1
|
Iakhiaeva E, Iakhiaev A, Zwieb C. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA. BMC Mol Biol 2010; 11:83. [PMID: 21073748 PMCID: PMC2995471 DOI: 10.1186/1471-2199-11-83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/13/2010] [Indexed: 12/04/2022] Open
Abstract
Background Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, Texas 75708, USA
| | | | | |
Collapse
|
2
|
Miralles F. Compositional properties and thermal adaptation of SRP-RNA in bacteria and archaea. J Mol Evol 2010; 70:181-9. [PMID: 20069286 DOI: 10.1007/s00239-009-9319-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have reported a positive correlation between the GC content of the double-stranded regions of structural RNAs and the optimal growth temperature (OGT) in prokaryotes. These observations led to the hypothesis that natural selection favors an increase in GC content to ensure the correct folding and the structural stability of the molecule at high temperature. To date these studies have focused mainly on ribosomal and transfer RNAs. Therefore, we addressed the question of the relationship between GC content and OGT in a different and universally conserved structural RNA, the RNA component of the signal recognition particle (SRP). To this end we generated the secondary structures of SRP-RNAs for mesophilic, thermophilic, and hyperthermophilic bacterial and archaeal species. The analysis of the GC content in the stems and loops of the SRP-RNA of these organisms failed to detect a relationship between the GC contents in the stems of this structural RNA and the growth temperature of bacteria. By contrast, we found that in archaea the GC content in the stem regions of SRP-RNA is highest in hyperthermophiles, intermediate in thermophiles, and lower in mesophiles. In these organisms, we demonstrated a clear positive correlation between the GC content of the stem regions of their SRP-RNAs and their OGT. This correlation was confirmed by a phylogenetic nonindependence analysis. Thus we conclude that in archaea the increase in GC content in the stem regions of SRP-RNA is an adaptation response to environmental temperature.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot-Paris 7, Bat. Buffon, 75205 Paris Cedex 13, France.
| |
Collapse
|
3
|
Anti-cooperative assembly of the SRP19 and SRP68/72 components of the signal recognition particle. Biochem J 2008; 415:429-37. [PMID: 18564060 DOI: 10.1042/bj20080569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian SRP (signal recognition particle) represents an important model for the assembly and role of inter-domain interactions in complex RNPs (ribonucleoproteins). In the present study we analysed the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apices of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either co-operative or energetically neutral interactions among components. By contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs.
Collapse
|
4
|
Iakhiaeva E, Wower J, Wower IK, Zwieb C. The 5e motif of eukaryotic signal recognition particle RNA contains a conserved adenosine for the binding of SRP72. RNA (NEW YORK, N.Y.) 2008; 14:1143-1153. [PMID: 18441046 PMCID: PMC2390789 DOI: 10.1261/rna.979508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/04/2008] [Indexed: 05/26/2023]
Abstract
The signal recognition particle (SRP) plays a pivotal role in transporting proteins to cell membranes. In higher eukaryotes, SRP consists of an RNA molecule and six proteins. The largest of the SRP proteins, SRP72, was found previously to bind to the SRP RNA. A fragment of human SRP72 (72c') bound effectively to human SRP RNA but only weakly to the similar SRP RNA of the archaeon Methanococcus jannaschii. Chimeras between the human and M. jannaschii SRP RNAs were constructed and used as substrates for 72c'. SRP RNA helical section 5e contained the 72c' binding site. Systematic alteration within 5e revealed that the A240G and A240C changes dramatically reduced the binding of 72c'. Human SRP RNA with a single A240G change was unable to form a complex with full-length human SRP72. Two small RNA fragments, one composed of helical section 5ef, the other of section 5e, competed equally well for the binding of 72c', demonstrating that no other regions of the SRPR RNA were required. The biochemical data completely agreed with the nucleotide conservation pattern observed across the phylogenetic spectrum. Thus, most eukaryotic SRP RNAs are likely to require for function an adenosine within their 5e motifs. The human 5ef RNA was remarkably resistant to ribonucleolytic attack suggesting that the 240-AUC-242 "loop" and its surrounding nucleotides form a peculiar compact structure recognized only by SRP72.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | | | |
Collapse
|
5
|
Maity TS, Weeks KM. A threefold RNA-protein interface in the signal recognition particle gates native complex assembly. J Mol Biol 2007; 369:512-24. [PMID: 17434535 PMCID: PMC1940241 DOI: 10.1016/j.jmb.2007.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/28/2022]
Abstract
Intermediate states play well-established roles in the folding and misfolding reactions of individual RNA and protein molecules. In contrast, the roles of transient structural intermediates in multi-component ribonucleoprotein (RNP) assembly processes and their potential for misassembly are largely unexplored. The SRP19 protein is unstructured but forms a compact core domain and two extended RNA-binding loops upon binding the signal recognition particle (SRP) RNA. The SRP54 protein subsequently binds to the fully assembled SRP19-RNA complex to form an intimate threefold interface with both SRP19 and the RNA and without significantly altering the structure of SRP19. We show, however, that the presence of SRP54 during SRP19-RNA assembly dramatically alters the folding energy landscape to create a non-native folding pathway that leads to an aberrant SRP19-RNA conformation. The misassembled complex arises from the surprising ability of SRP54 to bind rapidly to an SRP19-RNA assembly intermediate and to interfere with subsequent folding of one of the RNA binding loops at the three-way protein-RNA interface. An incorrect temporal order of assembly thus readily yields a non-native three-component ribonucleoprotein particle. We propose there may exist a general requirement to regulate the order of interaction in multi-component RNP assembly reactions by spatial or temporal compartmentalization of individual constituents in the cell.
Collapse
Affiliation(s)
- Tuhin Subhra Maity
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
6
|
Gao HW, Zhao JF, Yang QZ, Liu XH, Chen L, Pan LT. Non-covalent interaction of 2', 4', 5', 7'-tetrabromo-4, 5, 6, 7-tetrachlorofluorescein with proteins and its application. Proteomics 2006; 6:5140-51. [PMID: 16927425 DOI: 10.1002/pmic.200500715] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interactions of 2', 4', 5', 7'-tetrabromo-4, 5, 6, 7-tetrachlorofluorescein (TBTCF) with BSA, ovalbumin (OVA) and poly-L-lysine (PLYS) at pH 3.70 have been investigated by combination of the spectral correction technique and the Langmuir isothermal adsorption. The active connection actions such as ion pairs, van der Waals' force, hydrogen bond, hydrophobic bond were proposed to explain the non-covalent interaction between TBTCF and BSA, OVA and PLYS. Effects of the electrolyte and high temperature indicated that union of the active connections between TBTCF and BSA and OVA was too firm to be destroyed. The relationship between the binding number of TBTCF and variety fraction of the amino acid residues was analyzed. The binding number of TBTCF depended on the number of positively charged amino acid residues. The other amino acid residues surrounded and seized TBTCF by hydrogen bonds and hydrophobic bonds when the electrostatic attraction pulled TBTCF to link protein. In addition, a novel method named the absorbance ratio difference was established for determination of protein in trace level and was applied with much higher sensitivity than the ordinary method.
