1
|
Dumas L, Shin S, Rigaud Q, Cargnello M, Hernández-Suárez B, Herviou P, Saint-Laurent N, Leduc M, Le Gall M, Monchaud D, Dassi E, Cammas A, Millevoi S. RNA G-quadruplexes control mitochondria-localized mRNA translation and energy metabolism. Nat Commun 2025; 16:3292. [PMID: 40195294 PMCID: PMC11977240 DOI: 10.1038/s41467-025-58118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/12/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer cells rely on mitochondria for their bioenergetic supply and macromolecule synthesis. Central to mitochondrial function is the regulation of mitochondrial protein synthesis, which primarily depends on the cytoplasmic translation of nuclear-encoded mitochondrial mRNAs whose protein products are imported into mitochondria. Despite the growing evidence that mitochondrial protein synthesis contributes to the onset and progression of cancer, and can thus offer new opportunities for cancer therapy, knowledge of the underlying molecular mechanisms remains limited. Here, we show that RNA G-quadruplexes (RG4s) regulate mitochondrial function by modulating cytoplasmic mRNA translation of nuclear-encoded mitochondrial proteins. Our data support a model whereby the RG4 folding dynamics, under the control of oncogenic signaling and modulated by small molecule ligands or RG4-binding proteins, modifies mitochondria-localized cytoplasmic protein synthesis. Ultimately, this impairs mitochondrial functions, affecting energy metabolism and consequently cancer cell proliferation.
Collapse
Affiliation(s)
- Leïla Dumas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Sauyeun Shin
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Quentin Rigaud
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie Cargnello
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Beatriz Hernández-Suárez
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Pauline Herviou
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Nathalie Saint-Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marjorie Leduc
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM Institut Cochin, Paris, France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon CNRS UMR6302, Dijon, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, TN, Italy.
| | - Anne Cammas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| | - Stefania Millevoi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France.
| |
Collapse
|
2
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
3
|
Czerniak T, Saenz JP. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc Natl Acad Sci U S A 2022; 119:e2119235119. [PMID: 35042820 PMCID: PMC8794826 DOI: 10.1073/pnas.2119235119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization platforms, introducing a mechanism for riboregulation. The activity of R3C ribozyme can be modified by the presence of lipid membranes, with direct RNA-lipid interactions dependent on RNA nucleotide content, base pairing, and length. In particular, the presence of guanine in short RNAs is crucial for RNA-lipid interactions, and G-quadruplex formation further promotes lipid binding. Lastly, by artificially modifying the R3C substrate sequence to enhance membrane binding, we generated a lipid-sensitive ribozyme reaction with riboswitch-like behavior. These findings introduce RNA-lipid interactions as a tool for developing synthetic riboswitches and RNA-based lipid biosensors and bear significant implications for RNA world scenarios for the origin of life.
Collapse
Affiliation(s)
- Tomasz Czerniak
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - James P Saenz
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
Hagen T, Laski A, Brümmer A, Pruška A, Schlösser V, Cléry A, Allain FHT, Zenobi R, Bergmann S, Hall J. Inosine Substitutions in RNA Activate Latent G-Quadruplexes. J Am Chem Soc 2021; 143:15120-15130. [PMID: 34520206 DOI: 10.1021/jacs.1c05214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well-accepted that gene expression is heavily influenced by RNA structure. For instance, stem-loops and G-quadruplexes (rG4s) are dynamic motifs in mRNAs that influence gene expression. Adenosine-to-inosine (A-to-I) editing is a common chemical modification of RNA which introduces a nucleobase that is iso-structural with guanine, thereby changing RNA base-pairing properties. Here, we provide biophysical, chemical, and biological evidence that A-to-I exchange can activate latent rG4s by filling incomplete G-quartets with inosine. We demonstrate the formation of inosine-containing rG4s (GI-quadruplexes) in vitro and verify their activity in cells. GI-quadruplexes adopt parallel topologies, stabilized by potassium ions. They exhibit moderately reduced thermal stability compared to conventional G-quadruplexes. To study inosine-induced structural changes in a naturally occurring RNA, we use a synthetic approach that enables site-specific inosine incorporation in long RNAs. In summary, RNA GI-quadruplexes are a previously unrecognized structural motif that may contribute to the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- Timo Hagen
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Anneke Brümmer
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Verena Schlösser
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Antoine Cléry
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.,Biomolecular NMR Spectroscopy Platform, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Szatylowicz H, Marek PH, Stasyuk OA, Krygowski TM, Solà M. Substituted adenine quartets: interplay between substituent effect, hydrogen bonding, and aromaticity. RSC Adv 2020; 10:23350-23358. [PMID: 35520336 PMCID: PMC9054646 DOI: 10.1039/d0ra04585c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022] Open
Abstract
Adenine, one of the components of DNA/RNA helices, has the ability to form self-organizing structures with cyclic hydrogen bonds (A4), similar to guanine quartets. Here, we report a computational investigation of the effect of substituents (X = NO2, Cl, F, H, Me, and NH2) on the electronic structure of 9H-adenine and its quartets (A4-N1, A4-N3, and A4-N7). DFT calculations were used to show the relationships between the electronic nature of the substituents, strength of H-bonds in the quartets, and aromaticity of five- and six-membered rings of adenine. We demonstrated how the remote substituent X modifies the proton-donating properties of the NH2 group involved in the H-bonds within quartets and how the position of the substituent and its electronic nature affect the stability of the quartets. We also showed the possible changes in electronic properties of the substituent and aromaticity of adenine rings caused by tetramer formation. The results indicate that the observed relationships depend on the A4 type. Moreover, the same substituent can both strengthen and weaken intermolecular interactions, depending on the substitution position. Substituent effects on hydrogen bonds in adenine quartets and aromaticity of adenine rings depend on the quartet type. A4-N3 and A4-N7 quartets are more responsive to the electronic nature of substituents than A4-N1.![]()
Collapse
Affiliation(s)
- Halina Szatylowicz
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland
| | - Paulina H Marek
- Warsaw University of Technology, Faculty of Chemistry Noakowskiego 3 00-664 Warsaw Poland .,University of Warsaw, Faculty of Chemistry Pasteura 1 02-093 Warsaw Poland
| | - Olga A Stasyuk
- Department of Chemistry, Institute of Computational Chemistry and Catalysis, University of Girona C/ M. Aurèlia Capmany, 69 17003 Girona Spain
| | | | - Miquel Solà
- Department of Chemistry, Institute of Computational Chemistry and Catalysis, University of Girona C/ M. Aurèlia Capmany, 69 17003 Girona Spain
| |
Collapse
|
6
|
Ma Y, Iida K, Nagasawa K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem Biophys Res Commun 2020; 531:3-17. [PMID: 31948752 DOI: 10.1016/j.bbrc.2019.12.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/06/2023]
Abstract
G-Quadruplex (G4) is one of the higher-order structures occurring in guanine-rich sequences of nucleic acids, and plays critical roles in biological processes. The G4-forming sequences can generate three kinds of topologies, i.e., parallel, anti-parallel, and hybrid, and these polymorphic structures have an important influence on G4-related biological functions. In this review, we highlight variety of structures generated by G4s containing various sequences and under diverse conditions. We also discuss the G4 ligands which induce specific topologies and/or conversion between different topologies.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Japan.
