1
|
Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. J Mol Biol 2020:S0022-2836(19)30720-X. [DOI: 10.1016/j.jmb.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
|
2
|
Kaneda K, Ohishi K, Sekiguchi J, Shida T. Characterization of the AP Endonucleases fromThermoplasma volcaniumandLactobacillus plantarum: Contributions of Two Important Tryptophan Residues to AP Site Recognition. Biosci Biotechnol Biochem 2014; 70:2213-21. [PMID: 16960376 DOI: 10.1271/bbb.60153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escherichia coli AP endonuclease (ExoIII) and its human homolog (APE1) have the sole tryptophan residue for AP site recognition (AP site recognizer) but these residues are at different positions near the catalytic sites. On the other hand, many bacterial AP endonucleases have two tryptophan residues at the same positions of both ExoIII and APE1. To elucidate whether these residues are involved in AP site recognition, the ExoIII homologs of Thermoplasma volcanium and Lactobacillus plantarum were characterized. These proteins showed AP endonuclease and 3'-5'exonculease activities. In each enzyme, the mutations of the tryptophan residues corresponding to Trp-280 of APE1 caused more significant reductions in activities and binding abilities to the oligonucleotide containing an AP site (AP-DNA) than those corresponding to Trp-212 of ExoIII. These results suggest that the tryptophan residue corresponding to Trp-280 of APE1 is the predominant AP site recognizer, and that corresponding to Trp-212 of ExoIII is the auxiliary recognizer.
Collapse
Affiliation(s)
- Kohichi Kaneda
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | | | | | | |
Collapse
|
3
|
Gan GN, Wittschieben JP, Wittschieben BØ, Wood RD. DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 2008; 18:174-83. [PMID: 18157155 DOI: 10.1038/cr.2007.117] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most current knowledge about DNA polymerase zeta (pol zeta) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol zeta consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol zeta can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.
Collapse
Affiliation(s)
- Gregory N Gan
- Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
4
|
Pagan JK, Arnold J, Hanchard KJ, Kumar R, Bruno T, Jones MJK, Richard DJ, Forrest A, Spurdle A, Verdin E, Crossley M, Fanciulli M, Chenevix-Trench G, Young DB, Khanna KK. A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J Biol Chem 2007; 282:15248-57. [PMID: 17379597 DOI: 10.1074/jbc.m700246200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.
Collapse
Affiliation(s)
- Julia K Pagan
- Queensland Institute of Medical Research, 300 Herston Road, Herston 4029, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kaneda K, Sekiguchi J, Shida T. Role of the tryptophan residue in the vicinity of the catalytic center of exonuclease III family AP endonucleases: AP site recognition mechanism. Nucleic Acids Res 2006; 34:1552-63. [PMID: 16540594 PMCID: PMC1408312 DOI: 10.1093/nar/gkl059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mechanisms by which AP endonucleases recognize AP sites have not yet been determined. Based on our previous study with Escherichia coli exonuclease III (ExoIII), the ExoIII family AP endonucleases probably recognize the DNA-pocket formed at an AP site. The indole ring of a conserved tryptophan residue in the vicinity of the catalytic site presumably intercalates into this pocket. To test this hypothesis, we constructed a series of mutants of ExoIII and human APE1. Trp-212 of ExoIII and Trp-280 of APE1 were critical to the AP endonuclease activity and binding to DNA containing an AP site. To confirm the ability of the tryptophan residue to intercalate with the AP site, we examined the interaction between an oligopeptide containing a tryptophan residue and an oligonucleotide containing AP sites, using spectrofluorimetry and surface plasmon resonance (SPR) technology. The tryptophan residue of the oligopeptide specifically intercalated into an AP site of DNA. The tryptophan residue in the vicinity of the catalytic site of the ExoIII family AP endonucleases plays a key role in the recognition of AP sites.
Collapse
Affiliation(s)
| | | | - Toshio Shida
- To whom correspondence should be addressed. Tel: +81 268 21 5346; Fax: +81 268 21 5346;
| |
Collapse
|
6
|
Eeken JC, Romeijn RJ, de Jong AW, Pastink A, Lohman PH. Isolation and genetic characterisation of the Drosophila homologue of (SCE)REV3, encoding the catalytic subunit of DNA polymerase zeta. Mutat Res 2001; 485:237-53. [PMID: 11267835 DOI: 10.1016/s0921-8777(01)00062-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Drosophila, about 30 mutants are known that show hypersensitivity to the methylating agent methyl methane sulfonate (MMS). Addition of this agent to the medium results in an increased larval mortality of the mutants. Using a P-insertion mutagenesis screen, three MMS-sensitive mutants on chromosome II were isolated. One of these is allelic to the known EMS-induced mus205 (mutagen sensitive) mutant. In the newly isolated mutant, a P-element is detected in region 43E by in situ hybridisation. The localisation of mus205 to this region was confirmed by deficiency mapping. The gene was cloned and shows strong homology to the Saccharomyces cerevisiae REV3 gene. The REV3 gene encodes the catalytic subunit of DNA polymerase zeta, involved in translesion synthesis. The P-element is inserted in the first exon of the mus205 gene resulting in an aberrant mRNA, encoding a putative truncated protein containing only the first 13 of the 2130 aa native Drosophila protein. The mus205 mutant is hypersensitive to alkylating agents and UV, but not to ionising radiation. In contrast to reported data, in germ cells, the mutant has no effect on mutability by X-rays, NQO and alkylating agents. In somatic cells, the mutant shows no effect on MMS-induced mutations and recombinations. This phenotype of the Drosophila mus205 mutant is strikingly different from the phenotype of the yeast rev3 mutant, which is hypomutable after UV, X-rays, NQO and alkylating agents.
