1
|
Kompatscher M, Gonnella I, Erlacher M. Studying the Function of tRNA Modifications: Experimental Challenges and Opportunities. J Mol Biol 2025:168934. [PMID: 39756793 DOI: 10.1016/j.jmb.2024.168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
tRNAs are essential molecules in protein synthesis, responsible for translating the four-nucleotide genetic code into the corresponding amino acid sequence. RNA modifications play a crucial role in influencing tRNA folding, structure, and function. These modifications, ranging from simple methylations to complex hypermodified species, are distributed throughout the tRNA molecule. Depending on their type and position, they contribute to the accuracy and efficiency of decoding by participating in a complex network of interactions. The enzymatic processes introducing these modifications are equally intricate and diverse, adding further complexity. As a result, studying tRNA modifications faces limitations at multiple levels. This review addresses the challenges involved in manipulating and studying the function of tRNA modifications and discusses experimental strategies and possibilities to overcome these obstacles.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Isabell Gonnella
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Matthias Erlacher
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose methylation (2'-O-methylation): Occurrence, biosynthesis and biological functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:253-269. [PMID: 30572123 DOI: 10.1016/j.bbagrm.2018.11.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Methylation of riboses at 2'-OH group is one of the most common RNA modifications found in number of cellular RNAs from almost any species which belong to all three life domains. This modification was extensively studied for decades in rRNAs and tRNAs, but recent data revealed the presence of 2'-O-methyl groups also in low abundant RNAs, like mRNAs. Ribose methylation is formed in RNA by two alternative enzymatic mechanisms: either by stand-alone protein enzymes or by complex assembly of proteins associated with snoRNA guides (sno(s)RNPs). In that case one catalytic subunit acts at various RNA sites, the specificity is provided by base pairing of the sno(s)RNA guide with the target RNA. In this review we compile available information on 2'-OH ribose methylation in different RNAs, enzymatic machineries involved in their biosynthesis and dynamics, as well as on the physiological functions of these modified residues.
Collapse
Affiliation(s)
- Lilia Ayadi
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Adeline Galvanin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florian Pichot
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- UMS2008 IBSLor CNRS-INSERM-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-Lorraine University, Biopôle, 9 avenue de la forêt de haye, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
3
|
Zhang WZ, Xiong XM, Zhang XJ, Wan SM, Guan NN, Nie CH, Zhao BW, Hsiao CD, Wang WM, Gao ZX. Mitochondrial Genome Variation after Hybridization and Differences in the First and Second Generation Hybrids of Bream Fishes. PLoS One 2016; 11:e0158915. [PMID: 27391325 PMCID: PMC4938612 DOI: 10.1371/journal.pone.0158915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022] Open
Abstract
Hybridization plays an important role in fish breeding. Bream fishes contribute a lot to aquaculture in China due to their economically valuable characteristics and the present study included five bream species, Megalobrama amblycephala, Megalobrama skolkovii, Megalobrama pellegrini, Megalobrama terminalis and Parabramis pekinensis. As maternal inheritance of mitochondrial genome (mitogenome) involves species specific regulation, we aimed to investigate in which way the inheritance of mitogenome is affected by hybridization in these fish species. With complete mitogenomes of 7 hybrid groups of bream species being firstly reported in the present study, a comparative analysis of 17 mitogenomes was conducted, including representatives of these 5 bream species, 6 first generation hybrids and 6 second generation hybrids. The results showed that these 17 mitogenomes shared the same gene arrangement, and had similar gene size and base composition. According to the phylogenetic analyses, all mitogenomes of the hybrids were consistent with a maternal inheritance. However, a certain number of variable sites were detected in all F1 hybrid groups compared to their female parents, especially in the group of M. terminalis (♀) × M. amblycephala (♂) (MT×MA), with a total of 86 variable sites between MT×MA and its female parent. Among the mitogenomes genes, the protein-coding gene nd5 displayed the highest variability. The number of variation sites was found to be related to phylogenetic relationship of the parents: the closer they are, the lower amount of variation sites their hybrids have. The second generation hybrids showed less mitogenome variation than that of first generation hybrids. The non-synonymous and synonymous substitution rates (dN/dS) were calculated between all the hybrids with their own female parents and the results indicated that most PCGs were under negative selection.
Collapse
Affiliation(s)
- Wei-Zhuo Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Xue-Mei Xiong
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Xiu-Jie Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Shi-Ming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Ning-Nan Guan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Chun-Hong Nie
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Bo-Wen Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Wei-Min Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Ze-Xia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Zhang Z, Hao Z, Wang Z, Li Q, Xie W. Structure of human endonuclease V as an inosine-specific ribonuclease. ACTA ACUST UNITED AC 2014; 70:2286-94. [PMID: 25195743 DOI: 10.1107/s139900471401356x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/11/2014] [Indexed: 11/10/2022]
Abstract
The 6-aminopurine ring of adenosine (A) can be deaminated to form the 6-oxopurine of inosine (I). Endonuclease Vs (EndoVs) are inosine-specific nucleases that cleave at the second phosphodiester bond 3' to inosine. EndoV proteins are highly conserved in all domains of life, but the bacterial and human enzymes seem to display distinct substrate preferences. While the bacterial enzymes exhibit high cleavage efficiency on various nucleic acid substrates, human EndoV (hEndoV) is most active towards ssRNA but is much less active towards other substrates. However, the structural basis of substrate recognition by hEndoV is not well understood. In this study, the 2.3 Å resolution crystal structure of hEndoV was determined and its unusual RNA-cleaving properties were investigated. The enzyme preserves the general `RNase H-like' structure, especially in the wedge motif, the metal-binding site and the hypoxanthine-binding pocket. hEndoV also features several extra insertions and a characteristic four-cysteine motif, in which Cys227 and Cys228, two cysteines that are highly conserved in higher eukaryotes, play important roles in catalysis. The structure presented here helps in understanding the substrate preference of hEndoV catalysis.
Collapse
Affiliation(s)
- Zhemin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhitai Hao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhong Wang
- Centre for Cellular and Structural Biology, The Sun Yat-Sen University, 132 East Circle Road, University City, Guangzhou 510006, People's Republic of China
| | - Qing Li
- Centre for Cellular and Structural Biology, The Sun Yat-Sen University, 132 East Circle Road, University City, Guangzhou 510006, People's Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
5
|
Rogers HH, Griffiths-Jones S. tRNA anticodon shifts in eukaryotic genomes. RNA (NEW YORK, N.Y.) 2014; 20:269-281. [PMID: 24442610 PMCID: PMC3923123 DOI: 10.1261/rna.041681.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
Embedded in the sequence of each transfer RNA are elements that promote specific interactions with its cognate aminoacyl tRNA-synthetase. Although many such "identity elements" are known, their detection is difficult since they rely on unique structural signatures and the combinatorial action of multiple elements spread throughout the tRNA molecule. Since the anticodon is often a major identity determinant itself, it is possible to switch between certain tRNA functional types by means of anticodon substitutions. This has been shown to have occurred during the evolution of some genomes; however, the scale and relevance of "anticodon shifts" to the evolution of the tRNA multigene family is unclear. Using a synteny-conservation-based method, we detected tRNA anticodon shifts in groups of closely related species: five primates, 12 Drosophila, six nematodes, 11 Saccharomycetes, and 61 Enterobacteriaceae. We found a total of 75 anticodon shifts: 31 involving switches of identity (alloacceptor shifts) and 44 between isoacceptors that code for the same amino acid (isoacceptor shifts). The relative numbers of shifts in each taxa suggest that tRNA gene redundancy is likely the driving factor, with greater constraint on changes of identity. Sites that frequently covary with alloacceptor shifts are located at the extreme ends of the molecule, in common with most known identity determinants. Isoacceptor shifts are associated with changes in the midsections of the tRNA sequence. However, the mutation patterns of anticodon shifts involving the same identities are often dissimilar, suggesting that alternate sets of mutation may achieve the same functional compensation.
Collapse
|
6
|
RNase P-associated external guide sequence effectively reduces the expression of human CC-chemokine receptor 5 and inhibits the infection of human immunodeficiency virus 1. BIOMED RESEARCH INTERNATIONAL 2013; 2013:509714. [PMID: 23509733 PMCID: PMC3591226 DOI: 10.1155/2013/509714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 11/30/2022]
Abstract
External guide sequences (EGSs) represent a new class of RNA-based gene-targeting agents, consist of a sequence complementary to a target mRNA, and render the target RNA susceptible to degradation by ribonuclease P (RNase P). In this study, EGSs were constructed to target the mRNA encoding human CC-chemokine receptor 5 (CCR5), one of the primary coreceptors for HIV. An EGS RNA, C1, efficiently directed human RNase P to cleave the CCR5 mRNA sequence in vitro. A reduction of about 70% in the expression level of both CCR5 mRNA and protein and an inhibition of more than 50-fold in HIV (R5 strain Ba-L) p24 production were observed in cells that expressed C1. In comparison, a reduction of about 10% in the expression of CCR5 and viral growth was found in cells that either did not express the EGS or produced a “disabled” EGS which carried nucleotide mutations that precluded RNase P recognition. Furthermore, the same C1-expressing cells that were protected from R5 strain Ba-L retained susceptibility to X4 strain IIIB, which uses CXCR4 as the coreceptor instead of CCR5, suggesting that the RNase P-mediated cleavage induced by the EGS is specific for the target CCR5 but not the closely related CXCR4. Our results provide direct evidence that EGS RNAs against CCR5 are effective and specific in blocking HIV infection and growth. These results also demonstrate the feasibility to develop highly effective EGSs for anti-HIV therapy.
