1
|
Tomilova YE, Russkikh NE, Yi IM, Shaburova EV, Tomilov VN, Pyrinova GB, Brezhneva SO, Tikhonyuk OS, Gololobova NS, Popichenko DV, Arkhipov MO, Bryzgalov LO, Brenner EV, Artyukh AA, Shtokalo DN, Antonets DV, Ivanov MK. Enhancing the reverse transcriptase function in Taq polymerase via AI-driven multiparametric rational design. Front Bioeng Biotechnol 2024; 12:1495267. [PMID: 39720166 PMCID: PMC11666352 DOI: 10.3389/fbioe.2024.1495267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties. Methods The experimental procedure was conducted in several stages: 1) On the basis of a foundational paper, we selected 18 candidate mutations known to affect RTase activity across six sites. These candidates, along with the wild type, were assessed in the wet lab for multiple properties to establish an initial training dataset. 2) Using embeddings of Taq polymerase variants generated by a protein language model, we trained a Ridge regression model to predict multiple enzyme properties. This model guided the selection of 14 new candidates for experimental validation, expanding the dataset for further refinement. 3) To better manage risk by assessing confidence intervals on predictions, we transitioned to Gaussian process regression and trained this model on an expanded dataset comprising 33 data points. 4) With this enhanced model, we conducted an in silico screen of over 18 million potential mutations, narrowing the field to 16 top candidates for comprehensive wet-lab evaluation. Results and Discussion This iterative, data-driven strategy ultimately led to the identification of 18 enzyme variants that exhibited markedly improved RTase activity while maintaining a favorable balance of other key properties. These enhancements were generally accompanied by lower Kd, moderately reduced fidelity, and greater tolerance to noncanonical substrates, thereby illustrating a strong interdependence among these traits. Several enzymes validated via this procedure were effective in single-enzyme real-time reverse-transcription PCR setups, implying their utility for the development of new tools for real-time reverse-transcription PCR technologies, such as pathogen RNA detection and gene expression analysis. This study illustrates how AI can be effectively integrated with experimental bioengineering to enhance enzyme functionality systematically. Our approach offers a robust framework for designing enzyme mutants tailored to specific biotechnological applications. The results of our biological activity predictions for mutated Taq polymerases can be accessed at https://huggingface.co/datasets/nerusskikh/taqpol_insilico_dms.
Collapse
Affiliation(s)
| | | | | | - Elizaveta V. Shaburova
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | - Dmitry N. Shtokalo
- AcademGene LLC, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
- Institute of Informatics Systems SB RAS, Novosibirsk, Russia
| | - Denis V. Antonets
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail K. Ivanov
- AO Vector-Best, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| |
Collapse
|
2
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Ordóñez CD, Redrejo-Rodríguez M. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Int J Mol Sci 2023; 24:9331. [PMID: 37298280 PMCID: PMC10253169 DOI: 10.3390/ijms24119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In the same way that specialized DNA polymerases (DNAPs) replicate cellular and viral genomes, only a handful of dedicated proteins from various natural origins as well as engineered versions are appropriate for competent exponential amplification of whole genomes and metagenomes (WGA). Different applications have led to the development of diverse protocols, based on various DNAPs. Isothermal WGA is currently widely used due to the high performance of Φ29 DNA polymerase, but PCR-based methods are also available and can provide competent amplification of certain samples. Replication fidelity and processivity must be considered when selecting a suitable enzyme for WGA. However, other properties, such as thermostability, capacity to couple replication, and double helix unwinding, or the ability to maintain DNA replication opposite to damaged bases, are also very relevant for some applications. In this review, we provide an overview of the different properties of DNAPs widely used in WGA and discuss their limitations and future research directions.
Collapse
Affiliation(s)
- Carlos D. Ordóñez
- CIC bioGUNE, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
4
|
Wang Z, Zhang C, He S, Xu D. An ultrasensitive fluorescence aptasensor for SARS-CoV-2 antigen based on hyperbranched rolling circle amplification. Talanta 2023; 255:124221. [PMID: 36608425 PMCID: PMC9792189 DOI: 10.1016/j.talanta.2022.124221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/11/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and accurate diagnosis of SARS-CoV-2 infection at early stages can help to attenuate the effects of the COVID-19. Compared to RNA and antibodies detection, direct detection of viral antigens could reflect infectivity more appropriately. However, it is still a great challenge to construct a convenient, accurate and sensitive biosensor with a suitable molecular recognition element for SARS-CoV-2 antigens. Herein, we report a HRCA-based aptasensor for simple, ultrasensitive and quantitative detection of SARS-CoV-2 S1 protein and pseudovirus. The aptamer sequence used here is selected from several published aptamers by enzyme-linked oligonucleotide assay and molecular docking simulation. The sensor forms an antibody-target-aptamer sandwich complex on the surface of microplates and elicits HRCA for fluorescent detection. Without complicated operations or special instruments and reagents, the aptasensor can detect S1 protein with a LOD of 89.7 fg/mL in the linear range of 100 fg/mL to 1 μg/mL. And it can also detect SARS-CoV-2 spike pseudovirus in artificial saliva with a LOD of 51 TU/μL. Therefore, this simple and ultrasensitive aptasensor has the potential to detect SARS-CoV-2 infection at early stages. It may improve the timeliness and accuracy of SARS-CoV-2 diagnosis and demonstrate a strategy to conduct aptasensors for other targets.
Collapse
|
5
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
6
|
Target-Responsive Template Structure Switching-Mediated Exponential Rolling Circle Amplification for the Direct and Sensitive Detection of MicroRNA. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Nguyen H, Abramov M, Rozenski J, Eremeeva E, Herdewijn P. In vivo assembly and expression of DNA containing non-canonical bases in the yeast Saccharomyces cerevisiae. Chembiochem 2022; 23:e202200060. [PMID: 35322918 DOI: 10.1002/cbic.202200060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Chemically modified nucleic acids are of utmost interest in synthetic biology to create a regulable and sophisticated synthetic system with tailor-made properties. Implanting chemically modified nucleic acids in microorganisms might serve biotechnological applications, while using them in human cells might lead to new advanced medicines. Previously, we reported that a fully modified DNA sequence (called DZA) composed of the four base-modified nucleotides - 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine and 5-fluorocytosine - could function as a genetic template in prokaryotic cells, Escherichia coli . Here, we report the synthesis of long, partially or fully modified DZA fragments that encode the yeast-enhanced red fluorescence protein (yEmRFP). The DZA sequences were directly introduced in the genome of the eukaryotic cells, Saccharomyces cerevisiae , via the yeast natural homologous recombination. The simple and straightforward DZA cloning strategy reported herein might be of interest to scientists working in the field of xenobiology in yeast.
