1
|
Abstract
The evolutionary emergence of the mesenchymal phenotype greatly increased the complexity of tissue architecture and composition in early Metazoan species. At the molecular level, an epithelial-to-mesenchymal transition (EMT) was permitted by the innovation of specific transcription factors whose expression is sufficient to repress the epithelial transcriptional program. The reverse process, mesenchymal-to-epithelial transition (MET), involves direct inhibition of EMT transcription factors by numerous mechanisms including tissue-specific MET-inducing transcription factors (MET-TFs), micro-RNAs, and changes to cell and tissue architecture, thus providing an elegant solution to the need for tight temporal and spatial control over EMT and MET events during development and adult tissue homeostasis.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
2
|
Maes M, Yanguas SC, Willebrords J, Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol In Vitro 2015; 30:569-577. [PMID: 26420514 PMCID: PMC4685743 DOI: 10.1016/j.tiv.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
3
|
Abstract
Proper embryonic development is guaranteed under conditions of regulated cell-cell and cell-matrix adhesion. The cells of an embryo have to be able to distinguish their neighbours as being alike or different. Cadherins, single-pass transmembrane, Ca(2+)-dependent adhesion molecules that mainly interact in a homophilic manner, are major contributors to cell-cell adhesion. Cadherins play pivotal roles in important morphogenetic and differentiation processes during development, and in maintaining tissue integrity and homeostasis. Changes in cadherin expression throughout development enable differentiation and the formation of various organs. In addition to these functions, cadherins have strong implications in tumourigenesis, since frequently tumour cells show deregulated cadherin expression and inappropriate switching among family members. In this review, I focus on E- and N-cadherin, giving an overview of their structure, cellular function, importance during development, role in cancer, and of the complexity of Ecadherin gene regulation.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
4
|
Alagramam KN, Miller ND, Adappa ND, Pitts DR, Heaphy JC, Yuan H, Smith RJ. Promoter, alternative splice forms, and genomic structure of protocadherin 15. Genomics 2007; 90:482-92. [PMID: 17706913 PMCID: PMC2043478 DOI: 10.1016/j.ygeno.2007.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 05/31/2007] [Accepted: 06/20/2007] [Indexed: 10/22/2022]
Abstract
We originally showed that the protocadherin 15 gene (Pcdh15) is necessary for hearing and balance functions; mutations in Pcdh15 affect hair cell development in Ames waltzer (av) mice. Here we extend that study to understand better how Pcdh15 operates in a cell. The original report identified 33 exons in Pcdh15, with exon 1 being noncoding; additional exons of Pcdh15 have since been reported. The 33 exons of Pcdh15 described originally are embedded in 409 kb of mouse genomic sequence, while the corresponding exons of human PCDH15 are spread over 980 kb of genomic DNA; the exons in Pcdh15/PCDH15 range in size from 9 to approximately 2000 bp. The genomic organization of Pcdh15/PCDH15 bears similarity to that of cadherin 23, but differs significantly from other protocadherin genes, such as Pcdhalpha, beta, or gamma. A CpG island is located approximately 2900 bp upstream of the PCDH15 transcriptional start site. The Pcdh15/PCDH15 promoter lacks TATAA or CAAT sequences within 100 bases upstream of the transcription start site; deletion mapping showed that Pcdh15 harbors suppressor and enhancer elements. Preliminary searches for alternatively spliced transcripts of Pcdh15 identified novel splice variants not reported previously. Results from our study show that both mouse and human protocadherin 15 genes have complex genomic structures and transcription control mechanisms.
Collapse
Affiliation(s)
- Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Li G, Satyamoorthy K, Herlyn M. Dynamics of cell interactions and communications during melanoma development. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2007; 13:62-70. [PMID: 12097238 DOI: 10.1177/154411130201300107] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Melanoma development not only involves genetic and epigenetic changes that take place within the cell, but also involves processes determined collectively by micro-environmental factors, including cell-cell interactions and communications. During the transition from normal cells to benign and malignant lesions, and subsequently to metastatic cancer, stepwise changes in intercellular communications provide tumor cells with the ability to overcome cell-cell adhesion and micro-environmental controls from the host and to invade surrounding tissues and disperse to distant locations. Cadherins are major cell-cell adhesion molecules involved in the development and maintenance of skin. E-cadherin expressed in normal melanocytes mediates growth and invasion control by keratinocytes. Progressive loss of E-cadherin and gain of N-cadherin during melanoma development not only free melanoma cells from control by keratinocytes, but also provide new adhesion properties, resulting in switched partnerships with fibroblasts and vascular endothelial cells. The cadherin subtype switching also dictates gap junctional specificity in melanocytic cells during tumor development. This selective intercellular communication may contribute to the regulation of cell growth, differentiation, apoptosis, and migration of melanocytic cells in both physiologic and pathologic conditions. Abnormal up-regulation of the immunoglobin repeat-containing cell adhesion molecules Mel-CAM and L1-CAM potentiates invasion and migration of melanoma. Thus, abnormal expression of intercellular adhesion receptors and dysregulated intercellular communication underlies melanoma development and progression.
Collapse
Affiliation(s)
- G Li
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
6
|
Vinken M, Papeleu P, Snykers S, De Rop E, Henkens T, Chipman JK, Rogiers V, Vanhaecke T. Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 2006; 36:299-318. [PMID: 16809101 DOI: 10.1080/10408440600599273] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In liver, like in other multicellular systems, the establishment of cellular contacts is a prerequisite for normal functioning. In particular, well-defined cell junctions between hepatocytes, including adherens junctions, desmosomes, tight junctions, and gap junctions, are known to play key roles in the performance of liver-specific functionality. In a first part of this review article, we summarize the current knowledge concerning cell junctions and their roles in hepatic (patho)physiology. In a second part, we discuss their relevance in liver-based in vitro modeling, thereby highlighting the use of primary hepatocyte cultures as suitable in vitro models for preclinical pharmaco-toxicological testing. We further describe the actual strategies to regain and maintain cell junctions in these in vitro systems over the long-term.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Numerous studies suggest that loss of E-cadherin is necessary to induce Epithelial–mesenchymal transition (EMT) and metastasis. Snail is a major contributor to EMTs. The Snail family of zinc-finger transcription factors interact with the E-cadherin promoter to repress transcription during EMT. The present article reviews the regulation of E-cadherin and discusses recent novel insights into the molecular basis in the process of EMT.
Collapse
|
8
|
Kane DA, McFarland KN, Warga RM. Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 2005; 132:1105-16. [PMID: 15689372 DOI: 10.1242/dev.01668] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epiboly, the spreading of the blastoderm over the large yolk cell, is the first morphogenetic movement of the teleost embryo. Examining this movement as a paradigm of vertebrate morphogenesis, we have focused on the epiboly arrest mutant half baked (hab), which segregates as a recessive lethal, including alleles expressing zygotic-maternal dominant (ZMD) effects. Here we show that hab is a mutation in the zebrafish homolog of the adhesion protein E-cadherin. Whereas exclusively recessive alleles of hab produce truncated proteins, dominant alleles all contain transversions in highly conserved amino acids of the extracellular domains, suggesting these alleles produce dominant-negative effects. Antisense oligonucleotides that create specific splicing defects in the hab mRNA phenocopy the recessive phenotypes and, surprisingly, some of the ZMD phenotypes as well. In situ analyses show that during late epiboly hab is expressed in a radial gradient in the non axial epiblast, from high concentrations in the exterior layer of the epiblast to low concentrations in the interior layer of the epiblast. During epiboly, using an asymmetric variant of radial intercalation, epiblast cells from the interior layer sequentially move into the exterior layer and become restricted to that layer; there they participate in subtle cell shape changes that further expand the blastoderm. In hab mutants, when cells intercalate into the exterior layer, they tend to neither change cell shape nor become restricted, and many of these cells 'de-intercalate' and move back into the interior layer. Cell transplantation showed all these defects to be cell-autonomous. Hence, as for the expansion of the mammalian trophoblast at a similar developmental stage, hab/E-cadherin is necessary for the cell rearrangements that spread the teleost blastoderm over the yolk.
