1
|
Ni F, Zhao Y, Gao M, Chen Y, Wang Y. LcMYB43 enhances monoterpene biosynthesis by activating 1-deoxy-D-xylulose-5-phosphate synthase gene expression in Litsea cubeba. Int J Biol Macromol 2025; 304:140860. [PMID: 39938834 DOI: 10.1016/j.ijbiomac.2025.140860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
MYB transcription factors are crucial regulators involved in various metabolic processes in plants, including terpene biosynthesis. Litsea cubeba, a member of the Lauraceae family, is rich in monoterpenes and regulates their biosynthesis via the key enzyme DXS in the MEP pathway. Seven DXS genes have been identified in this species, but the role of the MYB family in terpene biosynthesis remains unclear. This study conducted a genome-wide characterization of the R2R3-MYB gene family in L. cubeba, analyzing its phylogenetics, expression, and regulatory functions. A total of 129 R2R3-MYB members were identified, with expansion mechanisms involving tandem and segmental duplications. Expression analysis revealed that LcMYB43 activates LcDXS5, a key enzyme in monoterpene biosynthesis. Overexpression of LcMYB43 significantly increased monoterpene accumulation. Y1H, EMSA, and dual-luciferase assays showed that LcMYB43 directly binds to the CAACAG motif in the LcDXS5 promoter, activating its expression. These findings suggest that LcMYB43 enhances monoterpene biosynthesis by promoting LcDXS5 expression, providing new insights into the regulatory mechanisms of monoterpene biosynthesis.
Collapse
Affiliation(s)
- Feifei Ni
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Nanjing Forestry University, Nanjing 210037, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang Province, China.
| |
Collapse
|
2
|
Chagas RS, Otsuka FAM, Pineda MAR, Salinas RK, Marana SR. Mechanism of imidazole inhibition of a GH1 β-glucosidase. FEBS Open Bio 2023; 13:912-925. [PMID: 36906930 PMCID: PMC10153361 DOI: 10.1002/2211-5463.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
Imidazole is largely employed in recombinant protein purification, including GH1 β-glucosidases, but its effect on the enzyme activity is rarely taken into consideration. Computational docking suggested that imidazole interacts with residues forming the active site of the GH1 β-glucosidase from Spodoptera frugiperda (Sfβgly). We confirmed this interaction by showing that imidazole reduces the activity of Sfβgly, which does not result from enzyme covalent modification or promotion of transglycosylation reactions. Instead, this inhibition occurs through a partial competitive mechanism. Imidazole binds to the Sfβgly active site, reducing the substrate affinity by about threefold, whereas the rate constant of product formation remains unchanged. The binding of imidazole within the active site was further confirmed by enzyme kinetic experiments in which imidazole and cellobiose competed to inhibit the hydrolysis of p-nitrophenyl β-glucoside. Finally, imidazole interaction in the active site was also demonstrated by showing that it hinders access of carbodiimide to the Sfβgly catalytic residues, protecting them from chemical inactivation. In conclusion, imidazole binds in the Sfβgly active site, generating a partial competitive inhibition. Considering that GH1 β-glucosidases share conserved active sites, this inhibition phenomenon is probably widespread among these enzymes, and this should be taken into account when considering the characterization of their recombinant forms.
Collapse
Affiliation(s)
- Rafael S. Chagas
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Felipe A. M. Otsuka
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Mario A. R. Pineda
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| | - Sandro R. Marana
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil
| |
Collapse
|
3
|
Ghorbani N, Assmar M, Amirmozafari N, Issazadeh K. Investigating the Efficiency of Recombinant FliC-Loaded Bacillus subtilis Spores in Mice Immunization against Salmonella enterica Serovar Typhi. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1474-1482. [PMID: 34568187 PMCID: PMC8426781 DOI: 10.18502/ijph.v50i7.6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
Background: Bacterial spores are among the most efficient vaccine delivery vehicles. Because of their safety and efficacy, Bacillus subtilis spores are increasingly used in this regard. The negatively charged surfaces of the spores allow antigens to be adsorbed onto these structures. In this study, a candidate vaccine against Salmonella enterica serovar Typhi was adsorbed onto B. subtilis spores and the immunogenicity of the formulation was investigated in BALB/c mice. Methods: This work was performed during 2018–2019 in Islamic Azad University of Lahijan. FliC protein was recombinantly expressed in E. coli BL21 (DE3) cells and purified by affinity chromatography. On the other hand, B. subtilis strain PY79 (ATCC1609) was cultured in DSM medium and after the sporulation, FliC protein was adsorbed onto the spores in three different pH values (4, 7 and 10) and the adsorption was verified using dot-blot assay. FliC-adsorbed spores were then administered to BALB/c mice through the subcutaneous route. Mice immunization was evaluated by serum IgG assessment and challenge study. Results: FliC protein was successfully expressed and purified. Sporulation was controlled by phase-contrast microscopy. Serum IgG assay showed significant stimulation of the mice’s humoral immune system. Immunized mice were able to resist bacterial infection. Conclusion: The results showed the efficiency of spores as natural adjuvants for the stimulation of mice immune system. The formulation can be exploited for the delivery of recombinant vaccines against bacterial pathogens.
Collapse
Affiliation(s)
- Nafiseh Ghorbani
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran
| | - Mehdi Assmar
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran.,Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khosrow Issazadeh
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran
| |
Collapse
|
4
|
Dastan K, Assmar M, Amirmozafari N, Ghanaei FM, Mirpour M. Design, Expression and Purification of Strongyloides stercoralis IgG4 Immunoreactive Protein (NIE) in Escherichia coli. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:341-348. [PMID: 33082798 PMCID: PMC7548455 DOI: 10.18502/ijpa.v15i3.4198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Strongyloidiasis is a public health concern in northern regions of Iran, caused by Strongyloides stercoralis. Auto-infection cycle can be resulted in high parasitic load, especially in immunocompromised hosts. Because of low sensitivity of stool culture and stool-based microscopy techniques, detection of antibodies in patient's sera can be an alternative diagnostic technique for detection of the nematode. In the present study, as the first step of the development of an ELISA kit for the detection of antibodies against the nematode, IgG4 immunoreactive protein (NIE) was expressed in Escherichia coli expression system, purified and verified. Methods The NIE gene sequence was retrieved from the GenBank. This sequence was codon-optimized for the expression in E. coli BL21 (DE3). The sequence was inserted into the expression vector pET-30b (+). The recombinant vector was then transferred into competent E. coli BL21 (DE3). Transformed colonies were selected and verified by colony PCR. NIE gene expression was induced with IPTG induction. The protein production was evaluated by SDS-PAGE and verified using Western blotting. Results The codon-optimized NIE gene had required parameters for expression in E. coli. NIE protein was proved and verified by SDS-PAGE and Western blotting. Conclusion NIE recombinant protein was successfully expressed in E. coli expression system in appropriate amounts. The recombinant protein can be used for developing ELISA kit in diagnosis of S. stercoralis.