Collapse
Affiliation(s)
- Hong-Wen Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, P R China.
| | | | | | | | | | | |
Collapse
|
7
|
Iakhiaeva E, Bhuiyan SH, Yin J, Zwieb C. Protein SRP68 of human signal recognition particle: identification of the RNA and SRP72 binding domains. Protein Sci 2006; 15:1290-302. [PMID: 16672232 PMCID: PMC2242529 DOI: 10.1110/ps.051861406] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The signal recognition particle (SRP) plays an important role in the delivery of secretory proteins to cellular membranes. Mammalian SRP is composed of six polypeptides among which SRP68 and SRP72 form a heterodimer that has been notoriously difficult to investigate. Human SRP68 was purified from overexpressing Escherichia coli cells and was found to bind to recombinant SRP72 as well as in vitro-transcribed human SRP RNA. Polypeptide fragments covering essentially the entire SRP68 molecule were generated recombinantly or by proteolytic digestion. The RNA binding domain of SRP68 included residues from positions 52 to 252. Ninety-four amino acids near the C terminus of SRP68 mediated the binding to SRP72. The SRP68-SRP72 interaction remained stable at elevated salt concentrations and engaged approximately 150 amino acids from the N-terminal region of SRP72. This portion of SRP72 was located within a predicted tandem array of four tetratricopeptide (TPR)-like motifs suggested to form a superhelical structure with a groove to accommodate the C-terminal region of SRP68.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | | | |
Collapse
|
8
|
Yin J, Huang Q, Pakhomova ON, Hinck AP, Zwieb C. The conserved adenosine in helix 6 of Archaeoglobus fulgidus signal recognition particle RNA initiates SRP assembly. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:269-75. [PMID: 15810437 PMCID: PMC2685576 DOI: 10.1155/2004/134861] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The signal recognition particle (SRP) RNA helix 6 of archaea and eukaryotes is essential for the binding of protein SRP19 and the assembly of a functional complex. The conserved adenosine at the third position of the tetraloop of helix 6 (A149) is crucial for the binding of protein SRP19 in the mammalian SRP. Here we investigated the significance of the equivalent adenosine residue at position 159 (A159) of Archaeoglobus fulgidus SRP RNA. The A159 of A. fulgidus and A149 of human SRP RNA were changed to C, G or U, and fragments containing helix 6 or helices 6 and 8 were synthesized by run-off transcription with T7 RNA polymerase. The ability of recombinant A. fulgidus and human SRP19 to form ribonucleoprotein complexes was measured in vitro. The simultaneous presence of A149 and helix 8 is required for the high-affinity binding of SRP19 to the human SRP RNA. In contrast, A. fulgidus SRP19 binds to the SRP RNA fragments with high affinity irrespective of the nature of the nucleotide, demonstrating that A159 does not directly participate in protein binding. Instead, as indicated by the resistance of the wild-type A. fulgidus RNA towards digestion by RNase A, this residue allows the formation of a tightly folded RNA molecule. The high affinity between A.fulgidus SRP 19 and RNA molecules that contain both helices 6 and 8 suggests that A159 is likely to initiate archaeal SRP assembly by forming a conserved tertiary RNA-RNA interaction.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | - Qiaojia Huang
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
- Current address: Department of Laboratory Medicine, Fuzhou General Hospital, 156 North Xihuan Road, Fuzhou 350025, Fujian, P.R. China
| | - Olga N. Pakhomova
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Andrew P. Hinck
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Christian Zwieb
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
- Corresponding author ()
| |
Collapse
|
9
|
Sommerville J, Brumwell CL, Politz JCR, Pederson T. Signal recognition particle assembly in relation to the function of amplified nucleoli ofXenopusoocytes. J Cell Sci 2005; 118:1299-307. [PMID: 15741230 DOI: 10.1242/jcs.01726] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein machine that controls the translation and intracellular sorting of membrane and secreted proteins. The SRP contains a core RNA subunit with which six proteins are assembled. Recent work in both yeast and mammalian cells has identified the nucleolus as a possible initial site of SRP assembly. In the present study, SRP RNA and protein components were identified in the extrachromosomal, amplified nucleoli of Xenopus laevis oocytes. Fluorescent SRP RNA microinjected into the oocyte nucleus became specifically localized in the nucleoli, and endogenous SRP RNA was also detected in oocyte nucleoli by RNA in situ hybridization. An initial step in the assembly of SRP involves the binding of the SRP19 protein to SRP RNA. When green fluorescent protein (GFP)-tagged SRP19 protein was injected into the oocyte cytoplasm it was imported into the nucleus and became concentrated in the amplified nucleoli. After visiting the amplified nucleoli, GFP-tagged SRP19 protein was detected in the cytoplasm in a ribonucleoprotein complex, having a sedimentation coefficient characteristic of the SRP. These results suggest that the amplified nucleoli of Xenopus oocytes produce maternal stores not only of ribosomes, the classical product of nucleoli, but also of SRP, presumably as a global developmental strategy for stockpiling translational machinery for early embryogenesis.
Collapse
Affiliation(s)
- John Sommerville
- Division of Cell and Molecular Biology, School of Biology, University of St Andrews, KY16 9TS, UK.
| | | | | | | |
Collapse
|
10
|
Iakhiaeva E, Yin J, Zwieb C. Identification of an RNA-binding domain in human SRP72. J Mol Biol 2005; 345:659-66. [PMID: 15588816 DOI: 10.1016/j.jmb.2004.10.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/25/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022]
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex that plays a crucial role during the delivery of secretory proteins from the ribosome to the cell membrane. Among the six proteins of the eukaryotic SRP, the 72 kDa protein (SRP72) is the largest and least characterized. Polypeptides corresponding to various regions of the entire human SRP72 sequence were expressed in Escherichia coli, purified, and partially proteolyzed. Human SRP RNA bound with high affinity to a 63 amino acid residue region near the C terminus of SRP72. Mild treatment of the fragment with chymotrypsin abolished its RNA-binding activity. A conserved sequence with the consensus PDPXRWLPXXER was identified within a 56 amino acid residue RNA-binding domain. Sucrose gradient centrifugation and filter-binding analysis using mutant SRP RNAs showed that SRP72 bound to the moderately conserved portion of SRP RNA helix 5. Nine tetratricopeptide-like repeats (TPRs) poised to interact with other SRP or ribosomal proteins were predicted in the NH2-terminal region. These identifications assign two important functions to a large portion of SRP72 and demonstrate the RNA-binding capacity of the protein.
Collapse
Affiliation(s)
- Elena Iakhiaeva
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | | | |
Collapse
|
11
|
Yin J, Yang CH, Zwieb C. Two strategically placed base pairs in helix 8 of mammalian signal recognition particle RNA are crucial for the SPR19-dependent binding of protein SRP54. RNA (NEW YORK, N.Y.) 2004; 10:574-580. [PMID: 15037766 PMCID: PMC1370547 DOI: 10.1261/rna.5232404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 01/07/2004] [Indexed: 05/24/2023]
Abstract
Signal recognition particle (SRP) guides secretory proteins to biological membranes in all organisms. Assembly of the large domain of mammalian SRP requires binding of SRP19 prior to the binding of protein SRP54 to SRP RNA. The crystal structure of the ternary complex reveals the parallel arrangement of RNA helices 6 and 8, a bridging of the helices via a hydrogen bonded A149-A201 pair and protein SRP19, and two A minor motifs between the asymmetric loop of helix 8 (A213 and A214) and helix 6. We investigated which residues in helix 8 are responsible for the SRP19-dependent binding of SRP54 by taking advantage of the finding that binding of human SRP54 to Methanococcus jannaschii SRP RNA is independent of SRP19. Chimeric human/M. jannaschii SRP RNA molecules were synthesized containing predominantly human SRP RNA but possessing M. jannaschii SRP RNA-derived substitutions. Activities of the chimeric RNAs were measured with respect to protein SRP19 and the methionine-rich RNA-binding domain of protein SRP54 (SRP54M). Changing A213 and A214 to a uridine has no effect on the SRP19-dependent binding of SRP54M. Instead, the two base pairs C189-G210 and C190-G209, positioned between the conserved binding site of SRP54 and the asymmetric loop, are critical for conveying SRP19 dependency. Furthermore, the nucleotide composition of five base pairs surrounding the asymmetric loop affects binding of SRP54M significantly. These results demonstrate that subtle, and not easily perceived, structural differences are of crucial importance in the assembly of mammalian SRP.