Collapse
|
7
|
Translation efficiencies of synonymous codons for arginine differ dramatically and are not correlated with codon usage in chloroplasts. Gene 2011; 472:50-4. [DOI: 10.1016/j.gene.2010.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/17/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
|
8
|
Lukashenko NP. Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Generation of an external guide sequence library for a reverse genetic screen in Caenorhabditis elegans. BMC Biotechnol 2009; 9:47. [PMID: 19457250 PMCID: PMC2696436 DOI: 10.1186/1472-6750-9-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 05/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background A method for inhibiting the expression of particular genes using external guide sequences (EGSs) has been developed in bacteria, mammalian cells and maize cells. Results To examine whether EGS technology can be used to down-regulate gene expression in Caenorhabditis elegans (C. elegans), we generated EGS-Ngfp-lacZ and EGS-Mtgfp that are targeted against Ngfp-lacZ and Mtgfp mRNA, respectively. These EGSs were introduced, both separately and together, into the C. elegans strain PD4251, which contains Ngfp-lacZ and Mtgfp. Consequently, the expression levels of Ngfp-lacZ and Mtgfp were affected by EGS-Ngfp-lacZ and EGS-Mtgfp, respectively. We further generated an EGS library that contains a randomized antisense domain of tRNA-derived EGS ("3/4 EGS"). Examination of the composition of the EGS library showed that there was no obvious bias in the cloning of certain EGSs. A subset of EGSs was randomly chosen for screening in the C. elegans strain N2. About 6% of these EGSs induced abnormal phenotypes such as P0 slow postembryonic growth, P0 larval arrest, P0 larval lethality and P0 sterility. Of these, EGS-35 and EGS-83 caused the greatest phenotype changes, and their target mRNAs were identified as ZK858.7 mRNA and Lin-13 mRNA, respectively. Conclusion EGS technology can be used to down-regulate gene expression in C. elegans. The EGS library is a research tool for reverse genetic screening in C. elegans. These observations are potentially of great importance to further our understanding and use of C. elegans genomics.
Collapse
|
10
|
Sherrer RL, Ho JML, Söll D. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase. Nucleic Acids Res 2008; 36:1871-80. [PMID: 18267971 PMCID: PMC2330242 DOI: 10.1093/nar/gkn036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Selenocysteine (Sec) biosynthesis in archaea and eukaryotes requires three steps: serylation of tRNASec by seryl-tRNA synthetase (SerRS), phosphorylation of Ser-tRNASec by O-phosphoseryl-tRNASec kinase (PSTK), and conversion of O-phosphoseryl-tRNASec (Sep-tRNASec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) to Sec-tRNASec. Although SerRS recognizes both tRNASec and tRNASer species, PSTK must discriminate Ser-tRNASec from Ser-tRNASer. Based on a comparison of the sequences and secondary structures of archaeal tRNASec and tRNASer, we introduced mutations into Methanococcus maripaludis tRNASec to investigate how Methanocaldococcus jannaschii PSTK distinguishes tRNASec from tRNASer. Unlike eukaryotic PSTK, the archaeal enzyme was found to recognize the acceptor stem rather than the length and secondary structure of the D-stem. While the D-arm and T-loop provide minor identity elements, the acceptor stem base pairs G2-C71 and C3-G70 in tRNASec were crucial for discrimination from tRNASer. Furthermore, the A5-U68 base pair in tRNASer has some antideterminant properties for PSTK. Transplantation of these identity elements into the tRNASerUGA scaffold resulted in phosphorylation of the chimeric Ser-tRNA. The chimera was able to stimulate the ATPase activity of PSTK albeit at a lower level than tRNASec, whereas tRNASer did not. Additionally, the seryl moiety of Ser-tRNASec is not required for enzyme recognition, as PSTK efficiently phosphorylated Thr-tRNASec.
Collapse
Affiliation(s)
- R Lynn Sherrer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
11
|
Roy H, Becker HD, Mazauric MH, Kern D. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 2007; 35:3420-30. [PMID: 17478519 PMCID: PMC1904265 DOI: 10.1093/nar/gkm211] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In most prokaryotes Asn-tRNAAsn and Gln-tRNAGln are formed by amidation of aspartate and glutamate mischarged onto tRNAAsn and tRNAGln, respectively. Coexistence in the organism of mischarged Asp-tRNAAsn and Glu-tRNAGln and the homologous Asn-tRNAAsn and Gln-tRNAGln does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNAAsn intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNAAsn from Asn-tRNAAsn and Asp-tRNAAsp by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs.
Collapse
MESH Headings
- Base Pairing
- Codon
- Escherichia coli Proteins/metabolism
- Models, Molecular
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/metabolism
- Protein Binding
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- Thermus thermophilus/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
| | | | | | - Daniel Kern
- *To whom correspondence should be addressed. Tel: +33-3-8841-7092; Fax: +33-3-8860-2218;
| |
Collapse
|
12
|
McCulley A, Morrow CD. Nucleotides within the anticodon stem are important for optimal use of tRNA(Lys,3) as the primer for HIV-1 reverse transcription. Virology 2007; 364:169-77. [PMID: 17368706 PMCID: PMC2080789 DOI: 10.1016/j.virol.2007.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/18/2007] [Accepted: 02/09/2007] [Indexed: 11/30/2022]
Abstract
HIV-1 utilizes tRNA(Lys,3) as the primer for initiation of reverse transcription. To further examine the tRNA sequence and structural requirements for primer selection, we developed a complementation system which required tRNA(Lys) to be provided in trans. We constructed an HIV-1 provirus in which the primer-binding site (PBS) was altered to be complementary to the 3' terminal 18-nucleotides of E. coli tRNA(Lys,3), which shares many bases with mammalian tRNA(Lys,3), and demonstrated that infectious virus was obtained only if the provirus was co-transfected with the plasmid encoding E. coli tRNA(Lys,3). In the current study we have mutated E. coli tRNA(Lys,3) so that nucleotides within the stem of the anticodon stem-loop were made identical to mammalian tRNA(Lys,3). Analysis of the complementation revealed that the modified E. coli tRNA(Lys,3) (E. coli tRNA(Lys,3)-MA) complemented 3-5 times more efficiently than E. coli tRNA(Lys,3). Mutation of nucleotides within the anticodon stem region of E. coli tRNA(Lys,3)-MA that differed from E. coli tRNA(Lys,3) revealed the importance of the nucleotide sequence for efficient use in reverse transcription. The results of our studies highlight that multiple regions of mammalian tRNA(Lys,3) are important for the preference of tRNA(Lys,3) as the primer for HIV-1 reverse transcription.
Collapse
Affiliation(s)
| | - Casey D. Morrow
- Corresponding author: Casey D. Morrow, University of Alabama at Birmingham, Department of Cell Biology, 802 Kaul Building, 720 20th Street, South Birmingham, AL 35294-0024, (205) 934-5705: Phone, (205) 934-5733: FAX,
| |
Collapse
|
13
|
Ni N, Morrow CD. Impact of forced selection of tRNAs on HIV-1 replication and genome stability highlight preferences for selection of certain tRNAs. Virus Res 2006; 124:29-37. [PMID: 17070952 PMCID: PMC1847643 DOI: 10.1016/j.virusres.2006.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 01/19/2023]
Abstract
Human immunodeficiency virus (HIV-1) exclusively selects tRNA(Lys,3) as the primer for initiation of reverse transcription. How and why HIV-1 selects the tRNA is unresolved. To address this issue, we have generated HIV-1 in which the PBS was changed to be complementary to alternative tRNAs. In this study, we report on HIV-1 that have the PBS mutated to be complementary to tRNA(Thr), tRNA(Phe), tRNA(Ser) and tRNA(Tyr). Virus with a PBS complementary to tRNA(Thr) grew slightly slower than the wild type virus and maintained the PBS for an extended culture period before finally reverting back to utilize tRNA(Lys,3). In contrast, viruses with a PBS complementary to tRNA(Phe) or tRNA(Ser) rapidly reverted to utilize tRNA(Lys,3) following limited in vitro replication, while a virus with a PBS complementary to tRNA(Tyr) had severely compromised infectivity and did not productively infect a continuous T cell line (SupT1) or human peripheral blood mononuclear cells (PBMC). Modification of the A-loop region to be complementary to tRNA(Thr) with the mutation in the PBS to be complementary to tRNA(Thr) resulted in a virus that could stably utilize this tRNA while the modification of the A-loop to be complementary to the anticodon of tRNA(Ser) did not allow the virus to stably utilize tRNA(Ser). Modification of the A-loop region to be complementary to the anticodon of tRNA(Phe) severely impacted the replication of this virus. Finally, the modification of the A-loop region to be complementary to tRNA(Tyr) did not rescue the virus with a PBS complementary to tRNA(Tyr). The results of these studies demonstrate the diverse effects that alteration of the PBS to force selection of alternative primers have on HIV-1 replication and provide a framework to understand the dynamics of primer selection.
