1
|
Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 2021; 78:5225-5243. [PMID: 33974093 PMCID: PMC11071878 DOI: 10.1007/s00018-021-03850-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Among many nanoparticle-based delivery platforms, liposomes have been particularly successful with many formulations passed into clinical applications. They are well-established and effective gene and/or drug delivery systems, widely used in cancer therapy including breast cancer. In this review we discuss liposome design with the targeting feature and triggering functions. We also summarise the recent progress (since 2014) in liposome-based therapeutics for breast cancer including chemotherapy and gene therapy. We finally identify some challenges on the liposome technology development for the future clinical translation.
Collapse
Affiliation(s)
- Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Ping Song
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechatronic Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaina Shankar
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Di Paolo D, Pastorino F, Brignole C, Marimpietri D, Loi M, Ponzoni M, Pagnan G. Drug Delivery Systems: Application of Liposomal Anti-Tumor Agents to Neuroectodermal Cancer Treatment. TUMORI JOURNAL 2018; 94:246-53. [DOI: 10.1177/030089160809400217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Disseminated neuroectoderma-derived tumors, mainly neuroblastoma in childhood and melanoma in the adulthood, are refractory to most current therapeutic regimens and hence the prognosis remains very poor. Preclinical research studies have indicated several agents that show promising therapeutic potential for these neoplasms. However, there appears to be a limitation to their in vivo applicability, mainly due to unfavorable pharmacokinetic properties that lead to insufficient drug delivery to the tumor or metastatic sites or to high systemic or organ-specific toxicity. In this scenario, the focus is on targeted cancer therapy. Encapsulating anticancer drugs in liposomes enables targeted drug delivery to tumor tissue and prevents damage to the normal surrounding tissue. Indeed, sterically stabilized liposomes have been shown to enhance the selective localization of entrapped drugs to solid tumors, with improvements in therapeutic indices. The identification of tumor-associated antigens and/or genes and the relative ease of manipulating the physicochemical features of liposome hold promise for the development of novel therapeutic strategies that selectively target tumor cells. Combined targeting is still investigated, especially the availability to simultaneously target and kill both the cancer cells and the tumor vasculature. Animal models make it possible to link molecular genetics and biochemistry information to the physiological basis of disease and are important predictive tools that offer a frontline testing system for studying the involvement of specific genes and the efficacy of novel therapeutics approaches. Relevant experimental models of human neuroblastoma and melanoma, which better reflect the tumor behavior in patients, are required to evaluate the effectiveness of the various targeted liposomal formulations and their possible systemic and organ-specific toxicity. The most multifunctional targeted liposomes are herein described, with primary attention on testing their efficacy in clinically relevant animal models for the treatment of neuroblastoma and melanoma.
Collapse
Affiliation(s)
- Daniela Di Paolo
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Fabio Pastorino
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Chiara Brignole
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Danilo Marimpietri
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Monica Loi
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Mirco Ponzoni
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| | - Gabriella Pagnan
- Experimental Therapies Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy
| |
Collapse
|
3
|
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2017; 35:347-76. [PMID: 27392603 PMCID: PMC5035665 DOI: 10.1007/s10555-016-9629-x] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While various clinical applications especially in oncology are now in progress such as diagnosis, prognosis, therapy monitoring, or patient follow-up, the determination of structural characteristics of cell-free circulating DNA (cirDNA) are still being researched. Nevertheless, some specific structures have been identified and cirDNA has been shown to be composed of many “kinds.” This structural description goes hand-in-hand with the mechanisms of its origins such as apoptosis, necrosis, active release, phagocytosis, and exocytose. There are multiple structural forms of cirDNA depending upon the mechanism of release: particulate structures (exosomes, microparticles, apoptotic bodies) or macromolecular structures (nucleosomes, virtosomes/proteolipidonucleic acid complexes, DNA traps, links with serum proteins or to the cell-free membrane parts). In addition, cirDNA concerns both nuclear and/or mitochondrial DNA with both species exhibiting different structural characteristics that potentially reveal different forms of biological stability or diagnostic significance. This review focuses on the origins, structures and functional aspects that are paradoxically less well described in the literature while numerous reviews are directed to the clinical application of cirDNA. Differentiation of the various structures and better knowledge of the fate of cirDNA would considerably expand the diagnostic power of cirDNA analysis especially with regard to the patient follow-up enlarging the scope of personalized medicine. A better understanding of the subsequent fate of cirDNA would also help in deciphering its functional aspects such as their capacity for either genometastasis or their pro-inflammatory and immunological effects.