Collapse
Affiliation(s)
- Donald A Kane
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
9
|
Stemmler MP, Hecht A, Kemler R. E-cadherin intron 2 contains cis-regulatory elements essential for gene expression. Development 2005; 132:965-76. [PMID: 15673570 DOI: 10.1242/dev.01662] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cadherin-mediated cell-cell adhesion plays important roles in mouse embryonic development, and changes in cadherin expression are often linked to morphogenetic events. For proper embryonic development and organ formation, the expression of E-cadherin must be tightly regulated. Dysregulated expression during tumorigenesis confers invasiveness and metastasis. Except for the E-box motifs in the E-cadherin promoter, little is known about the existence and location of cis-regulatory elements controlling E-cadherin gene expression. We have examined putative cis-regulatory elements in the E-cadherin gene and we show a pivotal role for intron 2 in activating transcription. Upon deleting the genomic intron 2 entirely, the E-cadherin locus becomes completely inactive in embryonic stem cells and during early embryonic development. Later in development, from E11.5 onwards, the locus is activated only weakly in the absence of intron 2 sequences. We demonstrate that in differentiated epithelia, intron 2 sequences are required both to initiate transcriptional activation and additionally to maintain E-cadherin expression. Detailed analysis also revealed that expression in the yolk sac is intron 2 independent, whereas expression in the lens and the salivary glands absolutely relies on cis-regulatory sequences of intron 2. Taken together, our findings reveal a complex mechanism of gene regulation, with a vital role for the large intron 2.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | |
Collapse
|
10
|
Oloumi A, McPhee T, Dedhar S. Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1691:1-15. [PMID: 15053919 DOI: 10.1016/j.bbamcr.2003.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 11/28/2003] [Accepted: 12/04/2003] [Indexed: 01/03/2023]
Abstract
Integrin-linked kinase (ILK) is a serine/threonine protein kinase which interacts with the cytoplasmic domains of beta1 and beta3 integrins. ILK structure and its localization at the focal adhesion allows it not only to interact with different structural proteins, but also to mediate many different signalling pathways. Extracellular matrices (ECM) and growth factors each stimulate ILK signalling. Constitutive activation of ILK in epithelial cells results in oncogenic phenotypes such as disruption of cell extracellular matrix and cell to cell interactions, suppression of suspension-induced apoptosis, and induction of anchorage independent cell growth and cell cycle progression. More specifically, pathological overexpression of ILK results in down-regulation of E-cadherin expression, and nuclear accumulation of beta-catenin, leading to the subsequent activation of the beta-catenin/Tcf transcription complex, the downstream components of the Wnt signalling pathway. Here we review the data implicating ILK in the regulation of these two signalling pathways, and discuss recent novel insights into the molecular basis and requirement of ILK in the process of epithelial to mesenchymal transformation (EMT).
Collapse
Affiliation(s)
- Arusha Oloumi
- British Columbia Cancer Agency and Jack Bell Research Centre, University of British Columbia, Vancouver Hospital, 2660 Oak St. Vancouver, BC, Canada V6H 3Z6
| | | | | |
Collapse
|
11
|
Pećina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 2003; 3:17. [PMID: 14613514 PMCID: PMC270068 DOI: 10.1186/1475-2867-3-17] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 10/14/2003] [Indexed: 12/13/2022] Open
Abstract
E-cadherin tumor suppressor genes are particularly active area of research in development and tumorigenesis. The calcium-dependent interactions among E-cadherin molecules are critical for the formation and maintenance of adherent junctions in areas of epithelial cell-cell contact. Loss of E-cadherin-mediated-adhesion characterises the transition from benign lesions to invasive, metastatic cancer. Nevertheless, there is evidence that E-cadherins may also play a role in the wnt signal transduction pathway, together with other key molecules involved in it, such as beta-catenins and adenomatous poliposis coli gene products. The structure and function of E-cadherin, gene and protein, in normal as well as in tumor cells are reviewed in this paper.
Collapse
Affiliation(s)
- Nives Pećina-Slaus
- Department of Biology, School of Medicine, University of Zagreb, Salata 3, HR-10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Stemmler MP, Hecht A, Kinzel B, Kemler R. Analysis of regulatory elements of E-cadherin with reporter gene constructs in transgenic mouse embryos. Dev Dyn 2003; 227:238-45. [PMID: 12761851 DOI: 10.1002/dvdy.10301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Proper regulation of E-cadherin-mediated cell adhesion is important during early embryonic development and in organogenesis. In mice, E-cadherin is expressed from the fertilized egg onward and becomes down-regulated during gastrulation in mesoderm and its derivatives, but its expression is maintained in all epithelia. E-cadherin promoter analyses led to the identification of binding sites for two transcriptional repressors, Snail and SIP1, which are able to mediate down-regulation in vitro, but little is known about the regulatory elements that govern E-cadherin transcriptional activity in vivo. Here, we compared the developmentally regulated expression of a series of lacZ-reporter transgenes fused to different sequences of the murine E-cadherin gene between -6 kb, including the promoter, and +16 kb, covering one third of intron 2. Four different segments with distinct regulatory properties were identified. The promoter fragment from +0.1 to -1.5 kb remains inactive in most cases but occasionally induces ectopic expression in mesodermal tissues, although it contains binding sites for the repressors Snail and SIP1. This promoter fragment also lacks positive elements needed for the activation of transcription in ectoderm and endoderm. Sequences from -1.5 to -6 kb harbor regulatory elements for brain-specific expression and, in addition, insulator or silencer elements, because they are consistently inactive in the mesoderm. Only if sequences from +0.1 to +11 kb are combined with the promoter fragments is E-cadherin-specific transgene expression observed in endoderm and certain epithelia. Sequences between +11 and +16 kb contain cis-active elements that generally enhance transcription. Our analyses show that E-cadherin expression is governed by a complex interplay of multiple regulatory regions dispersed throughout large parts of the locus.
Collapse
Affiliation(s)
- Marc P Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | |
Collapse
|
13
|
Pla P, Moore R, Morali OG, Grille S, Martinozzi S, Delmas V, Larue L. Cadherins in neural crest cell development and transformation. J Cell Physiol 2001; 189:121-32. [PMID: 11598897 DOI: 10.1002/jcp.10008] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cadherins constitute a superfamily of cell adhesion molecules involved in cell-cell interaction, histogenesis and cellular transformation. They have been implicated in the development of various lineages, including derivatives of the neural crest. Neural crest cells (NCC) emerge from the dorsal part of the neural tube after an epithelio-mesenchymal transition (EMT) and migrate through the embryo. After homing and differentiation, NCC give rise to many cell types, such as neurons, Schwann cells and melanocytes. During these steps, the pattern of expression of the various cadherins studied is very dynamic. Cadherins also display plasticity of expression during the transformation of neural crest cell derivatives. Here, we review the pattern of expression and the role of the main cadherins involved in the development and transformation of neural crest cell derivatives.
Collapse
Affiliation(s)
- P Pla
- Developmental Genetics of Melanocytes, UMR 146 CNRS-Institut Curie, Bat. 110, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Huiping C, Kristjansdottir S, Jonasson JG, Magnusson J, Egilsson V, Ingvarsson S. Alterations of E-cadherin and beta-catenin in gastric cancer. BMC Cancer 2001; 1:16. [PMID: 11747475 PMCID: PMC60969 DOI: 10.1186/1471-2407-1-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Accepted: 10/29/2001] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The E-cadherin-catenin complex plays a crucial role in epithelial cell-cell adhesion and in the maintenance of tissue architecture. Perturbation in the expression or function of this complex results in loss of intercellular adhesion, with possible consequent cell transformation and tumour progression. METHODS We studied the alterations of E-cadherin and beta-catenin in a set of 50 primary gastric tumours by using loss of heterozygosity (LOH) analysis, gene mutation screening, detection of aberrant transcripts and immunohistochemistry (IHC). RESULTS A high frequency (75%) of LOH was detected at 16q22.1 containing E-cadherin locus. Three cases (6%) showed the identical missense mutation, A592T. This mutation is not likely to contribute strongly to the carcinogenesis of gastric cancer, because a low frequency (1.6%) of this mutation was also found in 187 normal individuals. We also detected a low frequency (0.36%, 0%) of this mutation in 280 breast tumours and 444 other tumours, including colon and rectum, lung, endometrium, ovary, testis, kidney, thyroid carcinomas and sarcomas, respectively. We also analyzed the aberrant E-cadherin mRNAs in the gastric tumours and found that 7 tumours (18%) had aberrant mRNAs in addition to the normal mRNA. These aberrant mRNAs may produce abnormal E-cadherin molecules, resulting in weak cell-cell adhesion and invasive behaviour of carcinoma cells. Reduced expression of E-cadherin and beta-catenin was identified at the frequency of 42% and 28%, respectively. Specially, 11 tumours (22%) exhibited positive cytoplasmic staining for beta-catenin IHC. An association was found between reduced expression of E-cadherin and beta-catenin. Moreover, an association was detected between reduced expression of E-cadherin and diffuse histotype. CONCLUSION Our results support the hypothesis that alterations of E-cadherin and beta-catenin play a role in the initiation and progression of gastric cancer.