Collapse
Affiliation(s)
- J C Eeken
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University Medical Center, P.O. Box 9503, 2300 RF, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Mol CD, Hosfield DJ, Tainer JA. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mutat Res 2000; 460:211-29. [PMID: 10946230 DOI: 10.1016/s0921-8777(00)00028-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo IV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways.
Collapse
Affiliation(s)
- C D Mol
- Department of Molecular Biology, and Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA
| | | | | |
Collapse
|
8
|
Hahn K, Faustoferri RC, Quivey RG. Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 1999; 31:1489-98. [PMID: 10200967 DOI: 10.1046/j.1365-2958.1999.01292.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oral microbe Streptococcus mutans uses adaptive mechanisms to withstand the fluctuating pH levels in its natural environment. The regulation of protein synthesis is part of the mechanism of acid adaptation and tolerance in S. mutans. Here, we demonstrate that the organism's acid-inducible protein repertoire includes an AP endonuclease activity. This abasic site-specific endonuclease activity is present at greater levels in cells grown at low pH than in cells grown at pH 7, and is apparently independent of the RecA protein. Experiments using tetrahydrofuran or alpha-deoxyadenosine-containing substrates indicate that the activity induced at low pH may be similar to the activity of exonuclease III from E. coli. Acid-adapted S. mutans also shows an increased survival rate after exposure to near-UV radiation in both the wild type and a recA strain. Far-UV radiation resistance is observed in the wild type only. The endonuclease activity was purified approximately 500-fold from an S. mutans recA mutant strain grown at pH 5. Initial characterization revealed a 3' to 5' exonuclease activity, and showed additional functional similarities to DNA repair enzymes from other organisms.
Collapse
Affiliation(s)
- K Hahn
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
9
|
Reardon BJ, Lombardo CR, Sander M. Drosophila Rrp1 domain structure as defined by limited proteolysis and biophysical analyses. J Biol Chem 1998; 273:33991-9. [PMID: 9852053 DOI: 10.1074/jbc.273.51.33991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila Rrp1 is a DNA repair nuclease whose C-terminal region shares extensive homology with Escherichia coli exonuclease III, has nuclease activity, and provides resistance to oxidative and alkylating agents in repair-deficient E. coli strains. The N-terminal 421 amino acid region of Rrp1, which binds and renatures homologous single-stranded DNA, does not share homology with any known protein. Proteolysis by endoproteinase Glu-C (protease V8) reduces the Rrp1 protein to a single, cleavage-resistant peptide. The peptide (referred to as Rrp1-C274) begins with the sequence TKTTV, corresponding to cleavage between Glu-405 and Thr-406 of Rrp1. We determined that nuclease activity is intrinsic to Rrp1-C274 although altered when compared with Rrp1; 3'-exonuclease activity is reduced 210-fold, 3'-phosphodiesterase activity is reduced 6.8-fold, and no difference in apurinic/apyrimidinic endonuclease activity is observed. Rrp1 and Rrp1-C274 are both monomers with frictional coefficients of 2.2 and 1.4, respectively. Circular dichroism results indicate that Rrp1-C274 is predominantly alpha-helical, while the N-terminal 399 amino acids is predominantly random coil. These results suggest that Rrp1 may have a bipartite structural organization; a highly organized, globular C-terminal domain; and an asymmetric, protease-sensitive random coil-enriched N-terminal region. A shape model for this bipartite structure is proposed and discussed.
Collapse
Affiliation(s)
- B J Reardon
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
10
|
Kojic S, Todorovic V, Ristic D, Savic A, Stefanovic D. Den1, den2 and den3, ATP-inhibited deoxyribonucleases from Dropsophila embryonic nuclei. Mol Cell Biochem 1998; 189:207-12. [PMID: 9879673 DOI: 10.1023/a:1006879132158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three Drosophila embryonic deoxyribonucleases, designated den1, den2 and den3, are identified in nuclear extracts separated by glycerol density gradient centrifugation. Den1, removes short products from the 5'-ends of single-stranded DNA or double-stranded DNA with either blunt or 5'-recessed termini. Den2 is inactive with single-stranded DNA and acts as 3'-exonuclease with double-stranded DNA possessing either blunt or 3'-recessed termini. Den3 preferentially uses partial duplex DNA containing single-stranded gap and it catalyzes hydrolysis, in 3'-5' direction, of one of the shorter strands that flank the gap. Nucleolytic activities of den1, den2 and den3 are inhibited with ATP.
