nuclear Genomes in Flowering Plants: A Genome-Wide Investigation of indica Rice. J Mol Evol 2007; 64:299-307. [PMID: 17273918 DOI: 10.1007/s00239-005-0200-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/25/2006] [Indexed: 11/29/2022]
Abstract
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5'- and 3'-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants.
Collapse
Affiliation(s)
- Xiangjun Tian
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | |
Collapse
|
31
|
Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 2005; 33:6235-50. [PMID: 16260473 PMCID: PMC1275586 DOI: 10.1093/nar/gki925] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon-intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed.
Collapse
Affiliation(s)
| | | | - Koji Murai
- Faculty of Bioscience and Biotechnology, Fukui Prefectural UniversityMatsuoka, Fukui 910-1195, Japan
| | - Akira Kanno
- Faculty of Life Sciences, Tohoku UniversityAoba-ku, Sendai 980-8577, Japan
| | - Toru Terachi
- Faculty of Engineering, Kyoto Sangyo UniversityKita-ku, Kyoto 603-8047, Japan
| | | | - Naohiko Miyashita
- Graduate School of Agriculture, Kyoto UniversitySakyo-ku, Kyoto 606-8502, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto UniversitySakyo-ku, Kyoto 606-8502, Japan
| | - Chiharu Nakamura
- Faculty of Agriculture, Kobe UniversityNada-ku, Kobe 675-0013, Japan
| | - Naoki Mori
- Faculty of Agriculture, Kobe UniversityNada-ku, Kobe 675-0013, Japan
| | - Shigeo Takumi
- Faculty of Agriculture, Kobe UniversityNada-ku, Kobe 675-0013, Japan
| | - Minoru Murata
- Research Institute for Bioresources, Okayama UniversityKurashiki, Okayama 710-0046, Japan
| | | | - Koichiro Tsunewaki
- Graduate School of Agriculture, Kyoto UniversitySakyo-ku, Kyoto 606-8502, Japan
- To whom correspondence should be addressed at 6-14-10 Kasugadai, Nishi-ku, Kobe, Hyogo 651-2276, Japan. Tel/Fax: +81 078 961 4085;
| |
Collapse
|
32
|
Salinas T, Schaeffer C, Maréchal-Drouard L, Duchêne AM. Sequence dependence of tRNA(Gly) import into tobacco mitochondria. Biochimie 2005; 87:863-72. [PMID: 15927343 DOI: 10.1016/j.biochi.2005.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 11/16/2022]
Abstract
Plant mitochondrial genomes lack a number of tRNA genes and the corresponding tRNAs, which are nuclear-encoded, are imported from the cytosol. We show that specific import of tRNA(Gly) isoacceptors occurs in tobacco mitochondria: tRNA(Gly)(UCC) and tRNA(Gly)(CCC) are cytosolic and mitochondrial, while tRNA(Gly)(GCC) is found only in the cytosol. Exchange of sequences between tRNA(Gly)(UCC) and tRNA(Gly)(GCC) shows that the anticodon and D-domain are essential for tRNA(Gly)(UCC) import. However the reverse mutations in tRNA(Gly)(GCC) are not sufficient to promote its import into tobacco mitochondria.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR du CNRS no. 2357, Université Louis Pasteur, 12, rue du Général Zimmer, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 2005; 272:603-15. [PMID: 15583938 DOI: 10.1007/s00438-004-1075-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/30/2004] [Indexed: 11/25/2022]
Abstract
Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and psirps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.
Collapse
Affiliation(s)
- Y Sugiyama
- Center for Gene Research, Nagoya University, Chikusa-ku, 464-0812 Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Jacob Y, Seif E, Paquet PO, Lang BF. Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA (NEW YORK, N.Y.) 2004; 10:605-14. [PMID: 15037770 PMCID: PMC1370551 DOI: 10.1261/rna.5227904] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
It has been postulated that a highly reduced form of transfer messenger RNA (tmRNA), a bacterial molecule involved in the rescue of stalled ribosomes during translation, is expressed in the mitochondrion of the jakobid Reclinomonas americana. Here we show that genes encoding both one-piece and two-piece tmRNAs are present in six different jakobid mitochondrial DNAs. Mitochondrial tmRNAs have retained the highly conserved tRNA(Ala)-like domain, but they apparently lack the mRNA-like region present in all bacterial tmRNAs. Comparative analysis of jakobid mitochondrial genomes shows that a potential mRNA-like region in R. americana (orf64) is located at distant genomic positions in other jakobids. Our results strongly suggest that orf64 is a tatA homolog. Through Northern hybridization we confirm the postulated reduced size of both a one-piece tmRNA in Jakoba libera and a two-piece tmRNA in Seculamonas ecuadoriensis. The J. libera tmRNA is post-transcriptionally modified by addition of a 3' CCA tail, processed in vitro by RNase P RNA, and specifically charged with alanine in vitro by alanyl-tRNA synthetase. Our results strongly support the functionality of these reduced mitochondrial tmRNAs.