Collapse
Affiliation(s)
- Jiaming Yin
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | |
Collapse
|
12
|
Abstract
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein that associates with ribosomes to mediate the targeting of membrane and secretory proteins to biological membranes. In higher eukaryotes, SRP biogenesis involves the sequential binding of SRP19 and SRP54 proteins to the S domain of 7S RNA. The recently determined crystal structures of SRP19 in complex with the S domain, and that of the ternary complex of SRP19, the S domain and the M domain of SRP54, provide insight into the molecular basis of S-domain assembly and SRP function.
Collapse
|
13
|
Tozik I, Huang Q, Zwieb C, Eichler J. Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Nucleic Acids Res 2002; 30:4166-75. [PMID: 12364595 PMCID: PMC140548 DOI: 10.1093/nar/gkf548] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukaryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 of the halophilic archaeon Haloferax volcanii have been expressed and purified, and used to reconstitute the ternary SRP complex. The availability of SRP components from a haloarchaeon offers insight into the structure, assembly and function of this ribonucleoprotein complex at saturating salt conditions. While the amino acid sequences of H.volcanii SRP19 and SRP54 are modified presumably as an adaptation to their saline surroundings, the interactions between these halophilic SRP components and SRP RNA appear conserved, with the possibility of a few exceptions. Indeed, the H.volcanii SRP can assemble in the absence of high salt. As reported with other archaeal SRPs, the limited binding of H.volcanii SRP54 to SRP RNA is enhanced in the presence of SRP19. Finally, immunolocalization reveals that H.volcanii SRP54 is found in the cytosolic fraction, where it is associated with the ribosomal fraction of the cell.
Collapse
Affiliation(s)
- Irit Tozik
- Department of Life Sciences, Ben Gurion University of the Negev, PO Box 653, Beersheva 84105, Israel
| | | | | | | |
Collapse
|
14
|
Pakhomova ON, Deep S, Huang Q, Zwieb C, Hinck AP. Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle. J Mol Biol 2002; 317:145-58. [PMID: 11916385 DOI: 10.1006/jmbi.2002.5411] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein SRP19 is an essential RNA-binding component of the signal recognition particle (SRP) in Archaea and Eucarya. A three-dimensional solution structure of the 104 residue SRP19 from the hyperthermophilic archaeon Archaeoglobus fulgidus, designated as Af19, was determined by NMR spectroscopy. Af19 contains three beta-strands, two alpha-helical regions, arranged in a betaalphabetabetaalpha topology, a 3(10) helix, and a disordered C-terminal tail. This fold is similar to the betaalphabetabetaalphabeta RNP motif present in numerous other RNA-binding proteins, which engage their cognate RNAs using conserved sequence motifs present within beta-strands 1 and 3. Mutagenesis studies of human SRP19, however, reveal the major contact sites with SRP RNA reside within loops 1, 3, and 4. These contacts were verified by the crystal structure of human SRP19 complexed to SRP RNA helix 6 reported subsequent to the submission of the manuscript. The crystal structure also reveals that, unlike canonical RNP motifs, SRP19 does not engage specific RNA bases through conserved sequence motifs present within beta-strands 1 and 3. Instead, SRP19 uses residues both within and flanking beta-strand 1 to stabilize the complex through direct and indirect contacts to the phosphate backbone of the tetraloop, leaving the bases of the tetraloop exposed. This, coupled with the fact that SRP19 appears relatively rigid and undergoes only minor changes in structure upon RNA binding, may underlie the molecular basis by which SRP19 functions to initiate SRP assembly.
Collapse
Affiliation(s)
- Olga N Pakhomova
- Department of Biochemistry, Center for Biomolecular Structure Analysis, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
15
|
Yin J, Yang CH, Zwieb C. Assembly of the human signal recognition particle (SRP): overlap of regions required for binding of protein SRP54 and assembly control. RNA (NEW YORK, N.Y.) 2001; 7:1389-1396. [PMID: 11680843 PMCID: PMC1370182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Assembly of the human signal recognition particle (SRP) entails the incorporation of protein SRP54, mediated by a protein SRP1 9-induced conformational change in SRP RNA. To localize the region that controls this crucial step in the assembly of human SRP RNA, four chimeras, Ch-1 to Ch-4, composed of portions of human and Methanococcus jannashii SRP RNAs, were generated by PCR site-directed mutagenesis from a larger precursor. Protein-binding activities of the hybrid RNAs were determined using purified human SRP19 and a polypeptide (SRP54M) that corresponded to the methionine-rich domain of human SRP54. Mutant Ch-1 containing the large domain of M. jannashii SRP RNA, as well as mutant Ch-2 RNA in which helices 6 and 8 were replaced, bound SRP54M independently of SRP19. Mutant Ch-3 RNA, which contained M. jannashii helix 6, required SRP19 for binding of SRP54M, but mutant Ch-4 RNA, which possessed M. jannashii helix 8, bound SRP54M without SRP19. We concluded that the formation of a stable ternary complex did not rely on extensive conformational changes that might take place throughout the large domain of SRP, but was controlled by a smaller region encompassing certain RNA residues at positions 177 to 221. Five chimeric RNAs altered within helix 8 were used to investigate the potential role of a significant AA-to-U change and to determine the boundaries of the assembly control region. Reduced protein-binding activities of these chimeras demonstrated a considerable overlap of regions required for SRP54 binding and assembly control.
Collapse
Affiliation(s)
- J Yin
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 75708-3154, USA
| | | | | |
Collapse
|
16
|
Bhuiyan SH, Pakhomova ON, Hinck AP, Zwieb C. Complexes with truncated RNAs from the large domain of Archaeoglobus fulgidus signal recognition particle. FEMS Microbiol Lett 2001; 198:105-10. [PMID: 11430398 DOI: 10.1111/j.1574-6968.2001.tb10626.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Protein SRP19 is an important component of the signal recognition particle (SRP) as it promotes assembly of protein SRP54 with SRP RNA and recognizes a tetranucleotide loop. Structural features and RNA binding activities of SRP19 of the hyperthermophilic archaeon Archaeoglobus fulgidus were investigated. An updated alignment of SRP19 sequences predicted three conserved regions and two alpha-helices. With Af-SRP RNA the Af-SRP54 protein assembled into an A. fulgidus SRP which remained intact for many hours. Stable complexes were formed between Af-SRP19 and truncated SRP RNAs, including a 36-residue fragment representing helix 6 of A. fulgidus SRP RNA.