Collapse
Affiliation(s)
- Katayoun Dastan
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mehdi Assmar
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Mansour Ghanaei
- Division of Gastroenterology, Faculty of Medicine, Gilan University of Medical Sciences, Gilan, Iran.,Gastrointestinal and Liver Disease Research Center, Razi Hospital, Rasht, Iran
| | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
5
|
Hebbi V, Kumar D, Rathore AS. Process intensification in peptide manufacturing: Recombinant lethal toxin neutralizing factor (rLTNF) as a case study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Sharma N, Rao SP, Kalivendi SV. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 2019; 135:28-37. [PMID: 30796974 DOI: 10.1016/j.freeradbiomed.2019.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the degeneration of dopamine neurons of the substantia nigra pars compacta (SNpc) and the presence of intra-neuronal aggregates of α-synuclein and its post-translational products. Based on emerging reports on the association between glycated α-synuclein and PD; and the newly identified deglycase activity of DJ-1, we sought to find the relevance of deglycase activity of DJ-1 on glycation of α-synuclein and its plausible role in PD. Our results demonstrate that DJ-1 has a higher affinity towards the substrate methylglyoxal (MGO) (Km = 900 mM) as compared to its familial mutant, L166P (Km = 1900 mM). Also, CML α-synuclein (CML-syn) served as a substrate for the deglycase activity of DJ-1. Treatment of cells with Parkinsonian mimetic, 1-methyl-4-phenylpyridinium ion (MPP+); oxidants, such as H2O2 and methylglyoxal (MGO) lead to a dose-dependent decrease in the levels of DJ-1 with a concomitant increase in CML-syn. Also, MGO induced cytosolic α-synuclein aggregates in cells which stained positive with the anti-CML antibody. Further, unilateral stereotaxic administration of MGO into the SNpc of mice induced α-synuclein aggregates and CML-syn with a concomitant reduction in the number of TH positive neurons, protein levels of TH and DJ-1 at the site of injection. Interestingly, overexpression of DJ-1 enhanced the clearance of preformed CML-syn in cells, mitigated MGO induced CML-syn and intracellular α-synuclein aggregates. Overall, the findings of our present study demonstrate that DJ-1 plays a pivotal role in the glycation and aggregation of α-synuclein. Reduced DJ-1 activity due to mutations or oxidative stress may lead to the accumulation of glycated α-synuclein and its aggregates.
Collapse
Affiliation(s)
- Neelam Sharma
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Swetha Pavani Rao
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Shasi V Kalivendi
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
7
|
Hajizade A, Salmanian AH, Amani J, Ebrahimi F, Arpanaei A. EspA-loaded mesoporous silica nanoparticles can efficiently protect animal model against enterohaemorrhagic E. coli O157: H7. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S1067-S1075. [PMID: 30638077 DOI: 10.1080/21691401.2018.1529676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the application of mesoporous silica nanoparticles (MSNPs) loaded with recombinant EspA protein, an immunogen of enterohaemorrhagic E. coli, was investigated in the case of BALB/c mice immunization against the bacterium. MSNPs of 96.9 ± 15.9 nm in diameter were synthesized using template removing method. The immunization of mice was carried out orally and subcutaneously. Significant immune responses to the antigen were observed for the immunized mice when rEspA-loaded MSNPs were administered in both routes in comparison to that of the antigen formulated using a well-known adjuvant, i.e. Freund's. According to the titretitre of serum IL-4, the most potent humoral responses were observed when the mice were immunized subcutaneously with antigen-loaded MSNPs (244, 36 and 14 ng/dL of IL-4 in the serum of mice immunized subcutaneously or orally by antigen-loaded MSNPs, and subcutaneously by Freund's adjuvant formulated-antigen, respectively). However, the difference in serum IgG and serum IgA was not significant in mice subcutaneously immunized with antigen-loaded MSNPs and mice immunized with Freund's adjuvant formulated-antigen. Finally, the immunized mice were challenged orally by enterohaemorrhagic E. coli cells. The amount of bacterial shedding was significantly reduced in faecesfaeces of the animals immunized by antigen-loaded MSNPs in both subcutaneous and oral routes.
Collapse
Affiliation(s)
- Abbas Hajizade
- a Applied Biotechnology Research Centre , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Hatef Salmanian
- b Agriculture Biotechnology Department , National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Jafar Amani
- c Applied Microbiology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Firouz Ebrahimi
- d Biology Research Centre , Imam Hossein University , Tehran , Iran
| | - Ayyoob Arpanaei
- e Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| |
Collapse
|
8
|
Gengenbach BB, Müschen CR, Buyel JF. Expression and purification of human phosphatase and actin regulator 1 (PHACTR1) in plant-based systems. Protein Expr Purif 2018; 151:46-55. [PMID: 29894805 DOI: 10.1016/j.pep.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases are a prevalent cause of morbidity and mortality especially in industrialized countries. The human phosphatase and actin regulator 1 (PHACTR1) may be involved in such diseases, but its precise regulatory function remains unclear due to the large number of potential interaction partners. The same phenomenon makes this protein difficult to express in mammalian cells, but it is also an intrinsically disordered protein that likely aggregates when expressed in bacteria due to the absence of chaperones. We therefore used a design of experiments approach to test the suitability of three plant-based systems for the expression of satisfactory quantities of recombinant PHACTR1, namely transient expression in tobacco (Nicotiana tabacum) BY-2 plant cell packs (PCPs), whole N. benthamiana leaves and BY-2 cell lysate (BYL). The highest yield was achieved using the BYL: up to 120 mg product kg-1 biomass equivalent within 48 h of translation. This was 1.3-fold higher than transient expression in N. benthamiana together with the silencing inhibitor p19, and 6-fold higher than the PCP system. The presence of Triton X-100 in the extraction buffer increased the recovery of PHACTR1 by 2-200-fold depending on the conditions. PHACTR1 was incompatible with biomass blanching and was stable for less than 16 h in raw plant extracts. Purification using a DDK-tag proved inefficient whereas 15% purity was achieved by immobilized metal affinity chromatography.
Collapse
Affiliation(s)
- B B Gengenbach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - C R Müschen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany; Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Shi L, Han F, Shi C, Huang Y, Liu Y, Chang X. Immunohistochemical detection of E7 human papillomavirus protein in pre‑malignant and malignant lesions of the uterine cervix. Mol Med Rep 2018; 18:3949-3956. [PMID: 30132548 DOI: 10.3892/mmr.2018.9416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/01/2018] [Indexed: 11/05/2022] Open
Abstract
Human papillomavirus (HPV) E7 protein expression is caused by HPV viral DNA integration into human cellular DNA, and is a prerequisite for the development and progression of cervical cancer. The present study aimed to evaluate the role of E7 protein as a biomarker for identification of transformed cervical epithelial cells during the early stages of cervical cancer. Specific monoclonal antibodies to the E7 protein of high‑risk HPVs were generated and characterized for applications in immunocytochemistry and immunohistochemistry using cervical epithelial cells or biopsy tissue slides. The specificity and feasibility for detecting precancerous cells in cervical exfoliated epithelial cells was demonstrated. In addition, antibody staining of cervix biopsies indicated the pathological grades of cervical cancer and precancerous lesions. The results of the present study demonstrated the potential benefit of using E7 protein as a novel and specific clinical diagnostic marker to distinguish transient HPV infections from malignant and pre‑malignant lesions.