Collapse
Affiliation(s)
- Yannick Jacob
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada H3T 1J4
| | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Turmel M, Otis C, Lemieux C. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. THE PLANT CELL 2003; 15:1888-903. [PMID: 12897260 PMCID: PMC167177 DOI: 10.1105/tpc.013169] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 06/04/2003] [Indexed: 05/20/2023]
Abstract
Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria.
Collapse
Affiliation(s)
- Monique Turmel
- Département de Biochimie et de Microbiologie, Université Laval, Québec, Québec G1K 7P4, Canada.
| | | | | |
Collapse
|
38
|
Elo A, Lyznik A, Gonzalez DO, Kachman SD, Mackenzie SA. Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome. THE PLANT CELL 2003; 15:1619-31. [PMID: 12837951 PMCID: PMC165405 DOI: 10.1105/tpc.010009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 05/13/2003] [Indexed: 05/18/2023]
Abstract
The plant mitochondrial genome is complex in structure, owing to a high degree of recombination activity that subdivides the genome and increases genetic variation. The replication activity of various portions of the mitochondrial genome appears to be nonuniform, providing the plant with an ability to modulate its mitochondrial genotype during development. These and other interesting features of the plant mitochondrial genome suggest that adaptive changes have occurred in DNA maintenance and transmission that will provide insight into unique aspects of plant mitochondrial biology and mitochondrial-chloroplast coevolution. A search in the Arabidopsis genome for genes involved in the regulation of mitochondrial DNA metabolism revealed a region of chromosome III that is unusually rich in genes for mitochondrial DNA and RNA maintenance. An apparently similar genetic linkage was observed in the rice genome. Several of the genes identified within the chromosome III interval appear to target the plastid or to be targeted dually to the mitochondria and the plastid, suggesting that the process of endosymbiosis likely is accompanied by an intimate coevolution of these two organelles for their genome maintenance functions.
Collapse
Affiliation(s)
- Annakaisa Elo
- Plant Science Initiative, Beadle Center for Genetics Research, University of Nebraska, Lincoln, Nebraska 68588-0660, USA
| | | | | | | | | |
Collapse
|
39
|
Duchêne AM, Peeters N, Dietrich A, Cosset A, Small ID, Wintz H. Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 2001; 276:15275-83. [PMID: 11278923 DOI: 10.1074/jbc.m011525200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plant mitochondria, some of the tRNAs are encoded by the mitochondrial genome and resemble their prokaryotic counterparts, whereas the remaining tRNAs are encoded by the nuclear genome and imported from the cytosol. Generally, mitochondrial isoacceptor tRNAs all have the same genetic origin. One known exception to this rule is the group of tRNA(Gly) isoacceptors in dicotyledonous plants. A mitochondrion-encoded tRNA(Gly) and at least one nucleus-encoded tRNA(Gly) coexist in the mitochondria of these plants, and both are required to allow translation of all four GGN glycine codons. We have taken advantage of this atypical situation to address the problem of tRNA/aminoacyl-tRNA synthetase coevolution in plants. In this work, we show that two different nucleus-encoded glycyl-tRNA synthetases (GlyRSs) are imported into Arabidopsis thaliana and Phaseolus vulgaris mitochondria. The first one, GlyRS-1, is similar to human or yeast glycyl-tRNA synthetase, whereas the second, GlyRS-2, is similar to Escherichia coli glycyl-tRNA synthetase. Both enzymes are dual targeted, GlyRS-1 to mitochondria and to the cytosol and GlyRS-2 to mitochondria and chloroplasts. Unexpectedly, GlyRS-1 seems to be active in the cytosol but inactive in mitochondrial fractions, whereas GlyRS-2 is likely to glycylate both the organelle-encoded tRNA(Gly) and the imported tRNA(Gly) present in mitochondria.