Collapse
Affiliation(s)
- A R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France.
| | - S El Messaoudi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France
| | - P B Gahan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France
| | - P Anker
- , 135 route des fruitières, 74160, Beaumont, France
| | - M Stroun
- , 6 Pedro-meylan, 1208, Geneva, Switzerland
| |
Collapse
|
4
|
Development of Cell-Penetrating Asymmetric Interfering RNA Targeting Connective Tissue Growth Factor. J Invest Dermatol 2016; 136:2305-2313. [PMID: 27427487 DOI: 10.1016/j.jid.2016.06.626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Abstract
Connective tissue growth factor (CTGF) is a multifunctional matricellular protein, playing a role as a central mediator in tissue remodeling and fibrosis. A number of reports have shown the pivotal roles of CTGF in the progression of fibrosis, suggesting CTGF as a promising therapeutic target for the treatment of fibrotic disorders including hypertrophic scars and keloids. In this study, we present the development of an interfering RNA molecule that efficiently inhibits the expression of CTGF via RNA interference mechanism both in vitro and in vivo. Chemical modifications were introduced to the asymmetric interfering RNA (asiRNA) backbone structure. The resulting RNA molecule, termed cell-penetrating asiRNA (cp-asiRNA), entered into cells and triggered RNA interference-mediated gene silencing without delivery vehicles. The gene-silencing activity of cp-asiRNA targeting CTGF (cp-asiCTGF) was examined both in vitro and in vivo. Furthermore, the administration of cp-asiCTGF in the rat skin excision wound model efficiently reduced the induction of CTGF and collagens during the wound-healing process. These results suggest that the cp-asiCTGF molecule could be developed into antifibrotic therapeutics such as antiscar drugs.
Collapse
|
5
|
Lavigne C, Yelle J, Sauve G, Thierry AR. Is antisense an appropriate nomenclature or design for oligodeoxynucleotides aimed at the inhibition of HIV-1 replication? AAPS PHARMSCI 2015. [DOI: 10.1208/ps040207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Wang Y, Miao L, Satterlee A, Huang L. Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev 2015; 87:68-80. [PMID: 25733311 DOI: 10.1016/j.addr.2015.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
Since their inception in the 1980s, oligonucleotide-based (ON-based) therapeutics have been recognized as powerful tools that can treat a broad spectrum of diseases. The discoveries of novel regulatory methods of gene expression with diverse mechanisms of action are still driving the development of novel ON-based therapeutics. Difficulties in the delivery of this class of therapeutics hinder their in vivo applications, which forces drug delivery systems to be a prerequisite for clinical translation. This review discusses the strategy of using lipid nanoparticles as carriers to deliver therapeutic ONs to target cells in vitro and in vivo. A discourse on how chemical and physical properties of the lipid materials could be utilized during formulation and the resulting effects on delivery efficiency constitutes the major part of this review.