Collapse
Affiliation(s)
- Hoai Nguyen
- KU Leuven Rega Institute for Medical Research.: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Mikhail Abramov
- KU Leuven Rega Institute for Medical Research: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Jef Rozenski
- KU Leuven Rega Institute for Medical Research.: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Elena Eremeeva
- KU Leuven Rega Institute for Medical Research.: Katholieke Universiteit Leuven Rega Institute for Medical Research, Medicinal Chemistry, BELGIUM
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 - box 1030, 3000, Leuven, BELGIUM
| |
Collapse
|
8
|
Henriksen TV, Drue SO, Frydendahl A, Demuth C, Rasmussen MH, Reinert T, Pedersen JS, Andersen CL. Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR. Clin Chem 2022; 68:657-667. [PMID: 35030248 DOI: 10.1093/clinchem/hvab274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Droplet digital PCR (ddPCR) is a widely used and sensitive application for circulating tumor DNA (ctDNA) detection. As ctDNA is often found in low abundance, methods to separate low-signal readouts from noise are necessary. We aimed to characterize the ddPCR-generated noise and, informed by this, create a sensitive and specific ctDNA caller. METHODS We built 2 novel complimentary ctDNA calling methods: dynamic limit of blank and concentration and assay-specific tumor load estimator (CASTLE). Both methods are informed by empirically established assay-specific noise profiles. Here, we characterized noise for 70 mutation-detecting ddPCR assays by applying each assay to 95 nonmutated samples. Using these profiles, the performance of the 2 new methods was assessed in a total of 9447 negative/positive reference samples and in 1311 real-life plasma samples from colorectal cancer patients. Lastly, performances were compared to 7 literature-established calling methods. RESULTS For many assays, noise increased proportionally with the DNA input amount. Assays targeting transition base changes were more error-prone than transversion-targeting assays. Both our calling methods successfully accounted for the additional noise in transition assays and showed consistently high performance regardless of DNA input amount. Calling methods that were not noise-informed performed less well than noise-informed methods. CASTLE was the only calling method providing a statistical estimate of the noise-corrected mutation level and call certainty. CONCLUSIONS Accurate error modeling is necessary for sensitive and specific ctDNA detection by ddPCR. Accounting for DNA input amounts ensures specific detection regardless of the sample-specific DNA concentration. Our results demonstrate CASTLE as a powerful tool for ctDNA calling using ddPCR.
Collapse
Affiliation(s)
- Tenna V Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon O Drue
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Amanda Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christina Demuth
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob S Pedersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Portillo X, Huang YT, Breaker RR, Horning DP, Joyce GF. Witnessing the structural evolution of an RNA enzyme. eLife 2021; 10:71557. [PMID: 34498588 PMCID: PMC8460264 DOI: 10.7554/elife.71557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
An RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme. Multiple paths to the new structure were explored by the evolving population, converging upon a common solution. Tertiary structural remodeling of RNA is known to occur in nature, as evidenced by the phylogenetic analysis of extant organisms, but this type of structural innovation had not previously been observed in an experimental setting. Despite prior speculation that the catalytic core of the ribozyme had become trapped in a narrow local fitness optimum, the evolving population has broken through to a new fitness locale, raising the possibility that further improvement of polymerase activity may be achievable.
Collapse
Affiliation(s)
- Xavier Portillo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | | | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Howard Hughes Medical Institute, New Haven, United States
| | | | | |
Collapse
|
10
|
Guzel F, Romano M, Keles E, Piskin D, Ozen S, Poyrazoglu H, Kasapcopur O, Demirkaya E. Next Generation Sequencing Based Multiplex Long-Range PCR for Routine Genotyping of Autoinflammatory Disorders. Front Immunol 2021; 12:666273. [PMID: 34177904 PMCID: PMC8219981 DOI: 10.3389/fimmu.2021.666273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND During the last decade, remarkable progress with massive sequencing has been made in the identification of disease-associated genes for AIDs using next-generation sequencing technologies (NGS). An international group of experts described the ideal genetic screening method which should give information about SNVs, InDels, Copy Number Variations (CNVs), GC rich regions. We aimed to develop and validate a molecular diagnostic method in conjunction with the NGS platform as an inexpensive, extended and uniform coverage and fast screening tool which consists of nine genes known to be associated with various AIDs. METHODS For the validation of basic and expanded panels, long-range multiplex models were setup on healthy samples without any known variations for MEFV, MVK, TNFRSF1A, NLRP3, PSTPIP1, IL1RN, NOD2, NLRP12 and LPIN2 genes. Patients with AIDs who had already known causative variants in these genes were sequenced for analytical validation. As a last step, multiplex models were validated on patients with pre-diagnosis of AIDs. All sequencing steps were performed on the Illumina NGS platform. Validity steps included the selection of related candidate genes, primer design, development of screening methods, validation and verification of the product. The GDPE (Gentera) bioinformatics pipeline was followed. RESULTS Although there was no nonsynonymous variation in 21 healthy samples, 107 synonymous variant alleles and some intronic and UTR variants were detected. In 10 patients who underwent analytical validation, besides the 11 known nonsynonymous variant alleles, 11 additional nonsynonymous variant alleles and a total of 81 synonymous variants were found. In the clinical validation phase, 46 patients sequenced with multiplex panels, genetic and clinical findings were combined for diagnosis. CONCLUSION In this study, we describe the development and validation of an NGS-based multiplex array enabling the "long-amplicon" approach for targeted sequencing of nine genes associated with common AIDs. This screening tool is less expensive and more comprehensive compared to other methods and more informative than traditional sequencing. The proposed panel offers advantages to WES or hybridization probe equivalents in terms of CNV analysis, high sensitivity and uniformity, GC-rich region sequencing, InDel detection and intron covering.
Collapse
Affiliation(s)
- Ferhat Guzel
- Department of Research and Development, Gentera Biotechnology, Istanbul, Turkey
| | - Micol Romano
- Department of Paediatrics, Division of Paediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Erdi Keles
- Department of Research and Development, Gentera Biotechnology, Istanbul, Turkey
| | - David Piskin
- Department of Paediatrics, Division of Paediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Seza Ozen
- Department of Paediatrics, Division of Paediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Hakan Poyrazoglu
- Department of Paediatrics, Division of Paediatric Rheumatology, Erciyes University, Kayseri, Turkey
| | - Ozgur Kasapcopur
- Department of Paediatrics, Division of Paediatric Rheumatology, Cerrhapasa Medical School, Istanbul University, Istanbul, Turkey
| | - Erkan Demirkaya
- Department of Paediatrics, Division of Paediatric Rheumatology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Cuculis L, Zhao C, Abil Z, Zhao H, Shukla D, Schroeder CM. Divalent cations promote TALE DNA-binding specificity. Nucleic Acids Res 2020; 48:1406-1422. [PMID: 31863586 PMCID: PMC7026652 DOI: 10.1093/nar/gkz1174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in gene editing have been enabled by programmable nucleases such as transcription activator-like effector nucleases (TALENs) and CRISPR–Cas9. However, several open questions remain regarding the molecular machinery in these systems, including fundamental search and binding behavior as well as role of off-target binding and specificity. In order to achieve efficient and specific cleavage at target sites, a high degree of target site discrimination must be demonstrated for gene editing applications. In this work, we studied the binding affinity and specificity for a series of TALE proteins under a variety of solution conditions using in vitro fluorescence methods and molecular dynamics (MD) simulations. Remarkably, we identified that TALEs demonstrate high sequence specificity only upon addition of small amounts of certain divalent cations (Mg2+, Ca2+). However, under purely monovalent salt conditions (K+, Na+), TALEs bind to specific and non-specific DNA with nearly equal affinity. Divalent cations preferentially bind to DNA over monovalent cations, which attenuates non-specific interactions between TALEs and DNA and further stabilizes specific interactions. Overall, these results uncover new mechanistic insights into the binding action of TALEs and further provide potential avenues for engineering and application of TALE- or TALEN-based systems for genome editing and regulation.