Collapse
Affiliation(s)
- Chen Huiping
- Department of Pathology, National University Hospital, 101 Reykjavík, Iceland
| | | | - Jon G Jonasson
- Department of Pathology, National University Hospital, 101 Reykjavík, Iceland
| | - Jonas Magnusson
- Department of Surgery, National University Hospital, 101 Reykjavík, Iceland
| | - Valgardur Egilsson
- Department of Pathology, National University Hospital, 101 Reykjavík, Iceland
| | - Sigurdur Ingvarsson
- Institute for Experimental Pathology, Keldur, University of Iceland, 112 Reykjavík, Iceland
| |
Collapse
|
15
|
Wolverton T, Lalande M. Identification and characterization of three members of a novel subclass of protocadherins. Genomics 2001; 76:66-72. [PMID: 11549318 DOI: 10.1006/geno.2001.6592] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protocadherins are members of a nonclassic subfamily of calcium-dependent cell-cell adhesion molecules in the cadherin superfamily. Although the extracellular domains have several common structural features, there is no extensive homology between the cytoplasmic domains of protocadherin subfamily members. We have identified a new subclass of protocadherins based on a shared and highly conserved 17-amino-acid cytoplasmic motif. The subclass currently consists of 18 protocadherin members. Two of these, PCDH18 and PCDH19, are novel protocadherins and a third is the human orthologue of mouse Pcdh10. All three genes encode six ectodomain repeats with cadherin-like attributes and, consistent with the structural characteristics of protocadherins, a large first exon encodes the extracellular domain of each gene.
Collapse
Affiliation(s)
- T Wolverton
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | | |
Collapse
|
16
|
Gamallo C, Moreno-Bueno G, Sarrió D, Calero F, Hardisson D, Palacios J. The prognostic significance of P-cadherin in infiltrating ductal breast carcinoma. Mod Pathol 2001; 14:650-4. [PMID: 11454996 DOI: 10.1038/modpathol.3880367] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have immunohistochemically investigated P-cadherin (P-CD) expression in a series of 210 infiltrating ductal carcinomas (IDC) in an attempt to assess the biological and prognostic relevance of P-CD in patients harboring IDCs. Although only 74/210 (35%) of IDCs expressed P-CD in >5% of tumor cells (P-CD-positive carcinomas), categorical analyses revealed that P-CD-positive IDCs were larger (26 +/- 21 cm versus 22 +/- 11 cm, P =.0568), of higher histological grade (P =.0001), and had more lymph node metastases (P =.0327) than P-CD-negative breast carcinomas. In addition, P-CD-positive tumors were negative for estrogen (P =.0001) and progesterone receptors (P =.0001) and showed reduced E-cadherin expression (P =.0276) more frequently than P-CD-negative tumors. Univariate analysis carried out in 171 patients demonstrated that P-CD expression was also an indicator of poor prognosis (chi(2) = 8.292, P =.004), extent of lymph node metastasis (chi(2) = 20.854, P =.0000), histological grade (chi(2) = 12.908, P =.0016), and negative progesterone receptors (chi(2) = 4.116, P =.042). However, only histological grade and nodal metastases emerged as independent prognostic markers in the multivariate analysis. These results suggest that although P-CD expression may be involved in the progression of IDCs, its value as an independent prognostic factor remains to be established.
Collapse
Affiliation(s)
- C Gamallo
- Servicio de Anatomía Patológica, Hospital Universitario de La Princesa, Programa de Patología Molecular, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Hunt DM, Rickman L, Whittock NV, Eady RA, Simrak D, Dopping-Hepenstal PJ, Stevens HP, Armstrong DK, Hennies HC, Küster W, Hughes AE, Arnemann J, Leigh IM, McGrath JA, Kelsell DP, Buxton RS. Spectrum of dominant mutations in the desmosomal cadherin desmoglein 1, causing the skin disease striate palmoplantar keratoderma. Eur J Hum Genet 2001; 9:197-203. [PMID: 11313759 DOI: 10.1038/sj.ejhg.5200605] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2000] [Revised: 10/27/2000] [Accepted: 11/01/2000] [Indexed: 11/09/2022] Open
Abstract
The adhesive proteins of the desmosome type of cell junction consist of two types of cadherin found exclusively in that structure, the desmogleins and desmocollins, coded by two closely linked loci on human chromosome 18q12.1. Recently we have identified a mutation in the DSG1 gene coding for desmoglein 1 as the cause of the autosomal dominant skin disease striate palmoplantar keratoderma (SPPK) in which affected individuals have marked hyperkeratotic bands on the palms and soles. In the present study we present the complete exon-intron structure of the DSG1 gene, which occupies approximately 43 kb, and intron primers sufficient to amplify all the exons. Using these we have analysed the mutational changes in this gene in five further cases of SPPK. All were heterozygotic mutations in the extracellular domain leading to a truncated protein, due either to an addition or deletion of a single base, or a base change resulting in a stop codon. Three mutations were in exon 9 and one in exon 11, both of which code for part of the third and fourth extracellular domains, and one was in exon 2 coding for part of the prosequence of this processed protein. This latter mutation thus results in the mutant allele synthesising only 25 amino acid residues of the prosequence of the protein so that this is effectively a null mutation implying that dominance in the case of this mutation was caused by haploinsufficiency. The most severe consequences of SPPK mutations are in regions of the body where pressure and abrasion are greatest and where desmosome function is most necessary. SPPK therefore provides a very sensitive measure of desmosomal function.
Collapse
Affiliation(s)
- D M Hunt
- Division of Membrane Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The central nervous system (CNS) is divided into diverse embryological and functional compartments. The early embryonic CNS consists of a series of transverse subdivisions (neuromeres) and longitudinal domains. These embryonic subdivisions represent histogenetic fields in which neurons are born and aggregate in distinct cell groups (brain nuclei and layers). Different subsets of these aggregates become selectively connected by nerve fiber tracts and, finally, by synapses, thus forming the neural circuits of the functional systems in the CNS. Recent work has shown that 30 or more members of the cadherin family of morphoregulatory molecules are differentially expressed in the developing and mature brain at almost all stages of development. In a regionally specific fashion, most cadherins studied to date are expressed by the embryonic subdivisions of the early embryonic brain, by developing brain nuclei, cortical layers and regions, and by fiber tracts, neural circuits and synapses. Each cadherin shows a unique expression pattern that is distinct from that of other cadherins. Experimental evidence suggests that cadherins contribute to CNS regionalization, morphogenesis and fiber tract formation, possibly by conferring preferentially homotypic adhesiveness (or other types of interactions) between the diverse structural elements of the CNS. Cadherin-mediated adhesive specificity may thus provide a molecular code for early embryonic CNS regionalization as well as for the development and maintenance of functional structures in the CNS, from embryonic subdivisions to brain nuclei, cortical layers and neural circuits, down to the level of individual synapses.
Collapse
Affiliation(s)
- C Redies
- Institute of Anatomy, University of Essen Medical School, Hufelandstrasse 55, Germany.
| |
Collapse
|
19
|
Hosono S, Gross I, English MA, Hajra KM, Fearon ER, Licht JD. E-cadherin is a WT1 target gene. J Biol Chem 2000; 275:10943-53. [PMID: 10753894 DOI: 10.1074/jbc.275.15.10943] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The WT1 tumor suppressor gene encodes a transcription factor that can activate and repress gene expression. Transcriptional targets relevant for the growth suppression functions of WT1 are poorly understood. We found that mesenchymal NIH 3T3 fibroblasts stably expressing WT1 exhibit growth suppression and features of epithelial differentiation including up-regulation of E-cadherin mRNA. Acute expression of WT1 in NIH 3T3 fibroblasts after retroviral infection induced murine E-cadherin expression. In transient transfection experiments, the human and murine E-cadherin promoters were activated by co-expression of WT1. E-cadherin promoter activity was increased in cells overexpressing WT1 and was blocked by a dominant negative form of WT1. WT1 activated the murine E-cadherin promoter through a conserved GC-rich sequence similar to an EGR-1 binding site as well as through a CAAT box sequence. WT1 produced in vitro or derived from nuclear extracts bound to the WT1-response element within the murine E-cadherin promoter, but not the CAAT box. E-cadherin, a gene important in epithelial differentiation and neoplastic transformation, represents a downstream target gene that links the roles of the WT1 in differentiation and growth control.