Collapse
|
7
|
Cheng CJ, Saltzman WM, Slack FJ. Canonical and non-canonical barriers facing antimiR cancer therapeutics. Curr Med Chem 2014; 20:3582-93. [PMID: 23745563 DOI: 10.2174/0929867311320290004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/14/2022]
Abstract
Once considered genetic "oddities", microRNAs (miRNAs) are now recognized as key epigenetic regulators of numerous biological processes, including some with a causal link to the pathogenesis, maintenance, and treatment of cancer. The crux of small RNA-based therapeutics lies in the antagonism of potent cellular targets; the main shortcoming of the field in general, lies in ineffective delivery. Inhibition of oncogenic miRNAs is a relatively nascent therapeutic concept, but as with predecessor RNA-based therapies, success hinges on delivery efficacy. This review will describes the canonical (e.g. pharmacokinetics and clearance, cellular uptake, endosome escape, etc.) and non-canonical (e.g. spatial localization and accessibility of miRNA, technical limitations of miRNA inhibition, off-target impacts, etc.) challenges to the delivery of antisense-based anti-miRNA therapeutics (i.e. antimiRs) for the treatment of cancer. Emphasis will be placed on how the current leading antimiR platforms-ranging from naked chemically modified oligonucleotides to nanoscale delivery vehicles-are affected by and overcome these barriers. The perplexity of antimiR delivery presents both engineering and biological hurdles that must be overcome in order to capitalize on the extensive pharmacological benefits of antagonizing tumor-associated miRNAs.
Collapse
Affiliation(s)
- Christopher J Cheng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
8
|
Wilson KD, Tam YK. Lipid-based delivery of CpG oligodeoxynucleotides for cancer immunotherapy. Expert Rev Clin Pharmacol 2014; 2:181-93. [DOI: 10.1586/17512433.2.2.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Lavigne C, Slater K, Gajanayaka N, Duguay C, Arnau Peyrotte E, Fortier G, Simard M, Kell AJ, Barnes ML, Thierry AR. Influence of lipoplex surface charge on siRNA delivery: application to thein vitrodownregulation of CXCR4 HIV-1 co-receptor. Expert Opin Biol Ther 2013; 13:973-85. [DOI: 10.1517/14712598.2013.743526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Charles I, Davis E, Arya DP. Efficient stabilization of phosphodiester (PO), phosphorothioate (PS), and 2'-O-methoxy (2'-OMe) DNA·RNA hybrid duplexes by amino sugars. Biochemistry 2012; 51:5496-505. [PMID: 22639785 DOI: 10.1021/bi3004507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antisense strategies that target DNA·RNA hybrid structures offer potential for the development of new therapeutic drugs. The α-sarcin loop region of the 23S [corrected] rRNA domain has been shown to be a high value target for such strategies. Herein, aminoglycoside interaction with three RNA·DNA α-sarcin targeted duplexes (rR·dY, rR·S-dY, and rR·2'OMe-rY) have been investigated to determine the overall effect of aminoglycoside interaction on the stability, affinity, and conformation of these hybrid duplexes. To this end, UV thermal denaturation, circular dichroism spectroscopy, fluorescence intercalator displacement, and ITC as well as DSC calorimetry experiments were carried out. The results suggest the following. (1) Of all the aminoglycosides studied, neomycin confers the highest thermal stability on all three hybrid duplexes studied. (2) There is no appreciable difference in aminoglycoside-induced thermal stability between the unmodified rR·dY and phophorothioate modified rR·S-dY duplexes. (3) The rR·2'OMe-rY duplexes thermal stability is slightly less than the other two hybrids. (4) In all three duplexes, aminoglycoside-induced thermal stability decreased as the number of amino groups decreased. (5) CD scans revealed similar spectra for the rR·dY and rR·S-dY duplexes as well as a more pronounced A-form signal for the rR·2'OMe-rY duplex. (6) FID assays paralleled the CD results, yielding similar affinity values between the rR·dY and rR·S-dY duplexes and higher affinities with the rR·2'OMe-rY duplex. (7) The overall affinity trend between aminoglycosides and the three duplexes was determined to be neomycin > paromomycin > neamine > ribostamycin. (8) ITC K(a) values revealed similar binding constants for the rR·dY and rR·S-dY duplexes with rR·dY having a K(1) of (1.03 ± 0.58) × 10(7) M(-1) and K(2) of (1.13 ± 0.07) × 10(5) M(-1) while rR·S-dY produced a K(1) of (1.17 ± 0.54) × 10(7) M(-1) and K(2) of (1.27 ± 0.69) × 10(5) M(-1). (8) The rR·2'OMe-rY produced a slightly higher binding constant values with a K(1) of (1.25 ± 0.24) × 10(7) M(-1) and K(2) of (3.62 ± 0.18) × 10(5) M(-1). (9) The ΔT(m)-derived K(Tm) of 3.81 × 10(7) M(-1) for rR·S-dY was in relative agreement with the corresponding K(1) of 1.17 × 10(7) M(-1) derived constant from the fitted ITC. These results illustrate that the increased DNA·RNA hybrid duplex stability in the presence of aminoglycosides can help extend the roles of aminoglycosides in designing modified ODNs for targeting RNA.
