1
|
Velusamy T, Singh N, Croft S, Smith S, Tscharke DC. The expression and function of HSV ICP47 and its promoter in mice. J Virol 2023; 97:e0110723. [PMID: 37902400 PMCID: PMC10688380 DOI: 10.1128/jvi.01107-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE Immune evasion and latency are key mechanisms that underlie the success of herpesviruses. In each case, interactions between viral and host proteins are required and due to co-evolution, not all mechanisms are preserved across host species, even if infection is possible. This is highlighted by the herpes simplex virus (HSV) protein immediate early-infected cell protein (ICP)47, which inhibits the detection of infected cells by killer T cells and acts with high efficiency in humans, but poorly, if at all in mouse cells. Here, we show that ICP47 retains modest but detectable function in mouse cells, but in an in vivo model we found no role during acute infection or latency. We also explored the activity of the ICP47 promoter, finding that it could be active during latency, but this was dependent on genome location. These results are important to interpret HSV pathogenesis work done in mice.
Collapse
Affiliation(s)
- Thilaga Velusamy
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Navneet Singh
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Zhang X, Hao K, Li S, Meng L, Chen H, Wei F, Yu F, Xu J, Zhao Z. Channel catfish virus ORF25 and ORF63 genes are essential for viral replication in vitro. JOURNAL OF FISH DISEASES 2022; 45:655-666. [PMID: 35176182 DOI: 10.1111/jfd.13591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The channel catfish virus (CCV) is a lethal pathogen to aquatic animals that can provoke severe haemorrhagic disease in juvenile channel catfish. Although the CCV genome has been fully sequenced, the molecular mechanisms of CCV infection and pathogenesis are less well known. Genomic DNA replication is a necessary and key event for the CCV life cycle. In this study, the impacts of the putative helicase and primase encoded by viral ORF25 and ORF63 on CCV genome replication and infection were evaluated in channel catfish ovary (CCO) cells. The results showed that the number of CCV genome copies was decreased significantly in virus-infected CCO cells after knockdown of ORF25 and ORF63 using RNA interference. In contrast, the overexpression of ORF25 and ORF63 led to slight increase in the number of virus genome copies. Consistent with the above results, the present results also showed that the expressions of CCV true-late genes which strictly depend on viral DNA replication, were significantly increased or repressed by overexpression or RNA interference targeting viral ORF25 and ORF63 genes in virus-infected CCO cells. In addition, knockdown of ORF25 and ORF63 remarkably inhibited CCV-induced cytopathic effects and decreased progeny virus titres in CCO cells. Moreover, transmission electron microscopy observation of CCO cells infected with CCV accompanied by siRNA targeting the viral ORF25 and ORF63 genes showed that the number of virus particles was remarkably reduced. Taken together, these results indicated that ORF25 and ORF63 are essential for regulating CCV genome replication and CCV-induced infection. Our findings will provide an understanding of the replication mechanisms of CCV and contribute to the development of antiviral strategies for controlling CCV infection in channel catfish culture.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Kai Hao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Shuxin Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Lihui Meng
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Hongxun Chen
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Jing Xu
- Jiangsu Cangdong Agricultural Development Co., Ltd, Nanjing, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
3
|
Schildgen O, Gräper S, Blümel J, Külshammer M, Matz B. Temperature-sensitive origin-binding protein as a tool for investigations of herpes simplex virus activities in vivo. J Gen Virol 2018; 100:105-117. [PMID: 30520714 DOI: 10.1099/jgv.0.001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While it is fairly clear that herpes simplex virus (HSV) DNA replication requires at least seven virus-encoded proteins in concert with various host cell factors, the mode of this process in infected cells is still poorly understood. Using HSV-1 mutants bearing temperature-sensitive (ts) lesions in the UL9 gene, we previously found that the origin-binding protein (OBP), a product of the UL9 gene, is only needed in the first 6 hours post-infection. As this finding was just a simple support for the hypothesis of a biphasic replication mode, we became convinced through these earlier studies that the mutants tsR and tsS might represent suitable tools for more accurate investigations in vivo. However, prior to engaging in highly sophisticated research projects, knowledge of the biochemical features of the mutated versions of OBP appeared to be essential. The results of our present study demonstrate that (i) tsR is most appropriate for cell biological studies, where only immediate early and early HSV gene products are being expressed without the concomital viral DNA replication, and (ii) tsS is a prime candidate for the analysis of HSV DNA replication processes because of its reversibly thermosensitive OBP-ATPase, which allows one to switch on the initiation of DNA synthesis precisely.
Collapse
Affiliation(s)
- Oliver Schildgen
- †Present address: Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Strasse 200, D-51109 Köln, Germany.,Institute of Virology, University of Bonn, Bonn, Germany
| | - Sascha Gräper
- Institute of Virology, University of Bonn, Bonn, Germany.,‡Present address: Sanofi-Aventis, Industriepark Hoechst, Bldg. D681, D-65926 Frankfurt am Main, Germany
| | - Johannes Blümel
- Institute of Virology, University of Bonn, Bonn, Germany.,§Present address: Paul-Ehrlich-Institu, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| | | | - Bertfried Matz
- Institute of Virology, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Replication-Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and Expression of Viral Genomes. PLoS Pathog 2017; 13:e1006166. [PMID: 28095497 PMCID: PMC5271410 DOI: 10.1371/journal.ppat.1006166] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/27/2017] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4–6 hours post infection. In this study, we selectively purify HSV-1 replication forks and associated proteins from virus-infected cells and identify select viral and cellular replication, repair, and transcription factors that associate with viral replication forks. Pulse chase analyses and imaging studies reveal temporal and spatial dynamics between viral replication forks and associated proteins and demonstrate that several DNA repair complexes and key transcription factors are recruited to or near replication forks. Consistent with these observations we show that the initiation of viral DNA replication is sufficient to license late gene transcription. These data provide insight into mechanisms that couple HSV-1 DNA replication with transcription and repair for the coordinated expression and maintenance of the viral genome. HSV-1 is a ubiquitous human pathogen that causes persistent infections for the lifetime of the infected host. Of major interest are the mechanisms underlying how the virus utilizes cellular resources to rapidly replicate with high fidelity. We show that DNA repair and late transcription are coupled to genome replication by identifying the viral and cellular factors that associate with replicating viral DNA. In addition to transcription and repair, the results also describe how RNA processing and virion packaging are temporally coordinated relative to genome replication.
Collapse
|
5
|
Kukuk D, Schildgen O. Isolation of nascent DNA fragments from cells synchronously infected with HSV-1 reveals bidirectional initiation of replication at oriL. Future Virol 2015. [DOI: 10.2217/fvl.14.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Background: How HSV-1 DNA replication is initiated in infected cells is not fully understood. Experiments with temperature-sensitive HSV mutants have shown that DNA replication is a biphasic process that initially depends on the origin binding protein. Aims: The aim of the study was to answer the question at which origin of replication the HSV-1 DNA replication starts in the infected cell. Methods: Using the tsS mutant the HSV-1 infection was synchronized and newly synthesized nascent DNA fragments were analysed. Results: Nascent viral DNA was observed predominantly around the oriL, giving raise to the hypothesis that the replication starts at this origin in vivo. Conclusion: We show for the first time that HSV-1 DNA replication begins exclusively at the oriL site and proceeds in a bidirectional manner.
Collapse
Affiliation(s)
- Damaris Kukuk
- Oncotest GmbH, Am Flughafen 12–14, 79108 Freiburg, Germany
| | - Oliver Schildgen
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Köln (Cologne), Germany
| |
Collapse
|
6
|
Olsson M, Tang KW, Persson C, Wilhelmsson LM, Billeter M, Elias P. Stepwise evolution of the herpes simplex virus origin binding protein and origin of replication. J Biol Chem 2009; 284:16246-16255. [PMID: 19351883 DOI: 10.1074/jbc.m807551200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The herpes simplex virus replicon consists of cis-acting sequences, oriS and oriL, and the origin binding protein (OBP) encoded by the UL9 gene. Here we identify essential structural features in the initiator protein OBP and the replicator sequence oriS, and we relate the appearance of these motifs to the evolutionary history of the alphaherpesvirus replicon. Our results reveal two conserved sequence elements in herpes simplex virus type 1, OBP; the RVKNL motif, common to and specific for all alphaherpesviruses, is required for DNA binding, and the WP XXXGAXXFXX L motif, found in a subset of alphaherpesviruses, is required for specific binding to the single strand DNA-binding protein ICP8. A 121-amino acid minimal DNA binding domain containing conserved residues is not soluble and does not bind DNA. Additional sequences present 220 amino acids upstream from the RVKNL motif are needed for solubility and function. We also examine the binding sites for OBP in origins of DNA replication and how they are arranged. NMR and DNA melting experiments demonstrate that origin sequences derived from many, but not all, alphaherpesviruses can adopt stable boxI/boxIII hairpin conformations. Our results reveal a stepwise evolutionary history of the herpes simplex virus replicon and suggest that replicon divergence contributed to the formation of major branches of the herpesvirus family.