Collapse
Affiliation(s)
- S Kojic
- Institute of Molecular Genetics and Genetic Engineering, Beograd, Yugoslavia
| | | | | | | | | |
Collapse
|
11
|
Ghabrial A, Ray RP, Schüpbach T. okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 1998; 12:2711-23. [PMID: 9732269 PMCID: PMC317145 DOI: 10.1101/gad.12.17.2711] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
okra (okr), spindle-B (spnB), and spindle-D (spnD) are three members of a group of female sterile loci that produce defects in oocyte and egg morphology, including variable dorsal-ventral defects in the eggshell and embryo, anterior-posterior defects in the follicle cell epithelium and in the oocyte, and abnormalities in oocyte nuclear morphology. Many of these phenotypes reflect defects in grk-Egfr signaling processes, and can be accounted for by a failure to accumulate wild-type levels of Gurken and Fs(1)K10. We have cloned okr and spnB, and show that okr encodes the Drosophila homolog of the yeast DNA-repair protein Rad54, and spnB encodes a Rad51-like protein related to the meiosis-specific DMC1 gene. In functional tests of their role in DNA repair, we find that okr behaves like its yeast homolog in that it is required in both mitotic and meiotic cells. In contrast, spnB and spnD appear to be required only in meiosis. The fact that genes involved in meiotic DNA metabolism have specific effects on oocyte patterning implies that the progression of the meiotic cell cycle is coordinated with the regulation of certain developmental events during oogenesis.
Collapse
Affiliation(s)
- A Ghabrial
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
12
|
Prasad R, Beard WA, Strauss PR, Wilson SH. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem 1998; 273:15263-70. [PMID: 9614142 DOI: 10.1074/jbc.273.24.15263] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase beta (beta-pol) cleaves the sugar-phosphate bond 3' to an intact apurinic/apyrimidinic (AP) site (i.e. AP lyase activity). The same bond is cleaved even if the AP site has been previously 5'-incised by AP endonuclease, resulting in a 5' 2-deoxyribose 5-phosphate (i.e. dRP lyase activity). We characterized these lyase reactions by steady-state kinetics with the amino-terminal 8-kDa domain of beta-pol and with the entire 39-kDa polymerase. Steady-state kinetic analyses show that the Michaelis constants for both the dRP and AP lyase activities of beta-pol are similar. However, kcat is approximately 200-fold lower for the AP lyase activity on an intact AP site than for an AP endonuclease-preincised site. The 8-kDa domain was also less efficient with an intact AP site than on a preincised site. The full-length enzyme and the 8-kDa domain efficiently remove the 5' dRP from a preincised AP site in the absence of Mg2+, and the pH profiles of beta-pol and 8-kDa domain dRP lyase catalytic efficiency exhibit a broad alkaline pH optimum. An inhibitory effect of pyridoxal 5'-phosphate on the dRP lyase activity is consistent with involvement of a primary amine (Lys72) as the Schiff base nucleophile during lyase chemistry.
Collapse
Affiliation(s)
- R Prasad
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
13
|
Mol CD, Parikh SS, Lo TP, Tainer JA. Structural Phylogenetics of DNA Base Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Gorman MA, Morera S, Rothwell DG, de La Fortelle E, Mol CD, Tainer JA, Hickson ID, Freemont PS. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J 1997; 16:6548-58. [PMID: 9351835 PMCID: PMC1170259 DOI: 10.1093/emboj/16.21.6548] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The structure of the major human apurinic/ apyrimidinic endonuclease (HAP1) has been solved at 2.2 A resolution. The enzyme consists of two symmetrically related domains of similar topology and has significant structural similarity to both bovine DNase I and its Escherichia coli homologue exonuclease III (EXOIII). A structural comparison of these enzymes reveals three loop regions specific to HAP1 and EXOIII. These loop regions apparently act in DNA abasic site (AP) recognition and cleavage since DNase I, which lacks these loops, correspondingly lacks AP site specificity. The HAP1 structure furthermore suggests a mechanism for AP site binding which involves the recognition of the deoxyribose moiety in an extrahelical conformation, rather than a 'flipped-out' base opposite the AP site.