Collapse
Affiliation(s)
| | - Chuankai Zhao
- Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA
| | - Zhanar Abil
- Department of Biochemistry, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemistry, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Department of Biochemistry, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA.,National Center for Supercomputing Applications, Urbana, IL 61801, USA.,NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Charles M Schroeder
- Department of Chemistry, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Ricardo PC, Françoso E, Arias MC. Fidelity of DNA polymerases in the detection of intraindividual variation of mitochondrial DNA. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 5:108-112. [PMID: 33366444 PMCID: PMC7720943 DOI: 10.1080/23802359.2019.1697188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here we investigated the consequences of PCR amplification errors in the identification of intraindividual mtDNA variation. The bumblebee Bombus morio was chosen as model for the COI gene amplification tests with two DNA polymerases (Taq and Q5) presenting different error rates. The amplifications using Taq resulted in a significant increase of singleton haplotypes per individual in comparison to Q5. The sequence characteristics indicated that Taq resulted haplotypes are mostly due to amplification errors. Studies focusing on intraindividual variability should address special attention to the DNA polymerase fidelity to avoid overestimation of heteroplasmic haplotypes.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Elaine Françoso
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Reverse Genetics of RNA Viruses: ISA-Based Approach to Control Viral Population Diversity without Modifying Virus Phenotype. Viruses 2019; 11:v11070666. [PMID: 31330809 PMCID: PMC6669666 DOI: 10.3390/v11070666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Reverse genetic systems are essential for the study of RNA viruses. Infectious clones remain the most widely used systems to manipulate viral genomes. Recently, a new PCR-based method called ISA (infectious subgenomic amplicons) has been developed. This approach has resulted in greater genetic diversity of the viral populations than that observed using infectious clone technology. However, for some studies, generation of clonal viral populations is necessary. In this study, we used the tick-borne encephalitis virus as model to demonstrate that utilization of a very high-fidelity, DNA-dependent DNA polymerase during the PCR step of the ISA procedure gives the possibility to reduce the genetic diversity of viral populations. We also concluded that the fidelity of the polymerase is not the only factor influencing this diversity. Studying the impact of genotype modification on virus phenotype is a crucial step for the development of reverse genetic methods. Here, we also demonstrated that the utilization of different PCR polymerases did not affect the phenotype (replicative fitness in cellulo and virulence in vivo) compared to the initial ISA procedure and the use of an infectious clone. In conclusion, we provide here an approach to control the genetic diversity of RNA viruses without modifying their phenotype.
Collapse
|
14
|
Kovermann M, Stefan A, Castaldo A, Caramia S, Hochkoeppler A. Structural and catalytic insights into HoLaMa, a derivative of Klenow DNA polymerase lacking the proofreading domain. PLoS One 2019; 14:e0215411. [PMID: 30970012 PMCID: PMC6457538 DOI: 10.1371/journal.pone.0215411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022] Open
Abstract
We report here on the stability and catalytic properties of the HoLaMa DNA polymerase, a Klenow sub-fragment lacking the 3’-5’ exonuclease domain. HoLaMa was overexpressed in Escherichia coli, and the enzyme was purified by means of standard chromatographic techniques. High-resolution NMR experiments revealed that HoLaMa is properly folded at pH 8.0 and 20°C. In addition, urea induced a cooperative folding to unfolding transition of HoLaMa, possessing an overall thermodynamic stability and a transition midpoint featuring ΔG and CM equal to (15.7 ± 1.9) kJ/mol and (3.5 ± 0.6) M, respectively. When the catalytic performances of HoLaMa were compared to those featured by the Klenow enzyme, we did observe a 10-fold lower catalytic efficiency by the HoLaMa enzyme. Surprisingly, HoLaMa and Klenow DNA polymerases possess markedly different sensitivities in competitive inhibition assays performed to test the effect of single dNTPs.
Collapse
Affiliation(s)
- Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätstraße, Konstanz, Germany
| | - Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- CSGI, University of Firenze, Sesto Fiorentino (Firenze), Italy
| | - Anna Castaldo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sara Caramia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- CSGI, University of Firenze, Sesto Fiorentino (Firenze), Italy
- * E-mail:
| |
Collapse
|
15
|
Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018; 143:4802-4818. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| | | | | | | | | |
Collapse
|
16
|
Iwona BO, Karol P, Kamila CC, Pollak A, Hanna B, Agnieszka P, Andrzej H, Kosińska J, Płoski R, Tomasz L, Marek R. Next-generation sequencing analysis of new genotypes appearing during antiviral treatment of chronic hepatitis C reveals that these are selected from pre-existing minor strains. J Gen Virol 2018; 99:1633-1642. [PMID: 30394872 DOI: 10.1099/jgv.0.001160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coinfection with more than one hepatitis C virus (HCV) genotype is common, but its dynamics, particularly during antiviral treatment, remain largely unknown. We employed next-generation sequencing (NGS) to analyse sequential serum and peripheral blood mononuclear cell (PBMC) samples in seven patients with transient presence or permanent genotype change during antiviral treatment with interferon and ribavirin. Specimens were collected right before the therapy initiation and at 2, 4, 6, 8, 12, 20, 24, 36, 44 and 48 weeks during treatment and 6 months after treatment ceased. A mixture of two different genotypes was detected in the pretreatment samples from five patients and the minor genotype constituted 0.02 to 38 %. A transient or permanent change of the predominant genotype was observed in six patients. In three cases genotype 3 was replaced as the predominant genotype by genotype 4, in two cases genotype 3 was replaced by genotype 1, and in one subject genotype 1 was replaced by genotype 4. The PBMC- and serum-derived sequences were frequently discordant with respect to genotype and/or genotype proportions. In conclusion, pre-existing minor HCV genotypes can be selected rapidly during antiviral treatment and become transiently or permanently predominant. In coinfections involving genotype 3, genotype 3 was eliminated first from both the serum and PBMC compartments. The PBMC- and serum-derived HCV sequences were frequently discordant with respect to genotype and/or genotype proportions, suggesting that they constitute separate compartments with their own dynamics.
Collapse
Affiliation(s)
- Bukowska-Ośko Iwona
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Perlejewski Karol
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Caraballo Cortés Kamila
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Agnieszka Pollak
- 2Institute of Physiology and Pathology of Hearing, 17 Mokra Street, Kajetany 05-830 Nadarzyn, Poland
| | - Berak Hanna
- 3Hospital for Infectious Diseases, 37 Wolska Street, 01-201 Warsaw, Poland
| | - Pawełczyk Agnieszka
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Horban Andrzej
- 3Hospital for Infectious Diseases, 37 Wolska Street, 01-201 Warsaw, Poland
- 4Department of Infectious Diseases, Warsaw Medical University, Warsaw, Poland
| | - Joanna Kosińska
- 5Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafał Płoski
- 5Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Laskus Tomasz
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| | - Radkowski Marek
- 1Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Sundarrajan S, Parambath S, Suresh S, Rao S, Padmanabhan S. Novel properties of recombinant Sso7d-Taq DNA polymerase purified using aqueous two-phase extraction: Utilities of the enzyme in viral diagnosis. BIOTECHNOLOGY REPORTS 2018; 19:e00270. [PMID: 30197870 PMCID: PMC6127375 DOI: 10.1016/j.btre.2018.e00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/03/2022]
Abstract
Sso7d-Taq fusion protein purified using a single step of aqueous Two-Phase Extraction (ATPE) is >95% pure and is active. The S-Taq protein has higher thermostability and detergent tolerance over regular Taq polymerase and can be used for PCR's from direct whole blood. The PCR efficiency rate of S-Taq is higher than Taq polymerase and can be used to detect DNA viruses in a clinical setting efficiently. S-Taq can tolerate higher concentrations of magnesium ions and can be used for in-situ PCR’s. S-Taq can be used to carry out PCR’s of bacterial recombinants directly from the overnight culture since it is resistant to inhibition to Luria Bertani broth. This unique property of S-Taq will enable researchers to screen recombinants without the need to isolate the plasmid DNA of recombinants. This would be a huge cost savings for companies engaged in molecular biology research involving PCR’s.