Collapse
Affiliation(s)
- Monica Olsson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, S-405 30 Gothenburg
| | - Ka-Wei Tang
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, S-405 30 Gothenburg
| | - Cecilia Persson
- The Swedish NMR Centre at University of Gothenburg, Box 465, S-405 30 Gothenburg
| | - L Marcus Wilhelmsson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg
| | - Martin Billeter
- Biophysics Group, Department of Chemistry, University of Gothenburg, Box 462, S-405 30 Gothenburg, Sweden
| | - Per Elias
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, S-405 30 Gothenburg.
| |
Collapse
|
7
|
Manolaridis I, Mumtsidu E, Konarev P, Makhov AM, Fullerton SW, Sinz A, Kalkhof S, McGeehan JE, Cary PD, Griffith JD, Svergun D, Kneale GG, Tucker PA. Structural and biophysical characterization of the proteins interacting with the herpes simplex virus 1 origin of replication. J Biol Chem 2009; 284:16343-16353. [PMID: 19329432 DOI: 10.1074/jbc.m806134200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C terminus of the herpes simplex virus type 1 origin-binding protein, UL9ct, interacts directly with the viral single-stranded DNA-binding protein ICP8. We show that a 60-amino acid C-terminal deletion mutant of ICP8 (ICP8DeltaC) also binds very strongly to UL9ct. Using small angle x-ray scattering, the low resolution solution structures of UL9ct alone, in complex with ICP8DeltaC, and in complex with a 15-mer double-stranded DNA containing Box I of the origin of replication are described. Size exclusion chromatography, analytical ultracentrifugation, and electrophoretic mobility shift assays, backed up by isothermal titration calorimetry measurements, are used to show that the stoichiometry of the UL9ct-dsDNA15-mer complex is 2:1 at micromolar protein concentrations. The reaction occurs in two steps with initial binding of UL9ct to DNA (Kd approximately 6 nM) followed by a second binding event (Kd approximately 0.8 nM). It is also shown that the stoichiometry of the ternary UL9ct-ICP8DeltaC-dsDNA15-mer complex is 2:1:1, at the concentrations used in the different assays. Electron microscopy indicates that the complex assembled on the extended origin, oriS, rather than Box I alone, is much larger. The results are consistent with a simple model whereby a conformational switch of the UL9 DNA-binding domain upon binding to Box I allows the recruitment of a UL9-ICP8 complex by interaction between the UL9 DNA-binding domains.
Collapse
Affiliation(s)
- Ioannis Manolaridis
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Eleni Mumtsidu
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Peter Konarev
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Alexander M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Stephen W Fullerton
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Stefan Kalkhof
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - John E McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Peter D Cary
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Dmitri Svergun
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany; Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 117333 Moscow, Russia
| | - Geoff G Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Paul A Tucker
- From European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany.
| |
Collapse
|
8
|
Colletti KS, Smallenburg KE, Xu Y, Pari GS. Human cytomegalovirus UL84 interacts with an RNA stem-loop sequence found within the RNA/DNA hybrid region of oriLyt. J Virol 2007; 81:7077-85. [PMID: 17459920 PMCID: PMC1933308 DOI: 10.1128/jvi.00058-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.
Collapse
Affiliation(s)
- Kelly S Colletti
- University of Nevada--Reno, Department of Microbiology, School of Medicine, Howard Bldg., Reno, NV 89557, USA
| | | | | | | |
Collapse
|
9
|
Balliet JW, Min JC, Cabatingan MS, Schaffer PA. Site-directed mutagenesis of large DNA palindromes: construction and in vitro characterization of herpes simplex virus type 1 mutants containing point mutations that eliminate the oriL or oriS initiation function. J Virol 2005; 79:12783-97. [PMID: 16188981 PMCID: PMC1235857 DOI: 10.1128/jvi.79.20.12783-12797.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Technical challenges associated with mutagenesis of the large oriL palindrome have hindered comparisons of the functional roles of the herpes simplex virus type 1 (HSV-1) origins of DNA replication, oriL and oriS, in viral replication and pathogenesis. To address this problem, we have developed a novel PCR-based strategy to introduce site-specific mutations into oriL and other large palindromes. Using this strategy, we generated three plasmids containing mutant forms of oriL, i.e., pDoriL-I(L), pDoriL-I(R), and pDoriL-I(LR), containing point mutations in the left, right, and both copies, respectively, of the origin binding protein (OBP) binding site (site I) which eliminate OBP binding. In in vitro DNA replication assays, plasmids with mutations in only one arm of the palindrome supported origin-dependent DNA replication, whereas plasmids with symmetrical mutations in both arms of the palindrome were replication incompetent. An analysis of the cloned mutant plasmids used in replication assays revealed that a fraction of each plasmid mutated in only one arm of the palindrome had lost the site I mutation. In contrast, plasmids containing symmetrical mutations in both copies of site I retained both mutations. These observations demonstrate that the single site I mutations in pDoriL-I(L) and pDoriL-I(R) are unstable upon propagation in bacteria and suggest that functional forms of both the left and right copies of site I are required to initiate DNA replication at oriL. To examine the role of oriL and oriS site I in virus replication, we introduced the two site I mutations in pDoriL-I(LR) into HSV-1 DNA to yield the mutant virus DoriL-I(LR) and the same point mutations into the single site I sequence present in both copies of oriS to yield the mutant virus DoriS-I. In Vero cells and primary rat embryonic cortical neurons (PRN) infected with either mutant virus, viral DNA synthesis and viral replication were efficient, confirming that the two origins can substitute functionally for one another in vitro. Measurement of the levels of oriL and oriS flanking gene transcripts revealed a modest alteration in the kinetics of ICP8 transcript accumulation in DoriL-I(LR)-infected PRN, but not in Vero cells, implicating a cell-type-specific role for oriL in regulating ICP8 transcription.
Collapse
Affiliation(s)
- John W Balliet
- Department of Medicine, Harvard Medical School at the Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
10
|
Boehmer PE, Villani G. Herpes simplex virus type-1: a model for genome transactions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:139-71. [PMID: 14604012 DOI: 10.1016/s0079-6603(03)75005-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In many respects, HSV-1 is the prototypic herpes virus. However, HSV-1 also serves as an excellent model system to study genome transactions, including DNA replication, homologous recombination, and the interaction of DNA replication enzymes with DNA damage. Like eukaryotic chromosomes, the HSV-1 genome contains multiple origins of replication. Replication of the HSV-1 genome is mediated by the concerted action of several virus-encoded proteins that are thought to assemble into a multiprotein complex. Several host-encoded factors have also been implicated in viral DNA replication. Furthermore, replication of the HSV-1 genome is known to be closely associated with homologous recombination that, like in many cellular organisms, may function in recombinational repair. Finally, recent data have shed some light on the interaction of essential HSV-1 replication proteins, specifically its DNA polymerase and DNA helicases, with damaged DNA.
Collapse
Affiliation(s)
- Paul E Boehmer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
11
|
Tanguy Le Gac N, Boehmer PE. Activation of the herpes simplex virus type-1 origin-binding protein (UL9) by heat shock proteins. J Biol Chem 2002; 277:5660-6. [PMID: 11711536 DOI: 10.1074/jbc.m108316200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins participate in the initiation of DNA replication of different organisms by facilitating the assembly of initiation complexes. We have examined the effects of human heat shock proteins (Hsp40 and Hsp70) on the interaction of the herpes simplex virus type-1 initiator protein (UL9) with oriS, one of the viral origins of replication. Hsp40 and Hsp70 act substoichiometrically to increase the affinity of UL9 for oriS. The major contributor to this effect is Hsp40. Heat shock proteins also stimulate the ATPase activity of UL9 with oriS and increase opening of the origin. In contrast, heat shock proteins have no effect on the origin-independent activities of UL9 suggesting that their role is not merely in refolding denatured protein. These observations are consistent with a role for heat shock proteins in activating UL9 to efficiently initiate viral origin-dependent DNA replication. The action of heat shock proteins in this capacity is analogous to their role in activating the initiator proteins of other organisms.
Collapse
Affiliation(s)
- Nicolas Tanguy Le Gac
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | |
Collapse
|
12
|
Yao F, Eriksson E. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antiviral Res 2002; 53:127-33. [PMID: 11750938 DOI: 10.1016/s0166-3542(01)00207-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UL9-C535C, the trans-dominant negative mutant polypeptide of herpes simplex virus type 1 (HSV-1) UL9 origin binding protein, is a potent inhibitor of HSV-1 viral DNA replication. This study focused on testing whether HSV-1 UL9-C535C and a genetically engineered UL9-C535C-encoding HSV-1 recombinant virus CJ83193 could inhibit herpes simplex virus type 2 (HSV-2) infection. First, a stable cell line, R-C535C, expressing a high level of UL9-C535C in the presence of tetracycline and little or no UL9-C535C in the absence of tetracycline was established. The single step growth experiment showed that like HSV-1, the de novo synthesis of HSV-2 could be suppressed approximately 1000-fold by UL9-C535C expressed in R-C535C cells in the presence of tetracycline. Secondly, compared with cells singly infected with HSV-2, co-infection of Vero cells with HSV-2 and CJ83193 reduced the replication efficiency of HSV-2 in co-infected cells by 30-40 fold in a single-step growth assay, which coincided with marked reduction in viral late gene expression, but not the expression of viral immediate-early genes. Taken together, in view of our recent demonstration that CJ83193 can serve as an effective vaccine in preventing HSV-1 infection in mice, one can generate a CJ83193-like HSV-2 recombinant virus that could potentially function as a new therapeutic class of recombinant viral vaccine against HSV-2 infection.
Collapse
Affiliation(s)
- Feng Yao
- Laboratory of Wound Repair and Gene Transfer, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
13
|
Bronstein JC, Weber PC. Purification of a bacterially expressed herpes simplex virus type 1 origin binding protein for use in posttranslational processing studies. Protein Expr Purif 2001; 22:276-85. [PMID: 11437604 DOI: 10.1006/prep.2001.1446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin binding protein (OBP) encoded by the UL9 open reading frame of herpes simplex virus type 1 (HSV-1) plays an essential role in productive infection by promoting the initiation of viral DNA synthesis. In this study, OBP was inducibly expressed in Escherichia coli and purified to homogeneity using a two-step chromatographic separation procedure. The properties of this recombinant OBP (rOBP) were found to be indistinguishable from those of the virus-encoded protein. Since rOBP was synthesized in bacterial cells, it lacked the posttranslational processing which normally occurs in OBP produced in HSV-1-infected mammalian cells and could therefore be exploited in experiments which addressed the effects of protein modification on OBP function. As an initial study, the impact of phosphorylation on enzymatic activity was examined using rOBP which had been treated with a panel of purified cellular kinases. rOBP was found to act as a substrate for nearly all of the kinases tested in (32)P-labeled phosphate transfer assays. However, only phosphorylation by protein kinase A (PKA, or cAMP-dependent protein kinase) was shown to significantly alter the enzymatic properties of rOBP, as it increased by five- to eightfold the ATPase activity associated with this protein. Activation of this critical viral DNA replication enzyme by a cAMP-dependent kinase such as PKA may be of some relevance in the natural course of HSV-1 infections, since reactivation of latent virus is thought to involve both signal transduction events and the induction of viral DNA synthesis. Thus, the expression and purification strategy outlined in this work provides an economical source of unmodified HSV-1 OBP that should prove useful in future in vitro studies.