Collapse
Affiliation(s)
- M A Gorman
- Protein Structure Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kooistra R, Vreeken K, Zonneveld JB, de Jong A, Eeken JC, Osgood CJ, Buerstedde JM, Lohman PH, Pastink A. The Drosophila melanogaster RAD54 homolog, DmRAD54, is involved in the repair of radiation damage and recombination. Mol Cell Biol 1997; 17:6097-104. [PMID: 9315669 PMCID: PMC232459 DOI: 10.1128/mcb.17.10.6097] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RAD54 gene of Saccharomyces cerevisiae plays a crucial role in recombinational repair of double-strand breaks in DNA. Here the isolation and functional characterization of the RAD54 homolog of the fruit fly Drosophila melanogaster, DmRAD54, are described. The putative Dmrad54 protein displays 46 to 57% identity to its homologs from yeast and mammals. DmRAD54 RNA was detected at all stages of fly development, but an increased level was observed in early embryos and ovarian tissue. To determine the function of DmRAD54, a null mutant was isolated by random mutagenesis. DmRADS4-deficient flies develop normally, but the females are sterile. Early development appears normal, but the eggs do not hatch, indicating an essential role for DmRAD54 in development. The larvae of mutant flies are highly sensitive to X rays and methyl methanesulfonate. Moreover, this mutant is defective in X-ray-induced mitotic recombination as measured by a somatic mutation and recombination test. These phenotypes are consistent with a defect in the repair of double-strand breaks and imply that the RAD54 gene is crucial in repair and recombination in a multicellular organism. The results also indicate that the recombinational repair pathway is functionally conserved in evolution.
Collapse
Affiliation(s)
- R Kooistra
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sander M, Ramotar D. Partial purification of Pde1 from Saccharomyces cerevisiae: enzymatic redundancy for the repair of 3'-terminal DNA lesions and abasic sites in yeast. Biochemistry 1997; 36:6100-6. [PMID: 9166780 DOI: 10.1021/bi970048y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Earlier work indicates that the major DNA repair phosphodiesterase (PDE) in yeast cells is the well-characterized Apn1 protein. Apn1 demonstrates both Mg2+-independent PDE activity and Mg2+-independent class II apurinic/apyrimidinic (AP) endonuclease activity and represents greater than 90% of the activity detected in crude extracts from wild-type yeast cells. Apn1 is related to Echerichia coli endonuclease IV, both in its enzymatic properties and its amino acid sequence. In this work, we report the partial purification of a novel yeast protein, Pde1, present in Apn1-deficient cells. Pde1 is purified by sequential BioRex-70, PBE118, and MonoS chromatography steps using a sensitive and highly specific 3'-phosphoglycolate-terminated oligonucleotide-based assay as a measure of PDE activity. Mg2+-stimulated PDE and Mg2+-stimulated class II AP endonuclease copurify during this procedure. These results indicate that yeast, like many other organisms studied to date, has enzymatic redundancy for the repair of 3'-blocking groups and abasic sites.
Collapse
Affiliation(s)
- M Sander
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
17
|
Affiliation(s)
- R L Dusenbery
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
18
|
Abstract
Our genetic information is constantly challenged by exposure to endogenous and exogenous DNA-damaging agents, by DNA polymerase errors, and thereby inherent instability of the DNA molecule itself. The integrity of our genetic information is maintained by numerous DNA repair pathways, and the importance of these pathways is underscored by their remarkable structural and functional conservation across the evolutionary spectrum. Because of the highly conserved nature of DNA repair, the enzymes involved in this crucial function are often able to function in heterologous cells; as an example, the E. coli Ada DNA repair methyltransferase functions efficiently in yeast, in cultured rodent and human cells, in transgenic mice, and in ex vivo-modified mouse bone marrow cells. The heterologous expression of DNA repair functions has not only been used as a powerful cloning strategy, but also for the exploration of the biological and biochemical features of numerous enzymes involved in DNA repair pathways. In this review we highlight examples where the expression of DNA repair enzymes in heterologous cells was used to address fundamental questions about DNA repair processes in many different organisms.
Collapse
Affiliation(s)
- A Memisoglu
- Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
MacGregor CH, Arora SK, Hager PW, Dail MB, Phibbs PV. The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product. J Bacteriol 1996; 178:5627-35. [PMID: 8824606 PMCID: PMC178400 DOI: 10.1128/jb.178.19.5627-5635.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The gene (crc) responsible for catabolite repression control in Pseudomonas aeruginosa has been cloned and sequenced. Flanking the crc gene are genes encoding orotate phosphoribosyl transferase (pyrE) and RNase PH (rph). New crc mutants were constructed by disruption of the wild-type crc gene. The crc gene encodes an open reading frame of 259 amino acids with homology to the apurinic/apyrimidinic endonuclease family of DNA repair enzymes. However, crc mutants do not have a DNA repair phenotype, nor can the crc gene complement Escherichia coli DNA repair-deficient strains. The crc gene product was overexpressed in both P. aeruginosa and in E. coli, and the Crc protein was purified from both. The purified Crc proteins show neither apurinic/apyrimidinic endonuclease nor exonuclease activity. Antibody to the purified Crc protein reacted with proteins of similar size in crude extracts from Pseudomonas putida and Pseudomonas fluorescens, suggesting a common mechanism of catabolite repression in these three species.