Collapse
Affiliation(s)
| | - Casey D. Morrow
- Corresponding author: Casey D. Morrow, University of Alabama at Birmingham, Department of Cell Biology, 802 Kaul Building, 720 20 Street, South Birmingham, AL 35294-0024, (205) 934-5705: Phone (205) 934-5733: FAX
| |
Collapse
|
14
|
McCulley A, Morrow CD. Complementation of human immunodeficiency virus type 1 replication by intracellular selection of Escherichia coli formula supplied in trans. J Virol 2006; 80:9641-50. [PMID: 16973568 PMCID: PMC1617247 DOI: 10.1128/jvi.00709-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) exclusively selects tRNA3Lys as the primer for the initiation of reverse transcription, even though both tRNA3Lys and tRNA1,2Lys are found in HIV-1 virions. Alteration of the HIV-1 primer-binding site (PBS) to be complementary to alternate tRNAs results in the use of those tRNAs for replication, indicating that primer complementarity with the PBS is an important determinant of primer selection. In previous studies, we have exploited this fact to develop a system in which yeast (Saccharomyces cerevisiae) tRNAPhe is provided in trans to complement the replication of HIV-1 with a PBS complementary to yeast tRNAPhe. Recent studies have demonstrated that the presence of lysyl-tRNA synthetase in HIV-1 virions might account for the preference for the selection of tRNA3Lys in HIV-1 replication. To establish a complementation system more reflective of HIV-1 primer selection, we have altered the HIV-1 PBS to be complementary to the Escherichia coli tRNA3Lys, which shares near identity with mammalian tRNA3Lys except in the 3'-terminal 18-nucleotide sequence that binds to the PBS. E. coli tRNA3Lys expressed from a plasmid was aminoacylated in mammalian cells. Cotransfection of cells with a plasmid that encodes E. coli tRNA3Lys and a plasmid encoding an HIV-1 provirus with a PBS complementary to E. coli tRNA3Lys resulted in the production of infectious virus. A comparison of the two complementation systems revealed that higher levels of intracellular E. coli tRNA3Lys than of yeast tRNAPhe were needed to achieve equal levels of infectious virus, indicating that there was no preferential selection of E. coli tRNA3Lys. To examine the specificity of tRNALys selection, E. coli tRNA3Lys was modified to tRNA1,2Lys. This tRNA was also aminoacylated when expressed in mammalian cells and complemented the infectivity of HIV-1 at levels similar to those seen for E. coli tRNA3Lys. Additional mutations in the anticodon of E. coli tRNA3Lys were constructed; these mutations did not significantly correlate with the capacity of the tRNA primer to complement infectivity of HIV-1, even though they had a drastic effect on the aminoacylation of the tRNAs. The results of these studies demonstrate that E. coli tRNA3Lys provided in trans can complement HIV-1 genomes with the PBS altered to E. coli tRNA3Lys. However, the capacity of tRNA3Lys to interact with lysyl-tRNA synthetase does not entirely explain the enhanced preference for selection of tRNA3Lys for the replication of HIV-1.
Collapse
Affiliation(s)
- Anna McCulley
- University of Alabama at Birmingham, Department of Cell Biology, 802 Kaul Building, 720 20th Street South, Birmingham, AL 35294-0024, USA
| | | |
Collapse
|
15
|
Yang YH, Li H, Zhou T, Kim K, Liu F. Engineered external guide sequences are highly effective in inducing RNase P for inhibition of gene expression and replication of human cytomegalovirus. Nucleic Acids Res 2006; 34:575-83. [PMID: 16432261 PMCID: PMC1345693 DOI: 10.1093/nar/gkj431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 11/30/2022] Open
Abstract
External guide sequences (EGSs), which are RNA molecules derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. Using an in vitro selection procedure, we have previously generated EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the overlapping region of the mRNAs encoding human cytomegalovirus (HCMV) essential transcription regulatory factors IE1 and IE2. The EGS variant was approximately 25-fold more active in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Moreover, a reduction of 93% in IE1/IE2 gene expression and a reduction of 3000-fold in viral growth were observed in HCMV-infected cells that expressed the variant, while cells expressing the tRNA-derived EGS exhibited a reduction of 80% in IE1/IE2 expression and an inhibition of 150-fold in viral growth. Our results provide the first direct evidence that EGS variant is highly effective in blocking HCMV gene expression and growth and furthermore, demonstrate the feasibility of developing effective EGS RNA variants for anti-HCMV applications by using in vitro selection procedures.
Collapse
Affiliation(s)
- Yong-Hua Yang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health140 Warren HallUniversity of CaliforniaBerkeley, CA 94720, USA
| | - Hongjian Li
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health140 Warren HallUniversity of CaliforniaBerkeley, CA 94720, USA
| | - Tianhong Zhou
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health140 Warren HallUniversity of CaliforniaBerkeley, CA 94720, USA
| | - Kihoon Kim
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health140 Warren HallUniversity of CaliforniaBerkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health140 Warren HallUniversity of CaliforniaBerkeley, CA 94720, USA
| |
Collapse
|
16
|
Lambert A, Legendre M, Fontaine JF, Gautheret D. Computing expectation values for RNA motifs using discrete convolutions. BMC Bioinformatics 2005; 6:118. [PMID: 15892887 PMCID: PMC1168889 DOI: 10.1186/1471-2105-6-118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022] Open
Abstract
Background Computational biologists use Expectation values (E-values) to estimate the number of solutions that can be expected by chance during a database scan. Here we focus on computing Expectation values for RNA motifs defined by single-strand and helix lod-score profiles with variable helix spans. Such E-values cannot be computed assuming a normal score distribution and their estimation previously required lengthy simulations. Results We introduce discrete convolutions as an accurate and fast mean to estimate score distributions of lod-score profiles. This method provides excellent score estimations for all single-strand or helical elements tested and also applies to the combination of elements into larger, complex, motifs. Further, the estimated distributions remain accurate even when pseudocounts are introduced into the lod-score profiles. Estimated score distributions are then easily converted into E-values. Conclusion A good agreement was observed between computed E-values and simulations for a number of complete RNA motifs. This method is now implemented into the ERPIN software, but it can be applied as well to any search procedure based on ungapped profiles with statistically independent columns.