| | - Keisuke Iida
- Department of Chemistry, Chiba University, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan.
| |
Collapse
|
7
|
Lages A, Proud CG, Holloway JW, Vorechovsky I. Thioflavin T Monitoring of Guanine Quadruplex Formation in the rs689-Dependent INS Intron 1. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:770-777. [PMID: 31150930 PMCID: PMC6539410 DOI: 10.1016/j.omtn.2019.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022]
Abstract
The human proinsulin gene (INS) contains a thymine-to-adenine variant (rs689) located in the 3′ splice site (3′ ss) recognition motif of the first intron. The adenine at rs689 is strongly associated with type 1 diabetes. By weakening the polypyrimidine tract, the adenine allele reduces the efficiency of intron 1 splicing, which can be ameliorated by antisense oligonucleotides blocking a splicing silencer located upstream of the 3′ ss. The silencer is surrounded by guanine-rich tracts that may form guanine quadruplexes (G4s) and modulate the accessibility of the silencer. Here, we employed thioflavin T (ThT) to monitor G4 formation in synthetic DNAs and RNAs derived from INS intron 1. We show that the antisense target is surrounded by ThT-positive segments in each direction, with oligoribonucleotides exhibiting consistently higher fluorescence than their DNA counterparts. The signal was reduced for ThT-positive oligonucleotides that were extended into the silencer, indicating that flanking G4s have a potential to mask target accessibility. Real-time monitoring of ThT fluorescence during INS transcription in vitro revealed a negative correlation with ex vivo splicing activities of corresponding INS constructs. Together, these results provide a better characterization of antisense targets in INS primary transcripts for restorative strategies designed to improve the INS splicing defect associated with type 1 diabetes.
Collapse
Affiliation(s)
- Ana Lages
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Christopher G Proud
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK; Lifelong Health and Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John W Holloway
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK.
| |
Collapse
|
8
|
Bansal A, Kukreti S. The four repeat Giardia lamblia telomere forms tetramolecular G-quadruplex with antiparallel topology. J Biomol Struct Dyn 2019; 38:1975-1983. [DOI: 10.1080/07391102.2019.1623074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi (North Campus), Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
9
|
Fay MM, Anderson PJ, Ivanov P. ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells. Cell Rep 2018; 21:3573-3584. [PMID: 29262335 DOI: 10.1016/j.celrep.2017.11.093] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Membraneless RNA granules originate via phase separation events driven by multivalent interactions. As RNA is the defining component of such granules, we examined how RNA contributes to granule assembly. Expansion of hexanucleotide GGGGCC (G4C2) repeats in the first intron of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). We describe a biophysical phenomenon whereby G4C2 RNA (rG4C2) promotes the phase separation of RNA granule proteins in vitro and in cells. The ability of rG4C2 to promote phase separation is dependent on repeat length and RNA structure because rG4C2 must assume a G-quadruplex conformation to promote granule assembly. We demonstrate a central role for RNA in promoting phase separations and implicate rG4C2 G-quadruplex structures in the pathogenesis of C9-ALS/FTD.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Karatosun A, Çankaya M, Tekin A. Symmetry-adapted perturbation theory potential for the adenine dimer. Phys Chem Chem Phys 2018; 20:26303-26314. [DOI: 10.1039/c8cp03798a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new ab initio intermolecular interaction potential for the adenine dimer has been developed.
Collapse
Affiliation(s)
- Armağan Karatosun
- Informatics Institute, Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Mehmet Çankaya
- Informatics Institute, Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Adem Tekin
- Informatics Institute, Istanbul Technical University
- 34469 Maslak
- Turkey
| |
Collapse
|
11
|
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev 2018; 47:1098-1131. [DOI: 10.1039/c7cs00774d] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our review presents the recent progress on far-red fluorescent probes of canonical and non-canonical nucleic acid (NA) structures, critically discusses the design principles, applications, limitations and outline the future prospects of developing newer probes with target-specificity for different NA structures.
Collapse
Affiliation(s)
- Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
12
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
13
|
Albanese CM, Suttapitugsakul S, Perati S, McGown LB. A genome-inspired, reverse selection approach to aptamer discovery. Talanta 2017; 177:150-156. [PMID: 29108569 DOI: 10.1016/j.talanta.2017.08.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022]
Abstract
Limitations of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and related methods that depend upon combinatorial oligonucleotide libraries have hindered progress in this area. Our laboratory has introduced a new approach to aptamer discovery that uses oligonucleotides with sequences drawn from the human genome to capture proteins from biological samples. Specifically, we have focused on capture of proteins in nuclear extracts from human cell lines using G-quadruplex (G4) forming genomic sequences. Previous studies identified capture of several proteins both in vitro and in live cells by the Pu28-mer sequence from the ERBB2 promoter region. Here we provide a more comprehensive study of protein capture from BT474 and MCF7 human breast cancer cells using G4-forming sequences from the CMYC, RB, VEGF and ERBB2 human oncogene promoter regions. Mass spectrometric analysis and Western blot analysis of protein capture at oligonucleotide-modified surfaces revealed capture of nucleolin by all three of the oligonucleotides in BT474 and MCF7 cells, and also of ribosomal protein L19 (RPL19) in BT474 cells. Chromatin immunoprecipitation (ChIP) analysis confirmed the interaction of nucleolin with all three promoter sequences in MCF7 cells and with RB in BT474 cells. ChIP also revealed interactions of RPL19 with CMYC in BT474 cells and of both RPL19 and ribosomal protein L14 (RPL14) with ERBB2 in BT474 cells. These results offer the basis for development of new aptamers based on the G4 sequences from the CMYC, RB, VEGF, and ERBB2 promoters toward proteins including nucleolin, RPL19 and RPL14. These interactions also may have biological and therapeutic significance.