Collapse
Affiliation(s)
- C H MacGregor
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA
| | | | | | | | | |
Collapse
|
20
|
Baldridge GD, Fallon AM. Evidence for a DNA homologous pairing activity in nuclear extracts from mosquito cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1996; 26:667-676. [PMID: 8995789 DOI: 10.1016/s0965-1748(96)00017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using a sensitive homologous pairing/DNA strand transfer assay, we detected formation of joint molecules in the presence of nuclear extract from cultured mosquito C7-10 cells in a reaction containing single stranded circular m13 DNA and a linear, double stranded DNA 5'-end-labeled on the strand complementary to a portion of the single-stranded substrate. Joint molecules were detected by the reduced electrophoretic mobility of labeled probe on agarose gels, which indicated that the 5'-end labeled strand of the linear duplex had formed a hybrid with the single-stranded substrate. Characterization of the activity detected initially in crude nuclear extracts provided a basis for a 5-fold enrichment of activity after a two-step KCl elution from heparin-Sepharose. Further purification by preparative electrophoresis yielded a band at approximately 35 kDa, which, when transferred to Immobilon P membrane, specifically bound the labeled, complementary strand probe. Optimal activity of the electroeluted enzyme required both magnesium and ATP and was sensitive to the ratio of single-stranded and double-stranded DNA substrate and to the amount of protein. This homologous pairing activity from mosquito cells is the first such activity to be described from an insect other than Drosophila melanogaster.
Collapse
Affiliation(s)
- G D Baldridge
- Department of Entomology, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
21
|
Ramotar D, Demple B. Functional expression of Escherichia coli endonuclease IV in apurinic endonuclease-deficient yeast. J Biol Chem 1996; 271:7368-74. [PMID: 8631759 DOI: 10.1074/jbc.271.13.7368] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Saccharomyces cerevisiae Apn1 and Escherichia coli endonuclease IV are homologous enzymes that initiate the repair of abasic (AP) sites or oxidative DNA strand breaks. Yeast lacking Apn1 (apn1-) are hypersensitive to simple alkylating agents (which produce many AP sites) and to oxidants and display an elevated spontaneous mutation rate due to endogenous damages. We explored whether the prokaryotic repair enzyme could substitute for its yeast counterpart. Plasmid constructs were generated that expressed endonuclease IV at 1/20 to 10-fold the AP endonuclease activity of wild-type yeast; some of these plasmids expressed hybrid forms of endonuclease IV equipped with the C-terminal nuclear localization signal of Apn1. Although hybrid endonuclease IV-Apn1 (but not native endonuclease IV) was selectively localized to the yeast nucleus, expression of this chimeric protein at 25% of the normal Apn1 level did not restore alkylation or oxidant resistance to apn1- yeast, but it did partially counteract the mutator phenotype of apn1- yeast. Expression of either the hybrid protein or native endonuclease IV at approximately 10 times the wild-type Apn1 levels restored wild-type resistance to methyl methanesulfonate and near-wild-type H2O2 resistance. High level expression of native endonuclease IV also restored the normal spontaneous mutation rate to apn1- yeast. These data place limits on the amounts of AP endonuclease activity necessary for repair of DNA damages caused by both endogenous and environmental agents and point to a direct role of spontaneous AP sites as potentially mutagenic lesions.
Collapse
Affiliation(s)
- D Ramotar
- CHUL, Health and Environment, Ste-Foy, Quebec, Canada
| | | |
Collapse
|
22
|
Szakmary A, Huang SM, Chang DT, Beachy PA, Sander M. Overexpression of a Rrp1 transgene reduces the somatic mutation and recombination frequency induced by oxidative DNA damage in Drosophila melanogaster. Proc Natl Acad Sci U S A 1996; 93:1607-12. [PMID: 8643678 PMCID: PMC39989 DOI: 10.1073/pnas.93.4.1607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recombination repair protein 1 (Rrp1) includes a C-terminal region homologous to several DNA repair proteins, including Escherichia coli exonuclease III and human APE, that repair oxidative and alkylation damage to DNA. The nuclease activities of Rrp1 include apurinic/apyrimidinic endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-exonuclease. As shown previously, the C-terminal nuclease region of Rrp1 is sufficient to repair oxidative- and alkylation-induced DNA damage in repair-deficient E. coli mutants. DNA strand-transfer and single-stranded DNA renaturation activities are associated with the unique N-terminal region of Rrp1, which suggests possible additional functions that include recombinational repair or homologous recombination. By using the Drosophila w/w+ mosaic eye system, which detects loss of heterozygosity as changes in eye pigmentation, somatic mutation and recombination frequencies were determined in transgenic flies overexpressing wild-type Rrp1 protein from a heat-shock-inducible transgene. A large decrease in mosaic clone frequency is observed when Rrp1 overexpression precedes treatment with gamma-rays, bleomycin, or paraquat. In contrast, Rrp1 overexpression does not alter the spot frequency after treatment with the alkylating agents methyl methanesulfonate or methyl nitrosourea. A reduction in mosaic clone frequency depends on the expression of the Rrp1 transgene and on the nature of the induced DNA damage. These data suggest a lesion-specific involvement of Rrp1 in the repair of oxidative DNA damage.