Using Sso7d from Sulfolobus solfataricus as the DNA binding protein fused to Taq DNA polymerase at its amino terminus, we report the hyper-expression and a novel purification methodology of Sso7d-Taq polymerase (S-Taq) using aqueous two-phase extraction system followed by Ni-affinity chromatography. The utility of such a fusion enzyme in carrying out PCR of human genes from whole blood directly and in detecting hepatitis B virus from clinical samples is demonstrated in this article. We present data on the enhanced thermo-stability of S-Taq DNA polymerase over Taq DNA polymerase and also provide evidence of its higher stability with detergents in comparison to Taq polymerase. The purified S-Taq protein showed acceptable limits of host genomic DNA levels without the use of DNases and other DNA precipitating agents and shows promising potential for use in PCR based diagnostics, in-situ PCR’s and forensic science.
Collapse
|
18
|
Hayashi T, Teruya T, Chaleckis R, Morigasaki S, Yanagida M. S-Adenosylmethionine Synthetase Is Required for Cell Growth, Maintenance of G0 Phase, and Termination of Quiescence in Fission Yeast. iScience 2018; 5:38-51. [PMID: 30240645 PMCID: PMC6123894 DOI: 10.1016/j.isci.2018.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine is an important compound, because it serves as the methyl donor in most methyl transfer reactions, including methylation of proteins, nucleic acids, and lipids. However, cellular defects in the genetic disruption of S-adenosylmethionine synthesis are not well understood. Here, we report the isolation and characterization of temperature-sensitive mutants of fission yeast S-adenosylmethionine synthetase (Sam1). Levels of S-adenosylmethionine and methylated histone H3 were greatly diminished in sam1 mutants. sam1 mutants stopped proliferating in vegetative culture and arrested specifically in G2 phase without cell elongation. Furthermore, sam1 mutants lost viability during nitrogen starvation-induced G0 phase quiescence. After release from the G0 state, sam1 mutants could neither increase in cell size nor re-initiate DNA replication in the rich medium. Sam1 is thus required for cell growth and proliferation, and maintenance of and exit from quiescence. sam1 mutants lead to broad cellular and drug response defects, as expected, since S. pombe contains more than 90 S-adenosylmethionine-dependent methyltransferases.
Collapse
Affiliation(s)
- Takeshi Hayashi
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Takayuki Teruya
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Romanas Chaleckis
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Susumu Morigasaki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
19
|
Zeinali F, Homaei A, Kamrani E, Patel S. Use of Cu/Zn-superoxide dismutase tool for biomonitoring marine environment pollution in the Persian Gulf and the Gulf of Oman. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:236-241. [PMID: 29353173 DOI: 10.1016/j.ecoenv.2018.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Superoxide dismutase (SOD) is the pivotal antioxidant enzyme that defends organisms against the oxidative stresses of superoxide radicals. In this experimental study, purification of SOD from the leaves of Avicennia marina (grey mangrove or white mangrove) from the family Acanthaceae, located in Sirik mangrove forest on the shore of the Gulf of Oman was performed, for the intended characterization of SOD. The Sirik AmSOD (A. marina SOD) expressed optimum activity in the pH range of 6-9 with the maximum activity at pH 8. The optimal temperature for Sirik AmSOD activity was 70°C. Comparison of the pH and temperature optima in two regions (the Persian Gulf and the Gulf of Oman) showed significant differences with P<0.05. The SOD from the Persian Gulf was more resistant against the environmental stressors, because of the biochemical adaption to this environment, which is harsher. The evidence from these results suggests that AmSOD has different characteristics in each place, and mangroves undergo different adaptations and require different protections. The results of the enzymatic research can be useful for ecological management of organisms.
Collapse
Affiliation(s)
- Farrokhzad Zeinali
- Department of Marine Biology, Faculty of Sciences, Hormozgan University, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, Hormozgan University, Bandarabbas, Iran.
| | - Ehsan Kamrani
- Department of Marine Biology, Faculty of Sciences, Hormozgan University, Bandarabbas, Iran; Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
| |
Collapse
|
20
|
Sebastián-Martín A, Barrioluengo V, Menéndez-Arias L. Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep 2018; 8:627. [PMID: 29330371 PMCID: PMC5766491 DOI: 10.1038/s41598-017-18974-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
In M13mp2 lacZα forward mutation assays measuring intrinsic fidelity of DNA-dependent DNA synthesis, wild-type human immunodeficiency virus type 1 (HIV-1) RTs of group M/subtype B previously showed >10-fold higher error rates than murine leukaemia virus (MLV) and avian myeloblastosis virus (AMV) RTs. An adapted version of the assay was used to obtain error rates of RNA-dependent DNA synthesis for several RTs, including wild-type HIV-1BH10, HIV-1ESP49, AMV and MLV RTs, and the high-fidelity mutants of HIV-1ESP49 RT K65R and K65R/V75I. Our results showed that there were less than two-fold differences in fidelity between the studied RTs with error rates ranging within 2.5 × 10-5 and 3.5 × 10-5. These results were consistent with the existence of a transcriptional inaccuracy threshold, generated by the RNA polymerase while synthesizing the RNA template used in the assay. A modest but consistent reduction of the inaccuracy threshold was achieved by lowering the pH and Mg2+ concentration of the transcription reaction. Despite assay limitations, we conclude that HIV-1BH10 and HIV-1ESP49 RTs are less accurate when copying DNA templates than RNA templates. Analysis of the RNA-dependent mutational spectra revealed a higher tendency to introduce large deletions at the initiation of reverse transcription by all HIV-1 RTs except the double-mutant K65R/V75I.
Collapse
Affiliation(s)
- Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Verónica Barrioluengo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049, Madrid, Spain
- DiaSorin Iberia S.A., Avenida de la Vega 1, 28108, Alcobendas (Madrid), Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Kietrys AM, Velema WA, Kool ET. Fingerprints of Modified RNA Bases from Deep Sequencing Profiles. J Am Chem Soc 2017; 139:17074-17081. [PMID: 29111692 PMCID: PMC5819333 DOI: 10.1021/jacs.7b07914] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posttranscriptional modifications of RNA bases are not only found in many noncoding RNAs but have also recently been identified in coding (messenger) RNAs as well. They require complex and laborious methods to locate, and many still lack methods for localized detection. Here we test the ability of next-generation sequencing (NGS) to detect and distinguish between ten modified bases in synthetic RNAs. We compare ultradeep sequencing patterns of modified bases, including miscoding, insertions and deletions (indels), and truncations, to unmodified bases in the same contexts. The data show widely varied responses to modification, ranging from no response, to high levels of mutations, insertions, deletions, and truncations. The patterns are distinct for several of the modifications, and suggest the future use of ultradeep sequencing as a fingerprinting strategy for locating and identifying modifications in cellular RNAs.