Collapse
Affiliation(s)
- Christina M Albanese
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Suttipong Suttapitugsakul
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Shruthi Perati
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Linda B McGown
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
14
|
Fay MM, Lyons SM, Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J Mol Biol 2017; 429:2127-2147. [PMID: 28554731 PMCID: PMC5603239 DOI: 10.1016/j.jmb.2017.05.017] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
G-quadruplexes (G4s) are extremely stable DNA or RNA secondary structures formed by sequences rich in guanine. These structures are implicated in many essential cellular processes, and the number of biological functions attributed to them continues to grow. While DNA G4s are well understood on structural and, to some extent, functional levels, RNA G4s and their functions have received less attention. The presence of bona fide RNA G4s in cells has long been a matter of debate. The development of G4-specific antibodies and ligands hinted on their presence in vivo, but recent advances in RNA sequencing coupled with chemical footprinting suggested the opposite. In this review, we will critically discuss the biology of RNA G4s focusing on the molecular mechanisms underlying their proposed functions.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Weldon C, Behm-Ansmant I, Hurley LH, Burley GA, Branlant C, Eperon IC, Dominguez C. Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA. Nat Chem Biol 2017; 13:18-20. [PMID: 27820800 PMCID: PMC5164935 DOI: 10.1038/nchembio.2228] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/31/2016] [Indexed: 01/24/2023]
Abstract
RNA G-quadruplex (G4) structures are thought to affect biological processes, including translation and pre-mRNA splicing, but it is not possible at present to demonstrate that they form naturally at specific sequences in long functional RNA molecules. We developed a new strategy, footprinting of long 7-deazaguanine-substituted RNAs (FOLDeR), that allows the formation of G4s to be confirmed in long RNAs and under functional conditions.
Collapse
Affiliation(s)
- Carika Weldon
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Isabelle Behm-Ansmant
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l’Université de Lorraine, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy, France
| | - Laurence H. Hurley
- College of Pharmacy and College of Pharmacy and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, UK
| | - Christiane Branlant
- IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), UMR 7365 CNRS-UL, Biopôle de l’Université de Lorraine, 9 Avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy, France
| | - Ian C. Eperon
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Weldon C, Eperon IC, Dominguez C. Do we know whether potential G-quadruplexes actually form in long functional RNA molecules? Biochem Soc Trans 2016; 44:1761-1768. [PMID: 27913687 PMCID: PMC5135001 DOI: 10.1042/bst20160109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 01/25/2023]
Abstract
The roles of deoxyribonucleic acid (DNA) G-quadruplex structures in gene expression and telomere maintenance have been well characterized. Recent results suggest that such structures could also play pivotal roles in ribonucleic acid (RNA) biology, such as splicing or translation regulation. However, it has been difficult to show that RNA G-quadruplexes (G4s) exist in specific long RNA sequences, such as precursor messenger RNA, in a functional or cellular context. Most current methods for identifying G4s involve the use of short, purified RNA sequences in vitro, in the absence of competition with secondary structures or protein binding. Therefore, novel methods need to be developed to allow the characterization of G4s in long functional RNAs and in a cellular context. This need has in part been met by our recent development of a method based on a comparison of RNA and 7-deaza-RNA that provides a test for identifying RNA G4s in such conditions.
Collapse
Affiliation(s)
- Carika Weldon
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cellular Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Ian C Eperon
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cellular Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cellular Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, U.K
| |
Collapse
|
17
|
Abstract
Quadruplex-forming sequences are widely prevalent in human and other genomes, including bacterial ones. These sequences are over-represented in eukaryotic telomeres, promoters, and 5' untranslated regions. They can form quadruplex structures, which may be transient in many situations in normal cells since they can be effectively resolved by helicase action. Mutated helicases in cancer cells are unable to unwind quadruplexes, which are impediments to transcription, translation, or replication, depending on their location within a particular gene. Small molecules that can stabilize quadruplex structures augment these effects and produce cell and proliferation growth inhibition. This article surveys the chemical biology of quadruplexes. It critically examines the major classes of quadruplex-binding small molecules that have been developed to date and the various approaches to discovering selective agents. The challenges of requiring (and achieving) small-molecule targeted selectivity for a particular quadruplex are discussed in relation to the potential of these small molecules as clinically useful therapeutic agents.
Collapse
Affiliation(s)
- Stephen Neidle
- UCL School of Pharmacy, University College London , 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
18
|
Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res 2016; 105:216-25. [PMID: 26779666 DOI: 10.1016/j.phrs.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey
| | - Ihsan Gursel
- Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey.
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
19
|
Zamiri B, Mirceta M, Bomsztyk K, Macgregor RB, Pearson CE. Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res 2015; 43:10055-64. [PMID: 26432832 PMCID: PMC4787773 DOI: 10.1093/nar/gkv1008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K(+), Na(+) or Li(+)), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes.
Collapse
Affiliation(s)
- Bita Zamiri
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mila Mirceta
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle WA 98109, USA
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
20
|
Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kübler K, Wittmann S, Gramberg T, Andreeva L, Hopfner KP, Mertens C, Zillinger T, Jin T, Xiao TS, Bartok E, Coch C, Ackermann D, Hornung V, Ludwig J, Barchet W, Hartmann G, Schlee M. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol 2015; 16:1025-33. [PMID: 26343537 DOI: 10.1038/ni.3267] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.
Collapse
Affiliation(s)
- Anna-Maria Herzner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Cristina Amparo Hagmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marion Goldeck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Steven Wolter
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kirsten Kübler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Liudmila Andreeva
- Department Biochemistry, Gene Center, Ludwig-Maximilians University, Munich, Germany
| | - Karl-Peter Hopfner
- Department Biochemistry, Gene Center, Ludwig-Maximilians University, Munich, Germany
| | - Christina Mertens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center of Infectious Disease, Cologne-Bonn, Germany
| | - Tengchuan Jin
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Damian Ackermann
- LIMES Institute, Chemical Biology, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany
| | - Janos Ludwig
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center of Infectious Disease, Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Chaires JB, Trent JO, Gray RD, Dean WL, Buscaglia R, Thomas SD, Miller DM. An improved model for the hTERT promoter quadruplex. PLoS One 2014; 9:e115580. [PMID: 25526084 PMCID: PMC4272262 DOI: 10.1371/journal.pone.0115580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022] Open
Abstract
Mutations occur at four specific sites in the hTERT promoter in >75% of glioblastomas and melanomas, but the mechanism by which the mutations affect gene expression remains unexplained. We report biophysical computational studies that show that the hTERT promoter sequence forms a novel G-quadruplex structure consisting of three contiguous, stacked parallel quadruplexes. The reported hTERT mutations map to the central quadruplex within this structure, and lead to an alteration of its hydrodynamic properties and stability.