Collapse
Affiliation(s)
- André Lambert
- CNRS UMR 6207, Université de la Méditerranée, Luminy Case 907, 13288 Marseille cedex 9, France
| | - Matthieu Legendre
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France
| | - Jean-Fred Fontaine
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France
- INSERM EMI U 00.18, CHU d'Angers, 49033 Angers, France
| | - Daniel Gautheret
- INSERM ERM 206, Université de la Méditerranée, Luminy Case 928, 13288 Marseille Cedex 9, France
| |
Collapse
|
17
|
Costa A, Païs de Barros JP, Keith G, Baranowski W, Desgrès J. Determination of queuosine derivatives by reverse-phase liquid chromatography for the hypomodification study of Q-bearing tRNAs from various mammal liver cells. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 801:237-47. [PMID: 14751792 DOI: 10.1016/j.jchromb.2003.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three queuosine derivatives (Q-derivatives) have been found at position 34 of four mammalian so-called Q-tRNAs: queuosine (Q) in tRNA(Asn) and tRNA(His), mannosyl-queuosine (manQ) in tRNA(Asp), and galactosyl-queuosine (galQ) in tRNA(Tyr). An analytical procedure based on the combined means of purified tRNA isolation from liver cells and ribonucleoside analysis by reverse-phase high performance liquid chromatography coupled with real-time UV-spectrometry (RPLC-UV) was developed for the quantitative analysis of the three Q-derivatives present in total tRNA from liver tissues and liver cell cultures. Using this analytical procedure, the rates of Q-tRNA modification were studied in total tRNAs from various mammalian hepatic cells. Our results show that the four Q-tRNAs are fully modified in liver tissues from adult mammals, regardless of the mammal species. However, a lack in the Q-modification level was observed in Q-tRNAs from newborn rat liver, as well in Q-tRNAs from normal rat liver cell cultures growing in a low queuine content medium, and from a rat hepatoma cell line. It is noteworthy that in all cases of Q-tRNA hypomodification, our analytical procedure showed that tRNA(Asp) is always the least affected by the hypomodification. The biological significance of this phenomenon is discussed.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chickens
- Chromatography, High Pressure Liquid
- Hepatocytes/chemistry
- Liver/chemistry
- Liver Neoplasms, Experimental
- Nucleoside Q/analogs & derivatives
- Nucleoside Q/analysis
- RNA, Transfer/chemistry
- RNA, Transfer/isolation & purification
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Asn/chemistry
- Rats
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Annie Costa
- Faculté de Médecine et Centre Hospitalier Universitaire, Université de Bourgogne, 10 Bd de-Lattre-de-Tassigny, 21079 Cedex, Dijon, France
| | | | | | | | | |
Collapse
|
18
|
Abstract
Transfer RNA (tRNA) is structurally unique among nucleic acids in harboring an astonishing diversity of post-transcriptionally modified nucleoside. Two of the most radically modified nucleosides known to occur in tRNA are queuosine and archaeosine, both of which are characterized by a 7-deazaguanosine core structure. In spite of the phylogenetic segregation observed for these nucleosides (queuosine is present in Eukarya and Bacteria, while archaeosine is present only in Archaea), their structural similarity suggested a common biosynthetic origin, and recent biochemical and genetic studies have provided compelling evidence that a significant portion of their biosynthesis may in fact be identical. This review covers current understanding of the physiology and biosynthesis of these remarkable nucleosides, with particular emphasis on the only two enzymes that have been discovered in the pathways: tRNA-guanine transglycosylase (TGT), which catalyzes the insertion of a modified base into the polynucleotide with the concomitant elimination of the genetically encoded guanine in the biosynthesis of both nucleosides, and S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA), which catalyzes the penultimate step in the biosynthesis of queuosine, the construction of the carbocyclic side chain.
Collapse
Affiliation(s)
- Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97201, USA.
| |
Collapse
|
19
|
Zhou T, Kim J, Kilani AF, Kim K, Dunn W, Jo S, Nepomuceno E, Liu F. In vitro selection of external guide sequences for directing RNase P-mediated inhibition of viral gene expression. J Biol Chem 2002; 277:30112-20. [PMID: 12050148 DOI: 10.1074/jbc.m200183200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
External guide sequences (EGSs) are small RNA molecules that bind to a target mRNA, form a complex resembling the structure of a tRNA, and render the mRNA susceptible to hydrolysis by RNase P, a tRNA processing enzyme. An in vitro selection procedure was used to select EGSs that direct human RNase P to cleave the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1. One of the selected EGSs, TK17, was at least 35 times more active in directing RNase P in cleaving TK mRNA in vitro than the EGS derived from a natural tRNA sequence. TK17, when in complex with the TK mRNA sequence, resembles a portion of tRNA structure and exhibits an enhanced binding affinity to the target mRNA. Moreover, a reduction of 95 and 50% in the TK expression was found in herpes simplex virus 1-infected cells that expressed the selected EGS and the EGS derived from the natural tRNA sequence, respectively. Our study provides direct evidence that EGS molecules isolated by the selection procedure are effective in tissue culture. These results also demonstrate the potential for using the selection procedure as a general approach for the generation of highly effective EGSs for gene-targeting application.
Collapse
Affiliation(s)
- Tianhong Zhou
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Trepanier NK, Jensen SE, Alexander DC, Leskiw BK. The positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus is mistranslated in a bldA mutant. MICROBIOLOGY (READING, ENGLAND) 2002; 148:643-656. [PMID: 11882698 DOI: 10.1099/00221287-148-3-643] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Streptomyces coelicolor bldA encodes the principal leucyl tRNA for translation of UUA codons and controls pigmented antibiotic production by the presence of TTA codons in the genes encoding the pathway-specific activators of actinorhodin and undecylprodigiosin biosynthesis. In Streptomyces clavuligerus the gene encoding the pathway-specific activator of both cephamycin C and clavulanic acid production, ccaR, also contains a TTA codon and was expected to exhibit bldA-dependence. A cloned S. clavuligerus DNA fragment containing a sequence showing 91% identity to the S. coelicolor bldA-encoded tRNA was able to restore antibiotic production and sporulation to bldA mutants of S. coelicolor and the closely related Streptomyces lividans. A null mutation of the bldA gene in S. clavuligerus resulted in the expected sporulation defective phenotype, but unexpectedly had no effect on antibiotic production. Transcript analysis showed no difference in the levels of ccaR transcripts in the wild-type and bldA mutant strains, ruling out any effect of elevated levels of the ccaR mRNA. Furthermore, when compared to the wild-type strain, the bldA mutant showed no differences in the levels of CcaR, suggesting that the single TTA codon in ccaR is mistranslated efficiently. The role of codon context in bldA dependence is discussed.
Collapse
Affiliation(s)
- Nicole K Trepanier
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Susan E Jensen
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Dylan C Alexander
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Brenda K Leskiw
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| |
Collapse
|
21
|
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002; 3:2. [PMID: 11869452 PMCID: PMC65690 DOI: 10.1186/1471-2105-3-2] [Citation(s) in RCA: 1108] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 01/17/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the sequences organized into a database management system and aligned to reveal their higher-order structure, and patterns of conservation and variation for organisms that span the phylogenetic tree, has been collected and analyzed. This type of information can be fundamental for and have an influence on the study of phylogenetic relationships, RNA structure, and the melding of these two fields. RESULTS We have prepared a large web site that disseminates our comparative sequence and structure models and data. The four major types of comparative information and systems available for the three ribosomal RNAs (5S, 16S, and 23S rRNA), transfer RNA (tRNA), and two of the catalytic intron RNAs (group I and group II) are: (1) Current Comparative Structure Models; (2) Nucleotide Frequency and Conservation Information; (3) Sequence and Structure Data; and (4) Data Access Systems. CONCLUSIONS This online RNA sequence and structure information, the result of extensive analysis, interpretation, data collection, and computer program and web development, is accessible at our Comparative RNA Web (CRW) Site http://www.rna.icmb.utexas.edu. In the future, more data and information will be added to these existing categories, new categories will be developed, and additional RNAs will be studied and presented at the CRW Site.
Collapse
MESH Headings
- Base Sequence/genetics
- Databases, Nucleic Acid
- Internet
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA/chemistry
- RNA/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
Collapse
Affiliation(s)
- Jamie J Cannone
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Sankar Subramanian
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | - Murray N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - James R Collett
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Lisa M D'Souza
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Yushi Du
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Brian Feng
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Nan Lin
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Lakshmi V Madabusi
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
- Ambion, Inc., Austin, TX 78744-1832, USA
| | - Kirsten M Müller
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Nupur Pande
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Zhidi Shang
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Nan Yu
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Robin R Gutell
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| |
Collapse
|
22
|
Rokov-Plavec J, Lesjak S, Landeka I, Mijakovic I, Weygand-Durasevic I. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Arch Biochem Biophys 2002; 397:40-50. [PMID: 11747308 DOI: 10.1006/abbi.2001.2600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our study of seryl-tRNA formation in maize, we investigated the enzymes involved in serylation. Only two dissimilar seryl-tRNA synthetase (SerRS) cDNA clones were identified in the Zea mays EST (expressed sequence tag) databases. One encodes a seryl-tRNA synthetase, which presumably functions in the organelles (SerZMm), while the other synthetase product is more similar to eukaryotic cytosolic counterparts (SerZMc). The expression of SerZMm in Saccharomyces cerevisiae resulted in complementation of mutant respiratory phenotype, caused by a disruption of the nuclear gene, presumably encoding yeast mitochondrial seryl-tRNA synthetase (SerSCm). Purified mature SerZMm displays tRNA-assisted serine activation and aminoacylates maize mitochondrial and chloroplast tRNA(Ser) transcripts with similar efficiencies, raising the possibility that only two isoforms of seryl-tRNA synthetase may be sufficient to catalyze seryl-tRNA(Ser) formation in three cellular compartments of Zea mays. Phylogenetic analysis suggests that SerZMm is of mitochondrial origin.
Collapse
Affiliation(s)
- Jasmina Rokov-Plavec
- Department of Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
23
|
Dunn W, Trang P, Khan U, Zhu J, Liu F. RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc Natl Acad Sci U S A 2001; 98:14831-6. [PMID: 11742095 PMCID: PMC64944 DOI: 10.1073/pnas.261560598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2001] [Accepted: 10/19/2001] [Indexed: 11/18/2022] Open
Abstract
External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. In this study, DNA-based EGS molecules were chemically synthesized to target the mRNA coding for the protease of human cytomegalovirus (HCMV). The EGS molecules efficiently directed human RNase P to cleave the target mRNA sequence in vitro. When EGSs were exogenously administered into HCMV-infected human foreskin fibroblasts, a reduction of about 80-90% in the expression level of the protease and a reduction of about 300-fold in HCMV growth were observed in the cells that were treated with a functional EGS, but not in cells that were not treated with the EGS or with a "disabled" EGS carrying nucleotide mutations that precluded RNase P recognition. Moreover, packaging of the viral DNA genome into the capsid was blocked in the cells treated with the functional EGS. These results indicate that HCMV protease is essential for viral DNA encapsidation. Moreover, our study provides direct evidence that exogenous administration of a DNA-based EGS can be used as a therapeutic approach for inhibiting gene expression and replication of a human virus.