Collapse
Affiliation(s)
- S H Bhuiyan
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 75708-3154, USA
| | | | | | | |
Collapse
|
17
|
Wower IK, Zwieb CW, Guven SA, Wower J. Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J 2000; 19:6612-21. [PMID: 11101533 PMCID: PMC305868 DOI: 10.1093/emboj/19.23.6612] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UV irradiation of an in vitro translation mixture induced cross-linking of 4-thioU-substituted tmRNA to Escherichia coli ribosomes by forming covalent complexes with ribosomal protein S1 and 16S rRNA. In the absence of S1, tmRNA was unable to bind and label ribosomal components. Mobility assays on native gels demonstrated that protein S1 bound to tmRNA with an apparent binding constant of 1 x 10(8) M(-1). A mutant tmRNA, lacking the tag coding region and pseudoknots pk2, pk3 and pk4, did not compete with full-length tmRNA, indicating that this region is required for S1 binding. This was confirmed by identification of eight cross-linked nucleotides: U85, located before the resume codon of tmRNA; U105, in the mRNA portion of tmRNA; U172 in pK2; U198, U212, U230 and U240 in pk3; and U246, in the junction between pk3 and pk4. We concluded that ribosomal protein S1, in concert with the previously identified elongation factor EF-Tu and protein SmpB, plays an important role in tmRNA-mediated trans-translation by facilitating the binding of tmRNA to ribosomes and forming complexes with free tmRNA.
Collapse
Affiliation(s)
- I K Wower
- Department of Animal and Dairy Sciences, Program in Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849-5415, USA.
| | | | | | | |
Collapse
|
18
|
Bhuiyan SH, Gowda K, Hotokezaka H, Zwieb C. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res 2000; 28:1365-73. [PMID: 10684931 PMCID: PMC111052 DOI: 10.1093/nar/28.6.1365] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signal recognition particle (SRP) takes part in protein targeting and secretion in all organisms. Searches for components of archaeal SRP in primary databases and completed genomes indicated that archaea possess only homologs of SRP RNA, and proteins SRP19 and SRP54. A recombinant SRP was assembled from cloned, expressed and purified components of the hyperthermophilic archaeon Archaeoglobus fulgidus. Recombinant Af-SRP54 associated with the signal peptide of bovine pre-prolactin translated in vitro. As in mammalian SRP, Af-SRP54 binding to Af-SRP RNA required protein Af-SRP19, although notable amounts bound in absence of Af-SRP19. Archaeoglobus fulgidus SRP proteins also bound to full-length SRP RNA of the archaeon Methanococcus jannaschii, to eukaryotic human SRP RNA, and to truncated versions which corresponded to the large domain of SRP. Dependence on SRP19 was most pronounced with components from the same species. Reconstitutions with heterologous components revealed a significant potential of human SRP proteins to bind to archaeal SRP RNAs. Surprisingly, M.jannaschii SRP RNA bound to human SRP54M quantitatively in the absence of SRP19. This is the first report of reconstitution of an archaeal SRP from recombinantly expressed purified components. The results highlight structural and functional conservation of SRP assembly between archaea and eucarya.
Collapse
Affiliation(s)
- S H Bhuiyan
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, TX 75710, USA
| | | | | | | |
Collapse
|
19
|
Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A 2000; 97:55-60. [PMID: 10618370 PMCID: PMC26615 DOI: 10.1073/pnas.97.1.55] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein composed of an Alu domain and an S domain. The S domain contains unique sequence SRP RNA and four SRP proteins: SRP19, SRP54, SRP68, and SRP72. SRP interacts with ribosomes to bring translating membrane and secreted proteins to the endoplasmic reticulum (ER) for proper processing. Additionally, SRP RNA is a member of a family of small nonribosomal RNAs found recently in the nucleolus, suggesting that the nucleolus is more plurifunctional than previously realized. It was therefore of interest to determine whether other SRP components localize to this intranuclear site. In transfected rat fibroblasts, green fluorescent protein fusions of SRP19, SRP68, and SRP72 localized to the nucleolus, as well as to the cytoplasm, as expected. SRP68 also accumulated in the ER, consistent with its affinity for the ER-bound SRP receptor. SRP54 was detected in the cytoplasm as a green fluorescent protein fusion and in immunofluorescence studies, but was not detected in the nucleolus. In situ hybridization experiments also revealed endogenous SRP RNA in the nucleolus. These results demonstrate that SRP RNA and three SRP proteins visit the nucleolus, suggesting that partial SRP assembly, or another unidentified activity of the SRP components, occurs at the nucleolus. SRP54 apparently interacts with nascent SRP beyond the nucleolus, consistent with in vitro reconstitution experiments showing that SRP19 must bind to SRP RNA before SRP54 binds. Our findings support the notion that the nucleolus is the site of assembly and/or interaction between the family of ribonucleoproteins involved in protein synthesis, in addition to ribosomes themselves.
Collapse
Affiliation(s)
- J C Politz
- Department of Biochemistry, University of Massachusetts Medical School, 377 Plantation Street, Suite 337, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gowda K, Clemons WM, Zwieb C, Black SD. Expression, purification, and crystallography of the conserved methionine-rich domain of human signal recognition particle 54 kDa protein. Protein Sci 1999; 8:1144-51. [PMID: 10338025 PMCID: PMC2144335 DOI: 10.1110/ps.8.5.1144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Protein SRP54 is an essential component of eukaryotic signal recognition particle (SRP). The methionine-rich M-domain (SRP54M or 54M) interacts with the SRP RNA and is also involved in the binding to signal peptides of secretory proteins during their targeting to cellular membranes. To gain insight into the molecular details of SRP-mediated protein targeting, we studied the human 54M polypeptide. The recombinant human protein was expressed successfully in Escherichia coli and was purified to homogeneity. Our studies determined the sites that were susceptible to limited proteolysis, with the goal to design smaller functional mutant derivatives that lacked nonessential amino acid residues from both termini. Of the four polypeptides produced by V8 protease or chymotrypsin, 54MM-2 was the shortest (120 residues; Mr = 13,584.8), but still contained the conserved amino acids suggested to associate with the signal peptide or the SRP RNA. 54MM-2 was cloned, expressed, purified to homogeneity, and was shown to bind human SRP RNA in the presence of protein SRP19, indicating that it was functional. Highly reproducible conditions for the crystallization of 54MM-2 were established. Examination of the crystals by X-ray diffraction showed an orthorhombic unit cell of dimensions a = 29.127 A, b = 63.693 A, and c = 129.601 A, in space group P2(1)2(1)2(1), with reflections extending to at least 2.0 A.
Collapse
Affiliation(s)
- K Gowda
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 75710, USA
| | | | | | | |
Collapse
|
21
|
Jacobson MR, Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A 1998; 95:7981-6. [PMID: 9653126 PMCID: PMC20915 DOI: 10.1073/pnas.95.14.7981] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The signal recognition particle (SRP) of eukaryotic cells is a cytoplasmic ribonucleoprotein machine that arrests the translational elongation of nascent secretory and membrane proteins and facilitates their transport into the endoplasmic reticulum. The spatial pathway of SRP RNA processing and ribonucleoprotein assembly in the cell is not known. In the present investigation, microinjection of fluorescently tagged SRP RNA into the nucleus of mammalian cells was used to examine its intranuclear sites of localization. Microinjection of SRP RNA into the nuclei of normal rat kidney (NRK) epithelial cells maintained at 37 degreesC on the microscope stage resulted in a very rapid initial localization in nucleoli, followed by a progressive decline of nucleolar signal and an increase of fluorescence at discrete sites in the cytoplasm. Nuclear microinjection of a molecule corresponding to a major portion of the Alu domain of SRP RNA revealed a pattern of rapid nucleolar localization followed by cytoplasmic appearance of signal that was similar to the results obtained with full-length SRP RNA. In contrast, a molecule corresponding to the S domain of SRP RNA did not display nucleolar localization to the extent observed with full-length SRP RNA. An SRP RNA molecule lacking helix 6 of the S domain displayed normal nucleolar localization, whereas one lacking helix 8 of the S domain did not. These results, obtained by direct, real-time observation of fluorescent RNA molecules inside the nucleus of living mammalian cells, suggest that the processing of SRP RNA or its ribonucleoprotein assembly into the SRP involves a nucleolar phase.