Collapse
Affiliation(s)
- S Hosono
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wu Q, Maniatis T. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc Natl Acad Sci U S A 2000; 97:3124-9. [PMID: 10716726 PMCID: PMC16203 DOI: 10.1073/pnas.97.7.3124] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies revealed a striking difference in the genomic organization of classic cadherin genes and one family of "nonclassic cadherin" genes designated protocadherins. Specifically, the DNA sequences encoding the ectodomain repeats of classic cadherins are interrupted by multiple introns. By contrast, all of the encoded ectodomains of each member of the protocadherin gene clusters are present in one large exon. To determine whether large ectodomain exons are a general feature of protocadherin genes we have investigated the genomic organization of several additional human protocadherin genes by using DNA sequence information in GenBank. These genes include protocadherin 12 (Pcdh12), an ortholog of the mouse vascular endothelial cadherin-2 gene; hFmi1 and hFmi2, homologs of the Drosophila planar cell polarity gene, flamingo; hFat2, a homolog of the Drosophila tumor suppressor gene fat; and the Drosophila DN-cadherin and DE-cadherin genes. Each of these genes was found to be a member of the protocadherin subfamily, based on amino acid sequence comparisons of their ectodomains. Remarkably, all of these protocadherin genes share a common feature: most of the genomic DNA sequences encoding their ectodomains are not interrupted by an intron. We conclude that the presence of unusually large exons is a characteristic feature of protocadherin genes.
Collapse
Affiliation(s)
- Q Wu
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
21
|
Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc Natl Acad Sci U S A 2000. [PMID: 10716726 PMCID: PMC16203 DOI: 10.1073/pnas.060027397] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies revealed a striking difference in the genomic organization of classic cadherin genes and one family of "nonclassic cadherin" genes designated protocadherins. Specifically, the DNA sequences encoding the ectodomain repeats of classic cadherins are interrupted by multiple introns. By contrast, all of the encoded ectodomains of each member of the protocadherin gene clusters are present in one large exon. To determine whether large ectodomain exons are a general feature of protocadherin genes we have investigated the genomic organization of several additional human protocadherin genes by using DNA sequence information in GenBank. These genes include protocadherin 12 (Pcdh12), an ortholog of the mouse vascular endothelial cadherin-2 gene; hFmi1 and hFmi2, homologs of the Drosophila planar cell polarity gene, flamingo; hFat2, a homolog of the Drosophila tumor suppressor gene fat; and the Drosophila DN-cadherin and DE-cadherin genes. Each of these genes was found to be a member of the protocadherin subfamily, based on amino acid sequence comparisons of their ectodomains. Remarkably, all of these protocadherin genes share a common feature: most of the genomic DNA sequences encoding their ectodomains are not interrupted by an intron. We conclude that the presence of unusually large exons is a characteristic feature of protocadherin genes.
Collapse
|
22
|
Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76-83. [PMID: 10655586 DOI: 10.1038/35000025] [Citation(s) in RCA: 2777] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt a fibroblastoid phenotype and acquire tumorigenic and invasive properties. Endogenous Snail protein is present in invasive mouse and human carcinoma cell lines and tumours in which E-cadherin expression has been lost. Therefore, the same molecules are used to trigger epithelial-mesenchymal transitions during embryonic development and in tumour progression. Snail may thus be considered as a marker for malignancy, opening up new avenues for the design of specific anti-invasive drugs.
Collapse
Affiliation(s)
- A Cano
- Instituto de Investigaciones Biomédicas, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bringuier PP, Giroldi LA, Umbas R, Shimazui T, Schalken JA. Mechanisms associated with abnormal E-cadherin immunoreactivity in human bladder tumors. Int J Cancer 1999; 83:591-5. [PMID: 10521791 DOI: 10.1002/(sici)1097-0215(19991126)83:5<591::aid-ijc3>3.0.co;2-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The involvement of E-cadherin in the progression of carcinoma is supported by a large number of studies showing an inverse relationship between E-cadherin immunoreactivity and tumor aggressiveness. However, the mechanisms leading to decreased E-cadherin immunoreactivity are still unclear. Comparison of Northern blotting and immunohistochemistry in a series of 49 frozen bladder tumors revealed that, in 16 of 23 tumors with abnormal staining, clear mRNA down-regulation occurred. In the 7 cases without mRNA down-regulation, no structural anomalies of E-cadherin could be detected by Southern blotting, Western blotting or PCR-SSCP. Western blotting confirmed that, in 6 of these tumors, E-cadherin was down-regulated at the protein level. This down-regulation was accompanied by down-regulation of alpha-catenin and, to a lesser extent, of beta- or gamma-catenin. However, Northern-blot analysis indicated that expression of the 3 catenins is maintained at the mRNA level. Thus our data show that, in bladder tumors, mRNA down-regulation accounts for about two thirds (16/23) of tumors with abnormal staining and that post-transcriptional down-regulation of E-cadherin occurs in 6/23 of these tumors.
Collapse
Affiliation(s)
- P P Bringuier
- Urological Research Laboratory, University Hospital Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Rodrigo I, Cato AC, Cano A. Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 1999; 248:358-71. [PMID: 10222128 DOI: 10.1006/excr.1999.4438] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new regulatory region (-108 to -86), named CE, containing potential CRE- and Ets-binding sites has been identified in the murine E-cadherin promoter. The Ets-binding site (at -97 position) negatively modulates the activity of the E-cadherin promoter in expressing keratinocyte cell lines and was responsible for the specific retarded complexes obtained with the CE region. Analysis of the methylation status of the endogenous E-cadherin promoter indicated that silencing of E-cadherin expression in malignant keratinocytes cannot be explained by hypermethylation mechanisms. Furthermore, treatment with 5'-aza-2'-deoxycytidine was unable to induce the expression of E-cadherin in deficient keratinocytes. However, in vivo footprinting analysis of the endogenous E-cadherin promoter showed a very distinct pattern in expressing and nonexpressing keratinocytes. Extensive interactions in the previously postulated proximal regulatory elements and in the CE region were detected in expressing cells, while only some nucleotides of the E-pal element and of the CE region were protected in nonexpressing keratinocytes. These results indicate a complex regulation of the mouse E-cadherin promoter and support a model where the combination of positive (CCAAT-box and GC-rich region) and negative (E-pal element and CE region) cis-acting elements contribute to the final level of E-cadherin gene expression. In addition, our results show that downregulation of E-cadherin expression in transformed epidermal keratinocytes is mainly exerted through the interaction of repressor factor(s) with the E-pal element and to the lack of interaction of positive acting factors with the proximal regions.