Collapse
Affiliation(s)
- W Dunn
- Division of Infectious Diseases, Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
24
|
Gautheret D, Lambert A. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 2001; 313:1003-11. [PMID: 11700055 DOI: 10.1006/jmbi.2001.5102] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present here a new approach to the problem of defining RNA signatures and finding their occurrences in sequence databases. The proposed method is based on "secondary structure profiles". An RNA sequence alignment with secondary structure information is used as an input. Two types of weight matrices/profiles are constructed from this alignment: single strands are represented by a classical lod-scores profile while helical regions are represented by an extended "helical profile" comprising 16 lod-scores per position, one for each of the 16 possible base-pairs. Database searches are then conducted using a simultaneous search for helical profiles and dynamic programming alignment of single strand profiles. The algorithm has been implemented into a new software, ERPIN, that performs both profile construction and database search. Applications are presented for several RNA motifs. The automated use of sequence information in both single-stranded and helical regions yields better sensitivity/specificity ratios than descriptor-based programs. Furthermore, since the translation of alignments into profiles is straightforward with ERPIN, iterative searches can easily be conducted to enrich collections of homologous RNAs.
Collapse
Affiliation(s)
- D Gautheret
- Centre d'Immunologie de Marseille Luminy, CNRS UMR 6102/INSERM U 136, Luminy Case 906, 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
25
|
Bai Y, Fox DT, Lacy JA, Van Lanen SG, Iwata-Reuyl D. Hypermodification of tRNA in Thermophilic archaea. Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii. J Biol Chem 2000; 275:28731-8. [PMID: 10862614 DOI: 10.1074/jbc.m002174200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNA is structurally unique among nucleic acids in harboring an astonishing diversity of modified nucleosides. Two structural variants of the hypermodified nucleoside 7-deazaguanosine have been identified in tRNA: queuosine, which is found at the wobble position of the anticodon in bacterial and eukaryotic tRNA, and archaeosine, which is found at position 15 of the D-loop in archaeal tRNA. From homology searching of the Methanococcus jannaschii genome, a gene coding for an enzyme in the biosynthesis of archaeosine (tgt) was identified and cloned. The tgt gene was overexpressed in an Escherichia coli expression system, and the recombinant tRNA-guanine transglycosylase enzyme was purified and characterized. The enzyme catalyzes a transglycosylation reaction in which guanine is eliminated from position 15 of the tRNA and an archaeosine precursor (preQ(0)) is inserted. The enzyme is able to utilize both guanine and the 7-deazaguanine base preQ(0) as substrates, but not other 7-deazaguanine bases, and is able to modify tRNA from all three phylogenetic domains. The enzyme shows optimal activity at high temperature and acidic pH, consistent with the optimal growth conditions of M. jannaschii. The nature of the temperature dependence is consistent with a requirement for some degree of tRNA tertiary structure in order for recognition by the enzyme to occur.
Collapse
Affiliation(s)
- Y Bai
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
26
|
Gutell RR, Cannone JJ, Konings D, Gautheret D. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J Mol Biol 2000; 300:791-803. [PMID: 10891269 DOI: 10.1006/jmbi.2000.3900] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U-turn is a well-known RNA motif characterized by a sharp reversal of the RNA backbone following a single-stranded uridine base. In experimentally determined U-turn motifs, the nucleotides 3' to the turn are frequently involved in tertiary interactions, rendering this motif particularly attractive in RNA modeling and functional studies. The U-turn signature is composed of an UNR sequence pattern flanked by a Y:Y, Y:A (Y=pyrimidine) or G:A base juxtaposition. We have identified 33 potential UNR-type U-turns and 25 related GNRA-type U-turns in a large set of aligned 16 S and 23 S rRNA sequences. U-turn candidates occur in hairpin loops (34 times) as well as in internal and multi-stem loops (24 times). These are classified into ten families based on loop type, sequence pattern (UNR or GNRA) and the nature of the closing base juxtaposition. In 13 cases, the bases on the 3' side of the turn, or on the immediate 5' side, are involved in tertiary covariations, making these sites strong candidates for tertiary interactions.
Collapse
MESH Headings
- Animals
- Anticodon/chemistry
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Chloroplasts/genetics
- Consensus Sequence/genetics
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- R R Gutell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 2500 Speedway, Austin, TX, 78712-1095, USA.
| | | | | | | |
Collapse
|
27
|
Kim HS, Kim IY, Söll D, Lee SY. Transfer RNA identity change in anticodon variants of E. coli tRNA(Phe) in vivo. Mol Cells 2000; 10:76-82. [PMID: 10774751 DOI: 10.1007/s10059-000-0076-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The anticodon sequence is a major recognition element for most aminoacyl-tRNA synthetases. We investigated the in vivo effects of changing the anticodon on the aminoacylation specificity in the example of E. coli tRNA(Phe). Constructing different anticodon mutants of E. coli tRNA(Phe) by site-directed mutagenesis, we isolated 22 anticodon mutant tRNA(Phe); the anticodons corresponded to 16 amino acids and an opal stop codon. To examine whether the mutant tRNAs had changed their amino acid acceptor specificity in vivo, we tested the viability of E. coli strains containing these tRNA(Phe) genes in a medium which permitted tRNA induction. Fourteen mutant tRNA genes did not affect host viability. However, eight mutant tRNA genes were toxic to the host and prevented growth, presumably because the anticodon mutants led to translational errors. Many mutant tRNAs which did not affect host viability were not aminoacylated in vivo. Three mutant tRNAs containing anticodon sequences corresponding to lysine (UUU), methionine (CAU) and threonine (UGU) were charged with the amino acid corresponding to their anticodon, but not with phenylalanine. These three tRNAs and tRNA(Phe) are located in the same cluster in a sequence similarity dendrogram of total E. coli tRNAs. The results support the idea that such tRNAs arising from in vivo evolution are derived by anticodon change from the same ancestor tRNA.
Collapse
Affiliation(s)
- H S Kim
- Graduate School of Biotechnology, Korea University, Seoul
| | | | | | | |
Collapse
|
28
|
Lenhard B, Orellana O, Ibba M, Weygand-Durasević I. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic Acids Res 1999; 27:721-9. [PMID: 9889265 PMCID: PMC148239 DOI: 10.1093/nar/27.3.721] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have analyzed the evolution of recognition of tRNAsSerby seryl-tRNA synthetases, and compared it to other type 2 tRNAs, which contain a long extra arm. In Eubacteria and chloroplasts this type of tRNA is restricted to three families: tRNALeu, tRNASer and tRNATyr. tRNALeuand tRNASer also carry a long extra arm in Archaea, Eukarya and all organelles with the exception of animal mitochondria. In contrast, the long extra arm of tRNATyr is far less conserved: it was drastically shortened after the separation of Archaea and Eukarya from Eubacteria, and it is also truncated in animal mitochondria. The high degree of phylo-genetic divergence in the length of tRNA variable arms, which are recognized by both class I and class II aminoacyl-tRNA synthetases, makes type 2 tRNA recognition an ideal system with which to study how tRNA discrimination may have evolved in tandem with the evolution of other components of the translation machinery.
Collapse
Affiliation(s)
- B Lenhard
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
29
|
|
30
|
Zažímalová E, Kamínek M, Březinová A, Motyka V. Control of cytokinin biosynthesis and metabolism. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60486-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Van Mellaert L, Mei L, Lammertyn E, Schacht S, Ann J. Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3351-3358. [PMID: 9884227 DOI: 10.1099/00221287-144-12-3351] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The temperate bacteriophage VWB integrates into the chromosome of Streptomyces venezuelae ETH14630 via site-specific integration. Following recombination of the VWB attP region with the chromosomal attB sequence, the host-phage junctions attL and attR are formed. Nucleotide sequence analysis of attP, attB, attL and attR revealed a 45 bp common core sequence. In attB this 45 bp sequence consists of the 3' end of a putative tRNA Arg(AGG) gene with a 3'-terminal CCA sequence which is typical for prokaryotic tRNAs. Phage DNA integration restores the putative tRNA Arg(AGG) gene in attL. However, following recombination the CCA sequence is missing as is the case for most Streptomyces tRNA genes described so far. Adjacent to VWB attP, an ORF encoding a 427 aa protein was detected. The C-terminal region of this protein shows high similarity to the conserved C-terminal domain of site-specific recombinases belonging to the integrase family. To prove the functionality of this putative integrase gene (int), an integrative vector pKT02 was constructed. This vector consists of a 2.3 kb HindIII-SphI restriction fragment of VWB DNA containing attP and int cloned in a non-replicative Escherichia coli vector carrying a thiostrepton-resistance (tsr) gene. Integration of pKT02 was obtained after transformation of Streptomyces venezuelae ETH14630 and Streptomyces lividans TK24 protoplasts. This vector will thus be useful for a number of additional Streptomyces species in which a suitable tRNA gene can be functional as integration site.