Collapse
Affiliation(s)
- Lijun Shi
- Attogen Biomedical, Ltd., Suzhou, Jiangsu 215123, P.R. China
| | - Fengli Han
- Attogen Biomedical, Ltd., Suzhou, Jiangsu 215123, P.R. China
| | - Chenglong Shi
- Attogen Biomedical, Ltd., Suzhou, Jiangsu 215123, P.R. China
| | - Yan Huang
- Attogen Biomedical, Ltd., Suzhou, Jiangsu 215123, P.R. China
| | - Yan Liu
- Attogen Biomedical, Ltd., Suzhou, Jiangsu 215123, P.R. China
| | - Xiaojia Chang
- Attogen Biomedical, Ltd., Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
10
|
Plucinsky SM, Root KT, Glover KJ. Efficient solubilization and purification of highly insoluble membrane proteins expressed as inclusion bodies using perfluorooctanoic acid. Protein Expr Purif 2017; 143:34-37. [PMID: 29066155 DOI: 10.1016/j.pep.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023]
Abstract
The purification of membrane proteins can be challenging due to their low solubility in conventional detergents and/or chaotropic solutions. The introduction of fusion systems that promote the formation of inclusion bodies has facilitated the over-expression of membrane proteins. In this protocol, we describe the use of perfluorooctanoic acid (PFOA) as an aid in the purification of highly hydrophobic membrane proteins expressed as inclusion bodies. The advantage of utilizing PFOA is threefold: first, PFOA is able to reliably solubilize inclusion bodies, second, PFOA is compatible with nickel affinity chromatography, and third, PFOA can be efficiently dialyzed away to produce a detergent free sample. To demonstrate the utility of employing PFOA, we expressed and purified a segment of the extremely hydrophobic membrane protein caveolin-1.
Collapse
Affiliation(s)
- Sarah M Plucinsky
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, PA 18015, USA
| | - Kyle T Root
- Department of Chemistry, Lock Haven University, 301 W. Church St, Lock Haven, PA 17745, USA
| | - Kerney Jebrell Glover
- Department of Chemistry, Lehigh University, 6 E. Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
11
|
Gül OT, Pugliese KM, Choi Y, Sims PC, Pan D, Rajapakse AJ, Weiss GA, Collins PG. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths. BIOSENSORS-BASEL 2016; 6:bios6030029. [PMID: 27348011 PMCID: PMC5039648 DOI: 10.3390/bios6030029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 01/17/2023]
Abstract
As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.
Collapse
Affiliation(s)
- O Tolga Gül
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, Polatlı Faculty of Science and Arts, Gazi University, Polatlı 06900, Turkey
| | - Kaitlin M Pugliese
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA
| | - Yongki Choi
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physics, North Dakota State University, Fargo, ND 58108, USA
| | - Patrick C Sims
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Deng Pan
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Arith J Rajapakse
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA
| | - Gregory A Weiss
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA 92697, USA.
| | - Philip G Collins
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
Zeng T, Zhang T, Wei W, Li Z, Wu D, Wang L, Guo J, He X, Ma N. Compact, Programmable, and Stable Biofunctionalized Upconversion Nanoparticles Prepared through Peptide-Mediated Phase Transfer for High-Sensitive Protease Sensing and in Vivo Apoptosis Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11849-56. [PMID: 25970768 DOI: 10.1021/acsami.5b01446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protease represents an important class of biomarkers for disease diagnostics and drug screening. Conventional fluorescence-based probes for in vivo protease imaging suffer from short excitation wavelengths and poor photostability. Upconversion nanoparticles (UCNPs) hold great promise for biosensing and bioimaging because of their deep-tissue excitability, robust photostability, and minimal imaging background. However, producing highly stable and compact biofunctionalized UCNP probes with optimal bioresponsivity for in vivo imaging of protease activities still remains challenging and has not been previously demonstrated. Herein, we report facile preparation of highly compact and stable biofunctionalized UCNPs through peptide-mediated phase transfer for high-sensitive detection of protease in vitro and in vivo. We demonstrate that the polyhistidine-containing chimeric peptides could displace oleic acid molecules capped on UCNPs synthesized in organic solvents and, thereby, directly transfer UCNPs from the chloroform phase to the water phase. The resulting UCNPs possess high stability, programmable surface properties, and a compact coating layer with minimized thickness for efficient luminescence resonance energy transfer (LRET). On the basis of this strategy, we prepared LRET-based UCNP probes with optimal bioresponsivity for in vitro high-sensitive detection of trypsin and in vivo imaging of apoptosis for chemotherapy efficacy evaluation. The reported strategy could be extended to construct a variety of peptide-functionalized UCNPs for various biomedical applications.
Collapse
Affiliation(s)
- Tao Zeng
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tao Zhang
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wei Wei
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhi Li
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dan Wu
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Li Wang
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jun Guo
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xuewen He
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Nan Ma
- †Key Laboratory of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, and ‡Testing and Analysis Center, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
13
|
Evidence for moonlighting functions of the θ subunit of Escherichia coli DNA polymerase III. J Bacteriol 2013; 196:1102-12. [PMID: 24375106 DOI: 10.1128/jb.01448-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex.
Collapse
|
14
|
Matroodi S, Zamani M, Haghbeen K, Motallebi M, Aminzadeh S. Physicochemical study of a novel chimeric chitinase with enhanced binding ability. Acta Biochim Biophys Sin (Shanghai) 2013; 45:845-56. [PMID: 23979812 DOI: 10.1093/abbs/gmt089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chitinases are slow-reacting but important enzymes as they are anticipated to have diverse applications. The role of a chitin-binding domain (ChBD) in enhancing the quality of binding is essential information for purposeful engineering of chitinases. The idea of making hybrid chitinases by fusing a known ChBD to a chitinase, which naturally lacks ChBD is of interest especially for bio-controlling purposes. Therefore, in the present study, the ChBD of Serratia marcescens chitinase B was selected and fused to the fungal chitinase, Trichoderma atroviride Chit42. Both Chit42 and chemric Chit42 (ChC) showed similar activity towards colloidal chitin with specificity constants of 0.83 and 1.07 min(-1), respectively, same optimum temperatures (40°C), and similar optimum pH (4 and 4.5, respectively). In the presence of insoluble chitin, ChC showed higher activity (70%) and obtained a remarkably higher binding constant (700 times). Spectroscopic studies indicated that chimerization of Chit42 caused some structural changes, which resulted in a reduction of α-helix in ChC structure. Chemical and thermal stability studies suggested that ChC had a more stable structure than Chit42. Hill analysis of the binding data revealed mixed-cooperativity with positive cooperativity governing at ChC concentrations below 0.5 and above 2 µM in the presence of insoluble chitin. It is suggested that the addition of the ChBD to Chit42 affords structural changes which enhance the binding ability of ChC to insoluble chitin, improving its catalytic efficiency and increasing its thermal and chemical stability.