Collapse
Affiliation(s)
- Jonathan B Chaires
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - John O Trent
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert D Gray
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - William L Dean
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert Buscaglia
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Shelia D Thomas
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Donald M Miller
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
22
|
Al-Allaf FA, Tolmachov OE, Zambetti LP, Tchetchelnitski V, Mehmet H. Remarkable stability of an instability-prone lentiviral vector plasmid in Escherichia coli Stbl3. 3 Biotech 2013; 3:61-70. [PMID: 28324350 PMCID: PMC3563744 DOI: 10.1007/s13205-012-0070-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/19/2012] [Indexed: 12/01/2022] Open
Abstract
Large-scale production of plasmid DNA to prepare therapeutic gene vectors or DNA-based vaccines requires a suitable bacterial host, which can stably maintain the plasmid DNA during industrial cultivation. Plasmid loss during bacterial cell divisions and structural changes in the plasmid DNA can dramatically reduce the yield of the desired recombinant plasmid DNA. While generating an HIV-based gene vector containing a bicistronic expression cassette 5′-Olig2cDNA-IRES-dsRed2-3′, we encountered plasmid DNA instability, which occurred in homologous recombination deficient recA1 Escherichia coli strain Stbl2 specifically during large-scale bacterial cultivation. Unexpectedly, the new recombinant plasmid was structurally changed or completely lost in 0.5 L liquid cultures but not in the preceding 5 mL cultures. Neither the employment of an array of alternative recA1 E. coli plasmid hosts, nor the lowering of the culture incubation temperature prevented the instability. However, after the introduction of this instability-prone plasmid into the recA13E. coli strain Stbl3, the transformed bacteria grew without being overrun by plasmid-free cells, reduction in the plasmid DNA yield or structural changes in plasmid DNA. Thus, E. coli strain Stbl3 conferred structural and maintenance stability to the otherwise instability-prone lentivirus-based recombinant plasmid, suggesting that this strain can be used for the faithful maintenance of similar stability-compromised plasmids in large-scale bacterial cultivations. In contrast to Stbl2, which is derived wholly from the wild type isolate E. coli K12, E. coli Stbl3 is a hybrid strain of mixed E. coli K12 and E. coli B parentage. Therefore, we speculate that genetic determinants for the benevolent properties of E. coli Stbl3 for safe plasmid propagation originate from its E. coli B ancestor.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Al-Abedia Campus, P. O. Box 715, Makkah, 21955, Saudi Arabia.
- Division of Clinical Sciences, Faculty of Medicine, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK.
| | - Oleg E Tolmachov
- Faculty of Medicine, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, SW7 2AZ, UK
| | - Lia Paola Zambetti
- Division of Clinical Sciences, Faculty of Medicine, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - Viktoria Tchetchelnitski
- Division of Clinical Sciences, Faculty of Medicine, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - Huseyin Mehmet
- Division of Clinical Sciences, Faculty of Medicine, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
23
|
Zhou W, Suntharalingam K, Brand NJ, Barton PJR, Vilar R, Ying L. Possible regulatory roles of promoter g-quadruplexes in cardiac function-related genes - human TnIc as a model. PLoS One 2013; 8:e53137. [PMID: 23326389 PMCID: PMC3541360 DOI: 10.1371/journal.pone.0053137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/23/2012] [Indexed: 12/15/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded DNA secondary structures, which are involved in a diverse range of biological processes. Although the anti-cancer potential of G4s in oncogene promoters has been thoroughly investigated, the functions of promoter G4s in non-cancer-related genes are not well understood. We have explored the possible regulatory roles of promoter G4s in cardiac function-related genes using both computational and a wide range of experimental approaches. According to our bioinformatics results, it was found that potential G4-forming sequences are particularly enriched in the transcription regulatory regions (TRRs) of cardiac function-related genes. Subsequently, the promoter of human cardiac troponin I (TnIc) was chosen as a model, and G4s found in this region were subjected to biophysical characterisations. The chromosome 19 specific minisatellite G4 sequence (MNSG4) and near transcription start site (TSS) G4 sequence (−80 G4) adopt anti-parallel and parallel structures respectively in 100 mM KCl, with stabilities comparable to those of oncogene G4s. It was also found that TnIc G4s act cooperatively as enhancers in gene expression regulation in HEK293 cells, when stabilised by a synthetic G4-binding ligand. This study provides the first evidence of the biological significance of promoter G4s in cardiac function-related genes. The feasibility of using a single ligand to target multiple G4s in a particular gene has also been discussed.
Collapse
Affiliation(s)
- Wenhua Zhou
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Nigel J. Brand
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
| | - Paul J. R. Barton
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, United Kingdom
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Liming Ying
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Qiu B, Qin Z, Liu J, Luo H. Thymine quintets and their higher order assemblies studied by electrospray ionization mass spectrometry and theoretical calculation. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:587-594. [PMID: 21630387 DOI: 10.1002/jms.1928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We previously reported that thymine molecules can specifically form a pentameric magic number cluster named as thymine quintet in the presence of K(+) , Rb(+) and Cs(+) . Actually, thymine decamer and doubly charged thymine 15-mer metaclusters can be observed along with thymine quintet in the ESI mass spectra of thymine with the addition of K(+) , Rb(+) and Cs(+) . The product ion spectra of these metaclusters, especially the 15-mer with hetero central ions, indicate that they are higher order assemblies of thymine quintets. The collision-induced dissociation experiments show that the gas-phase stabilities of these metaclusters depend on the size of the central ions, following the order Cs(+) > Rb(+) > K(+) , while K(+) leads to the highest dissociation energy of a thymine quintet. The optimized structures of thymine quintet and decamer were provided by density functional theory calculations, which showed that thymine quintet is bowl-shaped and its tilting angle increases with the size of the central ion. Furthermore, the chirality of thymine quintet was defined for the first time and the resulting different diastereoisomers of thymine decamers were also revealed by the calculation study. Copyright © 2011 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bo Qiu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, China
| | | | | | | |
Collapse
|
25
|
Zhou W, Brand NJ, Ying L. G-quadruplexes-novel mediators of gene function. J Cardiovasc Transl Res 2011; 4:256-70. [PMID: 21302011 DOI: 10.1007/s12265-011-9258-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 01/24/2011] [Indexed: 11/30/2022]
Abstract
Since the famous double-helix model was proposed, chromosomal DNA has been regarded as a rigid molecule containing the genetic information of an organism. It is clear now that DNA can adopt many transient, complex structures that can perform different biological functions. The G4 DNA (also called DNA G-quadruplex or G-tetraplex), a four-stranded DNA structure composed of stacked G-tetrads (guanine tetrads), has attracted much attention during the past two decades due to its ability to adopt a variety of structures and its possible biological functions. This review gives a glimpse on the structural diversity and biophysical properties of these fascinating DNA structures. Common methods that are widely used in investigating biophysical properties and biological functions of G4 DNA are described briefly. Next, bioinformatics studies that indicate evidence of evolutionary selection and potential functions of G4 DNA are discussed. Finally, examples of various biological functions of different G4 DNA are given, and potential roles of G4 DNA in respect of cardiovascular science are discussed.