Collapse
|
32
|
Antes T, Costandy H, Mahendran R, Spottswood M, Miller D. Insertional editing of mitochondrial tRNAs of Physarum polycephalum and Didymium nigripes. Mol Cell Biol 1998; 18:7521-7. [PMID: 9819437 PMCID: PMC109332 DOI: 10.1128/mcb.18.12.7521] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNAs encoded on the mitochondrial DNA of Physarum polycephalum and Didymium nigripes require insertional editing for their maturation. Editing consists of the specific insertion of a single cytidine or uridine relative to the mitochondrial DNA sequence encoding the tRNA. Editing sites are at 14 different locations in nine tRNAs. Cytidine insertion sites can be located in any of the four stems of the tRNA cloverleaf and usually create a G. C base pair. Uridine insertions have been identified in the T loop of tRNALys from Didymium and tRNAGlu from Physarum. In both tRNAs, the insertion creates the GUUC sequence, which is converted to GTPsiC (Psi = pseudouridine) in most tRNAs. This type of tRNA editing is different from other, previously described types of tRNA editing and resembles the mRNA and rRNA editing in Physarum and Didymium. Analogous tRNAs in Physarum and Didymium have editing sites at different locations, indicating that editing sites have been lost, gained, or both since the divergence of Physarum and Didymium. Although cDNAs derived from single tRNAs are generally fully edited, cDNAs derived from unprocessed polycistronic tRNA precursors often lack some of the editing site insertions. This enrichment of partially edited sequences in unprocessed tRNAs may indicate that editing is required for tRNA processing or at least that RNA editing occurs as an early event in tRNA synthesis.
Collapse
Affiliation(s)
- T Antes
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|
33
|
Kawa D, Wang J, Yuan Y, Liu F. Inhibition of viral gene expression by human ribonuclease P. RNA (NEW YORK, N.Y.) 1998; 4:1397-406. [PMID: 9814760 PMCID: PMC1369712 DOI: 10.1017/s1355838298980918] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
External guide sequences (EGSs) are small RNA molecules which consist of a sequence complementary to a target mRNA and render the target RNA susceptible to degradation by ribonuclease P (RNase P). EGSs were designed to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 for degradation. These EGSs were shown to be able to direct human RNase P to cleave the TK mRNA sequence efficiently in vitro. A reduction of about 80% in the expression level of both TK mRNA and protein was observed in human cells that steadily expressed an EGS, but not in cells that either did not express the EGS or produced a "disabled" EGS which carried a single nucleotide mutation that precluded RNase P recognition. Thus, EGSs may represent novel gene-targeting agents for inhibition of gene expression and antiviral activity.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Western
- Cells, Cultured
- Chlorocebus aethiops
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Gene Expression Regulation, Viral
- Gene Targeting
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/genetics
- Humans
- Molecular Sequence Data
- Mutation
- Oligonucleotides/genetics
- Oligonucleotides/pharmacology
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Ribonuclease P
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Thymidine Kinase/genetics
- Transfection
- Vero Cells
- RNA, Small Untranslated
Collapse
Affiliation(s)
- D Kawa
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
34
|
Rokov J, Söll D, Weygand-Durasević I. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNA(Ser) in vivo and in vitro. PLANT MOLECULAR BIOLOGY 1998; 38:497-502. [PMID: 9747857 DOI: 10.1023/a:1006088516228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In our studies to analyze the structure/function relationships among cytoplasmic and organellar seryl-tRNA synthetases (SerRS), we have characterized a Zea mays cDNA (SerZMm) encoding a protein with significant similarity to prokaryotic SerRS enzymes. To demonstrate the functional identity of SerZMm, the gene sequence encoding the putative mature protein was cloned. This construct complemented in vivo a temperature-sensitive Escherichia coli serS mutant strain. The mature SerZMm protein overexpressed in Escherichia coli efficiently aminoacylated bacterial tRNA(Ser) in vitro, while yeast tRNA was a poor substrate. These data identify SerZMm as an organellar maize seryl-tRNA synthetase, the first plant organellar SerRS to be cloned. The analysis of its N-terminal targeting signal suggests a mitochondrial function for the SerZMm protein in maize.
Collapse
Affiliation(s)
- J Rokov
- Department of Chemistry, Faculty of Science, University of Zagreb, Rudjer Bosković Institute, Croatia
| | | | | |
Collapse
|
35
|
Taniguchi H, Hayashi N. A liquid chromatography/electrospray mass spectrometric study on the post-transcriptional modification of tRNA. Nucleic Acids Res 1998; 26:1481-6. [PMID: 9490795 PMCID: PMC147412 DOI: 10.1093/nar/26.6.1481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liquid chromatography/electrospray mass spectrometry is one of the rapidly developing techniques with which mass of large hydrophilic polymers such as proteins and nucleic acids can be determined precisely. The technique was applied to studies on the modifications of tRNAs. Various tRNA species purified from Escherichia coli were directly injected into a capillary reversed-phase column and the desalted and concentrated tRNAs were analyzed on-line with an electrospray mass spectrometer. In some cases, small but significant differences were noted between the theoretical and observed molecular masses, suggesting that there exist still unknown modifications. Under high resolution measurements, multiple peaks corresponding to species modified to a varying extent were resolved. To study the structures in detail, the isolated tRNA species were digested with ribonuclease T1, and the resulting mixture of fragments were analyzed by the same liquid chromatography/mass spectrometry. In this way, most of the fragments were easily identified solely from their masses, and the positions where the expected and real structures differ were revealed. The results obtained showed the presence of micro-heterogeneity among tRNAs and demonstrated at the same time the power of the hyphenated technique for the structural analysis on nucleic acids.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Chromatography, Liquid
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Mass Spectrometry
- Molecular Weight
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Ribonuclease T1
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- H Taniguchi
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | |
Collapse
|
36
|
Levinger L, Bourne R, Kolla S, Cylin E, Russell K, Wang X, Mohan A. Matrices of paired substitutions show the effects of tRNA D/T loop sequence on Drosophila RNase P and 3'-tRNase processing. J Biol Chem 1998; 273:1015-25. [PMID: 9422763 DOI: 10.1074/jbc.273.2.1015] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drosophila RNase P and 3'-tRNase endonucleolytically process the 5' and 3' ends of tRNA precursors. We examined the processing kinetics of normal substrates and the inhibitory effect of the tRNA product on both processing reactions. The product is not a good RNase P inhibitor, with a KI approximately 7 times greater than the substrate KM of approximately 200 nM and is a better inhibitor of 3'-tRNase, with a KI approximately two times the KM of approximately 80 nM. We generated matrices of substitutions at positions G18/U55 and G19/C56 (two contiguous universally conserved D/T loop base pairs) in Drosophila tRNAHis precursors. More than half the variants display a significant reduction in their ability to be processed by RNase P and 3'-tRNase. Minimal substrates with deleted D and anticodon stems could be processed by RNase P and 3'-tRNase much like full-length substrates, indicating that D/T loop contacts and D arm/enzyme contacts are not required by either enzyme. Selected tRNAs that were poor substrates for one or both enzymes were further analyzed using Michaelis-Menten kinetics and by structure probing. Processing reductions arise principally due to an increase in KM with relatively little change in Vmax, consistent with the remote location of the sequence and structure changes from the processing site for both enzymes. Local changes in variant tRNA susceptibility to RNase T1 and RNase A did not coincide with processing disabilities.
Collapse
Affiliation(s)
- L Levinger
- Natural Sciences/Biology, York College of the City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Metzger AU, Heckl M, Willbold D, Breitschopf K, RajBhandary UL, Rösch P, Gross HJ. Structural studies on tRNA acceptor stem microhelices: exchange of the discriminator base A73 for G in human tRNALeu switches the acceptor specificity from leucine to serine possibly by decreasing the stability of the terminal G1-C72 base pair. Nucleic Acids Res 1997; 25:4551-6. [PMID: 9358165 PMCID: PMC147070 DOI: 10.1093/nar/25.22.4551] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Correct recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (aaRS) is crucial to the maintenance of translational fidelity. The discriminator base A73 in human tRNALeuis critical for its specific recognition by the aaRS. Exchanging A73 for G abolishes leucine acceptance and converts it into a serine acceptor in vitro . Two RNA microhelices of 24 nt length that correspond to the tRNALeuacceptor stem and differ only in the discriminator base were synthesized: a wild-type tRNALeumicrohelix, where nt 21 corresponds to the discriminator base position 73, and an A21G mutant microhelix. To investigate whether different identities of both tRNAs are caused by conformational differences, NMR and UV melting experiments were performed on both microhelices. Two-dimentional NOESY spectra showed both microhelices to exhibit the same overall conformation at their 3'-CCA ends. Thermodynamic analysis and melting behaviour of the base-paired imino protons observed by NMR spectroscopy suggest that the A21G (A73G in tRNA) exchange results in a decrease of melting transition cooperativity and a destabilization of the terminal G1-C20 (G1-C72 in tRNA) base pair. Furthermore, the fact that this 3'-terminal imino proton is more solvent-exposed at physiological temperature might be another indication for the importance of the stability of the terminal base pair for specific tRNA recognition.