Collapse
Affiliation(s)
- Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Willem A. Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
22
|
Cárcamo E, Roldán-Salgado A, Osuna J, Bello-Sanmartin I, Yáñez JA, Saab-Rincón G, Viadiu H, Gaytán P. Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly. ACS OMEGA 2017; 2:3183-3191. [PMID: 30023688 PMCID: PMC6044943 DOI: 10.1021/acsomega.7b00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 06/08/2023]
Abstract
In vitro mutagenesis methods have revolutionized biological research and the biotechnology industry. In this study, we describe a mutagenesis method based on synthesizing a gene using a complete set of forward and reverse spiked oligonucleotides that have been modified to introduce a low ratio of mutant nucleotides at each position. This novel mutagenesis scheme named "Spiked Genes" yields a library of clones with an enhanced mutation distribution due to its unbiased nucleotide incorporation. Using the far-red fluorescent protein emKate as a model, we demonstrated that Spiked Genes yields richer libraries than those obtained via enzymatic methods. We obtained a library without bias toward any nucleotide or base pair and with even mutations, transitions, and transversion frequencies. Compared with enzymatic methods, the proposed synthetic approach for the creation of gene libraries represents an improved strategy for screening protein variants and does not require a starting template.
Collapse
Affiliation(s)
- Edson Cárcamo
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Abigail Roldán-Salgado
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Joel Osuna
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Iván Bello-Sanmartin
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jorge A. Yáñez
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Gloria Saab-Rincón
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Héctor Viadiu
- Instituto
de Química, Universidad Nacional
Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad
de Mexico 04510, México
| | - Paul Gaytán
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
23
|
Potapov V, Ong JL. Examining Sources of Error in PCR by Single-Molecule Sequencing. PLoS One 2017; 12:e0169774. [PMID: 28060945 PMCID: PMC5218489 DOI: 10.1371/journal.pone.0169774] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 01/28/2023] Open
Abstract
Next-generation sequencing technology has enabled the detection of rare genetic or somatic mutations and contributed to our understanding of disease progression and evolution. However, many next-generation sequencing technologies first rely on DNA amplification, via the Polymerase Chain Reaction (PCR), as part of sample preparation workflows. Mistakes made during PCR appear in sequencing data and contribute to false mutations that can ultimately confound genetic analysis. In this report, a single-molecule sequencing assay was used to comprehensively catalog the different types of errors introduced during PCR, including polymerase misincorporation, structure-induced template-switching, PCR-mediated recombination and DNA damage. In addition to well-characterized polymerase base substitution errors, other sources of error were found to be equally prevalent. PCR-mediated recombination by Taq polymerase was observed at the single-molecule level, and surprisingly found to occur as frequently as polymerase base substitution errors, suggesting it may be an underappreciated source of error for multiplex amplification reactions. Inverted repeat structural elements in lacZ caused polymerase template-switching between the top and bottom strands during replication and the frequency of these events were measured for different polymerases. For very accurate polymerases, DNA damage introduced during temperature cycling, and not polymerase base substitution errors, appeared to be the major contributor toward mutations occurring in amplification products. In total, we analyzed PCR products at the single-molecule level and present here a more complete picture of the types of mistakes that occur during DNA amplification.
Collapse
Affiliation(s)
- Vladimir Potapov
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jennifer L. Ong
- New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function. J Bacteriol 2016; 198:3186-3199. [PMID: 27645388 DOI: 10.1128/jb.00423-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023] Open
Abstract
ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Cout configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit. IMPORTANCE The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic and in silico studies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO.
Collapse
|
25
|
Comparison of point-of-care-compatible lysis methods for bacteria and viruses. J Microbiol Methods 2016; 128:80-87. [DOI: 10.1016/j.mimet.2016.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022]
|
26
|
Fungtammasan A, Tomaszkiewicz M, Campos-Sánchez R, Eckert KA, DeGiorgio M, Makova KD. Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats. Mol Biol Evol 2016; 33:2744-58. [PMID: 27413049 PMCID: PMC5026258 DOI: 10.1093/molbev/msw139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA–DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD.
Collapse
Affiliation(s)
- Arkarachai Fungtammasan
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University Huck Institute of Genome Sciences, Pennsylvania State University
| | - Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University
| | - Rebeca Campos-Sánchez
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University
| | - Kristin A Eckert
- Center for Medical Genomics, Pennsylvania State University Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University Institute for CyberScience, Pennsylvania State University
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University Center for Medical Genomics, Pennsylvania State University Huck Institute of Genome Sciences, Pennsylvania State University
| |
Collapse
|
27
|
Lee DF, Lu J, Chang S, Loparo JJ, Xie XS. Mapping DNA polymerase errors by single-molecule sequencing. Nucleic Acids Res 2016; 44:e118. [PMID: 27185891 PMCID: PMC5291262 DOI: 10.1093/nar/gkw436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/07/2016] [Indexed: 01/24/2023] Open
Abstract
Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replication product is tagged with a unique nucleotide sequence before amplification. This allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.
Collapse
Affiliation(s)
- David F Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jenny Lu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoliang S Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Karamychev VN, Panyutin IG, Neumann RD, Zhurkin VB. DNA and RNA folds in transcription complex as evidenced by iodine-125 radioprobing. J Biomol Struct Dyn 2016; 17 Suppl 1:155-67. [PMID: 22607419 DOI: 10.1080/07391102.2000.10506616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract Folding of the DNA and RNA strands in an arrested T7 RNA polymerase (RNAP) transcription complex was studied by radioprobing, a novel method based on an analysis of the strand breaks produced by decay of the iodine-125 incorporated at the C5 position of cytosine. (125)I-labeled cytosines were incorporated into transcripts at different positions relative to the site of the arrest. The intensities of the DNA breaks inversely correlate with the distances from the (125)I decay site, so the radioprobing data provide information about the spatial RNA/DNA folding during transcription. We found that the yield of DNA strand breaks is significantly higher in the template than the non-template strand. This is consistent with local opening of the DNA duplex and formation of a hybrid between RNA and the template DNA strand. Our data demonstrate that the RNA-DNA hybrid has a nonuni form A-like structure. When the (125)I is incorporatedseven nucleotides from the active center of RNAP, the yield of strand breaks is substantially lower than if (125)I is positioned at the ends of the hybrid. Consequently, the DNA and RNA strands are located closer to each other at the ends of the hybrid and somehow separated in the middle. Surprisingly, the (125)I-induced breaks were detected in both DNA strands upstream from the transcription "bubble" indicating that DNA and RNA are closely associated outside the RNAP cleft. Thus, radioprobing data imply that the RNA/DNA fold in the complex with T7 RNAP is more complicated than had been anticipated by the existing models. Based on the present data, we suggest a sterically feasible model explaining how formation of the long RNA-DNA hybrid can result in the initiation-to-elongation switch in the T7 transcription complex. According to this model, the topological linkage between the DNA and RNA strands provides the necessary stability for the elongation complex, while permitting movement of the polymerase along the DNA duplex.
Collapse
Affiliation(s)
- V N Karamychev
- a Department of Nuclear Medicine, Warren G. Magnuson Clinical Center
| | | | | | | |
Collapse
|
29
|
Alkhedir H, Karlovsky P, Mashaly AMA, Vidal S. Phylogenetic Relationships of the Symbiotic Bacteria in the Aphid Sitobion avenae (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2015; 44:1358-1366. [PMID: 26314016 DOI: 10.1093/ee/nvv114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Aphids have developed symbiotic associations with different bacterial species, and some morphological and molecular analyses have provided evidence of the host relationship between the primary symbiotic bacteria (Buchnera aphidicola) and the aphid while the contrary with the secondary symbiotic bacteria. In this study, we investigated the phylogenetic relationships of the bacterial endosymbionts in the aphid Sitobion avenae (F.). We characterized all bacterial endosymbionts in 10 genetically defined S. avenae clones by denaturing gradient gel electrophoresis and, from these clones, sequenced the 16S rRNA genes of both the primary endosymbiont, B. aphidicola (for the first time), and the secondary endosymbionts, Regiella insecticola and Hamiltonella defensa (for the first time). The phylogenetic analysis indicated that Buchnera from Sitobion related to those in Macrosiphoni. The analysis of the secondary endosymbionts indicated that there is no host relationship between H. defensa and R. insecticola from Sitobion and those from other aphid species. In this study, therefore, we identified further evidence for the relationship between Buchnera and its host and reported a relationship within the secondary endosymbionts of S. avenae from the same country, even though there were no relationships between the secondary bacteria and their host. We also discussed the diversity within the symbiotic bacteria in S. avenae clones.