Collapse
Affiliation(s)
- Wenhua Zhou
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, UK.
| | | | | |
Collapse
|
26
|
Basundra R, Kumar A, Amrane S, Verma A, Phan AT, Chowdhury S. A novel G-quadruplex motif modulates promoter activity of human thymidine kinase 1. FEBS J 2010; 277:4254-64. [DOI: 10.1111/j.1742-4658.2010.07814.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Corbin-Lickfett KA, Chen IHB, Cocco MJ, Sandri-Goldin RM. The HSV-1 ICP27 RGG box specifically binds flexible, GC-rich sequences but not G-quartet structures. Nucleic Acids Res 2010; 37:7290-301. [PMID: 19783816 PMCID: PMC2790906 DOI: 10.1093/nar/gkp793] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27, an important regulator for viral gene expression, directly recognizes and exports viral RNA through an N-terminal RGG box RNA binding motif, which is necessary and sufficient for RNA binding. An ICP27 N-terminal peptide, including the RGG box RNA binding motif, was expressed and its binding specificity was analyzed using EMSA and SELEX. DNA oligonucleotides corresponding to HSV-1 glycoprotein C (gC) mRNA, identified in a yeast three-hybrid analysis, were screened for binding to the ICP27 N-terminal peptide in EMSA experiments. The ICP27 N-terminus was able to bind most gC substrates. Notably, the ICP27 RGG box was unable to bind G-quartet structures recognized by the RGG domains of other proteins. SELEX analysis identified GC-rich RNA sequences as a common feature of recognition. NMR analysis of SELEX and gC sequences revealed that sequences able to bind to ICP27 did not form secondary structures and conversely, sequences that were not able to bind to ICP27 gave spectra consistent with base-pairing. Therefore, the ICP27 RGG box is unique in its recognition of nucleic acid sequences compared to other RGG box proteins; it prefers flexible, GC-rich substrates that do not form stable secondary structures.
Collapse
Affiliation(s)
- Kara A Corbin-Lickfett
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
28
|
Sun D, Hurley LH. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 2010; 608:65-79. [PMID: 20012416 DOI: 10.1007/978-1-59745-363-9_5] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.
Collapse
Affiliation(s)
- Daekyu Sun
- Department of Pharmacology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
29
|
Smargiasso N, Gabelica V, Damblon C, Rosu F, De Pauw E, Teulade-Fichou MP, Rowe JA, Claessens A. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes. BMC Genomics 2009; 10:362. [PMID: 19660104 PMCID: PMC2736202 DOI: 10.1186/1471-2164-10-362] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/06/2009] [Indexed: 11/24/2022] Open
Abstract
Background Guanine-rich nucleic acid sequences are capable of folding into an intramolecular four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-quadruplexes can downregulate gene expression, possibly by blocking the transcriptional machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-Quadruplex Sequences (PQS) in the Plasmodium falciparum genome, along with biophysical techniques to examine the physiological stability of P. falciparum PQS in vitro. Results We identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7. Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var genes (group B var genes). The var gene family encodes PfEMP1, the parasite's major variant antigen and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group B var genes (UpsB-Q) to form stable G-quadruplex structures in vitro was confirmed using 1H NMR, circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than duplex structures was found to bind with high affinity to the UpsB-Q. Conclusion This is the first demonstration of non-telomeric PQS in the genome of P. falciparum that form stable G-quadruplexes under physiological conditions in vitro. These results allow the generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var genes have the potential to play a role in the transcriptional control of this major virulence-associated multi-gene family.
Collapse
Affiliation(s)
- Nicolas Smargiasso
- Mass Spectrometry Laboratory, GIGA-Research, University of Liege, Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tashiro R, Sugiyama H. Photochemistry of 5-Bromouracil- or 5-Iodouracil-containing DNA: Probe for DNA Structure and Charge Transfer Along DNA. J SYN ORG CHEM JPN 2009. [DOI: 10.5059/yukigoseikyokaishi.67.1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryu Tashiro
- Faculty of Phamaceutical Sciences, Suzuka University of Medical Science
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Sciences, Kyoto University
| |
Collapse
|
31
|
Iwahashi H. 8-Oxo-7,8-dihydro-2'-deoxyguanosine Forms a Relatively Unstable Tetrameric Structure Compared with 2'-Deoxyguanosine. J Clin Biochem Nutr 2009; 44:57-61. [PMID: 19177189 PMCID: PMC2613500 DOI: 10.3164/jcbn.08-157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/25/2008] [Indexed: 11/22/2022] Open
Abstract
The hydrogen-bonded guanine tetrad, or G-quartet has been implicated in a variety of biological roles, including the function of chromosome telomeres. Here effect of the hydroxylation of guanosine at the 8 position on the G-quartet formation was examined. Electrospray inonization mass (ESI-MS) spectra of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 2'-deoxyguanosine (dG) were measured in order to know whether or not 8-oxodG forms a tetrameric structure as 2'-deoxyguanosine forms in teromeres. The ESI-MS spectra of dG shows prominent peaks at m/z 290, m/z 557, and m/z 1092, corresponding to [dG + Na]+, [dG2 + Na]+, and [dG4 + Na]+ in the presence of 0.1 mM NaCl. On the other hand, the ESI-MS spectra of 8-oxodG in the presence of 0.1 mM NaCl shows prominent peaks at m/z 306 and m/z 589, corresponding to [8-oxodG + Na]+ and [8-oxodG2 + Na]+. The results showed that 8-oxodG forms a relatively unstable tetrameric structure compared with dG.
Collapse
Affiliation(s)
- Hideo Iwahashi
- *To whom correspondence should be addressed. Tel: +81-73-441-0772 Fax: +81-73-441-0772 E-mail:
| |
Collapse
|
32
|
Halder K, Halder R, Chowdhury S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals. MOLECULAR BIOSYSTEMS 2009; 5:1703-12. [DOI: 10.1039/b905132e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S. Metastases suppressor NM23-H2 interaction with G-quadruplex DNA within c-MYC promoter nuclease hypersensitive element induces c-MYC expression. Nucleic Acids Res 2008; 37:172-83. [PMID: 19033359 PMCID: PMC2615625 DOI: 10.1093/nar/gkn919] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulatory influence of the G-quadruplex or G4 motif present within the nuclease hypersensitive element (NHE) in the promoter of c-MYC has been noted. On the other hand, association of NM23-H2 to the NHE leads to c-MYC activation. Therefore, NM23-H2 interaction with the G4 motif within the c-MYC NHE presents an interesting mechanistic possibility. Herein, using luciferase reporter assay and chromatin immunoprecipitation we show NM23-H2 mediated c-MYC activation involves NM23-H2-G4 motif binding within the c-MYC NHE. G4 motif complex formation with recombinant NM23-H2 was independently confirmed using fluorescence energy transfer, which also indicated that the G4 motif was resolved to an unfolded state within the protein-bound complex. Taken together, this supports transcriptional role of NM23-H2 via a G4 motif.