Collapse
Affiliation(s)
- J C Bronstein
- Infectious Diseases Section, Pfizer Global Research and Development, Ann Arbor, Michigan, 48105, USA
| | | |
Collapse
|
14
|
Aslani A, Macao B, Simonsson S, Elias P. Complementary intrastrand base pairing during initiation of Herpes simplex virus type 1 DNA replication. Proc Natl Acad Sci U S A 2001; 98:7194-9. [PMID: 11416203 PMCID: PMC34645 DOI: 10.1073/pnas.121177198] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The herpes simplex virus type 1 origin of DNA replication, oriS, contains three copies of the recognition sequence for the viral initiator protein, origin binding protein (OBP), arranged in two palindromes. The central box I forms a short palindrome with box III and a long palindrome with box II. Single-stranded oriS adopts a conformation, oriS*, that is tightly bound by OBP. Here we demonstrate that OBP binds to a box III-box I hairpin with a 3' single-stranded tail in oriS*. Mutations designed to destabilize the hairpin abolish the binding of OBP to oriS*. The same mutations also inhibit DNA replication. Second site complementary mutations restore binding of OBP to oriS* as well as the ability of mutated oriS to support DNA replication. OriS* is also an efficient activator of the hydrolysis of ATP by OBP. Sequence analyses show that a box III-box I palindrome is an evolutionarily conserved feature of origins of DNA replication from human, equine, bovine, and gallid alpha herpes viruses. We propose that oriS facilitates initiation of DNA synthesis in two steps and that OBP exhibits exquisite specificity for the different conformations oriS adopts at these stages. Our model suggests that distance-dependent cooperative binding of OBP to boxes I and II in duplex DNA is succeeded by specific recognition of a box III-box I hairpin in partially unwound DNA.
Collapse
Affiliation(s)
- A Aslani
- Department of Medical Biochemistry, Göteborg University, Box 440, SE-405 30, Göteborg, Sweden
| | | | | | | |
Collapse
|
15
|
Marintcheva B, Weller SK. Residues within the conserved helicase motifs of UL9, the origin-binding protein of herpes simplex virus-1, are essential for helicase activity but not for dimerization or origin binding activity. J Biol Chem 2001; 276:6605-15. [PMID: 11062243 DOI: 10.1074/jbc.m007743200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UL9, an essential gene for herpes simplex virus type 1 (HSV-1) DNA replication, exhibits helicase and origin DNA binding activities. It has been hypothesized that UL9 binds and unwinds the HSV-1 origin of replication, creating a replication bubble and promoting the assembly of the viral replication machinery; however, direct confirmation of this hypothesis has not been possible. Based on the presence of conserved helicase motifs, UL9 has been classified as a superfamily II helicase. Mutations in conserved residues of the helicase motifs I-VI of UL9 have been isolated, and most of them fail to complement a UL9 null virus in vivo (Martinez R., Shao L., and Weller S. (1992) J. Virol. 66, 6735-6746). In addition, mutants in motifs I, II, and VI were found to be transdominant (Malik, A. K., and Weller, S. K. (1996) J. Virol. 70, 7859-7866). Here we present the characterization of the biochemical properties of the UL9 helicase motif mutants. We report that mutations in motifs I-IV and VI affect the ATPase activity, and all but the motif III mutation completely abolish the helicase activity. In addition, mutations in these motifs do not interfere with UL9 dimerization or the ability of UL9 to bind the HSV-1 origin of replication. Based on the similarity of the helicase motif sequences between UL9 and UvrB, another superfamily II member with helicase-like activity, we were able to map the UL9 mutations on the structure of the UvrB protein and provide an explanation for the observed phenotypes. Our results indicate that the helicase function of UL9 is indispensable for viral replication, supporting the hypothesis that UL9 is essential for unwinding the HSV-1 origin of replication in vivo. Furthermore, the data presented provide insights into the mechanism of transdominance of the UL9 helicase motif mutants.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
16
|
Baker RO, Murata LB, Dodson MS, Hall JD. Purification and characterization of OF-1, a host factor implicated in herpes simplex replication. J Biol Chem 2000; 275:30050-7. [PMID: 10878004 DOI: 10.1074/jbc.m002154200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human cellular factor (OF-1) has been previously implicated in replication of herpes simplex virus, type 1. This protein binds to three conserved regions (Boxes I, II, and III) in the viral replication origin and appears to be required for viral DNA synthesis (Dabrowski, C. C., Carmillo, P. J., and Schaffer, P. A. (1994) Mol. Cell. Biol. 14, 2545-2555). In the present study, we have partially purified and characterized OF-1 from human cells. This protein appears to consist of a tetramer composed of two heterodimers with subunits of 73 and 90 kDa. The smaller subunit contains the DNA binding activity. We have investigated the binding specificity of OF-1 using a mobility shift analysis. These studies reveal that binding is specific for both duplex and single-stranded Box I sequences and that the strongest preference is for the bottom strand of Box I. We present evidence suggesting that the binding of OF-1 to Box I DNA is enhanced in the presence of the herpes simplex-encoded UL9 protein, which also binds to Box I in oriS and is required for viral replication. Implications of these findings for the initiation step in viral replication are discussed.
Collapse
Affiliation(s)
- R O Baker
- Departments of Molecular and Cellular Biology and of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
17
|
Sampson DA, Arana ME, Boehmer PE. Cysteine 111 affects coupling of single-stranded DNA binding to ATP hydrolysis in the herpes simplex virus type-1 origin-binding protein. J Biol Chem 2000; 275:2931-7. [PMID: 10644762 DOI: 10.1074/jbc.275.4.2931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.
Collapse
Affiliation(s)
- D A Sampson
- Department of Biochemistry, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | |
Collapse
|
18
|
Murata LB, Dodson MS. The herpes simplex virus type 1 origin-binding protein. sequence-specific activation of adenosine triphosphatase activity by a double-stranded DNA containing box I. J Biol Chem 1999; 274:37079-86. [PMID: 10601266 DOI: 10.1074/jbc.274.52.37079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin-dependent replication of the herpes simplex virus type 1 genome requires the virally encoded origin-binding protein, UL9. UL9 binds specifically to the herpes simplex virus type 1 replication origin at two high affinity binding sites on the DNA, Boxes I and II. UL9 also has ATP-dependent DNA helicase and DNA-stimulated ATPase activities that are used to unwind the origin DNA. Origin-specific binding is mediated by the C-terminal domain (C-domain) of the enzyme. ATPase and helicase activities are mediated by the N-terminal domain (N-domain). Previous studies have shown that single-stranded DNA is a good coeffector for ATPase activity. We have analyzed several DNAs for their ability to stimulate the ATPase activity of UL9 and of a truncated UL9 protein (UL9/N) consisting only of the N-domain. We report here that duplex Box I DNA specifically and potently stimulates the ATPase activity of UL9 but not of UL9/N. We also find that removal of the C-domain significantly increases the ATPase activity of UL9. We have incorporated these results into a model for initiation in which the C-domain of UL9 serves to regulate the enzymatic activity of the N-domain.
Collapse
Affiliation(s)
- L B Murata
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721-0088, USA
| | | |
Collapse
|
19
|
Abstract
With the cloning of DNA encoding the trans-dominant negative mutant form of the HSV-1 origin-binding protein UL9, UL9-C535C, under the control of the tet operator-bearing hCMV major immediate-early promoter (pcmvtetO), this article demonstrates that the tetR-mediated mammalian transcription repression switch (Yao et al., Hum. Gene Ther. 9:1939-1950, 1998) can be converted to a novel HSV-1-specific viral replication switch. Using this viral replication switch, the plaque-forming efficiency of infectious HSV-1 DNA can be reversibly regulated by tetR over 100-fold in transient viral infection assays. Moreover, while less than 0 PFU/ml of HSV-1 was detected from tetR-expressing cells transfected with infectious HSV-1 DNA and plasmid pcmvtetOUL9-C535C in the presence of tetracycline, close to 1000 PFU/ml of HSV-1 was produced when similar experiments were carried out in the absence of tetracycline. The tetracycline treatment led no reduction in HSV-1 synthesis in cells transfected with infectious HSV-1 DNA alone. Taken together, given that the UL9-C535C-associated antiviral activity can be silenced in the context of this HSV-1 replication switch, the establishment of this reversible switch would allow construction of a new generation of HSV-1 recombinants able to inhibit its own replication as well as replication of wild-type virus.
Collapse
Affiliation(s)
- F Yao
- Brigham and Women's Hospital, and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
20
|
Simonsson S, Samuelsson T, Elias P. The herpes simplex virus type 1 origin binding protein. Specific recognition of phosphates and methyl groups defines the interacting surface for a monomeric DNA binding domain in the major groove of DNA. J Biol Chem 1998; 273:24633-9. [PMID: 9733759 DOI: 10.1074/jbc.273.38.24633] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UL9 gene of herpes simplex virus type 1 (HSV-1) encodes an origin binding protein (OBP). It is an ATP-dependent DNA helicase and a sequence-specific DNA-binding protein. The latter function is carried out by the C-terminal domain of OBP (DeltaOBP). We have now performed a quantitative analysis of the interaction between DeltaOBP and its recognition sequence, GTTCGCAC, in oriS. Initially optimal conditions for binding were carefully determined. We observed that complexes with different electrophoretic mobilities were formed. A cross-linking experiment demonstrated that nonspecific complexes containing 2 or more protein monomers per DNA molecule were formed at high protein concentrations. The specific complex formed at low concentrations of DeltaOBP had an electrophoretic mobility corresponding to a 1:1 complex. We then demonstrated that the methyl groups of thymine in the major groove were essential for high affinity binding. Changes in the minor groove had considerably smaller effects. Ethylation interference experiments indicated that specific contacts were made between OBP and three phosphates in the recognition sequence. Finally, these observations were used to present a model of the surface of DNA that interacts with DeltaOBP in a sequence-specific manner.