Collapse
Affiliation(s)
- Soheila Matroodi
- National Institute of Genetic Engineering and Biotechnology, PO Box: 149651/161, Tehran, Iran
| | | | | | | | | |
Collapse
|
15
|
Paytubi S, Dietrich M, Queiroz MH, Juárez A. Role of plasmid- and chromosomally encoded Hha proteins in modulation of gene expression in E. coli O157:H7. Plasmid 2013; 70:52-60. [DOI: 10.1016/j.plasmid.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/28/2022]
|
16
|
Designing a new chitinase with more chitin binding and antifungal activity. World J Microbiol Biotechnol 2013; 29:1517-23. [DOI: 10.1007/s11274-013-1318-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
17
|
Peng Y, Kim DH, Jones TM, Ruiz DI, Lerner RA. Engineering Cell Surfaces for Orthogonal Selectability. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201201844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Peng Y, Kim DH, Jones TM, Ruiz DI, Lerner RA. Engineering Cell Surfaces for Orthogonal Selectability. Angew Chem Int Ed Engl 2012; 52:336-40. [DOI: 10.1002/anie.201201844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 11/11/2012] [Indexed: 11/08/2022]
|
19
|
Al-Manasra AM, Al-Razem F. Cloning and expression of a new bacteriophage (SHPh) DNA ligase isolated from sewage. J Genet Eng Biotechnol 2012. [DOI: 10.1016/j.jgeb.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Kim EJ, Chung BH, Lee HJ. Parts per Trillion Detection of Ni(II) Ions by Nanoparticle-Enhanced Surface Plasmon Resonance. Anal Chem 2012; 84:10091-6. [DOI: 10.1021/ac302584d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eum Ji Kim
- Department of Chemistry and Green-Nano Materials
Research Center, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu-city, 702-701, Republic of Korea
| | - Bong Hyun Chung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 305-806, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials
Research Center, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu-city, 702-701, Republic of Korea
| |
Collapse
|
21
|
Yin C, Jia Y, Garcia CA. A novel method for the purification of low soluble recombinant C-type lectin proteins. Biochem Biophys Res Commun 2012; 425:636-41. [PMID: 22867876 DOI: 10.1016/j.bbrc.2012.07.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
Snake venoms contain a complex mixture of many biological molecules including proteins. The purification of recombinant proteins is a key step in studying their function and structure with affinity chromatography as the common method used in their purification. In bacterial expression systems, hydrophobic recombinant proteins are usually precipitated into inclusion bodies, and contaminants are typically associated with tagged proteins after purification. The purpose of this study was to develop a procedure to purify hydrophobic recombinant proteins without an affinity tag. Snake venom mature C-type lectin-like proteins (CLPs) with a tag were cloned, expressed, and purified by repeated sonication and wash steps. The effects of the signal peptide on the expression and solubility of the recombinant protein were investigated. The CLPs in washed inclusion bodies were solubilized and refolded by dialysis. The CLPs without a tag were successfully purified with a yield 38 times higher than the traditional method, and inhibited blood platelet aggregation with an IC(50) of 100.57 μM in whole blood. This novel procedure is a rapid, and inexpensive method to purify functional recombinant hydrophobic CLPs from snake venoms useful in the development of drug therapies.
Collapse
Affiliation(s)
- Chunhui Yin
- Texas A&M University Kingsville, Department of Biological and Health Sciences, Kingsville, TX 78363, USA
| | | | | |
Collapse
|
22
|
Zhou W, Hannoun Z, Jaffray E, Medine CN, Black JR, Greenhough S, Zhu L, Ross JA, Forbes S, Wilmut I, Iredale JP, Hay RT, Hay DC. SUMOylation of HNF4α regulates protein stability and hepatocyte function. J Cell Sci 2012; 125:3630-5. [PMID: 22505616 PMCID: PMC3445325 DOI: 10.1242/jcs.102889] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types.
Collapse
Affiliation(s)
- Wenli Zhou
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bio Quarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schneider DA. Quantitative analysis of transcription elongation by RNA polymerase I in vitro. Methods Mol Biol 2012; 809:579-91. [PMID: 22113301 DOI: 10.1007/978-1-61779-376-9_37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The elongation step in transcription has gained attention for its roles in regulation of eukaryotic gene expression and for its influence on RNA processing. Sophisticated genetic analyses have identified factors and/or conditions that may affect transcription elongation rate or processivity; however, differentiation of direct and indirect effects on transcription is difficult using in vivo strategies. Therefore, effective, reproducible in vitro assays have been developed to test whether a given factor or condition can have a direct effect on the kinetics of transcription elongation. We have adapted a fully reconstituted transcription system for RNA polymerase I (Pol I) for kinetic analysis of transcription elongation rate in vitro. The assay described here has proven to be effective in the characterization of defects or enhancement of wild-type transcription elongation by RNA Pol I. Since transcription elongation by RNA Pol I has only recently gained significant attention, this assay will be a valuable resource for years to come.
Collapse
Affiliation(s)
- David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
|
25
|
Kil IS, Jung KH, Nam WS, Park JW. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances EGCG-induced apoptosis. Biochimie 2011; 93:1808-15. [DOI: 10.1016/j.biochi.2011.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/21/2011] [Indexed: 02/05/2023]
|
26
|
Baker PJ, Chan YM, Hertel M, Montclare JK. Characterization and identification of the protein partners of Fn3 domain in FnTm2. Protein Expr Purif 2011; 81:42-48. [PMID: 21907285 DOI: 10.1016/j.pep.2011.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Recently, a novel transmembrane protein was found to be up-regulated in the auditory learning pathway of birds and mammals. The protein, FnTm2, was predicted to have an extracellular fibronectin III (Fn3) domain and a single transmembrane domain. By contrast to other studied Fn3 domains the extracellular domain of FnTm2 bears several cysteine residues, which are predicted to form disulfide bonds. The Fn3 domain of the FnTm2 protein was expressed in DH5-α Escherichia coli (E. coli) cells, purified and characterized by circular dichroism (CD). In order to identify binding partners to Fn3, the isolated protein was incubated with bird brain lysate for a pull down treatment. Of the proteins recognized, myelin basic protein (MBP) was identified as a bona fide partner; it was further characterized for binding to Fn3 in vitro via fluorescence spectroscopy and confirmed via isothermal calorimetry (ITC).
Collapse
Affiliation(s)
- Peter James Baker
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, 6 Metrotech Center, Brooklyn, NY 11201, United States
| | - Yan Mei Chan
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, 6 Metrotech Center, Brooklyn, NY 11201, United States
| | - Moritz Hertel
- Laboratory of Animal Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Jin Kim Montclare
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, 6 Metrotech Center, Brooklyn, NY 11201, United States; Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
27
|
Li SC, Anderson KM, Li YT. A unique endo-β-galactosidase that cleaves both blood group A and B glycotopes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:81-95. [PMID: 21618105 DOI: 10.1007/978-1-4419-7877-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Su-Chen Li
- Department of Biochemistry, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
28
|
Jung KH, Park JW. Suppression of mitochondrial NADP(+)-dependent isocitrate dehydrogenase activity enhances curcumin-induced apoptosis in HCT116 cells. Free Radic Res 2010; 45:431-8. [PMID: 21110780 DOI: 10.3109/10715762.2010.540574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Curcumin is a polyphenol derived from the plant Curcuma longa that induces apoptotic cell death in malignant cancer cell lines. It has been shown previously that mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) plays an essential role in defense against oxidative stress by supplying NADPH for antioxidant systems. This study demonstrates that curcumin decreased the activity of IDPm, both as a purified enzyme and in cultured cells. It also shows that curcumin-induced apoptosis in the colon cancer cell line HCT116 is significantly enhanced by suppression of IDPm activity. Transfection of HCT116 cells with an IDPm small interfering RNA (siRNA) markedly decreased activity of IDPm, enhancing cellular susceptibility to curcumin-induced apoptosis, as reflected by DNA fragmentation, cellular redox status, mitochondria dysfunction and modulation of apoptotic marker proteins. Together, these results suggest that application of curcumin together with IDPm siRNA may be an effective combination modality in the treatment of cancer.