Collapse
Affiliation(s)
- Hussein Alkhedir
- Agricultural Entomology, Georg-August-University Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany. Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany.
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Ashraf Mohamed Ali Mashaly
- Department of Zoology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia. Department of Zoology, Faculty of Science, Minia University, 61519 El Minia, Egypt
| | - Stefan Vidal
- Agricultural Entomology, Georg-August-University Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| |
Collapse
|
30
|
Takata KI, Tomida J, Reh S, Swanhart LM, Takata M, Hukriede NA, Wood RD. Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase ν (POLN). J Biol Chem 2015; 290:24278-93. [PMID: 26269593 PMCID: PMC4591814 DOI: 10.1074/jbc.m115.677419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase ν (POLN) is one of 16 DNA polymerases encoded in vertebrate genomes. It is important to determine its gene expression patterns, biological roles, and biochemical activities. By quantitative analysis of mRNA expression, we found that POLN from the zebrafish Danio rerio is expressed predominantly in testis. POLN is not detectably expressed in zebrafish embryos or in mouse embryonic stem cells. Consistent with this, injection of POLN-specific morpholino antisense oligonucleotides did not interfere with zebrafish embryonic development. Analysis of transcripts revealed that vertebrate POLN has an unusual gene expression arrangement, sharing a first exon with HAUS3, the gene encoding augmin-like complex subunit 3. HAUS3 is broadly expressed in embryonic and adult tissues, in contrast to POLN. Differential expression of POLN and HAUS3 appears to arise by alternate splicing of transcripts in mammalian cells and zebrafish. When POLN was ectopically overexpressed in human cells, it specifically coimmunoprecipitated with the homologous recombination factors BRCA1 and FANCJ, but not with previously suggested interaction partners (HELQ and members of the Fanconi anemia core complex). Purified zebrafish POLN protein is capable of thymine glycol bypass and strand displacement, with activity dependent on a basic amino acid residue known to stabilize the primer-template. These properties are conserved with the human enzyme. Although the physiological function of pol ν remains to be clarified, this study uncovers distinctive aspects of its expression control and evolutionarily conserved properties of this DNA polymerase.
Collapse
Affiliation(s)
- Kei-Ichi Takata
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030,
| | - Junya Tomida
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Shelley Reh
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Lisa M Swanhart
- the Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Minoru Takata
- the Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Neil A Hukriede
- the Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Richard D Wood
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, the University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| |
Collapse
|
31
|
Abstract
Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.
Collapse
Affiliation(s)
- Michael S Packer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
32
|
St Charles JA, Liberti SE, Williams JS, Lujan SA, Kunkel TA. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair (Amst) 2015; 31:41-51. [PMID: 25996407 DOI: 10.1016/j.dnarep.2015.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/13/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022]
Abstract
Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.
Collapse
Affiliation(s)
- Jordan A St Charles
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Sascha E Liberti
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
33
|
Martina CE, Lapenta F, Montón Silva A, Hochkoeppler A. HoLaMa: A Klenow sub-fragment lacking the 3'-5' exonuclease domain. Arch Biochem Biophys 2015; 575:46-53. [PMID: 25906742 DOI: 10.1016/j.abb.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 11/30/2022]
Abstract
The design, construction, overexpression, and purification of a Klenow sub-fragment lacking the 3'-5' exonuclease domain is presented here. In particular, a synthetic gene coding for the residues 515-928 of Escherichia coli DNA polymerase I was constructed. To improve the solubility and stability of the corresponding protein, the synthetic gene was designed to contain 11 site-specific substitutions. The gene was inserted into the pBADHis expression vector, generating 2 identical Klenow sub-fragments, bearing or not a hexahistidine tag. Both these Klenow sub-fragments, denominated HoLaMa and HoLaMaHis, were purified, and their catalytic properties were compared to those of Klenow enzyme. When DNA polymerase activity was assayed under processive conditions, the Klenow enzyme performed much better than HoLaMa and HoLaMaHis. However, when DNA polymerase activity was assayed under distributive conditions, the initial velocity of the reaction catalyzed by HoLaMa was comparable to that observed in the presence of Klenow enzyme. In particular, under distributive conditions HoLaMa was found to strongly prefer dsDNAs bearing a short template overhang, to the length of which the Klenow enzyme was relatively insensitive. Overall, our observations indicate that the exonuclease domain of the Klenow enzyme, besides its proofreading activity, does significantly contribute to the catalytic efficiency of DNA elongation.
Collapse
Affiliation(s)
- Cristina Elisa Martina
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Fabio Lapenta
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alejandro Montón Silva
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
34
|
Fungtammasan A, Ananda G, Hile SE, Su MSW, Sun C, Harris R, Medvedev P, Eckert K, Makova KD. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications. Genome Res 2015; 25:736-49. [PMID: 25823460 PMCID: PMC4417121 DOI: 10.1101/gr.185892.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/16/2015] [Indexed: 11/24/2022]
Abstract
Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution.
Collapse
Affiliation(s)
- Arkarachai Fungtammasan
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Guruprasad Ananda
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802, USA
| | - Suzanne E Hile
- Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Marcia Shu-Wei Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chen Sun
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Medvedev
- Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802, USA; Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kristin Eckert
- Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Center for Medical Genomics, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Science Institute at the Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
35
|
Bavarva JH, Bavarva MJ, Karunasena E. Next in line in next-generation sequencing: are we there yet? Pharmacogenomics 2015; 16:1-4. [PMID: 25560466 DOI: 10.2217/pgs.14.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jasmin H Bavarva
- Biospecimen Research Group, Leidos Biomedical Research, Inc. (Formerly SAIC-Frederick), Frederick National Laboratory for Cancer Research (NIH/NCI), Rockville, MD 20852, USA
| | | | | |
Collapse
|
36
|
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int 2014; 2014:287430. [PMID: 25197572 PMCID: PMC4150459 DOI: 10.1155/2014/287430] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.
Collapse
|
37
|
Castillo-Lizardo M, Henneke G, Viguera E. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi. Front Microbiol 2014; 5:403. [PMID: 25177316 PMCID: PMC4134008 DOI: 10.3389/fmicb.2014.00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab) slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+) and exonuclease deficient (exo-) forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity P. furiosus (Pfu) DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.