Collapse
Affiliation(s)
- Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 2008; 51:5641-9. [PMID: 18767830 DOI: 10.1021/jm800448a] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using a combination of in silico and experimental approaches, we present evidence that the G-quadruplex (G4) motif (an alternative higher-order DNA conformation) has regulatory potential. Genome-wide analyses of 99980 human, chimpanzee, mouse, and rat promoters showed enrichment of sequence with potential to adopt G4 (potential G4 or PG4) motifs near transcription start sites (TSS; P < 0.0001), supporting earlier findings. Interestingly, we found >700 orthologously related promoters in human, mouse, and rat conserve PG4 motif(s). The corresponding genes have enriched (z score > 4.0) tissue-specific expression in 75 of 79 human tissues and are significantly overrepresented in signaling and regulation of cell-cycle (P < 10(-05)). This is supported by results from whole genome expression experiments in human HeLa S3 cells following treatment with TMPyP4 [5,10,15,20-tetra(N-methyl-4-pyridyl) porphine chloride], which is known to bind the G4 motif inside cells. Our results implicate G4-motif mediated regulation as a more general mode of transcription control than currently appreciated.
Collapse
Affiliation(s)
- Anjali Verma
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Paramasivam M, Cogoi S, Filichev VV, Bomholt N, Pedersen EB, Xodo LE. Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation. Nucleic Acids Res 2008; 36:3494-507. [PMID: 18456705 PMCID: PMC2425464 DOI: 10.1093/nar/gkn242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA–TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA–TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA–TFOs were found to abrogate the formation of a DNA–protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA–TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome.
Collapse
|
36
|
Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 2008; 90:1149-71. [PMID: 18355457 DOI: 10.1016/j.biochi.2008.02.020] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/22/2008] [Indexed: 12/16/2022]
Abstract
In its simplest form, a DNA G-quadruplex is a four-stranded DNA structure that is composed of stacked guanine tetrads. G-quadruplex-forming sequences have been identified in eukaryotic telomeres, as well as in non-telomeric genomic regions, such as gene promoters, recombination sites, and DNA tandem repeats. Of particular interest are the G-quadruplex structures that form in gene promoter regions, which have emerged as potential targets for anticancer drug development. Evidence for the formation of G-quadruplex structures in living cells continues to grow. In this review, we examine recent studies on intramolecular G-quadruplex structures that form in the promoter regions of some human genes in living cells and discuss the biological implications of these structures. The identification of G-quadruplex structures in promoter regions provides us with new insights into the fundamental aspects of G-quadruplex topology and DNA sequence-structure relationships. Progress in G-quadruplex structural studies and the validation of the biological role of these structures in cells will further encourage the development of small molecules that target these structures to specifically modulate gene transcription.
Collapse
Affiliation(s)
- Yong Qin
- College of Pharmacy, 1703 E. Mabel, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
37
|
Saxena S, Bansal A, Kukreti S. Structural polymorphism exhibited by a homopurine.homopyrimidine sequence found at the right end of human c-jun protooncogene. Arch Biochem Biophys 2008; 471:95-108. [PMID: 18262488 DOI: 10.1016/j.abb.2008.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/15/2008] [Accepted: 01/19/2008] [Indexed: 11/17/2022]
Abstract
Homopurine.homopyrimidine (Pu.Py) tracts are likely to play important biological role in eukaryotes. Using circular dichroism, UV-thermal denaturation and gel electrophoresis, we have analyzed the structural polymorphism of a 21-bp Pu.Py DNA segment within human c-jun protooncogene 3'-region, a potential target for triplex formation. Results show that below physiological pH and in the presence of Na+/K+ with Mg2+ the duplex is destabilized/disproportionated, resulting in strand mediated structural transitions to the self-associated structures of G- and C-rich strands separately, identified as G-quadruplex and i-motif species. A significant differential behavior of the monovalent cations was observed, accordingly the presence of Na+ in acidic as well as neutral pH facilitated the duplex formation, while K+ favored the formation of self-associated structures. In Na+ and Mg2+, under acidic and neutral pH conditions, the duplex displayed triphasic and biphasic melting profiles, respectively. This self-association property of oligonucleotides might limit their use as duplex targets in triplex formation. Study is also relevant for understanding structural and biological properties of DNA sequence containing homopurine tracts.
Collapse
Affiliation(s)
- Sarika Saxena
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | | | | |
Collapse
|
38
|
Abstract
Over the past decade, nucleic acid chemists have seen the spectacular emergence of molecules designed to interact efficiently and selectively with a peculiar DNA structure named G-quadruplex. Initially derived from classical DNA intercalators, these G-quadruplex ligands progressively became the focal point of new excitement since they appear to inhibit selectively the growth of cancer cells thereby opening interesting perspectives towards the development of novel anti-cancer drugs. The present article aims to help researchers enter this exciting research field, and to highlight recent advances in the design of G-quadruplex ligands.
Collapse
Affiliation(s)
- David Monchaud
- Institut Curie, CNRS UMR176, Section Recherche, Centre Universitaire Paris XI, Bât. 110, 91405, Orsay, France
| | | |
Collapse
|
39
|
Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S. QuadBase: genome-wide database of G4 DNA--occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res 2007; 36:D381-5. [PMID: 17962308 PMCID: PMC2238983 DOI: 10.1093/nar/gkm781] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emerging evidence indicates the importance of G-quadruplex motifs as drug targets. [Stuart A. Borman, Ascent of quadruplexes-nucleic acid structures become promising drug targets. Chem. Eng. News, 2007;85, 12-17], which stems from the fact that these motifs are present in a surprising number of promoters wherein their role in controlling gene expression has been demonstrated for a few. We present a compendium of quadruplex motifs, with particular focus on their occurrence and conservation in promoters-QuadBase. It is composed of two parts (EuQuad and ProQuad). EuQuad gives information on quadruplex motifs present within 10 kb of transcription starts sites in 99 980 human, chimpanzee, rat and mouse genes. ProQuad contains quadruplex information of 146 prokaryotes. Apart from gene-specific searches for quadruplex motifs, QuadBase has a number of other modules. 'Orthologs Analysis' queries for conserved motifs across species based on a selected reference organism; 'Pattern Search' can be used to fetch specific motifs of interest from a selected organism using user-defined criteria for quadruplex motifs, i.e. stem, loop size, etc. 'Pattern Finder' tool can search for motifs in any given sequence. QuadBase is freely available to users from non-profit organization at http://quadbase.igib.res.in/.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- G. N. Ramachandran Knowledge Centre for Genome Informatics and Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, New Delhi 110 007, India
| | | | | | | | | |
Collapse
|
40
|
Rachwal PA, Findlow IS, Werner JM, Brown T, Fox KR. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res 2007; 35:4214-22. [PMID: 17576685 PMCID: PMC1919480 DOI: 10.1093/nar/gkm316] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have examined the folding, stability and kinetics of intramolecular quadruplexes formed by DNA sequences containing four G3 tracts separated by either single T or T4 loops. All these sequences fold to form intramolecular quadruplexes and 1D-NMR spectra suggest that they each adopt unique structures (with the exception of the sequence with all three loops containing T4, which is polymorphic). The stability increases with the number of single T loops, though the arrangement of different length loops has little effect. In the presence of potassium ions, the oligonucleotides that contain at least one single T loop exhibit similar CD spectra, which are indicative of a parallel topology. In contrast, when all three loops are substituted with T4 the CD spectrum is typical of an antiparallel arrangement. In the presence of sodium ions, the sequences with two and three single T loops also adopt a parallel folded structure. Kinetic studies on the complexes with one or two T4 loops in the presence of potassium ions reveal that sequences with longer loops display slower folding rates.