Collapse
Affiliation(s)
- Kyu Ho Jung
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | |
Collapse
|
29
|
Fei J, Wang J, Sternberg SH, MacDougall DD, Elvekrog MM, Pulukkunat DK, Englander MT, Gonzalez RL. A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis. Methods Enzymol 2010; 472:221-59. [PMID: 20580967 PMCID: PMC4748369 DOI: 10.1016/s0076-6879(10)72008-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a powerful tool for mechanistic investigations of increasingly complex biochemical systems. Recently, we and others have successfully used smFRET to directly investigate the role of structural dynamics in the function and regulation of the cellular protein synthesis machinery. A significant challenge to these experiments, and to analogous experiments in similarly complex cellular machineries, is the need for specific and efficient fluorescent labeling of the biochemical system at locations that are both mechanistically informative and minimally perturbative to the biological activity. Here, we describe the development of a highly purified, fluorescently labeled in vitro translation system that we have successfully designed for smFRET studies of protein synthesis. The general approaches we outline should be amenable to single-molecule fluorescence studies of other complex biochemical systems.
Collapse
Affiliation(s)
- Jingyi Fei
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Jiangning Wang
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Samuel H. Sternberg
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Daniel D. MacDougall
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Margaret M. Elvekrog
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Dileep K. Pulukkunat
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
| | - Michael T. Englander
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-0162 FAX: (212) 932-1289 J.F. J.W. D.D.M M.M.E. D.K.P. M.T.E.
- Integrated Program in Cellular, Molecular, and Biomedical Sciences
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027 Tel.: (212) 854-1096 FAX: (212) 932-1289
| |
Collapse
|
30
|
Eaton AK, Stewart RC. The two active sites of Thermotoga maritima CheA dimers bind ATP with dramatically different affinities. Biochemistry 2009; 48:6412-22. [PMID: 19505148 DOI: 10.1021/bi900474g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CheA is a central component of the chemotaxis signal transduction pathway that allows prokaryotic cells to control their movements in response to environmental cues. This dimeric protein histidine kinase autophosphorylates via an intersubunit phosphorylation reaction in which each protomer of the dimer binds ATP, at an active site located in its P4 domain and then catalyzes transfer of the gamma-phosphoryl group of ATP to the His(45) side chain within the P1 domain of the trans protomer. Here we utilize the fluorescent nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate] to investigate the two ATP-binding sites of the Thermotoga maritima CheA dimer (TmCheA) and the single site of the isolated TmP4 domain (a monomer). We define the affinity of CheA for TNP nucleotides and, by competition, for unmodified ATP. The two ATP-binding sites of the TmCheA dimer exhibit dramatically different affinities for TNP-ATP (K(d1)(TNP) approximately 0.0016 muM and K(d2)(TNP) approximately 22 muM at 4 degrees C in the presence of Mg(2+)) as well as for ATP (K(d1)(ATP) approximately 6 muM and K(d2)(ATP) approximately 5000 muM at 4 degrees C in the presence of Mg(2+)) and in their ability to influence the fluorescence of bound TNP-ATP. The ATP-binding site of the isolated TmP4 domain interacts with ATP and TNP-ATP in a manner similar to that of the high-affinity site of the TmCheA dimer. These results suggest that the two active sites of TmCheA homodimers exhibit large differences in their interactions with ATP. We consider possible implications of these differences for the CheA autophosphorylation mechanism and for CheA function in bacterial cells.
Collapse
Affiliation(s)
- Anna K Eaton
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
31
|
Paytubi S, Wang X, Lam YW, Izquierdo L, Hunter MJ, Jan E, Hundal HS, Proud CG. ABC50 promotes translation initiation in mammalian cells. J Biol Chem 2009; 284:24061-73. [PMID: 19570978 DOI: 10.1074/jbc.m109.031625] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABC50 is an ATP-binding cassette (ABC) protein, which, unlike most ABC proteins, does not possess membrane-spanning domains. ABC50 interacts with eukaryotic initiation factor 2 (eIF2), which plays a key role in translation initiation and its control. ABC50 binds to ribosomes, and this interaction requires both the N-terminal domain and at least one ABC domain. Knockdown of ABC50 by RNA interference impaired translation of both cap-dependent and -independent reporters, consistent with a positive role for ABC50 in the function of eIF2, which is required for both types of translation initiation. Mutation of the Walker box A or B motifs in both ABC regions of ABC50 yielded a mutant protein that exerted a dominant-interfering phenotype with respect to protein synthesis and translation initiation. Importantly, although dominant-interfering mutants of ABC50 impaired cap-dependent translation, translation driven by certain internal ribosome entry segments was not inhibited. ABC50 is located in the cytoplasm and nucleoplasm but not in the nucleolus. Thus, ABC50 is not likely to be directly involved in early ribosomal biogenesis, unlike some other ABC proteins. Taken together, the present data show that ABC50 plays a key role in translation initiation and has functions that are distinct from those of other non-membrane ABC proteins.
Collapse
Affiliation(s)
- Sonia Paytubi
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pitulescu ME, Teichmann M, Luo L, Kessel M. TIPT2 and geminin interact with basal transcription factors to synergize in transcriptional regulation. BMC BIOCHEMISTRY 2009; 10:16. [PMID: 19515240 PMCID: PMC2702275 DOI: 10.1186/1471-2091-10-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/10/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND The re-replication inhibitor Geminin binds to several transcription factors including homeodomain proteins, and to members of the polycomb and the SWI/SNF complexes. RESULTS Here we describe the TATA-binding protein-like factor-interacting protein (TIPT) isoform 2, as a strong binding partner of Geminin. TIPT2 is widely expressed in mouse embryonic and adult tissues, residing both in cyto- and nucleoplasma, and enriched in the nucleolus. Like Geminin, also TIPT2 interacts with several polycomb factors, with the general transcription factor TBP (TATA box binding protein), and with the related protein TBPL1 (TRF2). TIPT2 synergizes with geminin and TBP in the activation of TATA box-containing promoters, and with TBPL1 and geminin in the activation of the TATA-less NF1 promoter. Geminin and TIPT2 were detected in the chromatin near TBP/TBPL1 binding sites. CONCLUSION Together, our study introduces a novel transcriptional regulator and its function in cooperation with chromatin associated factors and the basal transcription machinery.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
33
|
Petty KJ. Metal-chelate affinity chromatography. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2008; Volume 4 Issue 1:Unit 9.4. [PMID: 18429213 DOI: 10.1002/0471140864.ps0904s04] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant proteins engineered to have six consecutive histidine residues on either the amino or carboxyl terminus can be purified using a resin containing nickel ions (Ni(2+)) that have been immobilized by covalently attached nitrilotriacetic acid (NTA). This technique, known as metal-chelate affinity chromatography (MCAC), can readily be performed with either native or denatured protein. This unit discusses techniques for creating a fusion protein consisting of the protein of interest with a histidine tail attached. A procedure for expression of histidine-tail fusion proteins and their purification in native form by MCAC is described, and two alternate protocols describe purification of histidine-tail fusion proteins by MCAC under denaturing conditions and their renaturation by either dialysis or solid-phase renaturation. Support protocols are provided for analysis of the purified product and regeneration of the NTA resin. All of these protocols are easily adaptable to any protein expression system.