Collapse
Affiliation(s)
- Melissa Castillo-Lizardo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Malaga Málaga, Spain
| | - Ghislaine Henneke
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Institut Français de Recherche pour l'Exploitation de la Mer, Université de Bretagne Occidentale Plouzané, France ; CNRS, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes Plouzané, France
| | - Enrique Viguera
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Malaga Málaga, Spain
| |
Collapse
|
38
|
Achuthan V, Keith BJ, Connolly BA, DeStefano JJ. Human immunodeficiency virus reverse transcriptase displays dramatically higher fidelity under physiological magnesium conditions in vitro. J Virol 2014; 88:8514-27. [PMID: 24850729 PMCID: PMC4135932 DOI: 10.1128/jvi.00752-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The fidelity of human immunodeficiency virus (HIV) reverse transcriptase (RT) has been a subject of intensive investigation. The mutation frequencies for the purified enzyme in vitro vary widely but are typically in the 10(-4) range (per nucleotide addition), making the enzyme severalfold less accurate than most polymerases, including other RTs. This has often been cited as a factor in HIV's accelerated generation of genetic diversity. However, cellular experiments suggest that HIV does not have significantly lower fidelity than other retroviruses and shows a mutation frequency in the 10(-5) range. In this report, we reconcile, at least in part, these discrepancies by showing that HIV RT fidelity in vitro is in the same range as cellular results from experiments conducted with physiological (for lymphocytes) concentrations of free Mg(2+) (~0.25 mM) and is comparable to Moloney murine leukemia virus (MuLV) RT fidelity. The physiological conditions produced mutation rates that were 5 to 10 times lower than those obtained under typically employed in vitro conditions optimized for RT activity (5 to 10 mM Mg(2+)). These results were consistent in both commonly used lacZα complementation and steady-state fidelity assays. Interestingly, although HIV RT showed severalfold-lower fidelity under high-Mg(2+) (6 mM) conditions, MuLV RT fidelity was insensitive to Mg(2+). Overall, the results indicate that the fidelity of HIV replication in cells is compatible with findings of experiments carried out in vitro with purified HIV RT, providing more physiological conditions are used. IMPORTANCE Human immunodeficiency virus rapidly evolves through the generation and subsequent selection of mutants that can circumvent the immune response and escape drug therapy. This process is fueled, in part, by the presumably highly error-prone HIV polymerase reverse transcriptase (RT). Paradoxically, results of studies examining HIV replication in cells indicate an error frequency that is ~10 times lower than the rate for RT in the test tube, which invokes the possibility of factors that make RT more accurate in cells. This study brings the cellular and test tube results in closer agreement by showing that HIV RT is not more error prone than other RTs and, when assayed under physiological magnesium conditions, has a much lower error rate than in typical assays conducted using conditions optimized for enzyme activity.
Collapse
Affiliation(s)
- Vasudevan Achuthan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
39
|
Pereira AM, de Pinheiro CGM, Dos Santos LR, Teixeira NC, Chang YF, Pontes-de-Carvalho LC, de Sá Oliveira GG. Requirement of dual stimulation by homologous recombinant IL-2 and recombinant IL-12 for the in vitro production of interferon gamma by canine peripheral blood mononuclear cells. BMC Res Notes 2014; 7:460. [PMID: 25037233 PMCID: PMC4109786 DOI: 10.1186/1756-0500-7-460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
Background Very few studies have been carried out so far aiming at modulating cellular immune responses in dogs. In this study, we evaluated the ability of recombinant canine IL-2 (rcaIL-2) and IL-12, in the form of a single-chain fusion protein (rsccaIL-12), to stimulate peripheral blood mononuclear cells (PBMC) of healthy mongrel dogs. Results Recombinant canine IL-2 purified from Escherichia coli or present in the supernatant of COS-7 cells transfected with pcDNA3.1-caIL-2 (COS-7 caIL-2 supernatant) was able to induce proliferation of CTLL-2 cells, thus showing their functional activity. In addition, purified rcaIL-2 and COS-7 caIL-2 supernatant stimulated resting canine PBMC proliferation to a level higher than baseline level. Neither COS-7 sccaIL-12 supernatant nor COS-7 caIL-2 supernatant alone was able to induce significant production of interferon gamma by resting PBMC. However, COS-7 sccaIL-12 supernatant in combination with COS-7 caIL-2 supernatant induced production of IFN-γ by those cells. Conclusions The data shown herein suggest that the combination of canine recombinant IL-12 and IL-2 can be useful to promote cellular immune responses in dogs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Geraldo Gileno de Sá Oliveira
- Laboratório de Patologia e Bio-Intervenção, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, No, 121, Candeal, Salvador, Bahia, Brazil.
| |
Collapse
|
40
|
Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genet Med 2014; 16:962-71. [PMID: 24901348 PMCID: PMC4272251 DOI: 10.1038/gim.2014.66] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Mitochondrial disorders are a common cause of inherited metabolic disease and can be due to mutations affecting mitochondrial DNA or nuclear DNA. The current diagnostic approach involves the targeted resequencing of mitochondrial DNA and candidate nuclear genes, usually proceeds step by step, and is time consuming and costly. Recent evidence suggests that variations in mitochondrial DNA sequence can be obtained from whole-exome sequence data, raising the possibility of a comprehensive single diagnostic test to detect pathogenic point mutations. METHODS We compared the mitochondrial DNA sequence derived from off-target exome reads with conventional mitochondrial DNA Sanger sequencing in 46 subjects. RESULTS Mitochondrial DNA sequences can be reliably obtained using three different whole-exome sequence capture kits. Coverage correlates with the relative amount of mitochondrial DNA in the original genomic DNA sample, heteroplasmy levels can be determined using variant and total read depths, and-providing there is a minimum read depth of 20-fold-rare sequencing errors occur at a rate similar to that observed with conventional Sanger sequencing. CONCLUSION This offers the prospect of using whole-exome sequence in a diagnostic setting to screen not only all protein coding nuclear genes but also all mitochondrial DNA genes for pathogenic mutations. Off-target mitochondrial DNA reads can also be used to assess quality control and maternal ancestry, inform on ethnic origin, and allow genetic disease association studies not previously anticipated with existing whole-exome data sets.
Collapse
|
41
|
Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014; 9:171-81. [PMID: 24385147 DOI: 10.1038/nprot.2014.006] [Citation(s) in RCA: 2741] [Impact Index Per Article: 249.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Emerging methods for the accurate quantification of gene expression in individual cells hold promise for revealing the extent, function and origins of cell-to-cell variability. Different high-throughput methods for single-cell RNA-seq have been introduced that vary in coverage, sensitivity and multiplexing ability. We recently introduced Smart-seq for transcriptome analysis from single cells, and we subsequently optimized the method for improved sensitivity, accuracy and full-length coverage across transcripts. Here we present a detailed protocol for Smart-seq2 that allows the generation of full-length cDNA and sequencing libraries by using standard reagents. The entire protocol takes ∼2 d from cell picking to having a final library ready for sequencing; sequencing will require an additional 1-3 d depending on the strategy and sequencer. The current limitations are the lack of strand specificity and the inability to detect nonpolyadenylated (polyA(-)) RNA.
Collapse
Affiliation(s)
| | | | - Asa K Björklund
- 1] Ludwig Institute for Cancer Research, Stockholm, Sweden. [2] Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gösta Winberg
- 1] Ludwig Institute for Cancer Research, Stockholm, Sweden. [2] Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sagasser
- 1] Ludwig Institute for Cancer Research, Stockholm, Sweden. [2] Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rickard Sandberg
- 1] Ludwig Institute for Cancer Research, Stockholm, Sweden. [2] Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2013; 97:10243-54. [DOI: 10.1007/s00253-013-5290-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
|
43
|
Ameta S, Winz ML, Previti C, Jäschke A. Next-generation sequencing reveals how RNA catalysts evolve from random space. Nucleic Acids Res 2013; 42:1303-10. [PMID: 24157838 PMCID: PMC3902939 DOI: 10.1093/nar/gkt949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Catalytic RNAs are attractive objects for studying molecular evolution. To understand how RNA libraries can evolve from randomness toward highly active catalysts, we analyze the original samples that led to the discovery of Diels-Alderase ribozymes by next-generation sequencing. Known structure-activity relationships are used to correlate abundance with catalytic performance. We find that efficient catalysts arose not just from selection for reactivity among the members of the starting library, but from improvement of less potent precursors by mutations. We observe changes in the ribozyme population in response to increasing selection pressure. Surprisingly, even after many rounds of enrichment, the libraries are highly diverse, suggesting that potential catalysts are more abundant in random space than generally thought. To highlight the use of next-generation sequencing as a tool for in vitro selections, we also apply this technique to a recent, less characterized ribozyme selection. Making use of the correlation between sequence evolution and catalytic activity, we predict mutations that improve ribozyme activity and validate them biochemically. Our study reveals principles underlying ribozyme in vitro selections and provides guidelines to render future selections more efficient, as well as to predict the conservation of key structural elements, allowing the rational improvement of catalysts.