Collapse
Affiliation(s)
- A M Duchêne
- Institut de Biologie Moléculaire des Plantes du CNRS, Université, CNRS Université Louis Pasteur, 12 Rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Glover KE, Spencer DF, Gray MW. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem 2001; 276:639-48. [PMID: 11027690 DOI: 10.1074/jbc.m007708200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its large size (200-2400 kilobase pairs), the mitochondrial genome of angiosperms does not encode the minimal set of tRNAs required to support mitochondrial protein synthesis. Here we report the identification of cytosolic-like tRNAs in wheat mitochondria using a method involving quantitative hybridization to distinguish among three tRNA classes: (i) those encoded by mitochondrial DNA (mtDNA) and localized in mitochondria, (ii) those encoded by nuclear DNA and located in the cytosol, and (iii) those encoded by nuclear DNA and found in both the cytosol and mitochondria. The latter class comprises tRNA species that are considered to be imported into mitochondria to compensate for the deficiency of mtDNA-encoded tRNAs. In a comprehensive survey of the wheat mitochondrial tRNA population, we identified 14 such imported tRNAs, the structural characterization of which is presented here. These imported tRNAs complement 16 mtDNA-encoded tRNAs, for a total of at least 30 distinct tRNA species in wheat mitochondria. Considering differences in the set of mtDNA-encoded and imported tRNAs in the mitochondria of various land plants, the import system must be able to adapt relatively rapidly over evolutionary time with regard to the particular cytosolic-like tRNAs that are brought into mitochondria.
Collapse
MESH Headings
- Base Sequence
- Biological Transport
- Cell Nucleus/genetics
- Codon/genetics
- Cytoplasm/genetics
- DNA, Mitochondrial/genetics
- Electrophoresis, Gel, Two-Dimensional
- Evolution, Molecular
- Mitochondria/genetics
- Mitochondria/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Probes
- RNA, Mitochondrial
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Asp/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA
- Triticum/cytology
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- K E Glover
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
41
|
Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci U S A 2000; 97:6960-6. [PMID: 10860957 PMCID: PMC34370 DOI: 10.1073/pnas.97.13.6960] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We summarize our recent studies showing that angiosperm mitochondrial (mt) genomes have experienced remarkably high rates of gene loss and concomitant transfer to the nucleus and of intron acquisition by horizontal transfer. Moreover, we find substantial lineage-specific variation in rates of these structural mutations and also point mutations. These findings mostly arise from a Southern blot survey of gene and intron distribution in 281 diverse angiosperms. These blots reveal numerous losses of mt ribosomal protein genes but, with one exception, only rare loss of respiratory genes. Some lineages of angiosperms have kept all of their mt ribosomal protein genes whereas others have lost most of them. These many losses appear to reflect remarkably high (and variable) rates of functional transfer of mt ribosomal protein genes to the nucleus in angiosperms. The recent transfer of cox2 to the nucleus in legumes provides both an example of interorganellar gene transfer in action and a starting point for discussion of the roles of mechanistic and selective forces in determining the distribution of genetic labor between organellar and nuclear genomes. Plant mt genomes also acquire sequences by horizontal transfer. A striking example of this is a homing group I intron in the mt cox1 gene. This extraordinarily invasive mobile element has probably been acquired over 1,000 times separately during angiosperm evolution via a recent wave of cross-species horizontal transfers. Finally, whereas all previously examined angiosperm mtDNAs have low rates of synonymous substitutions, mtDNAs of two distantly related angiosperms have highly accelerated substitution rates.
Collapse
Affiliation(s)
- J D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
42
|
LeBlanc AJ, Yermovsky-Kammerer AE, Hajduk SL. A nuclear encoded and mitochondrial imported dicistronic tRNA precursor in Trypanosoma brucei. J Biol Chem 1999; 274:21071-7. [PMID: 10409659 DOI: 10.1074/jbc.274.30.21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded and imported into the mitochondrion. A heterogeneous population of RNAs having characteristics of precursor tRNAs have previously been identified within the mitochondrion of T. brucei, suggesting that import occurs via a precursor molecule. In order to identify nuclear genes encoding tRNAs targeted to the mitochondrion, individual mitochondrial tRNAs were separated using two-dimensional gel electrophoresis and enzymatically sequenced. A 1.1-kilobase pair genomic DNA fragment was cloned containing three tRNA genes, tRNA(1)(Ser), tRNA(Leu), and tRNA(2)(Ser). Dicistronic precursors containing the tRNA(1)(Ser) and tRNA(Leu) transcripts with a 59-nucleotide intergenic sequence were identified by reverse transcriptase and polymerase chain reactions and the 5' end of the precursors determined. The dicistronic precursor tRNA is present both in the cytosol and the mitochondrion supporting a model for tRNA import involving precursor tRNA transcripts.