Collapse
Affiliation(s)
- Phillip A. Rachwal
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - I. Stuart Findlow
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Joern M. Werner
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Keith R. Fox
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- *To whom correspondence should be addressed. +44 23 8059 4374+44 23 8059 4459
| |
Collapse
|
41
|
Abstract
The various conformations of DNA--the A, B, and Z forms, the protein-induced DNA kink, and the G-quartet form--are thought to play important biological roles in processes such as DNA replication, gene expression and regulation, and the repair of DNA damage. The investigation of local DNA conformational changes associated with biological events is therefore essential for understanding the function of DNA. In this Minireview, we discuss the use of photochemical dehalogenation of 5-halouracil-containing DNA to probe the structure of DNA. Hydrogen abstraction by the resultant uracil-5-yl radicals is atom-specific and highly dependent on the structure of the DNA, suggesting that this photochemical approach could be applied as a probe of DNA conformations in living cells.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | | |
Collapse
|
42
|
Rachwal PA, Brown T, Fox KR. Effect of G-tract length on the topology and stability of intramolecular DNA quadruplexes. Biochemistry 2007; 46:3036-44. [PMID: 17311417 DOI: 10.1021/bi062118j] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-Rich sequences are known to form four-stranded structures that are based on stacks of G-quartets, and sequences with the potential to adopt these structures are common in eukaryotic genomes. However, there are few rules for predicting the relative stability of folded complexes that are adopted by sequences with different-length G-tracts or variable-length linkers between them. We have used thermal melting, circular dichroism, and gel electrophoresis to examine the topology and stability of intramolecular G-quadruplexes that are formed by sequences of the type d(GnT)4 and d(GnT2)4 (n = 3-7) in the presence of varying concentrations of sodium and potassium. In the presence of potassium or sodium, d(GnT)4 sequences form intramolecular parallel complexes with the following order of stability: n = 3 > n = 7 > n = 6 > n = 5 > n = 4. d(G3T)4 is anomalously stable. In contrast, the stability of d(GnT2)4 increases with the length of the G-tract (n = 7 > n = 6 > n = 5 > n = 4 > n = 3). The CD spectra for d(GnT)4 in the presence of potassium exhibit positive peaks around 260 nm, consistent with the formation of parallel topologies. These peaks are retained in sodium-containing buffers, but when n = 4, 5, or 6, CD maxima are observed around 290 nm, suggesting that these sequences [especially d(G5T)4] have some antiparallel characteristics. d(G3T2)4 adopts a parallel conformation in the presence of both sodium and potassium, while all the other d(GnT2)4 complexes exhibit predominantly antiparallel features. The properties of these complexes are also affected by the rate of annealing, and faster rates favor parallel complexes.
Collapse
Affiliation(s)
- Phillip A Rachwal
- School of Biological Sciences, University of Southampton, Bassett Crescent East, UK
| | | | | |
Collapse
|
43
|
Jain ML, Bruice TC. Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) oligonucleotide incorporating 7-deazaguanine bases. Bioorg Med Chem 2006; 14:7333-46. [PMID: 16945544 DOI: 10.1016/j.bmc.2006.05.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 05/31/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
DNG nucleotides represent a positively charged DNA analog in which the negatively charged phosphodiester linkages of DNA are replaced by positively charged guanidinium linkages. We report herein the synthesis of 3'-end, middle, and 5'-end monomers required for the synthesis of a DNG sequence in which the natural guanine base is replaced by 7-deazaguanine (c(7)G). 7-Deazaguanine nucleobase was chosen because of their unique glycoside bond stability and their ability to prevent G-quartet formation. A facile and high yield two-step synthesis of xylo-7-deazaguanine 7, a key intermediate for introducing 3'-amino functionality, is carried out under Mitsunobu conditions. Subsequently, the 3'-Fmoc-protected thiourea monomers 13 and 19 were prepared from 7 via their corresponding 3'-amino-7-deazaguanines 11 and 18, respectively. The smooth coupling of these thiourea monomers with monomethoxytrityl (MMTr)-protected 3'-end monomer 25, prepared from 5, occurred on solid phase in 3'-->5' direction. The resultant trimeric HO-c(7)Ggc(7)Ggc(7)G-OH (1) has been designed to be included into DNA using standard DNA synthesis technology. The combination of C-c(7)G base pairing and electrostatic association of phosphodiester and guanidinium backbone allows the small synthesized DNG trimer 1 to form 1:1 complex with DNA-C pentamer.
Collapse
Affiliation(s)
- Moti L Jain
- Department of Chemistry and Biochemistry, University Of California, Santa Barbara, 93106, USA
| | | |
Collapse
|
44
|
Vorlícková M, Bednárová K, Kypr J. Ethanol is a better inducer of DNA guanine tetraplexes than potassium cations. Biopolymers 2006; 82:253-60. [PMID: 16506164 DOI: 10.1002/bip.20488] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Guanine tetraplexes are a biologically relevant alternative of the Watson and Crick duplex of DNA. It is thought that potassium or other cations present in the cavity between consecutive guanine tetrads are an integral part of the tetraplexes. Here we show using CD spectroscopy that ethanol induces the guanine tetraplexes like or even better than potassium cations. We present examples of ethanol stabilizing guanine tetraplexes even in cases when potassium cations fail to do so. Hence, besides the A-form or Z-form, ethanol stabilizes another conformation of DNA, i.e., the guanine tetraplexes. We discuss the mechanism of the stabilization. Use of ethanol will permit studies of guanine tetraplexes that cannot be induced by potassium cations or other tetraplex-promoting agents. This work demonstrates that a still broader spectrum of nucleotide sequences can fold into guanine tetraplexes than has previously been thought. Aqueous ethanol may better simulate conditions existing in vivo than the aqueous solutions.