Collapse
Affiliation(s)
- S Simonsson
- Department of Medical Biochemistry, Göteborg University, Box 440, S. E. 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
21
|
Nguyen-Huynh AT, Schaffer PA. Cellular transcription factors enhance herpes simplex virus type 1 oriS-dependent DNA replication. J Virol 1998; 72:3635-45. [PMID: 9557644 PMCID: PMC109584 DOI: 10.1128/jvi.72.5.3635-3645.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains three binding sites for the viral origin binding protein (OBP) flanked by transcriptional regulatory elements of the immediate-early genes encoding ICP4 and ICP22/47. To assess the role of flanking sequences in oriS function, plasmids containing oriS and either wild-type or mutant flanking sequences were tested in transient DNA replication assays. Although the ICP4 and ICP22/47 regulatory regions were shown to enhance oriS function, most individual elements in these regions, including the VP16-responsive TAATGARAT elements, were found to be dispensable for oriS function. In contrast, two oriS core-adjacent regulatory (Oscar) elements, OscarL and OscarR, at the base of the oriS palindrome were shown to enhance oriS function significantly and additively. Specifically, mutational disruption of either element reduced oriS-dependent DNA replication by 60 to 70%, and disruption of both elements reduced replication by 90%. The properties of protein-DNA complexes formed in gel mobility shift assays using uninfected and HSV-1-infected Vero cell nuclear extracts demonstrated that both OscarL and OscarR are binding sites for cellular proteins. Whereas OscarR does not correspond to the consensus binding site of any known transcription factor, OscarL contains a consensus binding site for the transcription factor Sp1. Gel mobility shift and supershift experiments using antibodies directed against members of the Sp1 family of transcription factors demonstrated the presence of Sp1 and Sp3, but not Sp2 or Sp4, in the protein-DNA complexes formed at OscarL. The abilities of OscarL and OscarR to bind their respective cellular proteins correlated directly with the efficiency of oriS-dependent DNA replication. Cooperative interactions between the Oscar-binding factors and proteins binding to adjacent OBP binding sites were not observed. Notably, Oscar element mutations that impaired oriS-dependent DNA replication had no detectable effect on either basal or induced levels of transcription from the ICP4 and ICP22/47 promoters, as determined by RNase protection assays. The Oscar elements thus appear to provide binding sites for cellular proteins that facilitate oriS-dependent DNA replication but have no effect on transcription of oriS-flanking genes.
Collapse
Affiliation(s)
- A T Nguyen-Huynh
- Dana-Farber Cancer Institute and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
22
|
Monahan SJ, Grinstead LA, Olivieri W, Parris DS. Interaction between the herpes simplex virus type 1 origin-binding and DNA polymerase accessory proteins. Virology 1998; 241:122-30. [PMID: 9454723 DOI: 10.1006/viro.1997.8953] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between the herpes simplex virus type 1 (HSV-1) origin (ori)-binding protein (UL9) and two other components of the functional DNA replication complex have been observed. However, to date, no interaction between UL9 and a component of the DNA polymerase holoenzyme has been demonstrated. In this report, we demonstrate that UL9 and the DNA polymerase accessory protein (UL42) can form a stable complex in vitro as determined by coimmunoprecipitation with specific antibodies to each protein and by affinity chromatography using glutathione S-transferase (GST) fusion proteins. Complex formation does not require the presence of other viral proteins and occurs in the presence of ethidium bromide, indicating that UL9-UL42 interaction is DNA independent. Affinity beads charged with increasing concentrations of GST-42 fusion protein up to 5 microM bound increasing amounts of UL9 expressed by in vitro transcription/translation in rabbit reticulocyte lysates. Binding of N- and C-terminal portions of UL9 to GST affinity matrices revealed that the N-terminal 533 amino acids were sufficient for binding to GST-42, albeit at approximately a four- to six-fold reduced affinity compared to the full-length protein. No binding of a polypeptide containing the remainder of the UL9 C-terminal residues was observed. Thus the ori-binding protein, UL9, can physically associate with at least one member of each of the complexes (helicase/primase, DNA polymerase holoenzyme, single-stranded DNA-binding protein) required for origin-dependent DNA replication. These specific interactions provide a means by which the ordered assembly of HSV-1 DNA replication proteins at origins of replication can occur in the infected cell for initiation of viral DNA synthesis.
Collapse
Affiliation(s)
- S J Monahan
- Department of Medical Microbiology and Immunology, Ohio State University, 333 West Tenth Avenue, Columbus, Ohio, 43210, USA
| | | | | | | |
Collapse
|
23
|
Stow ND, Brown G, Cross AM, Abbotts AP. Identification of residues within the herpes simplex virus type 1 origin-binding protein that contribute to sequence-specific DNA binding. Virology 1998; 240:183-92. [PMID: 9454691 DOI: 10.1006/viro.1997.8910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene UL9 of herpes simplex virus type 1 encodes an 851-amino-acid protein which is essential for viral DNA synthesis and functions as a sequence-specific origin-binding protein and DNA helicase. We generated monoclonal antibodies against purified UL9 protein and identified one such antibody (MAb 13924) that can block the interaction of the UL9 C-terminal DNA-binding domain (amino acids 534-851) with its recognition sequence. MAb 13924 interacted with immobilized peptides containing residues 780-786 of UL9. Although the corresponding region of the homologous protein encoded by varicell-azoster virus differs at only a single position it was not recognized by MAb 13924. Site-directed mutagenesis experiments confirmed that residues within this region contribute to the epitope recognized by MAb 13924 and may be involved in sequence-specific DNA binding. In addition, all eight lysine residues within the DNA-binding domain were separately changed to alanine and the DNA-binding properties of the mutated proteins were examined. The results showed that lysine residues that are located close to the peptide recognized by MAb 13924 or lie within the region of the DNA-binding domain most highly conserved among homologous alphaherpesvirus proteins play a role in sequence-specific DNA binding. Moreover, alteration of a lysine residue 18 amino acids from the recognized peptide prevented the interaction of MAb 13924 with the UL9 C-terminal DNA-binding domain. Three helical segments are predicted to occur within the region containing mutations that affect sequence-specific binding and interaction with MAb 13924.
Collapse
Affiliation(s)
- N D Stow
- MRC Virology Unit, Institute of Virology, Glasgow, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Hardwicke MA, Schaffer PA. Differential effects of nerve growth factor and dexamethasone on herpes simplex virus type 1 oriL- and oriS-dependent DNA replication in PC12 cells. J Virol 1997; 71:3580-7. [PMID: 9094630 PMCID: PMC191505 DOI: 10.1128/jvi.71.5.3580-3587.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) genome contains three origins of DNA replication, one copy of oriL and two copies of oriS. Although oriL and oriS are structurally different, they have extensive nucleotide sequence similarity and can substitute for each other to initiate viral DNA replication. A fundamental question that remains to be answered is why the HSV-1 genome contains two types of origin. We have recently identified a novel glucocorticoid response element (GRE) within oriL that is not present in oriS and have shown by gel mobility shift assays that purified glucocorticoid receptor (GR), as well as GR present in cellular extracts, can bind to the GRE in oriL. To determine whether glucocorticoids and the GRE affect the efficiency of oriL-dependent DNA replication, we performed transient DNA replication assays in the presence and absence of dexamethasone (DEX). Because HSV-1 is a neurotropic virus and establishes latency in cells of neural origin, these tests were conducted in PC12 cells, which assume the properties of sympathetic neurons when differentiated with nerve growth factor (NGF). In NGF-differentiated PC12 cells, oriL-dependent DNA replication was enhanced 5-fold by DEX, whereas in undifferentiated cells, DEX enhanced replication approximately 2-fold. Notably, the enhancement of oriL function by DEX was abolished when the GRE was mutated. NGF-induced differentiation alone had no effect. In contrast to oriL, oriS-dependent DNA replication was reduced approximately 5-fold in NGF-differentiated PC12 cells and an additional 4-fold in differentiated cells treated with DEX. In undifferentiated PC12 cells, DEX had only a minor inhibitory effect (approximately 2-fold) on oriS function. Although the cis-acting elements that mediate the NGF- and DEX-specific repression of oriS-dependent DNA replication are unknown, a functional GRE is critical for the DEX-induced enhancement of oriL function in NGF-differentiated PC12 cells. The enhancement of oriL-dependent DNA replication by DEX in differentiated PC12 cells suggests the possibility that glucocorticoids, agents long recognized to enhance reactivation of latent herpesvirus infections, act through the GRE in oriL to stimulate viral DNA replication and reactivation in terminally differentiated neurons in vivo.
Collapse
Affiliation(s)
- M A Hardwicke
- Dana-Farber Cancer Institute, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Abstract
The Herpesviridae comprise a large class of animal viruses of considerable public health importance. Of the Herpesviridae, replication of herpes simplex virustype-1 (HSV-1) has been the most extensively studied. The linear 152-kbp HSV-1 genome contains three origins of DNA replication and approximately 75 open-reading frames. Of these frames, seven encode proteins that are required for originspecific DNA replication. These proteins include a processive heterodimeric DNA polymerase, a single-strand DNA-binding protein, a heterotrimeric primosome with 5'-3' DNA helicase and primase activities, and an origin-binding protein with 3'-5' DNA helicase activity. HSV-1 also encodes a set of enzymes involved in nucleotide metabolism that are not required for viral replication in cultured cells. These enzymes include a deoxyuridine triphosphatase, a ribonucleotide reductase, a thymidine kinase, an alkaline endo-exonuclease, and a uracil-DNA glycosylase. Host enzymes, notably DNA polymerase alpha-primase, DNA ligase I, and topoisomerase II, are probably also required. Following circularization of the linear viral genome, DNA replication very likely proceeds in two phases: an initial phase of theta replication, initiated at one or more of the origins, followed by a rolling-circle mode of replication. The latter generates concatemers that are cleaved and packaged into infectious viral particles. The rolling-circle phase of HSV-1 DNA replication has been reconstituted in vitro by a complex containing several of the HSV-1 encoded DNA replication enzymes. Reconstitution of the theta phase has thus far eluded workers in the field and remains a challenge for the future.