Collapse
Affiliation(s)
- K J Petty
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Dennis AM, Bao G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. NANO LETTERS 2008; 8:1439-1445. [PMID: 18412403 DOI: 10.1021/nl080358+] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fluorescence resonance energy transfer (FRET) characteristics, including the efficiency, donor-acceptor distance, and binding strength of six fluorescent protein (FP)-quantum dot (QD) pairs were quantified, demonstrating that FPs are efficient acceptors for QD donors with up to 90% quenching of QD fluorescence and that polyhistidine coordination to QD core-shell surface is a straightforward and effective means of conjugating proteins to commercially available QDs. This provides a novel approach to developing QD-based FRET probes for biomedical applications.
Collapse
Affiliation(s)
- Allison M Dennis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
35
|
Baños RC, Pons JI, Madrid C, Juárez A. A global modulatory role for the Yersinia enterocolitica H-NS protein. Microbiology (Reading) 2008; 154:1281-1289. [DOI: 10.1099/mic.0.2007/015610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rosa C. Baños
- Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona, Edifici Hèlix. c/ Josep Samitier 1-5, 08028 Barcelona, Spain
| | - José I. Pons
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | - Antonio Juárez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona, Edifici Hèlix. c/ Josep Samitier 1-5, 08028 Barcelona, Spain
| |
Collapse
|
36
|
Fecko CJ, Munson KM, Saunders A, Sun G, Begley TP, Lis JT, Webb WW. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking. Photochem Photobiol 2008; 83:1394-404. [PMID: 18028214 DOI: 10.1111/j.1751-1097.2007.00179.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.
Collapse
Affiliation(s)
- Christopher J Fecko
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schneider WM, Zheng H, Coté ML, Roth MJ. The MuLV 4070A G541R Env mutation decreases the stability and alters the conformation of the TM ectodomain. Virology 2008; 371:165-74. [PMID: 17961622 DOI: 10.1016/j.virol.2007.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 07/30/2007] [Accepted: 09/22/2007] [Indexed: 01/20/2023]
Abstract
Virus-cell and cell-cell fusion events are affected by various properties of the fusogenic Env protein on the cell surface. The G541R mutation within the TM ectodomain of murine leukemia virus (MuLV) 4070A arose by positive selection in viral passage and results in a reduction of cell-cell fusion events while maintaining viral titer. Size exclusion chromatography shows that the multimerization properties are similar among expressed wild-type and mutant ectodomain peptides. Circular dichroism measurements reveal decreased thermal stability of the G541R mutant as compared to wild type. The G541R mutant also renders the peptide more susceptible to Lys-C protease cleavage. The 42-114 monoclonal antibody does not bind to the G541R mutant peptides, suggesting a structural difference from wild type. These altered physical properties result in productive viral infection of G541R bearing virus with decreased syncytia.
Collapse
Affiliation(s)
- William M Schneider
- UMDNJ-Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane Rm. 636, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
38
|
Paytubi S, Morrice NA, Boudeau J, Proud CG. The N-terminal region of ABC50 interacts with eukaryotic initiation factor eIF2 and is a target for regulatory phosphorylation by CK2. Biochem J 2007; 409:223-31. [PMID: 17894550 DOI: 10.1042/bj20070811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABC50 is an ABC (ATP-binding cassette) protein which, unlike most ABC proteins, lacks membrane-spanning domains. ABC50 interacts with eIF2 (eukaryotic initiation factor 2), a protein that plays a key role in translation initiation and in its control, and in regulation of ribosomes. Here, we establish that the interaction of ABC50 with eIF2 involves features in the N-terminal domain of ABC50, the region of ABC50 that differs most markedly from other ABC proteins. This region also shows no apparent similarity to the eIF2-binding domains of other partners of eIF2. In contrast, the N-terminus of ABC50 cannot bind to ribosomes by itself, but it can in conjunction with one of the nucleotide-binding domains. We demonstrate that ABC50 is a phosphoprotein and is phosphorylated at two sites by CK2. These sites, Ser-109 and Ser-140, lie in the N-terminal part of ABC50 but are not required for the binding of ABC50 to eIF2. Expression of a mutant of ABC50 in which both sites are mutated to alanine markedly decreased the association of eIF2 with 80S ribosomal and polysomal fractions.
Collapse
Affiliation(s)
- Sonia Paytubi
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | |
Collapse
|
39
|
Parsy CB, Chapman CJ, Barnes AC, Robertson JF, Murray A. Two-step method to isolate target recombinant protein from co-purified bacterial contaminant SlyD after immobilised metal affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853:314-9. [PMID: 17459787 DOI: 10.1016/j.jchromb.2007.03.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/15/2007] [Accepted: 03/25/2007] [Indexed: 11/17/2022]
Abstract
As part of a study to purify the internal domain of HER2 (ICD) from recombinant expression, through metal immobilised affinity chromatography (IMAC), we encountered a contaminant, SlyD, a 29 kDa native E. coli protein. SlyD is a recurrent contaminant, with a histidine rich domain enabling binding to IMAC columns and thus co-elution with the target protein. Research has been carried out on this protein and its purification, however, no work mentions how to treat it as a true contaminant or describe procedures to isolate it from target proteins. In this report, we described a two-step chromatographic method for the purification of ICD, including IMAC as a capture step and size exclusion chromatography (SEC) as a polishing step. IMAC allowed us to purify ICD from bacterial crude with SlyD co-eluting. SEC then allowed us to resolve ICD from SlyD and achieve a purity greater than 95% for ICD. However, this method has been developed to accommodate any protein whose molecular weight is different enough from SlyD to be separated by SEC.
Collapse
Affiliation(s)
- Céline B Parsy
- OncImmune Limited, Clinical Sciences Building, Nottingham City Hospital, Hucknall Road, and Tumor Immunology Group, University of Nottingham NG5 1PB, UK.
| | | | | | | | | |
Collapse
|
40
|
Lin TY, Chan LC, Fan YH, Lin CH, Chow KC, Lin SL, Lan JL, Lin FJ, Chiou SH. Use of a recombinant protein containing major epitopes of hnRNP G to detect anti-hnRNP G antibodies in dogs with systemic lupus erythematosus. Res Vet Sci 2006; 81:335-9. [PMID: 16677675 DOI: 10.1016/j.rvsc.2006.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/17/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
The objective of this study was to express major epitopes of heterogeneous nuclear ribonucleoprotein G (hnRNP G) for detecting anti-hnRNP G antibodies in dogs with systemic lupus erythematosus (SLE). HnRNP G cDNA clone was isolated from HEp-2 cells, and a DNA fragment encoding immunodominant region (residues 189-272) of hnRNP G (hnRNP Gi) was subcloned into pET32 vector to construct a prokaryotic expression plasmid named pEThnRNPGi. After induction, Escherichia coli carrying pEThnRNPGi expressed a recombinant protein of 28 kDa, comprising recombinant hnRNP Gi and fusion tag. Purified recombinant hnRNP Gi protein was further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and its identity was confirmed. Western blot analysis showed that recombinant hnRNP Gi was specifically recognized by anti-hnRNP G positive sera of SLE dogs, and not by negative control sera. In conclusion, recombinant hnRNP Gi protein expressed in this study may serve as a useful reagent to assist in the immunological diagnosis of canine SLE.