Collapse
Affiliation(s)
- M R Jacobson
- Worcester Foundation for Biomedical Research and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester Foundation Campus, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
22
|
Gowda K, Black SD, Moeller I, Sakakibara Y, Liu MC, Zwieb C. Protein SRP54 of human signal recognition particle: cloning, expression, and comparative analysis of functional sites. Gene 1998; 207:197-207. [PMID: 9511762 DOI: 10.1016/s0378-1119(97)00627-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal recognition particle (SRP) plays a critical role in the targeting of secretory proteins to cellular membranes. An essential component of SRP is the protein SRP54, which interacts not only with the nascent signal peptide, but also with the SRP RNA. To understand better how protein targeting occurs in the human system, the human SRP54 gene was cloned, sequenced, and the protein was expressed in bacteria and insect cells. Recombinant SRP54 was purified from both sources. The protein bound to SRP RNA in the presence of protein SRP19, and associated with the signal peptide of in vitro translated pre-prolactin. Comparative sequence analysis of human SRP54 with homologs from all three phylogenetic domains was combined with high-stringency protein secondary structure prediction. A conserved RNA-binding loop was predicted in the largely helical M-domain of SRP54. Contrary to general belief, the unusually high number of methionine residues clustered outside the predicted helices, thus indicating a mechanism of signal peptide recognition that may involve methionine-rich loops.
Collapse
Affiliation(s)
- K Gowda
- Department of Molecular Biology, University of Texas Health Science Center at Tyler 75710, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lai C, Langley CH. A homologue of the 19 kDa signal recognition particle protein locus in Drosophila melanogaster. Gene 1997; 203:59-63. [PMID: 9426007 DOI: 10.1016/s0378-1119(97)00492-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A homologue of 19 kDa signal recognition particle locus (SRP19) was cloned and molecularly characterized in Drosophila melanogaster. It is located in the 65F region of the left arm on the third chromosome, approx. 500 bp 5' of the quemao locus. The SRP19 transcript was determined from cDNA clones, Northern blot analysis, and the 5' rapid amplification of cDNA end method. SRP19 was expressed in all the developmental stages of Drosophila. The predicted amino acid sequence (163 aa) shows that SRP19 of Drosophila shares 44%, 29%, 17% and 19% identity with the homologues from human, rice and two yeast species (Saccharomyces and Yarrowia), respectively. The most conserved amino acid residues across these species are located at those sites required for in vitro association with the 7S RNA component of the SRP.
Collapse
Affiliation(s)
- C Lai
- Center for Population Biology, University of California, Davis 95616, USA.
| | | |
Collapse
|
24
|
Gowda K, Zwieb C. Determinants of a protein-induced RNA switch in the large domain of signal recognition particle identified by systematic-site directed mutagenesis. Nucleic Acids Res 1997; 25:2835-40. [PMID: 9207032 PMCID: PMC146806 DOI: 10.1093/nar/25.14.2835] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Signal recognition particle (SRP) is a ribonucleoprotein complex that associates with ribosomes to promote the co-translational translocation of proteins across biological membranes. Human SRP RNA molecules exist in two distinct conformations, SR-A and SR-B, which may exchange during the assembly of the particle or could play a functional role in the SRP cycle. We have used systematic site-directed mutagenesis of the SRP RNA to determine the electrophoretic mobilities of altered RNA molecules, and we have identified the nucleotides that avert the formation of the two conformers. The conformer behavior of the various RNAs was addressed quantitatively by calculating a value zeta as an indicator of conformational variability. Single loose A-like forms were induced by changes in helix 5 [nucleotides (nt) at positions 111-128 or 222-231], helix 6 (nt at positions 141-150) and helix 7 (nt at position 169 and 170), whereas other mutations in helix 6 and helix 8 preserved the conformational variability of the mutant RNA molecules. The more compact B-like form was induced only when a small region (129-CAAUAU-134), located in the 5'-proximal portion of helix 6, was altered. Since this region is part of the binding site for SRP19, we suggest that protein SRP19 uses nucleotides at 129-134 to trigger the formation of the favored SR-B-form, and thus directs an early step in the hierarchical assembly of the large SRP domain.
Collapse
Affiliation(s)
- K Gowda
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, Highway 271 N, PO Box 2003, Tyler, TX 75710, USA
| | | |
Collapse
|
25
|
Chittenden K, Gowda K, Black SD, Zwieb C. Interaction of rice and human SRP19 polypeptides with signal recognition particle RNA. PLANT MOLECULAR BIOLOGY 1997; 34:507-515. [PMID: 9225861 DOI: 10.1023/a:1005834026743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The signal recognition particle (SRP) controls the transport of secretory proteins into and across lipid bilayers. SRP-like ribonucleoprotein complexes exist in all organisms, including plants. We characterized the rice SRP RNA and its primary RNA binding protein, SRP19. The secondary structure of the rice SRP RNA was similar to that found in other eukaryotes; however, as in other plant SRP RNAs, a GUUUCA hexamer sequence replaced the highly conserved GNRA-tetranucleotide loop motif at the apex of helix 8. The small domain of the rice SRP RNA was reduced considerably. Structurally, rice SRP19 lacked two small region that can be present in other SRP19 homologues. Conservative structure prediction and site-directed mutagenesis of rice and human SRP19 polypeptides indicated that binding to the SRP RNAs occurred via a loop that is present in the N-domain of both proteins. Rice SRP19 protein was able to form a stable complex with the rice SRP RNA in vitro. Furthermore, heterologous ribonucleoprotein complexes with components of the human SRP were assembled, thus confirming a high degree of structural and functional conservation between plant and mammalian SRP components.