Collapse
Affiliation(s)
- P E Boehmer
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
26
|
Qian Z, Brunovskis P, Lee L, Vogt PK, Kung HJ. Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein. J Virol 1996; 70:7161-70. [PMID: 8794363 PMCID: PMC190769 DOI: 10.1128/jvi.70.10.7161-7170.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Marek's disease virus is a highly oncogenic herpesvirus that can cause T lymphomas and peripheral nerve demyelination in chickens. meq, a candidate oncogene of Marek's disease virus, encodes a basic leucine zipper (bZIP) transcription factor which contains a large proline-rich domain in its C terminus. On the basis of its bZIP structural homology, meq is perhaps the only member of the jun-fos gene family completely viral in origin. We previously showed that Meq's C-terminal domain has potent transactivation activity and that its bZIP domain can dimerize with itself and with c-Jun also. In an effort to identify viral and cellular targets of Meq, we have determined the optimal binding sites for Meq-Jun heterodimers and Meq-Meq homodimers. By a PCR-based approach using cyclic amplification of selected targets, Meq-Jun heterodimers were found to optimally bind tetradecanoylphorbol acetate response element (TRE) and cyclic AMP response element (CRE) consensus sequences. This result was consistent with the results of our previous functional analysis implicating Meq-Jun heterodimers in the transactivation of the Meq promoter through a TRE- or CRE-like sequence. Interestingly, Meq-Meq homodimers were found to bind two distinct motif elements. The first [GAGTGATG AC(G)TCATC] has a consensus which includes a TRE or CRE core flanked by additional nucleotides critical for tight binding. Methylation interference and mutational analyses confirmed the importance of the flanking residues. The sequences of a subset of TRE and CRE sites selected by Meq-Meq are closely related to the binding motif of Maf, another bZIP oncoprotein. The second putative Meq binding site (RACACACAY) bears a completely different consensus not shared by other bZIP proteins. Binding to this consensus sequence also requires secondary structure characteristics associated with DNA bending. CACA motifs are known to promote DNA curvature and function in a number of special biological processes. Our results lend further weight to the increasing importance of DNA bending in transcriptional regulation and provide a baseline for the identification of Meq-responsive targets.
Collapse
Affiliation(s)
- Z Qian
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
27
|
Huang L, Zhu Y, Anders DG. The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element. J Virol 1996; 70:5272-81. [PMID: 8764037 PMCID: PMC190484 DOI: 10.1128/jvi.70.8.5272-5281.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genetically defined human cytomegalovirus (HCMV) lytic-phase replicator, oriLyt, comprises more than 2 kb in a structurally complex region that spans a variety of potential transcription control signals. Several transcripts originate within or cross oriLyt, and we are studying these oriLyt transcription units to determine whether they participate in initiating or regulating lytic-phase DNA synthesis. Results presented here establish the temporal accumulation and structure of the smallest replicator transcript, which we call SRT, and identify a single-sequence element essential to replicator function. SRT was detected as early as 2 h after HCMV infection of human fibroblast cells; transcript levels increased by 24 h and continued to increase thereafter. Consistent with its early appearance, treatment of HCMV-infected cells with the viral DNA polymerase inhibitor phosphonoformic acid had no effect on SRT accumulation; however, no SRT was detected in RNA preparations from cycloheximide-treated infected cells. Additional Northern (RNA) analysis localized the 0.2- to 0.25-kb SRT to an apparently noncoding segment near the center of the oriLyt core region. Reverse transcriptase PCR (rapid amplification of cDNA 5' ends [5'-RACE]) identified a single 5' end. In transient-transfection assays, the sequence immediately upstream of SRT functioned as a promoter responsive to HCMV infection when placed upstream of a reporter gene, suggesting that SRT is the product of a discrete transcription unit. RNA ligase-mediated 3'-RACE showed that SRT is not polyadenylated and has heterogeneous 3' ends within a roughly 45-nucleotide window overlapping an oligopyrimidine sequence having counterparts in the lytic-phase replicators of several herpesviruses. Mutation of the oligopyrimidine element showed that it is essential to oriLyt replicator function; it is the only essential single-sequence HCMV oriLyt replicator element described to date. Collectively, the location of SRT near the center of the oriLyt core region, its early expression, its overlapping relationship with a sequence element essential to replicator function, and its similarities to replicator transcripts in other systems suggest the possibility that SRT plays a role in initiating or regulating HCMV lytic-phase DNA synthesis.
Collapse
Affiliation(s)
- L Huang
- The David Axelrod Institute, Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York 12201-2002, USA
| | | | | |
Collapse
|
28
|
Baradaran K, Hardwicke MA, Dabrowski CE, Schaffer PA. Properties of the novel herpes simplex virus type 1 origin binding protein, OBPC. J Virol 1996; 70:5673-9. [PMID: 8764087 PMCID: PMC190533 DOI: 10.1128/jvi.70.8.5673-5679.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have recently identified a novel 53-kDa herpes simplex virus type 1 (HSV-1) protein encoded by, and in frame with, the 3' half of the UL9 open reading frame, designated OBPC (K. Baradaran, C. Dabrowski and P. A. Schaffer, J. Virol. 68:4251-4261, 1994). Here we show that OBPC is a nuclear protein synthesized at both early and late times postinfection. In gel-shift assays in vitro-synthesized OBPC bound to oriS site I DNA to form a complex identical in mobility to complex A, generated with infected cell extracts and site I DNA. OBPC inhibited both plaque formation and viral DNA replication in transient assays, consistent with its ability to bind to site I DNA and its limited ability to interact with other essential DNA replication proteins. These properties suggest that OBPC may play a role in the initiation, elongation, or packaging of viral DNA.
Collapse
Affiliation(s)
- K Baradaran
- Committee on Virology and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
29
|
Makhov AM, Boehmer PE, Lehman IR, Griffith JD. The herpes simplex virus type 1 origin-binding protein carries out origin specific DNA unwinding and forms stem-loop structures. EMBO J 1996; 15:1742-50. [PMID: 8612599 PMCID: PMC450087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The UL9 protein of herpes simplex virus type 1 (HSV-1) binds specifically to the HSV-1 oriS and oriL origins of replication, and is a DNA helicase and DNA-dependent NTPase. In this study electron microscopy was used to investigate the binding of UL9 protein to DNA fragments containing oriS. In the absence of ATP, UL9 protein was observed to bind specifically to oriS as a dimer or pair of dimers, which bent the DNA by 35 degrees +/- 15 degrees and 86 degrees +/- 38 degrees respectively, and the DNA was deduced to make a straight line path through the protein complex. In the presence of 4 mM ATP, binding at oriS was enhanced 2-fold, DNA loops or stem-loops were extruded from the UL9 protein complex at oriS, and the DNA in them frequently appeared highly condensed into a tight rod. The stem-loops contained from a few hundred to over one thousand base pairs of DNA and in most, oriS was located at their apex, although in some, oriS was at a border. The DNA in the stem-loops could be stabilized by photocrosslinking, and when Escherichia coli SSB protein was added to the incubations, it bound the stem-loops strongly. Thus the DNA strands in the stem-loops exist in a partially paired, partially single-stranded state presumably making them available for ICP8 binding in vivo. These observations provide direct evidence for an origin specific unwinding by the HSV-1 UL9 protein and for the formation of a relatively stable four-stranded DNA in this process.
Collapse
Affiliation(s)
- A M Makhov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Origins of replication (ORIs) among prokaryotes, viruses, and multicellular organisms appear to possess simple tri-, tetra-, or higher dispersed repetitions of nucleotides, AT tracts, inverted repeats, one to four binding sites of an initiator protein, intrinsically curved DNA, DNase I-hypersensitive sites, a distinct pattern of DNA methylation, and binding sites for transcription factors. Eukaryotic ORIs are sequestered on the nuclear matrix; this attachment is supposed to facilitate execution of their activation/deactivation programs during development. Furthermore, ORIs fall into various classes with respect to their sequence complexity: those enriched in AT tracts, those with GA- and CT-rich tracts, a smaller class of GC-rich ORIs, and a major class composed of mixed motifs yet containing distinct AT and polypurine or GC stretches. Multimers of an initiator protein in prokaryotes and viruses that might have evolved into a multiprotein replication initiation complex in multicellular organisms bind to the core ORI, causing a structural distortion to the DNA which is transferred to the AT tract flanking the initiator protein site; single-stranded DNA-binding proteins then interact with the melted AT tract as well as with the DNA polymerase alpha-primase complex in animal viruses and mammalian cells, causing initiation in DNA replication. ORIs in mammalian cells seem to colocalize with matrix-attached regions and are proposed to become DNase I-hypersensitive during their activation.
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306, USA
| |
Collapse
|
31
|
Chen Z, Watanabe S, Yamaguchi N. Strain-dependent differences in the human cytomegalovirus replication origin. Arch Virol 1996; 141:13-30. [PMID: 8629940 DOI: 10.1007/bf01718585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nucleotide sequence of the human cytomegalovirus replication origin of strain Towne (an AatII-SacI fragment corresponding to nt 90372-94637 of strain AD169) was determined and compared with AD169. Two differences were found in the nucleotide sequence level. One was the alteration of structural organization (a major difference): a 189-bp region of AD169 (nt 93337-93525) was directly repeated three times in Towne. The other was a change in the nucleotide residue level including substitution, insertion, or deletion (a minor difference). The divergent residues were predominantly localized within the nt 92591-92855 region of AD169. A replication assay revealed that replication ability remained after deletion of the 189-bp repeat but disappeared after either a 1.5-kb deletion from the AatII end or a 0.9-kb deletion from the SacI end. The 1.5- and 0.9-kb regions were relatively conserved. These results indicate that at least two regions essential for replication ability lie outside of both the relatively variable region and the 189-bp repeat and suggest that these essential regions support replication even with a spatial separation of either one (AD169) or three repeats (Towne) of the 189-bp region.