Collapse
Affiliation(s)
- A U Metzger
- Lehrstuhl für Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Eubanks AC, Roeder MJ, Pirtle IL, Pirtle RM. Structural analysis of a bovine arginine tRNA(CCG) gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:138-44. [PMID: 9199243 DOI: 10.1016/s0167-4781(97)00053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A bovine genomic clone containing a 17.4-kb DNA fragment was isolated and found to contain a solitary arginine tRNA gene with an anticodon of CCG that has a 100% identity to its cognate tRNA. This arginine tRNA gene, symbolized as TRR4, has a characteristic internal split promoter and a typical termination site for RNA polymerase III. The tRNA gene was transcribed in vitro by RNA polymerase III using a HeLa cell-free extract to yield a mature-sized tRNA product. The gene was mapped to bovine chromosome 19 using a panel of bovine-rodent somatic cell hybrid DNAs.
Collapse
Affiliation(s)
- A C Eubanks
- Department of Biological Sciences, University of North Texas, Denton 76203, USA
| | | | | | | |
Collapse
|
39
|
Tsuruoka H, Shohda Ki KI, Wada T, Sekine M. Kinetics and Mechanism of Facile and Selective Dephosphorylation of 2'-Phosphorylated and 2'-Thiophosphorylated Dinucleotides: Neighboring 3'-5' Phosphodiester Promotes 2'-Dephosphorylation. J Org Chem 1997; 62:2813-2822. [PMID: 11671644 DOI: 10.1021/jo970021k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2'-Phosphorylated and 2'-thiophosphorylated dinucleotides U(2'-p)pU (1) and U(2'-ps)pU (2) were found to undergo facile 2'-specific dephosphorylation at 90 degrees C in neutral aqueous solution to give UpU, and the first-order rate constants of these reactions were determined by HPLC. Particularly, U(2'-ps)pU (2, k = 1.38 +/- 0.4 x 10(-)(3) s(-)(1), t(comp) = 1 h) was cleanly dephosphorylated ca. 100 times more rapidly than U(2'-p)pU (1, k = 1.41 +/- 0.05 x 10(-)(5) s(-)(1), t(comp) = 72 h). Dephosphorylations of 1 and 2 were faster than those of thymidine 3'-phosphate (8) and thymidine 3'-thiophosphate (9), respectively. The kinetic data observed were independent of the 2'- or 3'-position of the phosphate group and the kind of base moiety. The neighboring 3'-5' phosphodiester function most probably promotes the 2'-dephosphorylation efficiently. A branched trimer, U(2'-pU)pU (3), and related compounds having a substituent on the 2'-phosphoryl group, such as U(2'-pp-biotin)pU (4) and U(2'-ps-bimane)pU (5), were rather resistant to hydrolysis. The addition of divalent metal ions (Mg(2+), Mn(2+), Zn(2+), Ca(2+), Co(2+), and Cd(2+)) remarkably decreased the rate of 2'-de(thio)phosphorylation of 1 or 2. Among these metal ions, Zn(2+) most significantly inhibited the dephosphorylation. On the contrary, trivalent metal ions considerably accelerated the 2'-de(thio)phosphorylation of 1 or 2. The mechanism of 2'-dephosphorylation in the presence and absence of various metal ions is also discussed.
Collapse
Affiliation(s)
- Hiroyuki Tsuruoka
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226, Japan
| | | | | | | |
Collapse
|
40
|
Gautheret D, Gutell RR. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation. Nucleic Acids Res 1997; 25:1559-64. [PMID: 9092662 PMCID: PMC146633 DOI: 10.1093/nar/25.8.1559] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The success of comparative analysis in resolving RNA secondary structure and numerous tertiary interactions relies on the presence of base covariations. Although the majority of base covariations in aligned sequences is associated to Watson-Crick base pairs, many involve non-canonical or restricted base pair exchanges (e.g. only G:C/A:U), reflecting more specific structural constraints. We have developed a computer program that determines potential base pairing conformations for a given set of paired nucleotides in a sequence alignment. This program (ISOPAIR) assumes that the base pair conformation is maintained through sequence variation without significantly affecting the path of the sugar-phosphate backbone. ISOPAIR identifies such 'isomorphic' structures for any set of input base pair or base triple sequences. The program was applied to base pairs and triples with known structures and sequence exchanges. In several instances, isomorphic structures were correctly identified with ISOPAIR. Thus, ISOPAIR is useful when assessing non-canonical base pair conformations in comparative analysis. ISOPAIR applications are limited to those cases where unusual base pair exchanges indeed reflect a non-canonical conformation.
Collapse
Affiliation(s)
- D Gautheret
- Structural and Genetic Information, CNRS EP91, 31 ch. Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
41
|
Lim VI. Analysis of interactions between the codon-anticodon duplexes within the ribosome: their role in translation. J Mol Biol 1997; 266:877-90. [PMID: 9086267 DOI: 10.1006/jmbi.1996.0802] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Computer graphics simulation of interactions between the codon-anticodon duplexes formed by normal elongator tRNAs at the ribosomal A, P and E-sites (the AP and PE interduplex interactions) was made. This demonstrated that only the correct duplexes at the A-site are compatible with the AP interduplex interaction. The selection of synonymous codons and anticodon wobble bases, together with the AP interduplex interaction, prevents frameshifting. In the absence of this interaction the efficiency of the selection falls off sharply. This suggests that the AP interduplex interaction should be retained during translocation and in the post-translocation state, i.e. the PE interduplex interaction that is identical with that of AP should exist to avoid frameshifting. In such a model the P-site duplex provides an indirect linkage between the A and E-site duplexes. The indirect linkage prohibits the simultaneous existence of the A and E-site duplexes. The wobble pairs of the P and E-site duplexes can affect the rate of the A-site occupation via the AP interduplex interaction and the AE interduplex indirect linkage. It is demonstrated that frameshifting can occur from the AP or PE codon-anticodon complex destabilization caused, for example, by small mobility of the wobble pairs, misreading of the codon, unmodified adenine and guanine at tRNA positions 34 (wobble) and 37, respectively. The results obtained can be subjected to direct experimental tests.
Collapse
Affiliation(s)
- V I Lim
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| |
Collapse
|
42
|
Zhao X, Horne DA. The role of cysteine residues in the rearrangement of uridine to pseudouridine catalyzed by pseudouridine synthase I. J Biol Chem 1997; 272:1950-5. [PMID: 8999885 DOI: 10.1074/jbc.272.3.1950] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli tRNA pseudouridine synthase I (PSUI) catalyzes the conversion of uridine residues to pseudouridine in positions 38, 39, and 40 of various tRNA molecules. In previous biochemical studies with this enzyme (Kammen, H. O., Marvel, C. C., Hardy, L., and Penhoet, E. E. (1988) J. Biol. Chem. 263, 2255-2263) it was reported that cysteine residues are important in maintaining the active structure of the enzyme and are possibly involved in the catalytic reaction mechanism via a covalent cysteine intermediate. In order to further investigate the biochemical properties of PSUI, a high level expression and purification system for the enzyme and its corresponding mutants was developed. PSUI has three cysteine residues among 270 amino acids. In the present investigation, each cysteine residue was individually changed to serine and alanine. In addition, a triple mutant was prepared wherein all three cysteine residues were replaced by alanine. Surprisingly, while two of the three cysteine to serine mutants were inactive, all alanine mutants exhibited near wild-type levels of activity, including the triple mutant. These results provide the first direct and unambiguous chemical evidence against a covalent cysteine intermediate in the rearrangement mechanism of uridine to pseudouridine.