Collapse
Affiliation(s)
- K Chittenden
- Department of Molecular Biology, University of Texas Health Science Center, Tyler 75710, USA
| | | | | | | |
Collapse
|
26
|
Black SD, Gowda K, Chittenden K, Walker KP, Zwieb C. Identification of an RNA-binding-loop in the N-terminal region of signal-recognition-particle protein SRP19. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:564-72. [PMID: 9182991 DOI: 10.1111/j.1432-1033.1997.00564.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein SRP19 is a 144-amino-acid polypeptide that associates intimately with the signal-recognition particle RNA (SRP RNA) and serves as an important structural and functional component of the SRP. We investigated the structure and RNA-binding activity of the human SRP19 protein by the use of comparative sequence analysis, high-stringency structure prediction, proteolytic susceptibility, and site-directed mutagenesis. SRP19 was found to consist of two distinct regions (called N-terminal and C-terminal regions) that are separated by a boundary of approximately 12-15 amino acid residues. Both regions contain an alpha-helix and several beta-strands that are connected by loops or turns. In agreement with the hypothetical model, proteolytic susceptibility demonstrated the predominant accessibility of two sites: one in a surface loop of the N-terminal region (YLNNKKTIAEGR33), and another site in the C-terminal tail at residues L129 and E133. The RNA-binding activities of mutant polypeptides with changes of conserved lysines and arginines (mutants K27Q, R33Q and R34Q) demonstrated that the proteolytically accessible loop of the N-terminal region is in direct contact with the SRP RNA. In contrast, alteration of a certain basic amino acid residues in the C-terminal region (R83, K116 and R118), as well as a deletion of four amino acid residues located at the boundary between the two regions, had no effect on the RNA-binding ability. The structural model that emerges from our data is thematically similar to that of ribosomal protein S5, the N-domain of which contains a loop motif believed to interact with double-stranded RNA. The presence of a similar structural feature in protein SRP19 has significant implications for the structure and function of the SRP19-RNA complex.
Collapse
Affiliation(s)
- S D Black
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 75710, USA
| | | | | | | | | |
Collapse
|
27
|
Gowda K, Chittenden K, Zwieb C. Binding site of the M-domain of human protein SRP54 determined by systematic site-directed mutagenesis of signal recognition particle RNA. Nucleic Acids Res 1997; 25:388-94. [PMID: 9016569 PMCID: PMC146439 DOI: 10.1093/nar/25.2.388] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The interaction of protein SRP54M from the human signal recognition particle with SRP RNA was studied by systematic site-directed mutagenesis of the RNA molecule. Protein binding sites were identified by the analysis of mutations that removed individual SRP RNA helices or disrupted helical sections in the large SRP domain. The strongest effects on the binding activity of a purified polypeptide that corresponds to the methionine-rich domain of SRP54 (SRP54M) were caused by changes in helix 8 of the SRP RNA. Binding of protein SRP19 was diminished significantly by mutations in helix 6 and was stringently required for SRP54M to associate. Unexpectedly, mutant RNA molecules that resembled bacterial SRP RNAs were incapable of interaction with SRP54M, showing that protein SRP19 has an essential and direct role in the formation of the ternary complex with SRP54 and SRP RNA. Our findings provide an example for how, in eukaryotes, an RNA function has become protein dependent.
Collapse
Affiliation(s)
- K Gowda
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, PO Box 2003, Tyler, TX 75710, USA
| | | | | |
Collapse
|
28
|
Zwieb C, Müller F, Larsen N. Comparative analysis of tertiary structure elements in signal recognition particle RNA. FOLDING & DESIGN 1996; 1:315-24. [PMID: 9079393 DOI: 10.1016/s1359-0278(96)00044-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The signal recognition particle (SRP) is a ribonucleoprotein complex that associates with ribosomes to promote co-translational translocation of proteins across biological membranes. We have used comparative analysis of a large number of bacterial, archaeal, and eukaryotic SRP RNA sequences to derive shared tertiary SRP RNA structure elements. RESULTS A representative three-dimensional model of the human SRP RNA is shown that includes single-stranded intrahelical and interhelical RNA loops and incorporates data from enzymatic and chemical modification, electron microscopy, and site-directed mutagenesis. Properties of the SRP RNA model are an overall extended dumbbell-shaped structure (260 A x 70 A) with a pseudoknot in the small SRP domain (a pairing of 12-UGGC-15 with 33-GCUA-36), and a tertiary interaction in the large SRP domain (198-GA-199 with 232-GU-233). CONCLUSIONS The RNA 'knuckle' formed in helix 8 of SRP RNA appears to constitute the binding site for protein SRP54 or its bacterial equivalent, protein P48. A dynamic property of this feature may explain the hierarchial assembly of proteins SRP19 and SRP54 in the large SRP domain. Furthermore, the human SRP RNA model serves as a framework to understand details of the structure and function of SRP in all organisms and is presented to stimulate further experimentation in this area.
Collapse
Affiliation(s)
- C Zwieb
- Department of Molecular Biology, University of Texas Health Science Center, Tyler 75710, USA.
| | | | | |
Collapse
|
29
|
Lütcke H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:531-50. [PMID: 7737147 DOI: 10.1111/j.1432-1033.1995.tb20293.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In higher eukaryotes, most secretory and membrane proteins are synthesised by ribosomes which are attached to the membrane of the rough endoplasmic reticulum (RER). This allows the proteins to be translocated across that membrane already during their synthesis. The ribosomes are directed to the RER membrane by a cytoplasmic ribonucleoprotein particle, the signal recognition particle (SRP). SRP fulfills its task by virtue of three distinguishable activities: the binding of a signal sequence which, being part of the nascent polypeptide to be translocated, is exposed on the surface of a translating ribosome; the retardation of any further elongation; and the SRP-receptor-mediated binding of the complex of ribosome, nascent polypeptide and SRP to the RER membrane which results in the detachment of SRP from the signal sequence and the ribosome and the insertion of the nascent polypeptide into the membrane. Evidence is accumulating that SRP is not restricted to eukaryotes: SRP-related particles and SRP-receptor-related molecules are found ubiquitously and may function in protein translocation in every living organism. This review focuses on the mammalian SRP. A brief discussion of its overall structure is followed by a detailed description of the structures of its RNA and protein constituents and the requirements for their assembly into the particle. Homologues of SRP components from organisms other than mammals are mentioned to emphasize the components' conserved or less conserved features. Subsequently, the functions of each of the SRP constituents are discussed. This sets the stage for a presentation of a model for the mechanism by which SRP cyclically assembles and disassembles with translating ribosomes and the RER membrane. It may be expected that similar mechanisms are used by SRP homologues in organisms other than mammals. However, the mammalian SRP-mediated translocation mechanism may not be conserved in its entirety in organisms like Escherichia coli whose SRP lack components required for the function of the mammalian SRP. Possible translocation pathways involving the rudimentary SRP are discussed in view of the existence of alternative, chaperone-mediated translocation pathways with which they may intersect. The concluding two sections deal with open questions in two areas of SRP research. One formulates basic questions regarding the little-investigated biogenesis of SRP. The other gives an outlook over the insights into the mechanisms of each of the known activities of the SRP that are to be expected in the short and medium-term future.