Collapse
Affiliation(s)
- Z Chen
- Department of Virology, The Institute of Medical Science, The University of Tokyo, Japan
| | | | | |
Collapse
|
32
|
Lee SS, Dong Q, Wang TS, Lehman IR. Interaction of herpes simplex virus 1 origin-binding protein with DNA polymerase alpha. Proc Natl Acad Sci U S A 1995; 92:7882-6. [PMID: 7644508 PMCID: PMC41250 DOI: 10.1073/pnas.92.17.7882] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) genome encodes seven polypeptides that are required for its replication. These include a heterodimeric DNA polymerase, a single-strand-DNA-binding protein, a heterotrimeric helicase/primase, and a protein (UL9 protein) that binds specifically to an HSV-1 origin of replication (oris). We demonstrate here that UL9 protein interacts specifically with the 180-kDa catalytic subunit of the cellular DNA polymerase alpha-primase. This interaction can be detected by immunoprecipitation with antibodies directed against either of these proteins, by gel mobility shift of an oris-UL9 protein complex, and by stimulation of DNA polymerase activity by the UL9 protein. These findings suggest that enzymes required for cellular DNA replication also participate in HSV-1 DNA replication.
Collapse
Affiliation(s)
- S S Lee
- Department of Biochemistry, Stanford University School of Medicine, CA 94305, USA
| | | | | | | |
Collapse
|
33
|
Inoue N, Pellett PE. Human herpesvirus 6B origin-binding protein: DNA-binding domain and consensus binding sequence. J Virol 1995; 69:4619-27. [PMID: 7609026 PMCID: PMC189261 DOI: 10.1128/jvi.69.8.4619-4627.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously demonstrated by a DNA-binding assay that the human herpesvirus 6B (HHV-6B) replication origin has a structure similar to those of alphaherpesviruses, although the HHV-6B and herpes simplex virus type 1 (HSV-1) origin-binding proteins (OBPs) and origins are not interchangeable. Here we describe additional properties of the interaction between HHV-6B OBP and the HHV-6B origin. Competitive electrophoretic mobility shift assays (EMSAs) with DNA duplexes containing single-base alterations allowed deduction of a consensus DNA sequence for HHV-6B-specific OBP binding, YGWYCWCCY, where Y is T or C and W is T or A, while that for HSV-1-specific binding was reported to be YGYTCGCACT. By EMSA, the HHV-6B OBP DNA-binding domain was mapped to a segment containing amino acids 482 to 770. However, in Southwestern (protein-DNA) blotting, the region sufficient for the DNA binding encompassed only amino acids 657 to 770. Similarly, Southwestern blotting showed that amino acids 689 to 851 of HSV-1 OBP had HSV-1 origin-binding activity, although this region was insufficient for origin binding in the EMSA. Although the longer DNA-binding domains identified by EMSA have marginal overall homology among HHV-6B and alphaherpesvirus OBP homologs, the smaller regions sufficient for the binding observed by Southwestern blotting have significant similarity. From these results, we propose a hypothesis that the DNA-binding domain of herpesvirus OBPs consists of two subdomains, one containing a conserved motif that contacts DNA directly, and another, less well conserved, that may modulate either the conformation or accessibility of the binding domain.
Collapse
Affiliation(s)
- N Inoue
- National Institute of Health, Tokyo, Japan
| | | |
Collapse
|
34
|
Fierer DS, Challberg MD. The stoichiometry of binding of the herpes simplex virus type 1 origin binding protein, UL9, to OriS. J Biol Chem 1995; 270:7330-4. [PMID: 7706274 DOI: 10.1074/jbc.270.13.7330] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A number of studies have demonstrated that the herpes simplex virus type 1 (HSV-1) UL9 protein, which is a homodimer in solution, binds to two high affinity binding sites in each origin of replication. Interaction between the proteins bound at the two sites leads to the formation of a complex nucleoprotein structure. The simplest models for this binding interaction predict two possible binding stoichiometries: 1) one UL9 dimer is bound at each site; or 2) one UL9 monomer is bound at each site so that one UL9 dimer occupies both sites. Two recent papers have addressed this issue by using indirect methods to measure the binding stoichiometry. Martin et al. (Martin, D. W., Muñoz, R. M., Oliver, D., Subler, M. A., and Deb, S. (1994) Virology 198, 71-80) reported that a monomer of UL9 binds to a single high affinity site, and Stabell and Olivo (Stabell, E. C., and Olivo, P.D. (1993) Nucleic Acids Res. 21, 5203-5211) concluded that a dimer of UL9 binds to a single high affinity site. We have directly measured the stoichiometry of binding of the carboxyl-terminal DNA binding domain of UL9 (t-UL9) to the origin of replication using a double-label gel shift assay. Using a short synthetic double-stranded oligonucleotide containing a single UL9 binding site, one protein-DNA complex was detected in the gel shift assay, and the molar ratio of UL9 DNA binding domains to DNA binding sites in this complex was determined to be 2.0 +/- 0.1 (n = 13). Using the minimal origin sequence excised from plasmid DNA, two protein-DNA complexes were detected. The binding stoichiometry of the faster migrating complex was 1.8 +/- 0.1 (n = 15), and the stoichiometry of the more slowly migrating band was 3.7 +/- 0.4 (n = 15). The simplest explanation for these data is that UL9 binds to the origin of replication as a homodimer with one dimer bound at both high affinity sites.
Collapse
Affiliation(s)
- D S Fierer
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Hardwicke MA, Schaffer PA. Cloning and characterization of herpes simplex virus type 1 oriL: comparison of replication and protein-DNA complex formation by oriL and oriS. J Virol 1995; 69:1377-88. [PMID: 7853470 PMCID: PMC188724 DOI: 10.1128/jvi.69.3.1377-1388.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The herpes simplex virus type 1 genome contains three origins of DNA replication: two copies of oriS and one copy of oriL. Although oriS has been characterized extensively, characterization of oriL has been severely limited by the inability to amplify oriL sequences in an undeleted form in Escherichia coli. We report the successful cloning of intact oriL sequences in an E. coli strain, SURE, which contains mutations in a series of genes involved in independent DNA repair pathways shown to be important in the rearrangement and deletion of DNA containing irregular structures such as palindromes. The oriL-containing clones propagated in SURE cells contained no deletions, as determined by Southern blot hybridization and DNA sequence analysis, and were replication competent in transient DNA replication assays. Deletion of 400 bp of flanking sequences decreased the replication efficiency of oriL twofold in transient assays, demonstrating a role for flanking sequences in enhancing replication efficiency. Comparison of the replication efficiencies of an 822-bp oriS-containing plasmid and an 833-bp oriL-containing plasmid demonstrated that the kinetics of replication of the two plasmids were similar but that the oriL-containing plasmid replicated 60 to 70% as efficiently as the oriS-containing plasmid at both early and late times after infection with herpes simplex virus type 1. The virus-specified origin-binding protein (OBP) and a cellular factor(s) (OF-1) have been shown in gel mobility shift experiments to bind specific sequences in oriS (C.E. Dabrowski, P. Carmillo, and P.A. Schaffer, Mol. Cell. Biol. 14:2545-2555, 1994; C.E. Dabrowski and P.A. Schaffer, J. Virol. 65:3140-3150, 1991). Although the nucleotides required for the binding of OBP to OBP binding site I in oriL and oriS are the same, a single nucleotide difference distinguishes OBP binding site III in the two origins. The nucleotides adjacent to oriS sites I and III have been shown to be important for the binding of OF-1 to oriS site I. Several nucleotide differences exist in these sequences in oriL and oriS. Despite these minor nucleotide differences, the protein-DNA complexes that formed with oriL and oriS sites I and III were indistinguishable when extracts of infected and uninfected cells were used as the source of protein. Furthermore, the results of competition analysis suggest that the proteins involved in protein-DNA complex formation with sites I and III of the two origins are likely the same.
Collapse
Affiliation(s)
- M A Hardwicke
- Division of Molecular Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
36
|
Inoue N, Dambaugh TR, Rapp JC, Pellett PE. Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J Virol 1994; 68:4126-36. [PMID: 8207791 PMCID: PMC236336 DOI: 10.1128/jvi.68.7.4126-4136.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We previously identified a human herpesvirus 6B (HHV-6B) homolog of the alphaherpesvirus origin-binding protein (OBP), exemplified by the herpes simplex virus type 1 UL9 gene product. This finding is of particular interest because HHV-6B is otherwise more closely related to members of the betaherpesvirus subfamily. The prototypic betaherpesvirus, human cytomegalovirus, does not encode an obvious OBP homolog and contains a more complex origin of replication than do alphaherpesviruses. Thus, analysis of the function of the HHV-6B OBP homolog is essential for understanding the mechanism of HHV-6B DNA replication initiation. The HHV-6B OBP homolog, OBPH6B, was expressed in vitro by coupled transcription and translation and in insect cells by infection with recombinant baculoviruses. The expressed protein bound to two DNA sequences located upstream of the HHV-6B major DNA-binding protein gene homolog, within a region that was predicted to serve as an origin of replication on the basis of its sequence properties. The binding sites lie within 23-bp segments and are similar to OBP-binding sites of herpes simplex virus type 1. The two OBPH6B-binding sequences are separated by an AT-rich region and have an imperfect dyad symmetry as do the alphaherpesvirus origin regions. We identified OBPH6B transcripts by reverse transcription PCR in HHV-6B-infected Molt-3 cells. These results suggest that OBPH6B functions in a manner analogous to the alphaherpesvirus OBP and that initiation of HHV-6B DNA replication may resemble that of alphaherpesviruses.