Collapse
Affiliation(s)
- Michaela Vorlícková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | |
Collapse
|
45
|
Xu Y, Sugiyama H. Die photochemische Untersuchung verschiedener DNA-Strukturen. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200501962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Xu Y, Sugiyama H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res 2006; 34:949-54. [PMID: 16464825 PMCID: PMC1361614 DOI: 10.1093/nar/gkj485] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The formation of G-quadruplex and i-motif structures in the 5′ end of the retinoblastoma (Rb) gene was examined using chemical modifications, circular dichroism (CD) and fluorescence spectroscopy. It was found that substitutions of 8-methylguanine at positions that show syn conformations in antiparallel G-quadruplexes stabilize the structure in the G-rich strand. The complementary C-rich 18mer forms an i-motif structure, as suggested by CD spectroscopy. Based on the C to T mutation experiments, C bases participated in the C–C+ base pair of the i-motif structure were determined. Experiments of 2-aminopurine (2-AP) substitution reveal that an increase of fluorescence in the G-quadruplex relative to duplex is attributed to unstacked 2-AP within the loop of G-quadruplex. The fluorescence experiments suggest that formation of the G-quadruplex and i-motif can compete with duplex formation. Furthermore, a polymerase arrest assay indicated that formation the G-quadruplex structure in the Rb gene acts as a barrier in DNA synthesis.
Collapse
Affiliation(s)
| | - Hiroshi Sugiyama
- To whom correspondence should be addressed. Tel +81 75 753 4002; Fax +81 75 753 3670;
| |
Collapse
|
47
|
Datta B, Bier ME, Roy S, Armitage BA. Quadruplex formation by a guanine-rich PNA oligomer. J Am Chem Soc 2005; 127:4199-207. [PMID: 15783201 DOI: 10.1021/ja0446202] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A guanine-rich PNA dodecamer having the sequence H-G4T4G4-Lys-NH2 (G-PNA) hybridizes with a DNA dodecamer of homologous sequence to form a four-stranded quadruplex (Datta, B.; Schmitt, C.; Armitage, B. A. J. Am. Chem. Soc. 2003, 125, 4111-4118). This report describes quadruplex formation by the PNA alone. UV melting curves and fluorescence resonance energy transfer experiments reveal formation of a multistranded structure stabilized by guanine tetrads. The ion dependency of these structures is analogous to that reported for DNA quadruplexes. Electrospray ionization mass spectrometry indicates that both dimeric and tetrameric quadruplexes are formed by G4-PNA, with the dimeric form being preferred. These results have implications for the use of G-rich PNA for homologous hybridization to G-rich targets in chromosomal DNA and suggest additional applications in assembling quadruplex structures within lipid bilayer environments.
Collapse
Affiliation(s)
- Bhaskar Datta
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | | | |
Collapse
|
48
|
Cooke JR, McKie EA, Ward JM, Keshavarz-Moore E. Impact of intrinsic DNA structure on processing of plasmids for gene therapy and DNA vaccines. J Biotechnol 2005; 114:239-54. [PMID: 15522434 DOI: 10.1016/j.jbiotec.2004.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 06/21/2004] [Accepted: 06/29/2004] [Indexed: 11/23/2022]
Abstract
Several non-Watson Crick DNA structures have been discovered to date, which may be incorporated into future plasmid constructs for gene therapy and DNA vaccine products. In this study, intrinsic DNA structures were included at a defined point in a 2.9 kb plasmid, and their effects on cell growth rate, total plasmid yield, and topology (i.e. the relative proportions of supercoiled plasmid, open circular and linear forms), were determined. The stability of the inserted sequences were assessed using gel electrophoresis. Z-DNA was shown to be unstable in a batch Escherichia coli DH1 production system grown in complex medium. Encouragingly other sequences studied (triplex, bend and quadruplex) did not cause spontaneous deletions, and no detrimental effect was found on growth rate or on total plasmid yield; indicating that such sequences could be included in future DNA products without any detrimental effect on plasmid yields; although the intra molecular triplex studied significantly decreased the proportion of supercoiled species.
Collapse
Affiliation(s)
- James R Cooke
- Department of Biochemical Engineering, UCL, Torrington Place, London WC1E 7JE, UK
| | | | | | | |
Collapse
|
49
|
Abstract
Fluorescently labeled oligodeoxyribonucleotides containing a single tract of four successive guanines have been used to study the thermodynamic and kinetic properties of short intermolecular DNA quadruplexes. When these assemble to form intermolecular quadruplexes the fluorophores are in close proximity and the fluorescence is quenched. On raising the temperature these complexes dissociate and there is a large increase in fluorescence. These complexes are exceptionally stable in potassium-containing buffers, and possess Tm values that are too high to measure. Tm values were determined in sodium-containing buffers for which the rate of reannealing is extremely slow; the melting profiles are effectively irreversible, and the apparent melting temperatures are dependent on the rates of heating. The dissociation kinetics of these complexes was estimated by rapidly increasing the temperature and following the time-dependent changes in fluorescence. From these data we have estimated the half-lives of these quadruplexes at 37 degrees C. Addition of a T to the unlabeled end of the oligonucleotide increases quadruplex stability. In contrast, addition of a T between the fluorophore and the oligonucleotide leads to a decrease in stability.
Collapse
Affiliation(s)
- Elena E Merkina
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, United Kingdom
| | | |
Collapse
|
50
|
Seenisamy J, Bashyam S, Gokhale V, Vankayalapati H, Sun D, Siddiqui-Jain A, Streiner N, Shin-Ya K, White E, Wilson WD, Hurley LH. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J Am Chem Soc 2005; 127:2944-59. [PMID: 15740131 DOI: 10.1021/ja0444482] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cationic porphyrins are known to bind to and stabilize different types of G-quadruplexes. Recent studies have shown the biological relevance of the intramolecular parallel G-quadruplex as a transcriptional silencer in the c-MYC promoter. TMPyP4 also binds to this G-quadruplex and most likely converts it to a mixed parallel/antiparallel G-quadruplex with two external lateral loops and one internal propeller loop, suppressing c-MYC transcriptional activation. To achieve therapeutic selectivity by targeting G-quadruplexes, it is necessary to synthesize drugs that can differentiate among the different types of G-quadruplexes. We have designed and synthesized a core-modified expanded porphyrin analogue, 5,10,15,20-[tetra(N-methyl-3-pyridyl)]-26,28-diselenasapphyrin chloride (Se2SAP). Se2SAP converts the parallel c-MYC G-quadruplex into a mixed parallel/antiparallel G-quadruplex with one external lateral loop and two internal propeller loops, resulting in strong and selective binding to this G-quadruplex. A Taq polymerase stop assay was used to evaluate the binding of TMPyP4 and Se2SAP to G-quadruplex DNA. Compared to TMPyP4, Se2SAP shows a greater selectivity for and a 40-fold increase in stabilization of the single lateral-loop hybrid. Surface plasmon resonance and competition experiments with duplex DNA and other G-quadruplexes further confirmed the selectivity of Se2SAP for the c-MYC G-quadruplex. Significantly, Se2SAP was found to be less photoactive and noncytotoxic in comparison to TMPyP4. From this study, we have identified an expanded porphyrin that selectively binds with the c-MYC G-quadruplex in the presence of duplex DNA and other G-quadruplexes.
Collapse
|