Collapse
Affiliation(s)
- A J LeBlanc
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
43
|
Brubacher-Kauffmann S, Maréchal-Drouard L, Cosset A, Dietrich A, Duchêne AM. Differential import of nuclear-encoded tRNAGly isoacceptors into solanum Tuberosum mitochondria. Nucleic Acids Res 1999; 27:2037-42. [PMID: 10198438 PMCID: PMC148418 DOI: 10.1093/nar/27.9.2037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In potato ( Solanum tuberosum ) mitochondria, about two-thirds of the tRNAs are encoded by the mitochondrial genome and one-third is imported from the cytosol. In the case of tRNAGly isoacceptors, a mitochondrial-encoded tRNAGly(GCC) was found in potato mitochondria, but this is likely to be insufficient to decode the four GGN glycine codons. In this work, we identified a cytosolic tRNAGly(UCC), which was found to be present in S.tuberosum mitochondria. The cytosolic tRNAGly(CCC) was also present in mitochondria, but to a lesser extent. By contrast, the cytosolic tRNAGly(GCC) could not be detected in mitochondria. This selective import of tRNAGly isoacceptors into S. tuberosum mitochondria raises further questions about the mechanism under-lying the specificity of the import process.
Collapse
Affiliation(s)
- S Brubacher-Kauffmann
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR 0406), Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
44
|
Menand B, Maréchal-Drouard L, Sakamoto W, Dietrich A, Wintz H. A single gene of chloroplast origin codes for mitochondrial and chloroplastic methionyl-tRNA synthetase in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1998; 95:11014-9. [PMID: 9724821 PMCID: PMC28012 DOI: 10.1073/pnas.95.18.11014] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One-fifth of the tRNAs used in plant mitochondrial translation is coded for by chloroplast-derived tRNA genes. To understand how aminoacyl-tRNA synthetases have adapted to the presence of these tRNAs in mitochondria, we have cloned an Arabidopsis thaliana cDNA coding for a methionyl-tRNA synthetase. This enzyme was chosen because chloroplast-like elongator tRNAMet genes have been described in several plant species, including A. thaliana. We demonstrate here that the isolated cDNA codes for both the chloroplastic and the mitochondrial methionyl-tRNA synthetase (MetRS). The protein is transported into isolated chloroplasts and mitochondria and is processed to its mature form in both organelles. Transient expression assays using the green fluorescent protein demonstrated that the N-terminal region of the MetRS is sufficient to address the protein to both chloroplasts and mitochondria. Moreover, characterization of MetRS activities from mitochondria and chloroplasts of pea showed that only one MetRS activity exists in each organelle and that both are indistinguishable by their behavior on ion exchange and hydrophobic chromatographies. The high degree of sequence similarity between A. thaliana and Synechocystis MetRS strongly suggests that the A. thaliana MetRS gene described here is of chloroplast origin.
Collapse
Affiliation(s)
- B Menand
- Institut de Biologie Moléculaire des Plantes/Centre National de la Recherche Scientifique, Université Louis Pasteur, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Chen HC, Viry-Moussaïd M, Dietrich A, Wintz H. Evolution of a mitochondrial tRNA PHE gene in A. thaliana: import of cytosolic tRNA PHE into mitochondria. Biochem Biophys Res Commun 1997; 237:432-7. [PMID: 9268729 DOI: 10.1006/bbrc.1997.7138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously we have described a putative tRNATyr in Arabidopsis thaliana mitochondria, the sequence of which is different from that of other plant mitochondrial tRNATyr genes. We show here that this tRNATyr gene sequence is present in several copies in the mitochondrial genome of A. thaliana. One copy of these tRNATyr gene sequences, termed here tRNATyr-1, could encode a functional tRNA. Expression analysis has shown that the tRNATyr-1 gene is cotranscribed with the downstream tRNAGlu gene, and that the corresponding mature-sized tRNA is present in mitochondria. We also show that the native tRNATyr gene, similar to the mitochondrial tRNATyr genes found in plants, is present in the A. thaliana mitochondrial genome and expressed. The tRNATyr-1 gene has been previously suggested to be derived from a tRNAPhe gene sequence. We show here that, as a consequence, there is no tRNAPhe gene in the mitochondrial genome of A. thaliana and that a cytosolic tRNAPhe is imported in A. thaliana mitochondria.