Collapse
Affiliation(s)
- N Inoue
- Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | | | | | | |
Collapse
|
37
|
Baradaran K, Dabrowski CE, Schaffer PA. Transcriptional analysis of the region of the herpes simplex virus type 1 genome containing the UL8, UL9, and UL10 genes and identification of a novel delayed-early gene product, OBPC. J Virol 1994; 68:4251-61. [PMID: 8207800 PMCID: PMC236348 DOI: 10.1128/jvi.68.7.4251-4261.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The region of the UL component of the herpes simplex virus type 1 genome between nucleotides 17,793 and 25,150 includes three open reading frames that code for the protein products of the UL8, UL9, and UL10 genes (D.J. McGeogh, M.A. Dalrymple, A.J. Davison, A. Dolan, M.C. Frame, D. McNab, L.J. Perry, J.E. Scott, and P. Taylor, J. Gen. Virol. 69:1531-1574, 1988). We have mapped and characterized the overlapping transcripts in this region and have found that, in addition to the low-abundance UL8 and UL9 transcripts and the abundant UL10 transcript, at least two additional transcription units, designated UL8.5 and UL9.5, are specified by this region of the genome. The 5' ends of the UL8, UL8.5, and UL9 transcripts were mapped to nucleotides 20,682, 22,351, and 23,381, respectively. The 5' terminus of the UL9.5 transcript has not yet been mapped. The 3' ends of the UL8, UL8.5, UL9, and UL9.5 transcripts are coterminal at nucleotide 18,197. The 5' end of the UL10 mRNA, which is transcribed from the strand opposite that specifying the UL8, UL8.5, UL9, and UL9.5 transcripts, lies within the UL9 open reading frame at nucleotide 22,944, while the 3' terminus was mapped to nucleotide 24,666. Time course studies demonstrated that the UL8 and UL9 transcripts are members of the early kinetic class, the UL8.5 mRNA is a delayed-early transcript, and the UL9.5 and UL10 transcripts belong to the true-late kinetic class. Examination of the nucleotide sequence of the UL8.5 transcript revealed a potential open reading frame that overlaps and is in frame with the C-terminal half of the open reading frame encoding the origin-binding protein (OBP), the product of the UL9 gene. In vitro translation of the UL8.5 transcript demonstrated that it encodes a protein with an apparent molecular mass of 53 kDa. This protein was recognized by antibody directed against the C-terminal region of OBP and has thus been designated OBPC. A protein with an identical apparent molecular mass was also recognized by this antibody in infected-cell lysates, indicating that OBPC is synthesized during viral infection.
Collapse
Affiliation(s)
- K Baradaran
- Department of Microbiology and Molecular Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | |
Collapse
|
38
|
Abstract
Equine herpesvirus 1 (EHV-1) is an important pathogen of horses and is closely related to several important human pathogens, herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus. The EHV-1 genome contains open reading frames similar in sequence to the HSV-1 replication genes. PCR was used to clone EHV-1 gene 53, which is similar in sequence to the HSV-1 UL9 gene. The gene 53 product has regions of striking similarity to the HSV-1 UL9 and VZV gene 51 products. In vitro transcription and translation of this gene generated a protein of 87 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Further characterization of this protein was accomplished through the use of gel shift analysis. The in vitro-synthesized protein bound sequence specifically to EHV-1 OriS as well as HSV-1 OriS. A site was used in gel shift analysis to show that the EHV-1 origin-binding protein bound to the same consensus site as the HSV-1 origin-binding protein, 5'-CGTTCGCACTT-3'. Using a nuclear extract of EHV-1-infected RK13 cells, we have identified an activity that interacts similarly with this consensus site. In gel shift assays, the retarded band arising from the nuclear extract migrated similarly to the retarded band arising from in vitro-translated EHV-1 gene 53. An N-terminal deletion of EHV-1 gene 53 was also created, expressed in vitro, and used in gel shift assays to localize the DNA-binding domain. Results of these experiments indicated that amino acids 1 to 499 were dispensable for binding and that the C-terminal fragment (amino acids 500 to 888) recognized the same consensus site as did the wild-type protein. Thus, the product of EHV-1 gene 53 is an origin-binding protein with a high degree of similarity to the HSV-1 and varicella-zoster virus origin-binding proteins and possibly serves as the initiator of DNA replication in EHV-1.
Collapse
Affiliation(s)
- D W Martin
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284
| | | |
Collapse
|
39
|
Gustafsson CM, Hammarsten O, Falkenberg M, Elias P. Herpes simplex virus DNA replication: a spacer sequence directs the ATP-dependent formation of a nucleoprotein complex at oriS. Proc Natl Acad Sci U S A 1994; 91:4629-33. [PMID: 8197110 PMCID: PMC43841 DOI: 10.1073/pnas.91.11.4629] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The origin-binding protein (OBP) from herpes simplex virus 1 is a member of the SF2 helicase superfamily and is required for the initiation of DNA synthesis from a viral origin of DNA replication (oriS). The high-affinity binding sites for OBP in oriS, boxes I and II, are separated by an A+T-rich spacer. We used the gel retardation technique to examine the influence of this spacer sequence on the formation of a specific complex, referred to as complex II, between OBP and oriS. The formation of this OBP-oriS complex was greatly promoted by adenosine 5'-[gamma-thio]triphosphate and other nucleotide cofactors. Surprisingly, oriS constructs where the spacer sequence had been altered with approximately half of a helical turn (+4 or -6 base pairs) supported the formation of a more stable complex II than the wild-type origin. DNase I footprinting experiments showed that the cooperative binding of OBP to boxes I and II was affected by the length of the spacer sequence in the same way. In contrast, the ability of oriS-containing plasmids to replicate was most efficient with wild-type oriS. This paradox can be resolved if it is assumed that an ATP-dependent cooperative binding of OBP to properly spaced recognition sequences in oriS is required to induce a conformational change of DNA, thereby facilitating initiation of DNA replication.
Collapse
Affiliation(s)
- C M Gustafsson
- Department of Medical Biochemistry, Göteborg University, Sweden
| | | | | | | |
Collapse
|
40
|
Abstract
The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains an AT-rich region and three highly homologous sequences, sites I, II, and III, identified as binding sites for the HSV-1 origin-binding protein (OBP). In the present study, interactions between specific oriS DNA sequences and proteins in uninfected cell extracts were characterized. The formation of one predominant protein-DNA complex, M, was demonstrated in gel shift assays following incubation of uninfected cell extracts with site I DNA. The cellular protein(s) that comprises complex M has been designated origin factor I (OF-I). The OF-I binding site was shown to partially overlap the OBP binding site within site I. Complexes with mobilities indistinguishable from that of complex M also formed with site II and III DNAs in gel shift assays. oriS-containing plasmid DNA mutated in the OF-I binding site exhibited reduced replication efficiency in transient assays, demonstrating a role for this site in oriS function. The OF-I binding site is highly homologous to binding sites for the cellular CCAAT DNA-binding proteins. The binding site for the CCAAT protein CP2 was found to compete for OF-I binding to site I DNA. These studies support a model involving the participation of cellular proteins in the initiation of HSV-1 DNA synthesis at oriS.
Collapse
|
41
|
Dabrowski CE, Carmillo PJ, Schaffer PA. Cellular protein interactions with herpes simplex virus type 1 oriS. Mol Cell Biol 1994; 14:2545-55. [PMID: 8139557 PMCID: PMC358622 DOI: 10.1128/mcb.14.4.2545-2555.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains an AT-rich region and three highly homologous sequences, sites I, II, and III, identified as binding sites for the HSV-1 origin-binding protein (OBP). In the present study, interactions between specific oriS DNA sequences and proteins in uninfected cell extracts were characterized. The formation of one predominant protein-DNA complex, M, was demonstrated in gel shift assays following incubation of uninfected cell extracts with site I DNA. The cellular protein(s) that comprises complex M has been designated origin factor I (OF-I). The OF-I binding site was shown to partially overlap the OBP binding site within site I. Complexes with mobilities indistinguishable from that of complex M also formed with site II and III DNAs in gel shift assays. oriS-containing plasmid DNA mutated in the OF-I binding site exhibited reduced replication efficiency in transient assays, demonstrating a role for this site in oriS function. The OF-I binding site is highly homologous to binding sites for the cellular CCAAT DNA-binding proteins. The binding site for the CCAAT protein CP2 was found to compete for OF-I binding to site I DNA. These studies support a model involving the participation of cellular proteins in the initiation of HSV-1 DNA synthesis at oriS.
Collapse
Affiliation(s)
- C E Dabrowski
- Division of Molecular Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
42
|
Stabell EC, Olivo PD. A truncated herpes simplex virus origin binding protein which contains the carboxyl terminal origin binding domain binds to the origin of replication but does not alter its conformation. Nucleic Acids Res 1993; 21:5203-11. [PMID: 8255778 PMCID: PMC310638 DOI: 10.1093/nar/21.22.5203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have studied the DNA binding properties of a polypeptide consisting of the carboxyl terminal 37% of UL9, the herpes simplex virus type 1 (HSV-1) origin of replication binding protein. Using a Sindbis virus expression system, we expressed and partially purified this truncated form of UL9 (UL9CT) which contains the site-specific DNA binding domain. UL9CT specifically recognized UL9 binding sites on a 200 base pair DNA fragment containing the HSV origin ori(s) and appeared to bind as a dimer to each site. DNAse I footprint analysis showed that UL9CT protected the two high affinity binding sites of ori(s), but unlike full-length UL9, UL9CT did not induce a conformational change in the origin. Addition of anti-UL9CT antibody to the UL9CT-origin complex, however, caused a conformational change in the origin to be evident. Our results suggest that a domain, or domains, in the amino terminus are necessary for a UL9-induced origin conformational change to occur and that UL9-UL9 interactions between binding sites are involved.