Collapse
Affiliation(s)
- A Szakmary
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
23
|
Gu L, Huang SM, Sander M. Single amino acid changes alter the repair specificity of Drosophila Rrp1. Isolation of mutants deficient in repair of oxidative DNA damage. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31689-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Abstract
Base damages, sugar damages, and single-strand breaks produced by free radicals are the preponderant lesions produced in DNA by ionizing radiation. These lesions have been individually introduced into substrate, template, and biologically active DNA molecules and enzymatic processing and biological consequences determined. Free radical-induced DNA lesions are processed by base excision repair and many are potentially lethal in simple viral systems. Furthermore, a number of free radical modifications of purine and pyrimidine bases are premutagenic lesions. The results of the enzymatic and biological processing of a number of the more well-studied and stable lesions are summarized.
Collapse
Affiliation(s)
- S S Wallace
- University of Vermont, Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, Burlington 05405
| |
Collapse
|
25
|
Kuo CF, Mol CD, Thayer MM, Cunningham RP, Tainer JA. Structure and function of the DNA repair enzyme exonuclease III from E. coli. Ann N Y Acad Sci 1994; 726:223-34; discussion 234-5. [PMID: 8092679 DOI: 10.1111/j.1749-6632.1994.tb52820.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The three-dimensional structure of exonuclease III, the major AP DNA repair endonuclease of Escherichia coli, has been determined using x-ray crystallographic methods at 2.7 A resolution. The atomic model was fit to an electron density map calculated with phases obtained from three isomorphous heavy atom derivatives. The overall chain fold of exonuclease III is that of a compact alpha,beta-protein of dimensions 55 by 50 by 45 A. The pair of extended beta-pleated sheets pack against each other in an approximately parallel fashion to form the hydrophobic core of a four-layered sandwich structure. These beta sheets are flanked by four alpha-helices that form the outer two layers of the fold. The individual strands of the beta-sheets are in a mostly antiparallel configuration and are linked by extensive loop regions that connect adjoining strands. The structure contains internal symmetry with the two extended beta-sheets and four alpha-helices related by a pseudo-twofold axis running approximately down the center of the two sheets. This internal symmetry is not mirrored in the structure of the loop regions, nor is it detectable within the amino acid sequence. There is a "groove" between the beta-sheets at one end of the molecule that is bordered by several of the exposed loop regions and may be significant for DNA binding.
Collapse
Affiliation(s)
- C F Kuo
- Department of Structural Biology, Abbott Laboratories, Illinois 60064
| | | | | | | | | |
Collapse
|
26
|
Babiychuk E, Kushnir S, Van Montagu M, Inzé D. The Arabidopsis thaliana apurinic endonuclease Arp reduces human transcription factors Fos and Jun. Proc Natl Acad Sci U S A 1994; 91:3299-303. [PMID: 7512729 PMCID: PMC43564 DOI: 10.1073/pnas.91.8.3299] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An Arabidopsis thaliana cDNA encoding an analogue, referred to as Arp for apurinic endonuclease-redox protein, of the human redox factor REF has been cloned. Arp stimulates in vitro DNA-binding activity of the human transcription factor Jun and Fos by the reduction of a cysteine residue located in the DNA-binding domain. Based on amino acid sequence homology, this redox activity is probably confined to the small internal domain of the Arp protein. In analogy to REF, we show that the Arabidopsis Arp protein also functions as an apurinic/apyrimidinic class II endonuclease. This base-free endonuclease activity resides in the carboxyl-terminal domain, and this part of the protein has significant sequence similarity to bacterial (Escherichia coli exonuclease III and Streptococcus pneumoniae exonuclease A) and animal (Drosophila Rrp1 and human REF/HAP) apurinic/apyrimidinic endonucleases. The amino-terminal domain of the Arp protein is highly charged and apparently increases the affinity of the protein for DNA. Therefore, the Arabidopsis Arp protein is multifunctional and may be involved both in DNA repair and in the regulation of transcription.
Collapse
Affiliation(s)
- E Babiychuk
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
27
|
|
28
|
Heyer WD. The search for the right partner: homologous pairing and DNA strand exchange proteins in eukaryotes. EXPERIENTIA 1994; 50:223-33. [PMID: 8143796 DOI: 10.1007/bf01924005] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Finding the right partner is a central problem in homologous recombination. Common to all models for general recombination is a homologous pairing and DNA strand exchange step. In prokaryotes this process has mainly been studied with the RecA protein of Escherichia coli. Two approaches have been used to find homologous pairing and DNA strand exchange proteins in eukaryotes. A biochemical approach has resulted in numerous proteins from various organisms. Almost all of these proteins are biochemically fundamentally different from RecA. The in vivo role of these proteins is largely not understood. A molecular-genetical approach has identified structural homologs to the E. coli RecA protein in the yeast Saccharomyces cerevisiae and subsequently in other organisms including other fungi, mammals, birds, and plants. The biochemistry of the eukaryotic RecA homologs is largely unsolved. For the fungal RecA homologs (S. cerevisiae RAD51, RAD55, RAD57, DMC1; Schizosaccharomyces pombe rad51; Neurospora crassa mei3) a role in homologous recombination and recombinational repair is evident. Besides recombination, homologous pairing proteins might be involved in other cellular processes like chromosome pairing or gene inactivation.