Collapse
Affiliation(s)
- Sandeep Ameta
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120-Heidelberg, Germany and High Throughput Sequencing Core Facility, German Cancer Research Center (DKFZ), 69120-Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Baumann T, Arndt KM, Müller KM. Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V. BMC Biotechnol 2013; 13:81. [PMID: 24090222 PMCID: PMC3856533 DOI: 10.1186/1472-6750-13-81] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/25/2013] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. RESULTS A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. CONCLUSIONS The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed.
Collapse
Affiliation(s)
- Tobias Baumann
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Room UHG E2-143 Universitätsstr, 25, Bielefeld 33615, Germany.
| | | | | |
Collapse
|
45
|
Gómez-Raja J, Larriba G. Reprint of Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 95:448-54. [PMID: 24055541 DOI: 10.1016/j.mimet.2013.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
46
|
Brodin J, Mild M, Hedskog C, Sherwood E, Leitner T, Andersson B, Albert J. PCR-induced transitions are the major source of error in cleaned ultra-deep pyrosequencing data. PLoS One 2013; 8:e70388. [PMID: 23894647 PMCID: PMC3720931 DOI: 10.1371/journal.pone.0070388] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022] Open
Abstract
Background Ultra-deep pyrosequencing (UDPS) is used to identify rare sequence variants. The sequence depth is influenced by several factors including the error frequency of PCR and UDPS. This study investigated the characteristics and source of errors in raw and cleaned UDPS data. Results UDPS of a 167-nucleotide fragment of the HIV-1 SG3Δenv plasmid was performed on the Roche/454 platform. The plasmid was diluted to one copy, PCR amplified and subjected to bidirectional UDPS on three occasions. The dataset consisted of 47,693 UDPS reads. Raw UDPS data had an average error frequency of 0.30% per nucleotide site. Most errors were insertions and deletions in homopolymeric regions. We used a cleaning strategy that removed almost all indel errors, but had little effect on substitution errors, which reduced the error frequency to 0.056% per nucleotide. In cleaned data the error frequency was similar in homopolymeric and non-homopolymeric regions, but varied considerably across sites. These site-specific error frequencies were moderately, but still significantly, correlated between runs (r = 0.15–0.65) and between forward and reverse sequencing directions within runs (r = 0.33–0.65). Furthermore, transition errors were 48-times more common than transversion errors (0.052% vs. 0.001%; p<0.0001). Collectively the results indicate that a considerable proportion of the sequencing errors that remained after data cleaning were generated during the PCR that preceded UDPS. Conclusions A majority of the sequencing errors that remained after data cleaning were introduced by PCR prior to sequencing, which means that they will be independent of platform used for next-generation sequencing. The transition vs. transversion error bias in cleaned UDPS data will influence the detection limits of rare mutations and sequence variants.
Collapse
Affiliation(s)
- Johanna Brodin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Montgomery JL, Rejali N, Wittwer CT. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence. Anal Biochem 2013; 441:133-9. [PMID: 23872003 DOI: 10.1016/j.ab.2013.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022]
Abstract
DNA polymerase activity was measured by a stopped-flow assay that monitors polymerase extension using an intercalating dye. Double-stranded DNA formation during extension of a hairpin substrate was monitored at 75°C for 2 min. Rates were determined in nucleotides per second per molecule of polymerase (nt/s) and were linear with time and polymerase concentration from 1 to 50 nM. The concentrations of 15 available polymerases were quantified and their extension rates determined in 50 mM Tris, pH 8.3, 0.5 mg/ml BSA, 2 mM MgCl₂, and 200 μM each dNTP as well as their commercially recommended buffers. Native Taq polymerases had similar extension rates of 10-45 nt/s. Three alternative polymerases showed faster speeds, including KOD (76 nt/s), Klentaq I (101 nt/s), and KAPA2G (155 nt/s). Fusion polymerases including Herculase II and Phusion were relatively slow (3-13 nt/s). The pH optimum for Klentaq extension was between 8.5 and 8.7 with no effect of Tris concentration. Activity was directly correlated to the MgCl2 concentration and inversely correlated to the KCl concentration. This continuous assay is relevant to PCR and provides accurate measurement of polymerase activity using a defined template without the need of radiolabeled substrates.
Collapse
Affiliation(s)
- Jesse L Montgomery
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
48
|
Sarkar P, Sardesai AA, Murakami KS, Chatterji D. Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the ω subunit. J Biol Chem 2013; 288:25076-25087. [PMID: 23843456 DOI: 10.1074/jbc.m113.468520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The widely conserved ω subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of ω is known to be substituted by GroEL in ω-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of ω variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to ω, which is largely unstructured, ω mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, ω6 bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that ω6 binds to β' subunit in vitro with greater affinity than that of ω. The reconstituted RNAP holoenzyme in the presence of ω6 in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant ω results in death of the cell. Furthermore, lethality of ω6 is relieved in cells expressing the rpoC2112 allele encoding β'2112, a variant β' bearing Y457S substitution, immediately adjacent to the β' catalytic center. Our results suggest that the enhanced ω6-β' interaction may perturb the plasticity of the RNAP active center, implicating a role for ω and its flexible state.
Collapse
Affiliation(s)
- Paramita Sarkar
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Abhijit A Sardesai
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, and
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dipankar Chatterji
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India,.
| |
Collapse
|
49
|
Gómez-Raja J, Larriba G. Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 94:47-53. [PMID: 23631908 DOI: 10.1016/j.mimet.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
50
|
Keith BJ, Jozwiakowski SK, Connolly BA. A plasmid-based lacZα gene assay for DNA polymerase fidelity measurement. Anal Biochem 2012; 433:153-61. [PMID: 23098700 PMCID: PMC3552156 DOI: 10.1016/j.ab.2012.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
A significantly improved DNA polymerase fidelity assay, based on a gapped plasmid containing the lacZα reporter gene in a single-stranded region, is described. Nicking at two sites flanking lacZα, and removing the excised strand by thermocycling in the presence of complementary competitor DNA, is used to generate the gap. Simple methods are presented for preparing the single-stranded competitor. The gapped plasmid can be purified, in high amounts and in a very pure state, using benzoylated-naphthoylated DEAE-cellulose, resulting in a low background mutation frequency (~1 × 10(-4)). Two key parameters, the number of detectable sites and the expression frequency, necessary for measuring polymerase error rates have been determined. DNA polymerase fidelity is measured by gap filling in vitro, followed by transformation into Escherichia coli and scoring of blue/white colonies and converting the ratio to error rate. Several DNA polymerases have been used to fully validate this straightforward and highly sensitive system.
Collapse
Affiliation(s)
- Brian J Keith
- Institute of Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | |
Collapse
|