Collapse
Affiliation(s)
- E C Stabell
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
43
|
Igarashi K, Fawl R, Roller RJ, Roizman B. Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J Virol 1993; 67:2123-32. [PMID: 8383234 PMCID: PMC240309 DOI: 10.1128/jvi.67.4.2123-2132.1993] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) genome contains three origins of DNA synthesis (Ori) utilized by viral DNA synthesis proteins. One sequence (OriI) maps in the L component, whereas two sequences (OriS) map in the S component. We report the construction of a recombinant virus, R7711, from which both OriS sequences have been deleted, and show that the OriS sequences are not essential for the replication of HSV-1 in cultured cells. In addition to the deletions of OriS in R7711, the alpha 47 gene and the 5' untranscribed and transcribed noncoding regions of the U(S)11 gene were deleted, one of the alpha 4 promoter-regulatory regions was replaced with the simian virus 40 promoter, and the alpha 22 promoter was substituted with the alpha 27 promoter. The total amount of viral DNA synthesized in Vero cells infected with the OriS-negative (OriS-) virus was approximately that seen in cells infected with the OriS-positive virus. However, cells infected with the OriS- virus accumulated viral DNA more slowly than those infected with the wild-type virus during the first few hours after the onset of DNA synthesis. In single-step growth experiments, the yield of OriS- progeny virus was reduced at most fourfold. Although a single OriS (R. Longnecker and B. Roizman, J. Virol. 58:583-591, 1986) and the single OriL (M. Polvino-Bodnar, P. K. Orberg, and P. A. Schaffer, J. Virol. 61:3528-3535, 1987) have been shown to be dispensable, this is the first indication that both copies of OriS are dispensable and that one copy of an Ori sequence may suffice for the replication of HSV-1.
Collapse
Affiliation(s)
- K Igarashi
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
44
|
Owsianka AM, Hart G, Murphy M, Gottlieb J, Boehme R, Challberg M, Marsden HS. Inhibition of herpes simplex virus type 1 DNA polymerase activity by peptides from the UL42 accessory protein is largely nonspecific. J Virol 1993; 67:258-64. [PMID: 8380075 PMCID: PMC237359 DOI: 10.1128/jvi.67.1.258-264.1993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To identify regions in the UL42 protein of herpes simplex virus type 1 which affect viral DNA polymerase activity, a series of 96 overlapping pentadecapeptides spanning the entire 488 amino acids of the UL42 protein were synthesized and tested for their ability to inhibit polymerase activity on a primed single-stranded M13 DNA template. Two assays were used: formation of full-length double-stranded M13 molecules and rate of incorporation of deoxyribonucleoside triphosphates. Peptides from five noncontiguous regions of the UL42 protein were found to inhibit herpes simplex virus type 1 polymerase activity in both the presence and absence of UL42 protein. The most active peptides from each region correspond to amino acids 23 to 38 (peptide 6), 64 to 78 (peptide 14), 89 to 102 (peptide 19), 229 to 243 (peptide 47), and 279 to 293 (peptide 57). By two different methods (DNA mobility shift and DNA precipitation), peptides 14, 19, 47, and 57 were found to bind DNA; they most probably inhibit enzyme activity by this mechanism. Peptide 6 did not bind DNA and must act by some mechanism other than competing for DNA. The inhibitory peptides were also tested for activity against mammalian polymerase alpha and the Klenow fragment of Escherichia coli polymerase. Although some limited specificity was demonstrated (up to 10-fold for peptide 6), all the peptides showed significant activity against both polymerase alpha and E. coli polymerase.
Collapse
Affiliation(s)
- A M Owsianka
- Medical Research Council Virology Unit, Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Dodson M, Lehman I. The herpes simplex virus type I origin binding protein. DNA-dependent nucleoside triphosphatase activity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54062-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Focher F, Verri A, Verzeletti S, Mazzarello P, Spadari S. Uracil in OriS of herpes simplex 1 alters its specific recognition by origin binding protein (OBP): does virus induced uracil-DNA glycosylase play a key role in viral reactivation and replication? Chromosoma 1992; 102:S67-71. [PMID: 1337882 DOI: 10.1007/bf02451788] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have recently demonstrated that mammalian uracil-DNA glycosylase activity is undetectable in adult neurons. On the basis of this finding we hypothesized that uracil, derived either from oxidative deamination of cytosine or misincorporation of dUMP in place of dTMP during DNA repair by the unique nuclear DNA polymerase present in adult neurons, DNA polymerase beta, might accumulate in neuronal DNA. Uracil residues could also arise in the herpes simplex 1 (HSV1) genome during latency in nerve cells. We therefore suggest a role for the virus encoded uracil-DNA glycosylase in HSV1 reactivation and in the first steps of DNA replication. We show here 1) that the viral DNA polymerase incorporates dUTP in place of dTTP with a comparable efficiency in vitro; 2) that virus specific DNA/protein interactions between the virus encoded origin binding protein and its target DNA sequence is altered by the presence of uracil residues in its central region TCGCA. Thus uracil, present in viral OriS or other key sequences could hamper the process leading to viral reactivation. Hence, HSV1 uracil-DNA glycosylase, dispensable in viral proliferation in tissue culture, could be essential in neurons for the "cleansing" of the viral genome of uracil residues before the start of replication.
Collapse
Affiliation(s)
- F Focher
- Istituto di Genetica Biochimica ed Evoluzionistica, CNR, Pavia, Italy
| | | | | | | | | |
Collapse
|
47
|
Martinez R, Shao L, Weller SK. The conserved helicase motifs of the herpes simplex virus type 1 origin-binding protein UL9 are important for function. J Virol 1992; 66:6735-46. [PMID: 1328687 PMCID: PMC240170 DOI: 10.1128/jvi.66.11.6735-6746.1992] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The UL9 gene of herpes simplex virus encodes a protein that specifically recognizes sequences within the viral origins of replication and exhibits helicase and DNA-dependent ATPase activities. The specific DNA binding domain of the UL9 protein was localized to the carboxy-terminal one-third of the molecule (H. M. Weir, J. M. Calder, and N. D. Stow, Nucleic Acids Res. 17:1409-1425, 1989). The N-terminal two-thirds of the UL9 gene contains six sequence motifs found in all members of a superfamily of DNA and RNA helicases, suggesting that this region may be important for helicase activity of UL9. In this report, we examined the functional significance of these six motifs for the UL9 protein through the introduction of site-specific mutations resulting in single amino acid substitutions of the most highly conserved residues within each motif. An in vivo complementation test was used to study the effect of each mutation on the function of the UL9 protein in viral DNA replication. In this assay, a mutant UL9 protein expressed from a transfected plasmid is used to complement a replication-deficient null mutant in the UL9 gene for the amplification of herpes simplex virus origin-containing plasmids. Mutations in five of the six conserved motifs inactivated the function of the UL9 protein in viral DNA replication, providing direct evidence for the importance of these conserved motifs. Insertion mutants resulting in the introduction of two alanines at 100-residue intervals in regions outside the conserved motifs were also constructed. Three of the insertion mutations were tolerated, whereas the other five abolished UL9 function. These data indicate that other regions of the protein, in addition to the helicase motifs, are important for function in vivo. Several mutations result in instability of the mutant products, presumably because of conformational changes in the protein. Taken together, these results suggest that UL9 is very sensitive to mutations with respect to both structure and function, perhaps reflecting its multifunctional character.
Collapse
Affiliation(s)
- R Martinez
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
48
|
Structural elements required for the cooperative binding of the herpes simplex virus origin binding protein to oriS reside in the N-terminal part of the protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41943-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Malik AK, Martinez R, Muncy L, Carmichael EP, Weller SK. Genetic analysis of the herpes simplex virus type 1 UL9 gene: isolation of a LacZ insertion mutant and expression in eukaryotic cells. Virology 1992; 190:702-15. [PMID: 1325702 DOI: 10.1016/0042-6822(92)90908-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HSV-1 host range mutants in complementation group 1-36 (hr27 and hr156) whose mutations map in the UL9 gene, encoding the origin binding protein, are unable to form plaques or synthesize viral DNA or late viral proteins when grown in nonpermissive Vero cells (Carmichael, E. P., Kosovsky, M. J., Weller, S. K., 1988, J. Virol. 62, 91-99). These defects are complemented efficiently by growth in the permissive cell line, S22, which contains the wild type version of several HSV genes including UL9. In this report the precise nature and location of the lesions in host range mutants hr27 and hr156 were determined by DNA sequencing; both mutants were found to contain identical single-base-pair substitutions at codons 309 and 311 in the UL9 open reading frame. This region lies within the putative helicase domain of the UL9 protein. The UL9 gene was disrupted by the insertion of an insertional mutagen ICP6::lacZ in which the Escherichia coli lacZ gene is expressed under control of the viral ICP6 promoter. Hr94, a viral mutant containing this insertion, does not form plaques or synthesize viral DNA when grown in Vero cells, although both defects are complemented efficiently on permissive cell lines. These results confirm that the UL9 gene product is essential for viral growth and DNA replication. Furthermore, since no detectable UL9 protein is synthesized in hr94-infected cells, this virus provides a useful genetic background for further structure-function analysis since no potentially interfering nonfunctional UL9 protein will be expressed. We have expressed the UL9 open reading frame under the control of the strong and inducible HSV-1 ICP6 promoter and have derived Vero cell lines containing variable copy numbers of the ICP6::UL9 construct. Cells whose copy number of this construct exceeded approximately 120 are unable to support efficient plaque formation by wild-type virus. Cell lines with low copy numbers of this construct are able to complement hr27, hr156, and hr94.
Collapse
Affiliation(s)
- A K Malik
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030
| | | | | | | | | |
Collapse
|
50
|
Cooperative interactions between replication origin-bound molecules of herpes simplex virus origin-binding protein are mediated via the amino terminus of the protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49713-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|