Collapse
Affiliation(s)
- I Rodrigo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, Madrid, 28029, Spain
| | | | | |
Collapse
|
25
|
Roberts GA, Burdett ID, Pidsley SC, King IA, Magee AI, Buxton RS. Antisense expression of a desmocollin gene in MDCK cells alters desmosome plaque assembly but does not affect desmoglein expression. Eur J Cell Biol 1998; 76:192-203. [PMID: 9716266 DOI: 10.1016/s0171-9335(98)80034-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The desmocollins are one of two types of putative adhesive proteins present in the desmosome type of cell junctions, the other type being the desmogleins; both are members of the cadherin superfamily. Each type of desmosomal cadherin occurs as a number of isoforms which have differing tissue distribution; within stratifying epithelia some isoforms occur only suprabasally. We have sought to analyse desmocollin function by reducing the amount of protein using antisense gene expression in the widely studied Madin-Darby canine kidney (MDCK) cell line. Although this is a simple epithelial cell line, we show by Northern blot analysis that it expresses multiple isoforms of the desmosomal cadherins. Desmocollins DSC2 and DSC3 and desmogleins DSG2 and DSG3 (the pemphigus vulgaris antigen PVA) were detected, but DSC1 and DSG1, which are present exclusively in the suprabasal layers of the epidermis, were absent. The major desmocollin isoform was the type 2 (DSC2). A DSC2 clone isolated from a MDCK cDNA library had the same cell adhesion recognition sequence (Phe-Ala-Thr) as human, bovine and mouse type 2 isoforms. This sequence appears diagnostic for the three desmocollin isoforms. This cDNA clone was used to isolate a genomic DSC2 clone; antisense expression of this clone in MDCK cells resulted in a drastic reduction of desmocollin protein as judged by Western blots; Dsc3 was not upregulated to compensate for the loss of Dsc2. This antisense expression significantly altered desmosome assembly. There was a loss of punctate staining evident when using a desmosome plaque protein (desmoplakin) antibody. Electron microscopy revealed that there was a reduction in the number of desmosomes and a notable increase in the asymmetry of plaques between adjacent cells. Immunolabelling showed that similar levels of desmogleins and E-cadherin were present. Immunoelectron microscopy also showed that many vesicular structures were labelled, at intervals along the lateral membranes between cells. The distinctive loose organization of the remaining desmosomes may originate in modifications to the targeting and incorporation of proteins into fully assembled plaques. Other junctions were unaffected and the cells maintained their integrity as a confluent monolayer.
Collapse
Affiliation(s)
- G A Roberts
- Division of Membrane Biology, National Institute for Medical Research, London/United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Batsché E, Muchardt C, Behrens J, Hurst HC, Crémisi C. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998; 18:3647-58. [PMID: 9632747 PMCID: PMC108947 DOI: 10.1128/mcb.18.7.3647] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
E-cadherin plays a pivotal role in the biogenesis of the first epithelium during development, and its down-regulation is associated with metastasis of carcinomas. We recently reported that inactivation of RB family proteins by simian virus 40 large T antigen (LT) in MDCK epithelial cells results in a mesenchymal conversion associated with invasiveness and a down-regulation of c-Myc. Reexpression of RB or c-Myc in such cells allows the reexpression of epithelial markers including E-cadherin. Here we show that both RB and c-Myc specifically activate transcription of the E-cadherin promoter in epithelial cells but not in NIH 3T3 mesenchymal cells. This transcriptional activity is mediated in both cases by the transcription factor AP-2. In vitro AP-2 and RB interaction involves the N-terminal domain of AP-2 and the oncoprotein binding domain and C-terminal domain of RB. In vivo physical interaction between RB and AP-2 was demonstrated in MDCK and HaCat cells. In LT-transformed MDCK cells, LT, RB, and AP-2 were all coimmunoprecipitated by each of the corresponding antibodies, and a mutation of the RB binding domain of the oncoprotein inhibited its binding to both RB and AP-2. Taken together, our results suggest that there is a tripartite complex between LT, RB, and AP-2 and that the physical and functional interactions between LT and AP-2 are mediated by RB. Moreover, they define RB and c-Myc as coactivators of AP-2 in epithelial cells and shed new light on the significance of the LT-RB complex, linking it to the dedifferentiation processes occurring during tumor progression. These data confirm the important role for RB and c-Myc in the maintenance of the epithelial phenotype and reveal a novel mechanism of gene activation by c-Myc.
Collapse
Affiliation(s)
- E Batsché
- CJF INSERM 94-02, Université René Descartes, 75270 Paris cedex 06, France
| | | | | | | | | |
Collapse
|
27
|
Grunwald GB. Chapter 3 Cadherin Cell adhesion molecules in development and disease. Dev Biol 1998. [DOI: 10.1016/s1569-2582(98)80018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Adams MJ, Reichel MB, King IA, Marsden MD, Greenwood MD, Thirlwell H, Arnemann J, Buxton RS, Ali RR. Characterization of the regulatory regions in the human desmoglein genes encoding the pemphigus foliaceous and pemphigus vulgaris antigens. Biochem J 1998; 329 ( Pt 1):165-74. [PMID: 9405290 PMCID: PMC1219028 DOI: 10.1042/bj3290165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adhesive proteins in the desmosome type of cell junction consist of two members of the cadherin superfamily, the desmogleins and desmocollins. Both desmogleins and desmocollins occur as at least three different isoforms with various patterns of expression. The molecular mechanisms controlling the differential expression of the desmosomal cadherin isoforms are not yet known. We have begun an investigation of desmoglein gene expression by cloning and analysing the promoters of the human genes coding for the type 1 and type 3 desmogleins (DSG1 and DSG3). The type 1 isoform is restricted to the suprabasal layers of the epidermis and is the autoantigen in the autoimmune blistering skin disease pemphigus foliaceous. The type 3 desmoglein isoform is also expressed in the epidermis, but in lower layers than the type 1 isoform, and is the autoantigen in pemphigus vulgaris. Phage lambda genomic clones were obtained containing 4.2 kb upstream of the translation start site of DSG1 and 517 bp upstream of the DSG3 start site. Sequencing of 660 bp upstream of DSG1 and 517 bp upstream of DSG3 revealed that there was no obvious TATA box, but a possible CAAT box was present at -238 in DSG1 and at -193 in DSG3 relative to the translation start site. Primer extension analysis and RNase protection experiments revealed four putative transcription initiation sites for DSG1 at positions -163, -151, -148 and -141, and seven closely linked sites for DSG3, the longest being at -140 relative to the translation start site. The sequences at these possible sites at -166 to -159 in DSG1 (TTCAGTCC) and at -124 to -117 in DSG3 (CTTAGACT) have some similarity to the initiator sequence (CTCANTCT) described for a TATA-less promoter often from -3 to +5, and the true transcription initiator site might therefore be the A residue in these sequences. There were two regions of similarity between the DSG1 and DSG3 promoters just upstream of the transcription initiation sites, of 20 and 13 bp, separated by 41 bp in DSG1 and 36 bp in DSG3. The significance of these regions of similarity remains to be elucidated, but the results suggest that they represent a point at which these two desmoglein genes are co-ordinately regulated. Analysis of the upstream sequences revealed GC-rich regions and consensus binding sites for transcription factors including AP-1 and AP-2. Exon boundaries were conserved compared with the classical cadherin E-cadherin, but the equivalent of the second cadherin intron was lacking. A 4.2 kb region of the human DSG1 promoter sequence was linked to the lacZ gene reporter gene in such a way that there was only one translation start site, and this construct was used to generate transgenic mice. We present the first transgenic analysis of a promoter region taken from a desmosomal cadherin gene. Our results suggest that the 4.2 kb upstream region of DSG1 does not contain all the regulatory elements necessary for correct expression of this gene but might have elements that regulate activity during hair growth.
Collapse
Affiliation(s)
- M J Adams
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Knudsen KA, Frankowski C, Johnson KR, Wheelock MJ. A role for cadherins in cellular signaling and differentiation. J Cell Biochem 1998; 72 Suppl 30-31:168-176. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<168::aid-jcb21>3.0.co;2-v] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1998] [Accepted: 09/02/1998] [Indexed: 12/13/2022]
|
30
|
Greenwood MD, Marsden MD, Cowley CM, Sahota VK, Buxton RS. Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to "classical" cadherins than to desmogleins. Genomics 1997; 44:330-5. [PMID: 9325054 DOI: 10.1006/geno.1997.4894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cadherins are a superfamily of calcium-dependent glycoproteins that are cell adhesion molecules. Two families of cadherins, the desmocollins (Dsc) and desmogleins (Dsg), are found only in the desmosome type of cell-cell junction. They are each present in at least three different isoforms with differing spatial and temporal distributions and are specified by two clusters of closely linked genes on human chromosome 18q12.1. The human DSC2 gene, coding for the most widely distributed form of the desmocollins, has been found to consist of more than 32 kb of DNA. By using PCR we have determined the exon-intron organization. The gene is arranged into 17 exons ranging in size from 46 to 258 bp; exon 16 is alternatively spliced, giving rise to the a and b forms of the protein. This has revealed a remarkable degree of conservation of intron position with other cadherins. The desmocollin exon-intron organization is more similar to the so-called classical cadherins than to the desmogleins, especially in the cytoplasmic domain. Intron 1 is the largest in DSC2, as it is in the desmogleins, in contrast to the classical cadherins, where intron 2 is extremely large; this latter intron is missing from the desmogleins.