Collapse
Affiliation(s)
- W D Heyer
- Institute of General Microbiology, Bern, Switzerland
| |
Collapse
|
29
|
Gu L, Huang SM, Sander M. Drosophila Rrp1 complements E. coli xth nfo mutants: protection against both oxidative and alkylation-induced DNA damage. Nucleic Acids Res 1993; 21:4788-95. [PMID: 7694234 PMCID: PMC331507 DOI: 10.1093/nar/21.20.4788] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Drosophila Rrp1 protein has four tightly associated enzymatic activities: DNA strand transfer, ssDNA renaturation, dsDNA 3'-exonuclease and apurinic/apyrimidinic (AP) endonuclease. The carboxy-terminal region of Rrp1 is homologous to Escherichia coli exonuclease III and several eukaryotic AP endonucleases. All members of this protein family cleave abasic sites. Rrp1 protein was expressed under the control of the E. coli RNA polymerase tac promoter (pRrp1-tac) in two repair deficient E. coli strains (BW528 and LG101) lacking both exonuclease III (xth) and endonuclease IV (nfo). Rrp1 confers resistance to killing by oxidative, antitumor and alkylating agents that damage DNA (hydrogen peroxide, t-butylhydroperoxide, bleomycin, methyl methanesulfonate, and mitomycin C). Complementation of the repair deficiency by Rrp1 provides up to a two log increase in survival and requires the C-terminal nuclease region of Rrp1, but not its N-terminal region. The AP endonuclease activity in extracts from the repair deficient strain LG101 is increased up to 12-fold when the strain contains pRrp1-tac. These results indicate that pRrp1-tac directs the synthesis of active enzyme, and that the nuclease activities of Rrp1 are likely to be the cause of the increased resistance to DNA damage of the mutant cells.
Collapse
Affiliation(s)
- L Gu
- Laboratory of Genetics D3-04, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | |
Collapse
|
30
|
Taylor FM, Martindale DW. Retroviral-type zinc fingers and glycine-rich repeats in a protein encoded by cnjB, a Tetrahymena gene active during meiosis. Nucleic Acids Res 1993; 21:4610-4. [PMID: 8233798 PMCID: PMC311198 DOI: 10.1093/nar/21.19.4610] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have determined the nucleotide sequence of the cnjB gene from the ciliate Tetrahymena thermophila. This gene is transcriptionally active only during early conjugation, peaking in meiotic prophase. It contains 13 introns, four transcription start points and codes for a putative polypeptide (CnjB) of 1748 amino acids with a calculated molecular weight of 200 kilodaltons and a pl of 7.9. The coding region of cnjB has a low GC content (32% GC) and unusual codon usage. The C-terminal one-third of CnjB consists of three repetitive domains. Introns were absent in this region of cnjB. One of the repetitive domains consists of seven CCHC or retroviral-type zinc fingers, a motif found in one or two copies in retroviral nucleocapsid proteins. This motif has also been found recently in seven copies in the human nucleic-acid binding protein CNBP, in an apparent CNBP homologue in Schizosaccharomyces pombe and in one copy in a Xenopus gene active in early embryos. The other two domains are on either side of the zinc finger domain and contain a repeated glycine-rich motif seen in the heterogeneous nuclear ribonuclear proteins A1 and A2/B1 as well as other proteins. Both CCHC zinc fingers and glycine-rich repeats have been found in proteins with single-stranded nucleic acid-binding activity as well as strand-annealing activity. CnjB is, to our knowledge, the first protein found to contain both types of motifs.
Collapse
Affiliation(s)
- F M Taylor
- Department of Natural Resource Sciences, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
31
|
Abstract
Vaccinia virus infection induces expression of a protein which can catalyze joint molecule formation between a single-stranded circular DNA and a homologous linear duplex. The kinetics of appearance of the enzyme parallels that of vaccinia virus DNA polymerase and suggests it is an early viral gene product. Extracts were prepared from vaccinia virus-infected HeLa cells, and the strand exchange assay was used to follow purification of this activity through five chromatographic steps. The most highly purified fraction contained three major polypeptides of 110 +/- 10, 52 +/- 5, and 32 +/- 3 kDa. The purified protein requires Mg2+ for activity, and this requirement cannot be satisfied by Mn2+ or Ca2+. One end of the linear duplex substrate must share homology with the single-stranded circle, although this homology requirement is not very high, as 10% base substitutions had no effect on the overall efficiency of pairing. As with many other eukaryotic strand exchange proteins, there was no requirement for ATP, and ATP analogs were not inhibitors. Electron microscopy was used to show that the joint molecules formed in these reactions were composed of a partially duplex circle of DNA bearing a displaced single-strand and a duplex linear tail. The recovery of these structures shows that the enzyme catalyzes true strand exchange. There is also a unique polarity to the strand exchange reaction. The enzyme pairs the 3' end of the duplex minus strand with the plus-stranded homolog, thus extending hybrid DNA in a 3'-to-5' direction with respect to the minus strand. Which viral gene (if any) encodes the enzyme is not yet known, but analysis of temperature-sensitive mutants shows that activity does not require the D5R gene product. Curiously, v-SEP appears to copurify with vaccinia virus DNA polymerase, although the activities can be partially resolved on phosphocellulose columns.