Collapse
Affiliation(s)
- X Zhao
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
43
|
Gustafsson C, Reid R, Greene PJ, Santi DV. Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res 1996; 24:3756-62. [PMID: 8871555 PMCID: PMC146159 DOI: 10.1093/nar/24.19.3756] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The complete nucleotide sequences of the Haemophilus influenzae and Mycoplasma genitalium genomes and the partially sequenced Escherichia coli chromosome were analyzed to identify open reading frames (ORFs) likely to encode RNA modifying enzymes. The protein sequences of known RNA modifying enzymes from three families--m5U methyltransferases, psi synthases and 2'-O methyltransferases--were used as probes to search sequence databases for homologs. ORFs identified as homologous to the initial probes were retrieved and used as new probes against the databases in an iterative manner until no more homologous ORFs could be identified. Using this approach, we have identified two new m5U methyltransferases, seven new psi synthases and four new 2'-O methyltransferases in E. coli. Many of the ORFs found in E.coli have direct genetic counterparts (orthologs) in one or both of H.influenzae and M.genitalium. Since there is a near-complete knowledge of RNA modifications in E.coli, functional activities of the proteins encoded by the identified ORFs were proposed based on the level of conservation of the ORFs and the modified nucleotides.
Collapse
Affiliation(s)
- C Gustafsson
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0448, USA
| | | | | | | |
Collapse
|
44
|
Akama K. Molecular cloning and sequencing of a nuclear gene encoding tRNA(Gln) (UUG) from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:127-8. [PMID: 8679692 DOI: 10.1016/0167-4781(96)00046-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A gene encoding cytoplasmic tRNA(Gln) (UUG) was isolated from an Arabidopsis DNA library. The coding sequence of the gene revealed 85% sequence identity with that of its animal counterparts. This is the first report of a nuclear tRNA(Gln) gene from higher plants.
Collapse
Affiliation(s)
- K Akama
- Department of Biology, Faculty of Science, Shimane University, Matsue, Japan.
| |
Collapse
|
45
|
Baum M, Schön A. Localization and expression of the closely linked cyanelle genes for RNase P RNA and two transfer RNAs. FEBS Lett 1996; 382:60-4. [PMID: 8612765 DOI: 10.1016/0014-5793(96)00148-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The genomic region encoding the RNA subunit of the cyanelle RNase P has been characterized. rnpB, which has no homologue in chloroplasts, is flanked by two tRNA genes on the complementary DNA strand. Transcriptional control elements of all three genes have been experimentally determined. Comparison of the sequenced region with the corresponding loci of chloroplast genomes from vascular plants suggests that major inversions may have led to a possible loss or severe truncation of the RNase P RNA coding region during the course of plastid evolution.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Endoribonucleases/genetics
- Eukaryota/enzymology
- Eukaryota/genetics
- Gene Expression/physiology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plastids/enzymology
- Plastids/genetics
- Promoter Regions, Genetic/genetics
- RNA, Catalytic/genetics
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/genetics
- Ribonuclease P
- Sequence Analysis, DNA
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- M Baum
- Institut für Biochemie, Bayerische Julius-Maximilans-Universität, Würzburg, Germany
| | | |
Collapse
|
46
|
Di Giulio M. The phylogeny of tRNAs seems to confirm the predictions of the coevolution theory of the origin of the genetic code. ORIGINS LIFE EVOL B 1995; 25:549-64. [PMID: 7494635 DOI: 10.1007/bf01582024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An extensive analysis of the evolutionary relationships existing between transfer RNAs, performed using parsimony algorithms, is presented. After building up an estimate of the tRNA ancestral sequences, these sequences are then compared using certain methods. The results seem to suggest that the coevolution hypothesis (Wong, J.T., 1975, Proc. Natl. Acad. Sci. USA 72, 1909-1912) that sees the genetic code as a map of the biosynthetic relationships between amino acids is further supported by these results, as compared to the hypotheses that see the physicochemical properties of amino acids as the main adaptative theme that led to the structuring of the genetic code.
Collapse
Affiliation(s)
- M Di Giulio
- International Institute of Genetics and Biophysics, CNR, Napoli, Italy
| |
Collapse
|
47
|
Abstract
Reverse transcription in the yeast retrotransposon Ty1 follows the general "rules" of retroviral replication overall. However, some details of the retroviral and Ty1 reverse transcription processes are different. We have identified and determined the structure of plus-strand strong-stop DNA and examined the effect of polypurine tract deletion mutations on its synthesis. Furthermore, we have defined the stop signal for plus-strand strong-stop DNA synthesis as an unusual 2'-O-ribosylated nucleotide in the primer tRNA. Full-length plus-strand strong-stop DNA, following strand transfer, would have a terminal 2-base mismatch with minus-strand DNA. These findings indicate that the mechanism of plus-strand strong-stop DNA transfer in Ty1 differs from that of the retroviral transfer and suggest that full-length plus-strand strong-stop DNA is not a direct intermediate in Ty1 retrotransposition.
Collapse
Affiliation(s)
- V Lauermann
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
48
|
Mangroo D, Wu XQ, RajBhandary UL. Escherichia coli initiator tRNA: structure-function relationships and interactions with the translational machinery. Biochem Cell Biol 1995; 73:1023-31. [PMID: 8722017 DOI: 10.1139/o95-109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We showed previously that the sequence and (or) structural elements important for specifying the many distinctive properties of Escherichia coli initiator tRNA are clustered in the acceptor stem and in the anticodon stem and loop. This paper briefly describes this and reviews the results of some recently published studies on the mutant initiator tRNAs generated during this work. First, we have studied the effect of overproduction of methionyl-tRNA transformylase (MTF) and initiation factors IF2 and IF3 on activity of mutant initiator tRNAs that are defective at specific steps in the initiation pathway. Overproduction of MTF rescued specifically the activity of mutant tRNAs defective in formylation but not mutants defective in binding to the P site. Overproduction of IF2 increased the activity of all mutant tRNAs having the CUA anticodon but not of mutant tRNA having the GAC anticodon. Overproduction of IF3 had no effect on the activity of any of the mutant tRNAs tested. Second, for functional studies of mutant initiator tRNA in vivo, we used a CAU --> CUA anticodon sequence mutant that can initiate protein synthesis from UAG instead of AUG. In contrast with the wild-type initiator tRNA, the mutant initiator tRNA has a 2-methylthio-N6-isopentenyl adenosine (ms2i6A) base modification next to the anticodon. Interestingly, this base modification is now important for activity of the mutant tRNA in initiation. In a miaA strain of E. coli deficient in biosynthesis of ms2i6A, the mutant initiator tRNA is much less active in initiation. The defect is specifically in binding to the ribosomal P site.
Collapse
Affiliation(s)
- D Mangroo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
49
|
Curran JF, Poole ES, Tate WP, Gross BL. Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. Nucleic Acids Res 1995; 23:4104-8. [PMID: 7479072 PMCID: PMC307350 DOI: 10.1093/nar/23.20.4104] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Codon context can affect translational efficiency by several molecular mechanisms. The base stacking interactions between a codon-anticodon complex and the neighboring nucleotide immediately 3' can facilitate translation by amber suppressors and the tRNA structure is also known to modulate the sensitivity to context. In this study the relative rates of aminoacyl-tRNA selection were measured at four sense codons (UGG, CUC, UUC and UCA), in all four 3' nucleotide contexts, through direct competition with a programmed frameshift at a site derived from the release factor 2 gene. Two codons (UGG and UUC) are read by tRNAs with small variable regions and their rates of aminoacyl-tRNA selection correlated with the potential base stacking strength of the 3' neighboring nucleotide. The other two codons (CUC and UCA) are read by tRNAs with large variable regions and the rate of selection of the aminoacyl-tRNAs in these cases varied little among the four contexts. Re-examination of published data on amber suppression also revealed an inverse correlation between context sensitivity and the size of the variable region. Collectively the data suggest that a large variable loop in a tRNA decreases the influence of the 3' context on tRNA selection, probably by strengthening tRNA-ribosomal interactions.
Collapse
Affiliation(s)
- J F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
50
|
Mangroo D, Limbach PA, McCloskey JA, RajBhandary UL. An anticodon sequence mutant of Escherichia coli initiator tRNA: possible importance of a newly acquired base modification next to the anticodon on its activity in initiation. J Bacteriol 1995; 177:2858-62. [PMID: 7751297 PMCID: PMC176959 DOI: 10.1128/jb.177.10.2858-2862.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Initiator tRNAs from eubacteria and chloroplasts lack a base modification next to the anticodon. This is in contrast to virtually all other tRNAs from these sources. We show that a mutant Escherichia coli initiator tRNA which has an anticodon sequence change from CAU to CUA now has a 2-methylthio-N6-(delta 2-isopentenyl)adenosine (ms2i6A) modification, produced by posttranscriptional modification of A, next to the anticodon. This newly acquired base modification may be important for the function of the mutant tRNA in initiation. In a miaA mutant strain of E. coli defective in biosynthesis of ms2i6A, the mutant initiator tRNA is 10- to 12-fold less active in initiation. The mutant tRNA is aminoacylated and formylated normally in the miaA strain. Thus, the absence of the base modification affects the activity of the mutant tRNA at a step subsequent to its formylation.
Collapse
Affiliation(s)
- D Mangroo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|