Collapse
Affiliation(s)
- M D Greenwood
- Division of Membrane Biology, National Institute for Medical Research, London, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Faraldo ML, Rodrigo I, Behrens J, Birchmeier W, Cano A. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol Carcinog 1997; 20:33-47. [PMID: 9328434 DOI: 10.1002/(sici)1098-2744(199709)20:1<33::aid-mc5>3.0.co;2-j] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously isolated the 5' upstream sequences of the mouse P-cadherin gene, in which putative binding sites for several transcription factors were identified between nt-101 and +30. In the study reported here, the promoter activity of the postulated 5' cis-acting sequences of the P-cadherin promoter, and the activity of the proximal E-cadherin promoter were investigated in several murine keratinocyte cell lines showing different levels of P- and E-cadherin expression as well as different morphology and tumorigenic behavior. Cell-type specificity and optimal activity of P-cadherin expression in murine keratinocytes was conferred by 5' sequences located between nt -200 and +30, and the GC-rich region (nt -101 to +80) and a CCAAT box element (nt -65) had a major regulatory role. The cell-type specificity of the E-cadherin promoter, on the other hand, was mediated by a combination of positive regulatory elements, a GC-rich region (nt -58 to -24), and a CCAAT box (nt -65) and repressor elements inside the E-pal sequence. Interestingly, the maximum repressor effect of the E-pal element was observed in non-expressing undifferentiated spindle cells. In vitro binding studies indicated that the GC-rich region of the P-cadherin promoter was mainly recognized by Sp1-related nuclear factors, whereas both AP2- and Sp1-related factors were involved in the interaction of the GC-rich region of the E-cadherin promoter. Common factors (probably related to the CP1 family) seemed also to be involved in the recognition of the CCAAT-box element of both the E- and P-cadherin promoters, but additional specific factors participated in the interaction with the CCAAT box of the E-cadherin promoter. Our studies also support the hypothesis that loss or modification of some of the regulatory factors occurs during mouse skin tumor progression.
Collapse
Affiliation(s)
- M L Faraldo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, Departamento de Bioquímica, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
Sage J, Yuan L, Martin L, Mattei MG, Guénet JL, Liu JG, Hoög C, Rassoulzadegan M, Cuzin F. The Sycp1 loci of the mouse genome: successive retropositions of a meiotic gene during the recent evolution of the genus. Genomics 1997; 44:118-26. [PMID: 9286707 DOI: 10.1006/geno.1997.4832] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The murine Sycp1 gene is expressed at the early stages of meiosis. We show that it is composed of a number of small exons and localized on mouse chromosome 3. In the laboratory strains, two retrogenes were also identified. The first one (Sycp1-ps1), on chromosome 7, has accumulated point mutations and deletions and is not transcribed. A second retrogene (Sycp1-ps2), on chromosome 8, is inserted within the continuity of a moderately repeated element, in an intron of another gene (Cad11). The two retroposition events can be dated to distinct periods in the evolution of the Muridae. Sycp1-ps2 has kept features indicative of a relatively recent origin, namely a nearly intact coding region, a poly(A) tail, and 14-bp terminal repeats. Its recent origin was confirmed by the fact that it is found in all the laboratory strains of mice, but neither in a recent isolate from Mus musculus domesticus wild stocks nor in the closely related subspecies M. musculus musculus, M. m. molossinus, M. m. castaneus, and M. m. bactrianus. Appearance of the more ancient Sycp1-ps1 retrogene is concomitant with the radiation of the genus. It is present in various Mus species (M. spretus, M. spicilegus, M. macedonicus, and M. cookii), but neither in the rat nor in the more closely related Pyromis genus. Transposition of retrotranscripts during meiosis and their hereditary establishment thus appear to occur relatively frequently. They may, therefore, play a significant role in the evolutionary process.
Collapse
Affiliation(s)
- J Sage
- Unité 470, Institut National de la Santé et de la Recherche Médicale, Université de Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Soler AP, Harner GD, Knudsen KA, McBrearty FX, Grujic E, Salazar H, Han AC, Keshgegian AA. Expression of P-cadherin identifies prostate-specific-antigen-negative cells in epithelial tissues of male sexual accessory organs and in prostatic carcinomas. Implications for prostate cancer biology. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 151:471-8. [PMID: 9250159 PMCID: PMC1858007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cadherins constitute a family of calcium-dependent cell-cell adhesion molecules the individual members of which are essential for the sorting of cells into tissues during development. In this study, we examined the expression of E-cadherin, N-cadherin, and P-cadherin in tissues obtained from radical prostatectomies. Epithelial cells of prostatic glands, ejaculatory ducts, and seminal vesicles expressed E-cadherin but not N-cadherin. P-cadherin was expressed in epithelial cells of the seminal vesicles and ejaculatory ducts. In the prostate it was limited to the basal cells of prostatic acini, glands with basal cell hyperplasia, and atrophic glands denuded of the luminal cells. All P-cadherin-positive cells were negative for prostatic-specific antigen. Prostatic cancers were mostly P-cadherin negative, but some tumors had P-cadherin-positive areas frequently located close to ejaculatory ducts and negative for prostatic-specific antigen. The mutually exclusive expression of P-cadherin and prostatic-specific antigen suggests that these proteins are involved in differential mechanisms of cell regulation in prostate cancer. P-cadherin may become a useful marker in the diagnosis and management of patients with prostate cancer and low levels of prostatic-specific antigen.
Collapse
Affiliation(s)
- A P Soler
- Lankenau Medical Research Center, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li B, Paradies NE, Brackenbury RW. Isolation and characterization of the promoter region of the chicken N-cadherin gene. Gene 1997; 191:7-13. [PMID: 9210582 DOI: 10.1016/s0378-1119(97)00006-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-cadherin (CDH2) is a member of the cadherin family of Ca2(+)-dependent cell-cell adhesion molecules. To investigate mechanisms controlling CDH2 transcription, we isolated and analyzed a genomic DNA sequence containing 2.8 kb of 5' flanking region and the first two exons of chicken CDH2. Sequence analysis of the promoter region of CDH2 revealed no CCATT or TATA boxes, but showed a high overall GC content, high CpG dinucleotide content, and several consensus Sp1 and Ap2 binding sequences. When fused to the cat reporter gene in transient transfection experiments, the sequence from positions -3231 to -118 (relative to the translation start site) directed high-level expression in CDH2-expressing chicken primary retinal cells and mouse N2A cells, but was much less active in chicken embryonic fibroblast cells and mouse 3T3 cells which do not express CDH2. Similarly, this promoter fragment directed variable, but neuronal-specific, expression of reporter genes in adult transgenic mice, but failed to produce the correct pattern of expression in other tissues, implying that additional sequences further upstream and/or within introns of CDH2 may play important roles in the transcriptional control.
Collapse
Affiliation(s)
- B Li
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, OH 45267-0521, USA
| | | | | |
Collapse
|
35
|
Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59:3-10. [PMID: 8892228 DOI: 10.1016/0925-4773(96)00597-7] [Citation(s) in RCA: 688] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vertebrate beta-catenin and Drosophila Armadillo share structural similarities suggesting that beta-catenin, like Armadillo, has a developmental signaling function. Both proteins are present as components of cell adherens junctions, but accumulate in the cytoplasm upon Wingless/Wnt signaling. beta-Catenin has axis-inducing properties like Wnt when injected into Xenopus blastomeres, providing evidence for participation of beta-catenin in the Wnt-pathway, but until now no downstream targets for beta-catenin have been identified. Here we demonstrate that beta-catenin binds to the HMG-type transcription factor lymphoid enhancer factor-1 (LEF-1), resulting in a nuclear translocation of beta-catenin both in cultured mouse cells and after ectopic expression of LEF-1 in two-cell mouse embryos. LEF-1/beta-catenin complexes bind to the promoter region of the E-cadherin gene in vitro, suggesting that this interaction could regulate E-cadherin transcription. As shown for beta-catenin, ectopic expression of LEF-1 in Xenopus embryos caused duplication of the body axis, indicating a regulatory role for a LEF-1-like molecule in dorsal mesoderm formation.