Collapse
Affiliation(s)
- H C Chen
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du général Zimmer, Strasbourg Cedex, F-67084, France
| | | | | | | |
Collapse
|
47
|
Kanno A, Nakazono M, Hirai A, Kameya T. A chloroplast derived trnH gene is expressed in the mitochondrial genome of gramineous plants. PLANT MOLECULAR BIOLOGY 1997; 34:353-356. [PMID: 9207852 DOI: 10.1023/a:1005828728036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We reported previously that the mitochondrial sequence that contains the chloroplast-derived trnH gene has been highly conserved in the region around one terminus of the junction between chloroplast-derived and mitochondrion-specific sequences in most of the gramineous plants analyzed [15]. The results of RT-PCR, northern hybridization, in vitro capping and ribonuclease protection experiments show that the chloroplast-derived trnH gene is transcribed from a putative promoter that is located in the mitochondrion-specific sequence. Gene expression in this region seems to be correlated with the conservation of the sequence at the junction between the chloroplast-derived fragment and the mitochondrion-specific sequence.
Collapse
Affiliation(s)
- A Kanno
- Institute of Genetic Ecology, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
48
|
Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 1997; 15:57-61. [PMID: 8988169 DOI: 10.1038/ng0197-57] [Citation(s) in RCA: 584] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have determined the complete sequence of the mitochondrial DNA in the model plant species Arabidopsis thaliana, affording access to the first of its three genomes. The 366,924 nucleotides code for 57 identified genes, which cover only 10% of the genome. Introns in these genes add about 8%, open reading frames larger than 100 amino acids represent 10% of the genome, duplications account for 7%, remnants of retrotransposons of nuclear origin contribute 4% and integrated plastid sequences amount to 1%-leaving 60% of the genome unaccounted for. With the significant contribution of duplications, imported foreign DNA and the extensive background of apparently functionless sequences, the mosaic structure of the Arabidopsis thaliana mitochondrial genome features many aspects of size-relaxed nuclear genomes.
Collapse
Affiliation(s)
- M Unseld
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | |
Collapse
|
49
|
Binder S, Marchfelder A, Brennicke A. Regulation of gene expression in plant mitochondria. PLANT MOLECULAR BIOLOGY 1996; 32:303-314. [PMID: 8980484 DOI: 10.1007/bf00039387] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many genes is plant mitochondria have been analyzed in the past 15 years and regulatory processes controlling gene expression can now be investigated. In vitro systems capable of initiating transcription faithfully at promoter sites have been developed for both monocot and dicot plants and will allow the identification of the interacting nucleic acid elements and proteins which specify and guide transcriptional activities. Mitochondrial activity, although required in all plant tissues, is capable of adapting to specific requirements by regulated gene expression. Investigation of the factors governing the quality and quantity of distinct RNAs will define the extent of interorganelle regulatory interference in mitochondrial gene expression.
Collapse
Affiliation(s)
- S Binder
- Allgemeine Botanik, Universität Ulm, Germany
| | | | | |
Collapse
|
50
|
Kumar R, Maréchal-Drouard L, Akama K, Small I. Striking differences in mitochondrial tRNA import between different plant species. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:404-11. [PMID: 8879241 DOI: 10.1007/bf02173005] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A systematic comparison of the tRNAs imported into the mitochondria of larch, maize and potato reveals considerable differences among the three species. Larch mitochondria import at least eleven different tRNAs (more than half of those tested) corresponding to ten different amino acids. For five of these tRNAs [tRNA(Phe(GAA)), tRNA(Lys(CUU)), tRNA(Pro(UGG)), tRNA(Ser(GCU)) and tRNA(Ser(UGA))] this is the first report of import into mitochondria in any plant species. There are also differences in import between relatively closely related plants; wheat mitochondria, unlike maize mitochondria import tRNA(His), and sunflower mitochondria, unlike mitochondria from other angiosperms tested, import tRNA(Ser(GCU)) and tRNA(Ser(UGA)). These results suggest that the ability to import each tRNA has been acquired independently at different times during the evolution of higher plants, and that there are few apparent restrictions on which tRNAs can or cannot be imported. The implications for the mechanisms of mitochondrial tRNA import in plants are discussed.
Collapse
MESH Headings
- Base Sequence
- Biological Transport
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- DNA Probes
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Evolution, Molecular
- Genes, Plant
- Mitochondria/metabolism
- Molecular Sequence Data
- Plants/genetics
- RNA/genetics
- RNA/isolation & purification
- RNA/metabolism
- RNA, Mitochondrial
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Trees/genetics
- Trees/metabolism
- Triticum/genetics
- Triticum/metabolism
- Zea mays/genetics
- Zea mays/metabolism
Collapse
Affiliation(s)
- R Kumar
- Station de Génétique et d'Amélioration des Plantes, INRA, Versailles, France
| | | | | | | |
Collapse
|