Collapse
Affiliation(s)
- T-Y Lin
- Graduate Institute of Veterinary Microbiology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tachibana S, Suzuki M, Asano Y. Application of an enzyme chip to the microquantification of l-phenylalanine. Anal Biochem 2006; 359:72-8. [PMID: 17046706 DOI: 10.1016/j.ab.2006.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/04/2006] [Accepted: 09/06/2006] [Indexed: 02/02/2023]
Abstract
We describe here a new microquantification method of l-phenylalanine concentration in an extract from a dried blood spot by using the diaphorase-resazurin system. To miniaturize the fluorometric enzymatic microplate assay for the diagnosis of phenylketonuria, an enzyme chip immobilized with His-tag fused phenylalanine dehydrogenase (PheDH) was developed. His-tag fused PheDH was immobilized on the surface of nickel-coated slide glass. A microarray sheet (8 x 30 well) was fabricated with poly(dimethylsiloxane) (PDMS) using the photolithographic technique. An enzyme reaction chamber in a double-layered structure was constructed with different types of microarray PDMS sheets on the surface of Ni-coated slide glass immobilized with His-tagged PheDH. To evaluate the affinity toward the Ni-chelating ligand, eight kinds of His-tagged PheDH variants were constructed and expressed. (His)(6)- and (His)(9)-PheDH variants at the N terminus showed high adsorption ratio to Ni-chelating ligand. The V(max) and k(cat) values of the (His)(6)-PheDH variant at the N terminus for l-phenylalanine were higher than those of the (His)(9)-PheDH variant, and the (His)(6)-PheDH variant was found to be most suitable for immobilization onto nickel-coated slide glass. Fluorescence formed by resazurin-coupled enzymatic reaction (in a 0.2-microl reaction mixture) on the enzyme chip exhibited good linearity and a correlation coefficient up to 12.8 mg/dl of the l-phenylalanine-containing sample extracted from a dried blood spot on filter paper.
Collapse
Affiliation(s)
- Shinjiro Tachibana
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | |
Collapse
|
42
|
Kil IS, Shin SW, Yeo HS, Lee YS, Park JW. Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-induced apoptosis. Mol Pharmacol 2006; 70:1053-61. [PMID: 16785314 DOI: 10.1124/mol.106.023515] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cadmium is known to exhibit high affinity for thiol groups and may therefore severely disturb many cellular functions. We have demonstrated that the control of mitochondrial redox balance and oxidative damage is one of the primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm). When exposed to cadmium, IDPm was susceptible to loss of enzyme activity and structural alterations. Site-directed mutagenesis confirms that binding of cadmium occurs to a Cys379 of IDPm. We examined the antioxidant mechanism-mediated protective role of IDPm against cadmium-induced apoptosis with human embryonic kidney 293 cells transfected with the IDPm cDNA in sense and antisense orientations. As a result, we observed a clear inverse relationship between the amount of IDPm expressed in target cells and their susceptibility to cadmium-induced modulation of cellular redox status and apoptosis. In addition, loss of glutaredoxin (Grx, thioltransferase) activity by cadmium was more pronounced in antisense cells compared with the sense cells. When oxalomalate, a competitive inhibitor of IDPm, was administered to mice, inhibition of IDPm and Grx and enhanced susceptibility to apoptosis were observed upon their exposure to cadmium. These results suggest that IDPm plays an important protective role in cadmium-induced apoptosis by maintaining cellular redox status and by protection of Grx activity.
Collapse
Affiliation(s)
- In Sup Kil
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | | | |
Collapse
|
43
|
Cheung CL, Chung SW, Chatterji A, Lin T, Johnson JE, Hok S, Perkins J, De Yoreo JJ. Physical Controls on Directed Virus Assembly at Nanoscale Chemical Templates. J Am Chem Soc 2006; 128:10801-7. [PMID: 16910675 DOI: 10.1021/ja0616884] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30 nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at sub-critical volume fractions. The growth kinetics followed a t(1/2) law controlled by the slow diffusion of viruses. The ability of poly(ethylene glycol) (PEG) to induce the lateral expansion of virus clusters away from the 1D templates suggests a significant role for weak interactions.
Collapse
Affiliation(s)
- Chin Li Cheung
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shin IS, Nishikawa K, Maruyama H, Ishii S. Histidine-tagged shiga toxin B subunit binding assay: simple and specific determination of gb3 content in mammalian cells. Chem Pharm Bull (Tokyo) 2006; 54:522-7. [PMID: 16595957 DOI: 10.1248/cpb.54.522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A two-step binding assay for globotriaosylceramide (Gb3) content was developed by histidine-tagging strategy, which is a well-established method for the purification of recombinant proteins. The complete binding of the recombinant His-tagged Shiga toxin 1B subunit (1B-His) (1 microg/ml) to the standard Gb3 adsorbed on a multi-well H type plate was observed within 30 min at 37 degrees C; and its binding could be visualized by the following applications of HisProbe-HRP (8 microg/ml) and tetramethylbenzidine (TMB) peroxidase substrate. The 1B-His binding assay was linear over the range of 1 to 100 ng of Gb3 per well. The binding of 1B-His was specific to Gb3 separated from HeLa cells, and no major cross-reactivity of other glycolipids in Folch's lower fractions extracted from HeLa cells was detected. The glycolipids in Folch's lower fractions from HeLa cells, human fibroblasts and mouse heart were suitable for this assay, but the further purification was needed for glycolipids from human plasma, thus sample preparation is critical factor for the reliable determination of Gb3 content. The 1B-His binding to Gb3 was inhibited by the addition of galactose, but not mannose. This 1B-His binding assay will be useful not only for the determination of Gb3 content, but also for screening for the compounds which inhibit the toxin-binding to Gb3. The strategy of our present method may be applicable for other binding assay, such as Cholera toxin B-subunit for ganglioside GM1.
Collapse
Affiliation(s)
- In-Sun Shin
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | |
Collapse
|
45
|
Lim YT, Lee KY, Lee K, Chung BH. Immobilization of histidine-tagged proteins by magnetic nanoparticles encapsulated with nitrilotriacetic acid (NTA)-phospholipids micelle. Biochem Biophys Res Commun 2006; 344:926-30. [PMID: 16631602 DOI: 10.1016/j.bbrc.2006.03.209] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 03/31/2006] [Indexed: 11/23/2022]
Abstract
We described the development of functionalized magnetic nanoparticles (MNPs) with PEG-modification, a phospholipids micelle coating, and their use in manipulating histidine-tagged proteins. Highly monodisperse MNPs were synthesized in an organic solvent and could be phase-transferred into an aqueous solution by encapsulating the nanoparticles with a phospholipids micelle. The phospholipids micelle coating rendered the nanoparticles highly water-soluble, and the functional groups of the phospholipids coating allowed for the bioconjugation of various moieties, such as fluorescent molecules and engineered proteins. Functionalized phospholipids, such as nitrilotriacetic acid (NTA)-phospholipids, caused the MNPs to bind and allowed for manipulation of histidine-tagged proteins. Due to their high surface/volume ratio, the MNPs showed better performance (about 100 times higher) in immobilizing engineered proteins than conventional micrometer-sized beads. This demonstrates that MNPs coated with phospholipids micelle can be a versatile platform for the effective manipulation of various kinds of engineered proteins, which is very important in the field of proteomics. It is expected that a combination of MNPs with optical fluorescent molecules can find applications in bimodal (magnetic and optical) molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Yong Taik Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Rodríguez S, Nieto JM, Madrid C, Juárez A. Functional Replacement of the Oligomerization Domain of H-NS by the Hha Protein of
Escherichia coli. J Bacteriol 2005; 187:5452-9. [PMID: 16030239 PMCID: PMC1196020 DOI: 10.1128/jb.187.15.5452-5459.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Members of the H-NS family of proteins play a relevant role as modulators of gene expression in gram-negative bacteria. Interaction of these proteins with members of the Hha/YmoA family of proteins has been previously reported. It has been hypothesized that the latter proteins are functionally equivalent to the N-terminal domain of H-NS-like proteins. In this report we test this assumption by replacing the N-terminal domain of
Escherichia coli
H-NS by Hha. It has been possible to obtain a functional protein that can compensate for some of the
hns-
induced phenotypes. These results highlight the relevance of H-NS-Hha interactions to generate heterooligomeric complexes that modulate gene expression in gram-negative bacteria.