Collapse
Affiliation(s)
- W Zhang
- Department of Molecular Biology & Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
32
|
Sander M, Carter M, Huang S. Expression of Drosophila Rrp1 protein in Escherichia coli. Enzymatic and physical characterization of the intact protein and a carboxyl-terminally deleted exonuclease-deficient mutant. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53964-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 1992; 11:3323-35. [PMID: 1380454 PMCID: PMC556867 DOI: 10.1002/j.1460-2075.1992.tb05411.x] [Citation(s) in RCA: 622] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun. Reduction of this residue by chemical reducing agents or by a ubiquitous nuclear redox factor (Ref-1) recently purified from Hela cells, stimulates AP-1 DNA binding activity in vitro, whereas oxidation or chemical modification of the cysteine has an inhibitory effect on DNA binding activity. Here we demonstrate that the protein product of the ref-1 gene stimulates the DNA binding activity of Fos-Jun heterodimers, Jun-Jun homodimers and Hela cell AP-1 proteins as well as that of several other transcription factors including NF-kappa B, Myb and members of the ATF/CREB family. Furthermore, immunodepletion analysis indicates that Ref-1 is the major AP-1 redox activity in Hela nuclear extracts. Interestingly, Ref-1 is a bifunctional protein; it also possesses an apurinic/apyrimidinic (AP) endonuclease DNA repair activity. However, the redox and DNA repair activities of Ref-1 can, in part, be distinguished biochemically. This study suggests a novel link between transcription factor regulation, oxidative signalling and DNA repair processes in higher eukaryotes.
Collapse
Affiliation(s)
- S Xanthoudakis
- Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, New York, NY
| | | | | | | | | |
Collapse
|
34
|
Seki S, Hatsushika M, Watanabe S, Akiyama K, Nagao K, Tsutsui K. cDNA cloning, sequencing, expression and possible domain structure of human APEX nuclease homologous to Escherichia coli exonuclease III. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:287-99. [PMID: 1627644 DOI: 10.1016/0167-4781(92)90027-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
cDNA encoding the human homologue of mouse APEX nuclease was isolated from a human bone-marrow cDNA library by screening with cDNA for mouse APEX nuclease. The mouse enzyme has been shown to possess four enzymatic activities, i.e., apurinic/apyrimidinic endonuclease, 3'-5' exonuclease, DNA 3'-phosphatase and DNA 3' repair diesterase activities. The cDNA for human APEX nuclease was 1420 nucleotides long, consisting of a 5' terminal untranslated region of 205 nucleotide long, a coding region of 954 nucleotide long encoding 318 amino acid residues, a 3' terminal untranslated region of 261 nucleotide long, and a poly(A) tail. Determination of the N-terminal amino acid sequence of APEX nuclease purified from HeLa cells showed that the mature enzyme lacks the N-terminal methionine. The amino acid sequence of human APEX nuclease has 94% sequence identity with that of mouse APEX nuclease, and shows significant homologies to those of Escherichia coli exonuclease III and Streptococcus pneumoniae ExoA protein. The coding sequence of human APEX nuclease was cloned into the pUC18 SmaI site in the control frame of the lacZ promoter. The construct was introduced into BW2001 (xth-11, nfo-2) strain and BW9109 (delta xth) strain cells of E. coli. The transformed cells expressed a 36.4 kDa polypeptide (the 317 amino acid sequence of APEX nuclease headed by the N-terminal decapeptide derived from the part of pUC18 sequence), and were less sensitive to methylmethanesulfonate and tert-butyl-hydroperoxide than the parent cells. The N-terminal regions of the constructed protein and APEX nuclease were cleaved frequently during the extraction and purification processes of protein to produce the 31, 33 and 35 kDa C-terminal fragments showing priming activities for DNA polymerase on acid-depurinated DNA and bleomycin-damaged DNA. Formation of such enzymatically active fragments of APEX nuclease may be a cause of heterogeneity of purified preparations of mammalian AP endonucleases. Based on analyses of the deduced amino acid sequence and the active fragments of APEX nuclease, it is suggested that the enzyme is organized into two domains, a 6 kDa N-terminal domain having nuclear location signals and 29 kDa C-terminal, catalytic domain.
Collapse
Affiliation(s)
- S Seki
- Department of Molecular Biology, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|