Collapse
Affiliation(s)
- O Huber
- Department of Molecular Embryology, Max-Planck Institute for Immunobiology, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Silos SA, Tamai K, Li K, Kivirikko S, Kouba D, Christiano AM, Uitto J. Cloning of the gene for human pemphigus vulgaris antigen (desmoglein 3), a desmosomal cadherin. Characterization of the promoter region and identification of a keratinocyte-specific cis-element. J Biol Chem 1996; 271:17504-11. [PMID: 8663392 DOI: 10.1074/jbc.271.29.17504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pemphigus vulgaris antigen is a cadherin-like desmosomal cell adhesion molecule expressed primarily in suprabasal keratinocytes within the epidermis. Previously characterized structural features have defined this molecule as a desmoglein, DSG3. In this study, we have cloned the human DSG3 gene and examined the transcriptional regulation of its expression. The total gene consisted of 15 exons and was estimated to span >23 kilobases. Comparison of exon-intron organization of DSG3 with bovine DSG1 and several classical cadherin genes revealed striking conservation of the structure. Up to 2.8 kilobases of the upstream genomic sequences were sequenced and found to contain several putative cis-regulatory elements. The promoter region was GC-rich and TATA-less, similar to previously characterized mammalian cadherin promoters. The putative promoter region was subcloned into a vector containing chloramphenicol acetyl transferase reporter gene. Transient transfections with a series of deletion clones indicated that the DSG3 promoter demonstrated keratinocyte-specific expression, as compared with dermal fibroblasts examined in parallel, and fine mapping identified a 30-base pair segment at -200 to -170 capable of conferring epidermal specific expression. The results provide evidence for the transcriptional regulation of the pemphigus vulgaris antigen gene, potentially critical for development of the epidermis and physiologic terminal differentiation of keratinocytes.
Collapse
Affiliation(s)
- S A Silos
- Department of Dermatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Witcher LL, Collins R, Puttagunta S, Mechanic SE, Munson M, Gumbiner B, Cowin P. Desmosomal cadherin binding domains of plakoglobin. J Biol Chem 1996; 271:10904-9. [PMID: 8631907 DOI: 10.1074/jbc.271.18.10904] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Plakoglobin is a major component of both desmosomes and adherens junctions. At these sites it binds to the cytoplasmic domains of cadherin cell-cell adhesion proteins and regulates their adhesive and cytoskeletal binding functions. Plakoglobin also forms distinct cytosolic protein complexes that function in pathways of tumor suppression and cell fate determination. Recent studies in Xenopus suggest that cadherins inhibit the signaling functions of plakoglobin presumably by sequestering this protein at the membrane and depleting its cytosolic pool. To understand the reciprocal regulation between desmosomal cadherins (desmoglein and desmocollin) and plakoglobin, we have sought to identify the binding domains involved in the formation of these protein complexes. Plakoglobin comprises 13 central repeats flanked by amino-terminal and carboxyl-terminal domains. Our results show that repeats 1-4 are involved in binding desmoglein-1. In contrast, the interaction of plakoglobin with desmocollin-1a is sensitive to deletion of either end of the central repeat domain. The binding sites for two adherens junction components, alpha-catenin and classical cadherins, overlap these sites. Competition among these proteins for binding sites on plakoglobin may therefore account for the distinct composition of adherens junctions and desmosomes.
Collapse
Affiliation(s)
- L L Witcher
- Department of Cell Biology, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hennig G, Löwrick O, Birchmeier W, Behrens J. Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 1996; 271:595-602. [PMID: 8550625 DOI: 10.1074/jbc.271.1.595] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epithelium-specific gene expression is fundamental in both embryogenesis and the maintenance of adult tissues, and impairment of epithelial characteristics contributes to diseases such as cancer. We have here analyzed the 5'-region of the epithelial (E-) cadherin gene in order to understand mechanisms of epithelium-specific transcription and loss of expression during epithelial-mesenchymal transitions. The regulatory region of the mouse epithelial cadherin gene is composed of a promoter (from position -94 to the transcription start site) and a 150-base pair enhancer located in the first intron. The 5'-promoter consists of positive regulatory elements (a CCAAT-box and two AP-2 binding sites in a GC-rich region) and the palindromic element E-Pal that activates and represses transcription in epithelial and mesenchymal cells, respectively. The enhancer of the first intron stimulates the activity of heterologous promoters exclusively in epithelial cells. This epithelium-specific enhancer consists of three elements (E I to E III; E II and E III bind AP-2) that are necessary and sufficient for activity. We thus propose two regulatory mechanisms by which epithelial specificity of epithelial cadherin expression is determined: suppression of promoter activity in mesenchymal cells by E-Pal and enhancement of activity in epithelial cells by both E-Pal and the epithelium-specific enhancer.
Collapse
Affiliation(s)
- G Hennig
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
39
|
|
40
|
Bracke ME, Van Roy FM, Mareel MM. The E-cadherin/catenin complex in invasion and metastasis. Curr Top Microbiol Immunol 1996; 213 ( Pt 1):123-61. [PMID: 8814984 DOI: 10.1007/978-3-642-61107-0_9] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M E Bracke
- Department of Radiotheraphy Nuclear Medicine and Experimental Cancerology, University Hospital, Gent, Belgium
| | | | | |
Collapse
|
41
|
Jothy S, Munro SB, LeDuy L, McClure D, Blaschuk OW. Adhesion or anti-adhesion in cancer: what matters more? Cancer Metastasis Rev 1995; 14:363-76. [PMID: 8821096 DOI: 10.1007/bf00690604] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The regulation of adhesion processes between normal epithelial cells is an essential condition for the maintenance of appropriate tissular architecture and differentiation. Quantitative and qualitative alterations in these homotypic adhesions occur during the transformation of normal into malignant epithelium. How these complex alterations in various homotypic adhesions modify the ability of tumor cells to detach from the original neoplastic site, to grow and move as single or clumped cells, and to invade the stroma are current issues in tumor biology. This review contrasts tumor cell adhesion mediated by E-cadherin which is consistently decreased in carcinomas, with adhesion mediated by CD44 and CEA which are increased in the tumors. A model proposing to resolve the apparent paradox of simultaneous adhesion and anti-adhesion mediated by the same protein is proposed.
Collapse
Affiliation(s)
- S Jothy
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
42
|
Abstract
Cadherins are a multigene family of proteins which mediate homophilic calcium-dependent cell adhesion and are thought to play an important role in morphogenesis by mediating specific intercellular adhesion. Different lines of experimental evidence have recently indicated that the site responsible for mediating adhesive interactions is localized to the first extracellular domain of cadherin. Based upon an analysis of the sequence of this domain, I show that cadherins can be classified into three groups with distinct structural features. Furthermore, using this sequence information a phylogenetic tree relating the known cadherins was assembled. This is the first such tree to be published for the cadherins. One cadherin subtype, neural cadherin (N-cadherin), shows very little sequence divergence between species, whereas all other cadherin subtypes show more substantial divergence, suggesting that selective pressure upon this domain may be greater for N-cadherin than for other cadherins. Phylogenetic analysis also suggests that the gene duplications which established the main branches leading to the different cadherin subtypes occurred very early in their history. These duplications set the stage for the diversified superfamily we now observe.
Collapse
Affiliation(s)
- Y Pouliot
- Muscle Biochemistry Laboratory, Montreal Neurological Institute, PQ, Canada
| |
Collapse
|
43
|
Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhoven A, van Roy F. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 1995; 26:281-9. [PMID: 7601454 DOI: 10.1016/0888-7543(95)80212-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
E-cadherin is a Ca(2+)-dependent epithelial cell-cell adhesion molecule. Downregulation of E-cadherin expression often correlates with strong invasive potential and poor prognosis of human carcinomas. By using recombinant lambda phage, cosmid, and P1 phage clones, we isolated the full-length human E-cadherin gene (CDH1). The gene spans a region of approximately 100 kb, and its location on chromosome 16q22.1 was confirmed by FISH analysis. Detailed restriction mapping and partial sequence analysis of the gene allowed us to identify 16 exons and a 65-kb-long intron 2. The intron-exon boundaries are highly conserved in comparison with other "classical cadherins." In intron 1 we identified a 5' high-density CpG island that may be implicated in transcription regulation during embryogenesis and malignancy.
Collapse
Affiliation(s)
- G Berx
- Section Molecular Cell Biology, University of Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The cadherins are a family of calcium-dependent cell adhesion molecules which are thought to be key regulators of morphogenesis. This review contains a discussion of the structure, function and regulation of these cell adhesion molecules. In particular, we discuss recent studies that demonstrate the ability of steroids to modulate cadherin levelsin vivo. We speculate that steroids and estrogenic organochlorines exert their diverse morphoregulatory actions on tissues by altering cadherin levels.