Collapse
Affiliation(s)
- Sonia Rodríguez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
47
|
Hayashi K, Watanabe T, Tanaka A, Furumoto T, Sato-Tsuchiya C, Kimura M, Yokoi M, Ishihama A, Hanaoka F, Ohkuma Y. Studies ofSchizosaccharomyces pombeTFIIE indicate conformational and functional changes in RNA polymerase II at transcription initiation. Genes Cells 2005; 10:207-24. [PMID: 15743411 DOI: 10.1111/j.1365-2443.2005.00833.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The general transcription factor TFIIE plays essential roles in transcription by RNA polymerase II (PolII). Despite recent progress, the elucidation of its precise mechanisms including biological functions awaits further characterization. We report the isolation and characterization of Schizosaccharomyces pombe TFIIE (spTFIIE). Like human and other eukaryotic TFIIE proteins, spTFIIE consists of alpha and beta subunits and the genes encoding both subunits are essential for viability. Chromatin immunoprecipitation assays demonstrated that spTFIIE localizes to promoters in vivo. Mutational analysis of the C-terminal basic helix-loop region of TFIIEbeta, which is involved in the transition from transcription initiation to elongation, revealed that transcription-defective mutants affected in this region are also cold sensitive. The spTFIIEbeta subunit binds both spTFIIEbeta and spTFIIEalpha but spTFIIEalpha binds only spTFIIEbeta. These results indicate that TFIIE forms an alpha2beta2 heterotetramer in which two alphabeta heterodimers are connected via beta subunits. Further analysis of binding specificities showed that spTFIIEbeta binds the Rpb2 and Rpb12 subunits of PolII, whereas spTFIIEalpha predominantly binds Rpb5, which is located at the clamp region and changes conformation upon transcription initiation.
Collapse
Affiliation(s)
- Kazuhiro Hayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kil IS, Park JW. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J Biol Chem 2005; 280:10846-54. [PMID: 15653693 DOI: 10.1074/jbc.m411306200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recently, we demonstrated that the control of mitochondrial redox balance and oxidative damage is one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm). Because cysteine residue(s) in IDPm are susceptible to inactivation by a number of thiol-modifying reagents, we hypothesized that IDPm is likely a target for regulation by an oxidative mechanism, specifically glutathionylation. Oxidized glutathione led to enzyme inactivation with simultaneous formation of a mixed disulfide between glutathione and the cysteine residue(s) in IDPm, which was detected by immunoblotting with anti-GSH IgG. The inactivated IDPm was reactivated enzymatically by glutaredoxin2 in the presence of GSH, indicating that the inactivated form of IDPm is a glutathionyl mixed disulfide. Mass spectrometry and site-directed mutagenesis further confirmed that glutathionylation occurs to a Cys(269) of IDPm. The glutathionylated IDPm appeared to be significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion, suggesting that glutathionylation plays a protective role presumably through the structural alterations. HEK293 cells and intact respiring mitochondria treated with oxidants inducing GSH oxidation such as H(2)O(2) or diamide showed a decrease in IDPm activity and the accumulation of glutathionylated enzyme. Using immunoprecipitation with anti-IDPm IgG and immunoblotting with anti-GSH IgG, we were also able to purify and positively identify glutathionylated IDPm from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model for Parkinson's disease. The results of the current study indicate that IDPm activity appears to be modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.
Collapse
Affiliation(s)
- In Sup Kil
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | |
Collapse
|
49
|
Du P, Loulakis P, Xie Z, Simons SP, Geoghegan KF. Tandem mass spectrometry of multiply phosphorylated forms of a 'histidine-tag' derived from a recombinant protein kinase expressed in bacteria. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:547-551. [PMID: 15669100 DOI: 10.1002/rcm.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
When a histidine-tagged form of the protein kinase Aurora-2 was expressed in Escherichia coli, the purified product carried four to nine phosphate groups, although many fewer were expected. The amino-terminal tag had the sequence GSSHHHHHHSSGLVPRGSHMK-. Tryptic digestion of the product followed by analysis by liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (MS/MS) showed that phosphorylation could occur on the five serine residues of the tag. Mono-, bis-, tris-, tetra- and pentaphosphorylated forms of the tag were detected, and their behavior in MS/MS was studied using a quadrupole/time-of-flight mass spectrometer. The MS/MS spectra were dominated by the products of neutral loss events (in 98 Da increments, each equivalent to loss of H3PO4), but sufficient b- and y-type sequence ions were detected to allow the locations of the phosphates to be specified in some cases. The assignment of phosphorylation sites for incompletely phosphorylated forms of the tag peptide was challenging, but it appeared that Ser-10 and Ser-11 of the tag were more likely to be phosphorylated than Ser-2 and Ser-3.
Collapse
Affiliation(s)
- Ping Du
- Pfizer Inc., Groton, CT 06340, USA
| | | | | | | | | |
Collapse
|
50
|
Anderson KM, Ashida H, Maskos K, Dell A, Li SC, Li YT. A clostridial endo-beta-galactosidase that cleaves both blood group A and B glycotopes: the first member of a new glycoside hydrolase family, GH98. J Biol Chem 2004; 280:7720-8. [PMID: 15618227 DOI: 10.1074/jbc.m414099200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated an endo-beta-galactosidase designated E-ABase from Clostridium perfringens ATCC 10543 capable of liberating both the A trisaccharide (A-Tri; GalNAcalpha1-->3(Fucalpha1-->2)Gal) and B trisaccharide (B-Tri; Galalpha1-->3(Fucalpha1-->2)Gal) from glycoconjugates containing blood group A and B glycotopes, respectively. We have subsequently cloned the gene (eabC) that encodes E-ABase from this organism. This gene was found to be identical to the CPE0329 gene of C. perfringens strain 13, whose product was labeled as a hypothetical protein (Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., and Hayashi, H. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 996-1001). Since the amino acid sequence of E-ABase does not bear detectable similarity to any of the 97 existing families of glycoside hydrolases, we have proposed to assign this unusual enzyme to a new family, GH98. We also expressed eabC in Escherichia coli BL21(DE3) and obtained 27 mg of fully active recombinant E-ABase from 1 liter of culture. Recombinant E-ABase not only destroyed the blood group A and B antigenicity of human type A and B erythrocytes, but also released A-Tri and B-Tri from blood group A(+)- and B(+)- containing glycoconjugates. The structures of A-Tri and B-Tri liberated from A(+) porcine gastric mucin and B(+) human ovarian cyst glycoprotein were established by NMR spectroscopy. The unique specificity of E-ABase should make it useful for studying the structure and function of blood group A- and B-containing glycoconju-gates as well as for identifying other glycosidases belonging to the new GH98 family.
Collapse
Affiliation(s)
- Kimberly M Anderson
- Department of Biochemistry, Tulane University Health Sciences Center School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|