Collapse
Affiliation(s)
- H Lütcke
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), Germany
| |
Collapse
|
30
|
Lutcke H. Signal Recognition Particle (SRP), a Ubiquitous Initiator of Protein Translocation. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0531m.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Systematic site-directed mutagenesis of protein SRP19. Identification of the residues essential for binding to signal recognition particle RNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32020-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Selinger D, Brennwald P, Althoff S, Reich C, Hann B, Walter P, Wise JA. Genetic and biochemical analysis of the fission yeast ribonucleoprotein particle containing a homolog of Srp54p. Nucleic Acids Res 1994; 22:2557-67. [PMID: 8041618 PMCID: PMC308210 DOI: 10.1093/nar/22.13.2557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mammalian signal recognition particle (SRP), a complex of six polypeptides and one 7SL RNA molecule, is required for targeting nascent presecretory proteins to the endoplasmic reticulum (ER). Earlier work identified a Schizosaccharomyces pombe homolog of human SRP RNA and showed that it is a component of a particle similar in size and biochemical properties to mammalian SRP. The recent cloning of the gene encoding a fission yeast protein homologous to Srp54p has made possible further characterization of the subunit structure, subcellular distribution, and assembly of fission yeast SRP. S. pombe SRP RNA and Srp54p co-sediment on a sucrose velocity gradient and coimmunoprecipitate, indicating that they reside in the same complex. In vitro assays demonstrate that fission yeast Srp54p binds under stringent conditions to E. coli SRP RNA, which consists essentially of domain IV, but not to the full-length cognate RNA nor to an RNA in which domain III has been deleted in an effort to mirror the structure of bacterial homologs. Moreover, the association of S. pombe Srp54p with SRP RNA in vivo is disrupted by conditional mutations not only in domain IV, which contains its binding site, but in domains I and III, suggesting that the particle may assemble cooperatively. The growth defects conferred by mutations throughout SRP RNA can be suppressed by overexpression of Srp54p, and the degree to which growth is restored correlates inversely with the severity of the reduction in protein binding. Conditional mutations in SRP RNA also reduce its sedimentation with the ribosome/membrane pellet during cell fractionation. Finally, immunoprecipitation under native conditions of an SRP-enriched fraction from [35S]-labeled fission yeast cells suggests that five additional polypeptides are complexed with Srp54p; each of these proteins is similar in size to a constituent of mammalian SRP, implying that the subunit structure of this ribonucleoprotein is conserved over vast evolutionary distances.
Collapse
Affiliation(s)
- D Selinger
- Department of Biochemistry, University of Illinois at Urbana-Champaign 61801
| | | | | | | | | | | | | |
Collapse
|
33
|
Zwieb C. Site-directed mutagenesis of signal-recognition particle RNA. Identification of the nucleotides in helix 8 required for interaction with protein SRP19. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:885-90. [PMID: 7517868 DOI: 10.1111/j.1432-1033.1994.tb18936.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RNA component of signal recognition particle (SRP) consists of eight helices which form a functional unit with the proteins of the SRP. The primary binding site of the 19-kDa protein of SRP (SRP19) is a tetranucleotide loop (tetraloop) in helix 6 of the SRP RNA, but additional determinants are located in helix 8, which might play important roles in the assembly and the function of the particle. To determine the structural features in helix 8 essential for interaction with SRP19, we altered helix 8 systematically by site-directed mutagenesis, and determined the ability of protein SRP19 to interact with the various mutant SRP RNAs. Binding of SRP19 was affected by base changes introduced into the 5' portion (192A, 193G, 194G in the human SRP RNA), but not into the 3' portion (205 A, 206G, 207C) of the distally located conserved internal loop of helix 8. Of the three bases at positions 192-194, only a pyrimidine at position 192 impaired the association with SPR19. An important feature of the SRP19-RNA interaction were the three base pairs U195-G204, C196-G203 and G197-C202 which shape the helix-8 tetraloop. Some base-specific features in the base pairs were also recognized. The tetraloop bases of helix 8 were dispensable for the interaction with SRP19.
Collapse
Affiliation(s)
- C Zwieb
- Department of Molecular Biology, University of Texas Health Science Center at Tyler 75710
| |
Collapse
|
34
|
Althoff S, Selinger D, Wise JA. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res 1994; 22:1933-47. [PMID: 7518075 PMCID: PMC308104 DOI: 10.1093/nar/22.11.1933] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location analogous to the binding site of the guanine nucleotide dissociation stimulator (GDS) for E. coli EF-Tu. The conservation of this sequence, in combination with the results of earlier genetic and biochemical studies of the SRP cycle, leads us to hypothesize that a component of the Srp68/72p heterodimer serves as the GDS for both Srp54p and SR alpha. Using an iterative alignment procedure, we demonstrate similarity between Srp68p and sequence motifs conserved among GDS proteins for small Ras-related GTPases. The conservation of SRP cycle components in organisms from all three major branches of the phylogenetic tree suggests that this pathway for protein export is of ancient evolutionary origin.
Collapse
Affiliation(s)
- S Althoff
- University of Illinois, Department of Biochemistry, Urbana 61801
| | | | | |
Collapse
|
35
|
He XP, Bataillé N, Fried HM. Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain. J Cell Sci 1994; 107 ( Pt 4):903-12. [PMID: 7520043 DOI: 10.1242/jcs.107.4.903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle is a cytoplasmic RNA-protein complex that mediates translocation of secretory polypeptides into the endoplasmic reticulum. We have used a Xenopus oocyte microinjection assay to determine how signal recognition particle (SRP) RNA is exported from the nucleus. Following nuclear injection, SRP RNA accumulated in the cytoplasm while cytoplasmically injected SRP RNA did not enter the nucleus. Cytoplasmic accumulation of SRP RNA was an apparently facilitated process dependent on limiting trans-acting factors, since nuclear export exhibited saturation kinetics and was completely blocked either at low temperature or by wheat germ agglutinin, a known inhibitor of nuclear pore-mediated transport. At least one target for trans-acting factors that promote nuclear export of SRP RNA appears to be the Alu element of the molecule, since a transcript consisting of only the Alu sequence was exported from the nucleus in a temperature-dependent manner and the Alu transcript competed in the nucleus for transport with intact SRP RNA. Although the identities of trans-acting factors responsible for SRP RNA transport are at present unknown, we suggest that proteins contained within the cytoplasmic form of SRP are candidates. Consistent with this idea were the effects of a mutation in SRP RNA that prevented binding of two known SRP proteins to the Alu sequence.
Collapse
Affiliation(s)
- X P He
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599
| | | | | |
Collapse
|
36
|
Affiliation(s)
- H Lütcke
- Zentrum für Molekulare Biologie Heidelberg, Germany
| | | |
Collapse
|
37
|
Identification of RNA sequences and structural elements required for assembly of fission yeast SRP54 protein with signal recognition particle RNA. Mol Cell Biol 1993. [PMID: 8382769 DOI: 10.1128/mcb.13.3.1353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal recognition particle (SRP) is a ribonucleoprotein composed of six polypeptides and a single RNA molecule. SRP RNA can be divided into four structural domains, the last of which is the most highly conserved and, in Schizosaccharomyces pombe, is the primary location to which deleterious mutations map. The ability of mammalian SRP54 protein (SRP54p) to bind Escherichia coli 4.5S RNA, a homolog of SRP RNA which contains only domain IV, suggested that SRP54p might interact directly with this region. To determine whether domain IV is critical for SRP54p binding in fission yeast cells, we used a native immunoprecipitation-RNA sequencing assay to test 13 mutant SRP RNAs for the ability to associate with the protein in vivo. The G156A mutation, which alters the 5' residue of the noncanonical first base pair of the domain IV terminal helix and confers a mild conditional growth defect, reduces assembly of the RNA with SRP54p. Mutating either of the two evolutionarily invariant residues in the bulged region 5' to G156 is more deleterious to growth and virtually abolishes SRP54p binding. We conclude that the conservation of nucleotides 154 to 156 is likely to be a consequence of their role as a sequence-specific recognition element for the SRP54 protein. We also tested a series of mutants with nucleotide substitutions in the conserved tetranucleotide loop and adjoining stem of domain IV. Although tetraloop mutations are deleterious to growth, they have little effect on SRP54p binding. Mutations which disrupt the base pair flanking the tetraloop result in conditional growth defects and significantly reduce association with SRP54p. Disruption of the other two base pairs in the short stem adjacent to the tetranucleotide loop has similar but less dramatic effects on SRP54p binding. These data provide the first evidence that both sequence-specific contacts and the structural integrity of domain IV of SRP RNA are important for assembly with SRP54p.