Collapse
Affiliation(s)
- O W Blaschuk
- Division of Urology, Department of Surgery, McGill University, Royal Victoria Hospital, 687 Pine Avenue West, H3A 1A1, Montreal, Quebec, Canada
| | | | | |
Collapse
|
45
|
Birchmeier W, Birchmeier C. Epithelial-mesenchymal transitions in development and tumor progression. EXS 1995; 74:1-15. [PMID: 8527890 DOI: 10.1007/978-3-0348-9070-0_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epithelial-mesenchymal transitions play important roles in development and malignancy. Here we discuss molecular events in the control of such transitions: changes in cellular adhesion components, action of oncogenes and tyrosine kinase receptors, as well as activation of transcription factors. In development, epithelial-mesenchymal transitions take place in a temporally and spatially controlled manner, whereas in tumors these changes are highly uncontrolled. Loss of epithelial character is typically observed late in progression of human carcinomas, and correlates there with the acquisition of invasive and metastatic potential.
Collapse
Affiliation(s)
- W Birchmeier
- Max-Delbrueck-Centrum for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
46
|
Cyr DG, Robaire B, Hermo L. Structure and turnover of junctional complexes between principal cells of the rat epididymis. Microsc Res Tech 1995; 30:54-66. [PMID: 7711320 DOI: 10.1002/jemt.1070300105] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The epididymal junctional complex between adjacent principal cells is composed of apically located gap, adherens and tight junctions. Tight junctions between adjacent epithelial cells lead to the formation of the blood-epididymal barrier. The objectives of this study were to examine the structure of the epididymal junctional complex in the different regions of the epididymis and to review the regulation of epithelial cadherin in the rat epididymis. Changes in the structure of the junctional complex, at the level of the electron microscope, were evident when comparing the initial segment to other regions of the epididymis. In the initial segment, the tight junction spanned a considerable length of the apical plasma membrane but had few desmosomes. In the other regions of the epididymis, the span of merging plasma membranes was considerably reduced, but in these regions, numerous desmosomes were present in the apical region. Several examples of what appeared to be a loss of portions of the plasma membrane of adjacent principal cells were evident along the entire epididymis. Such images as the invagination of a portion of the lateral plasma membrane of one principal cell into another, constriction of the invaginated area and eventual detachment leading to the formation of annular junctions suggest that there is a turnover of plasma membranes. The formation of cellular junctions involves the interactions of cell adhesion proteins followed by the addition of junctional proteins which assemble into tight and gap junctions. Epithelial cadherin (E-Cad), a calcium-dependent cell adhesion protein, was localized to the principal cells of the epididymis. Immunocytochemistry at the level of the electron microscope showed that E-Cad was present between the lateral plasma membranes of adjacent principal cells, both in the region of the junctional complex and in the deeper lying areas. E-Cad was also present in annular junctions located in close proximity to the junctional complex, indicating that these structures were related to the plasma membrane. E-Cad mRNA levels are regulated during postnatal epididymal development. In the caput-corpus epididymidis, E-Cad mRNA concentrations increase to peak at 42 days of age. This is well correlated with the conversion of testosterone to dihydrotestosterone in the epididymis. In the cauda epididymidis, however, E-Cad mRNA concentrations do not increase as a function of age, indicating that this protein is regulated in a segment-specific manner.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D G Cyr
- Maurice Lamontagne Institute, Department of Fisheries and Oceans, Mont-Joli, Quebec, Canada
| | | | | |
Collapse
|
47
|
Hatta M, Takeichi M. Complex Cell Type-Specific Transcriptional Regulation by the Promoter and an Intron of the Mouse P-Cadherin Gene. (P-cadherin/cell adhesion molecule/transcriptional regulation). Dev Growth Differ 1994. [DOI: 10.1111/j.1440-169x.1994.00509.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Kanai Y, Oda T, Tsuda H, Ochiai A, Hirohashi S. Point mutation of the E-cadherin gene in invasive lobular carcinoma of the breast. Jpn J Cancer Res 1994; 85:1035-9. [PMID: 7961105 PMCID: PMC5919349 DOI: 10.1111/j.1349-7006.1994.tb02902.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reduced or heterogeneous expression of E-cadherin has been demonstrated immunohistochemically in poorly differentiated carcinoma, which frequently shows weak intercellular adhesiveness and marked invasiveness. In vitro, not only reduced expression but also structural abnormalities of E-cadherin have been observed in human carcinoma cell lines which grow in a loosely adhering manner. To clarify the participation of structural abnormalities of E-cadherin in cancer invasion in vivo, sequence abnormalities were examined in the cadherin domain (exons 5, 6, 7 and 8) including the region essential for E-cadherin specific binding, using the polymerase chain reaction-single-strand conformation polymorphism method and direct sequencing in invasive lobular carcinoma of the breast, in which cancer cells become detached from each other and invade the stroma in a particularly scattered pattern. In 2 (10%) of the 20 cases examined, an identical sequence abnormality was detected in E-cadherin exon 7, i.e. a point mutation of codon 315 (AAT to AGT) which resulted in a single amino acid substitution (asparagine to serine). This mutation may abolish the E-cadherin-mediated cell-cell adhesion and be at least partly responsible for the weak intercellular adhesiveness and scattered histological pattern of the tumor.
Collapse
Affiliation(s)
- Y Kanai
- Pathology Division, National Cancer Center Research Institute, Tokyo
| | | | | | | | | |
Collapse
|
49
|
Chen B, Hales BF. 12-O-tetradecanoyl-phorbol-13-acetate-induced rat embryo malformations in vitro are associated with an increased relative abundance of embryonic E-cadherin mRNA. TERATOLOGY 1994; 50:302-10. [PMID: 7716737 DOI: 10.1002/tera.1420500405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Epithelial-cadherin (E-cadherin) is a member of a family of Ca(2+)-dependent cell adhesion molecules which are localized in zonulae adherens and play an important role during development. E-cadherin is abundant in rat embryos and their yolk sacs during organogenesis. The phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), has been reported to disrupt the morphology and functional development of the rat embryonic visceral yolk sac. The present study investigated the possibility that the effect of TPA on yolk sac development may be due to the altered expression of E-cadherin. Rat embryos, with their yolk sacs intact, were cultured on day 10 of gestation for 1 hr. At this time the vehicle, dimethyl sulfoxide (DMSO), or TPA (at different concentrations) was added to the culture medium; the cultures were continued for up to 24 hr. Embryos and yolk sacs were collected separately at the end of each culture period. The relative abundances of E-cadherin mRNA and protein were analyzed with Northern and Western blot analyses. Despite the TPA-induced abnormalities in yolk sac development, the relative abundance of E-cadherin mRNA or protein in the yolk sac was not altered by TPA exposure. However, in embryos exposed to dysmorphogenic concentrations of TPA, the relative abundance of E-cadherin mRNA was significantly increased after 24 hr in culture, compared to either controls or embryos exposed to non-dysmorphogenic concentrations of TPA. The magnitude of the increase in embryonic E-cadherin mRNA appeared to correlate with the severity of the embryo malformations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Chen
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
50
|
Larue L, Ohsugi M, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 1994; 91:8263-7. [PMID: 8058792 PMCID: PMC44586 DOI: 10.1073/pnas.91.17.8263] [Citation(s) in RCA: 679] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cell adhesion molecule E-cadherin mediates the compaction process of mouse preimplantation embryos and is important for the maintenance and function of epithelial cell layers. To determine precisely the role of E-cadherin in epithelial biogenesis we monitored the developmental potential of embryos homozygously negative for E-cadherin that were derived from E-cadherin heterozygous transgenic mice. The homozygous negative embryos died around the time of implantation, although they did undergo compaction like their littermate controls, largely due to the presence of residual maternal E-cadherin. At the blastocyst stage, E-cadherin-negative embryos failed to form a trophectodermal epithelium or a blastocyst cavity. These results demonstrate the pivotal role of E-cadherin in one of the most basic morphogenetic events in the development of multicellular organisms, the biogenesis of an epithelium.
Collapse
Affiliation(s)
- L Larue
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | | | |
Collapse
|