Collapse
|
38
|
Selinger D, Brennwald P, Liao X, Wise JA. Identification of RNA sequences and structural elements required for assembly of fission yeast SRP54 protein with signal recognition particle RNA. Mol Cell Biol 1993; 13:1353-62. [PMID: 8382769 PMCID: PMC359444 DOI: 10.1128/mcb.13.3.1353-1362.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Signal recognition particle (SRP) is a ribonucleoprotein composed of six polypeptides and a single RNA molecule. SRP RNA can be divided into four structural domains, the last of which is the most highly conserved and, in Schizosaccharomyces pombe, is the primary location to which deleterious mutations map. The ability of mammalian SRP54 protein (SRP54p) to bind Escherichia coli 4.5S RNA, a homolog of SRP RNA which contains only domain IV, suggested that SRP54p might interact directly with this region. To determine whether domain IV is critical for SRP54p binding in fission yeast cells, we used a native immunoprecipitation-RNA sequencing assay to test 13 mutant SRP RNAs for the ability to associate with the protein in vivo. The G156A mutation, which alters the 5' residue of the noncanonical first base pair of the domain IV terminal helix and confers a mild conditional growth defect, reduces assembly of the RNA with SRP54p. Mutating either of the two evolutionarily invariant residues in the bulged region 5' to G156 is more deleterious to growth and virtually abolishes SRP54p binding. We conclude that the conservation of nucleotides 154 to 156 is likely to be a consequence of their role as a sequence-specific recognition element for the SRP54 protein. We also tested a series of mutants with nucleotide substitutions in the conserved tetranucleotide loop and adjoining stem of domain IV. Although tetraloop mutations are deleterious to growth, they have little effect on SRP54p binding. Mutations which disrupt the base pair flanking the tetraloop result in conditional growth defects and significantly reduce association with SRP54p. Disruption of the other two base pairs in the short stem adjacent to the tetranucleotide loop has similar but less dramatic effects on SRP54p binding. These data provide the first evidence that both sequence-specific contacts and the structural integrity of domain IV of SRP RNA are important for assembly with SRP54p.
Collapse
Affiliation(s)
- D Selinger
- Department of Biochemistry, University of Illinois, Urbana-Champaign 61801
| | | | | | | |
Collapse
|
39
|
Wood H, Luirink J, Tollervey D. Evolutionary conserved nucleotides within the E.coli 4.5S RNA are required for association with P48 in vitro and for optimal function in vivo. Nucleic Acids Res 1992; 20:5919-25. [PMID: 1281314 PMCID: PMC334455 DOI: 10.1093/nar/20.22.5919] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
E.coli 4.5S RNA is homologous to domain IV of eukaryotic SPR7S RNA, the RNA component of the signal recognition particle. The 4.5S RNA is associated in vivo with a 48kD protein (P48), which is homologous to a protein component of the signal recognition particle, SRP54. In addition to secondary structural features, a number of nucleotides are conserved between the 4.5S RNA and domain IV of all other characterised SRP-like RNAs from eubacteria, arachaebacteria and eukaryotes. This domain consists of an extended stem-loop structure; conserved nucleotides lie within the terminal loop and within single-stranded regions bulged from the stem immediately preceding the loop. This conserved region is a candidate for the SRP54/P48 binding site. To determine the functional importance of this region within the 4.5S RNA, mutations were introduced into the 4.5S RNA coding sequence. Mutated alleles were tested for their function in vivo and for the ability of the corresponding RNAs to bind P48 in vitro. Single point mutations in conserved nucleotides within the terminal tetranucleotide loop do not affect P48 binding in vitro and produce only slight growth defects. This suggests that the sequence of the loop may be important for the structure of the molecule rather than for specific interactions with P48. On the other hand, nucleotides within the single-stranded regions bulged from the stem were found to be important both for the binding of P48 to the RNA and for optimal function of the RNA in vivo.
Collapse
Affiliation(s)
- H Wood
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
40
|
Zwieb C. Recognition of a tetranucleotide loop of signal recognition particle RNA by protein SRP19. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49585-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Nunnari J, Walter P. Protein targeting to and translocation across the membrane of the endoplasmic reticulum. Curr Opin Cell Biol 1992; 4:573-80. [PMID: 1419037 DOI: 10.1016/0955-0674(92)90074-m] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several approaches are currently being taken to elucidate the mechanisms and the molecular components responsible for protein targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems dominate the field: a biochemical system derived from mammalian exocrine pancreas, and a combined genetic and biochemical system employing the yeast, Saccharomyces cerevisiae. Results obtained in each of these systems have contributed novel, mostly non-overlapping information. Recently, much effort in the field has been dedicated to identifying membrane proteins that comprise the translocon. Membrane proteins involved in translocation have been identified both in the mammalian system, using a combination of crosslinking and reconstitution approaches, and in S. cerevisiae, by selecting for mutants in the translocation pathway. None of the membrane proteins isolated, however, appears to be homologous between the two experimental systems. In the case of the signal recognition particle, the two systems have converged, which has led to a better understanding of how proteins are targeted to the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- J Nunnari
- University of California, San Francisco
| | | |
Collapse
|
42
|
Liao X, Selinger D, Althoff S, Chiang A, Hamilton D, Ma M, Wise JA. Random mutagenesis of Schizosaccharomyces pombe SRP RNA: lethal and conditional lesions cluster in presumptive protein binding sites. Nucleic Acids Res 1992; 20:1607-15. [PMID: 1315954 PMCID: PMC312245 DOI: 10.1093/nar/20.7.1607] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Signal recognition particle (SRP), a ribonucleoprotein composed of six polypeptides and one RNA subunit, serves as an adaptor between the cytoplasmic protein synthetic machinery and the translocation apparatus of the endoplasmic reticulum. To begin constructing a functional map of the 7SL RNA component of SRP, we extensively mutagenized the Schizosaccharomyces pombe SRP7 gene. Phenotypes are reported for fifty-two mutant alleles derived from random point mutagenesis, seven alleles created by site-directed mutagenesis to introduce restriction sites into the SRP7 gene, nine alleles designed to pinpoint conditional lesions, and three alleles with extra nucleotides inserted at position 84. Our data indicate that virtually all single nucleotide changes as well as many multiple substitutions in this highly structured RNA are phenotypically silent. Six lethal alleles and eleven which result in sensitivity to the combination of high temperature and elevated osmotic strength were identified. These mutations cluster in conserved regions which, in the mammalian RNA, are protected from nucleolytic agents by SRP proteins. The effects of mutations in the presumptive binding site for a fission yeast SRP 9/14 homolog indicate that both the identity of a conserved residue and the secondary structure within which it is embedded are functionally important. The phenotypes of mutations in Domain IV suggest particular residues as base-specific contacts for the fission yeast SRP54 protein. A single allele which confers temperature-sensitivity in the absence of osmotic perturbants was identified in this study; the growth properties of the mutant strain suggest that the encoded RNA is somewhat defective even at the permissive temperature, and is most likely unable to correctly assemble with SRP proteins at the nonpermissive temperature.
Collapse
Affiliation(s)
- X Liao
- Department of Biochemistry, University of Illinois, Urbana-Champaign 61801
| | | | | | | | | | | | | |
Collapse
|