Collapse
Affiliation(s)
- I Charles
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, South Carolina 29634, United States
| | | | | |
Collapse
|
11
|
Wattrang E, Palm AK, Wagner B. Cytokine production and proliferation upon in vitro oligodeoxyribonucleotide stimulation of equine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2012; 146:113-24. [PMID: 22397968 DOI: 10.1016/j.vetimm.2012.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
Abstract
Synthetic oligodeoxyribonucleotides (ODN) may prove useful immune modulators in equine medicine. It is however important to assess the effects of each specific ODN in the species it is intended to be used in. The present study therefore aimed to evaluate some ODN for induction of cytokine production; i.e. type I interferons (IFN), IFN-γ, tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), and proliferation of equine peripheral blood mononuclear cells (PBMC). A panel of four ODN containing unmethylated cytosine-guanosine sequences (CpG) was used: ODN 1 and ODN 8 representing A-class; ODN 2006 representing B-class and ODN 2395 representing C-class-ODN. In addition, two ODN where CpG-motifs were reversed to GpC were included; ODN 2137 otherwise identical to ODN 2006 and ODN 5328 otherwise identical to ODN 2395. Cytokine concentrations were measured in cell culture supernatants after 24h of induction and proliferation was determined after 72 h of induction. Each ODN was tested with PBMC from at least 5 individual horses with and without the addition of lipofectin to cell cultures. Type I IFN, IFN-γ and TNF-α production was readily induced by ODN 1, ODN 2006 and ODN 2395 both in the presence and absence of lipofectin and all three types of ODN induced similar levels of cytokines. Proliferation of PBMC was clearly induced by ODN 2006 and ODN 2395 while ODN 1 only induced low-level proliferation. The levels of proliferation induced were not influenced by the presence of lipofectin. TGF-β production was not induced by any of the tested ODN. ODN 8, ODN 2137 and ODN 5328 were largely inactive in all assays. Thus, responses seemed dependent on or increased by CpG-motifs but presence of CpG-motifs did not necessarily confer activity since ODN 8 was inactive despite its CpG-motifs. Taken together, with equine PBMC distinctions in induction of different leukocyte functions between A-, B-, and C-class ODN were less obvious than what has been observed for human cells. These observations further stress the presence of species differences in ODN-induced responses.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | | | | |
Collapse
|
12
|
Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Liposomal nanomedicine for breast cancer therapy. Nanomedicine (Lond) 2011; 6:1085-100. [PMID: 21955078 DOI: 10.2217/nnm.11.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liposomes are well-established nanocarriers for improving the therapeutic index of anticancer agents. A remarkable understanding in the pathophysiology of breast cancer progression has emerged with information on the involved specific biomolecules, which may serve as molecular targets for its therapy. Hormonal and nonhormonal receptors can both be exploited for targeting to breast cancer cells. Targeted delivery of cytotoxic drugs using liposomes is a novel approach for breast cancer therapy. In the present article, we summarize molecular targets present on the breast cancer cells. Recent developments in liposome-based delivery of bioactives for selective treatments of breast cancer are discussed. In addition, utilization of bioenvironmental conditions of tumor for liposome-based targeted delivery is also summed up.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India
| | | | | | | |
Collapse
|
13
|
Abstract
Oligonucleotides radiolabeled with isotopes emitting γ-rays (for SPECT imaging) or positrons (for PET imaging) can be useful for targeting messenger RNA (mRNA) thereby serving as non-invasive imaging tools for detection of gene expression in vivo (antisense imaging). Radiolabeled oligonucleotides may also be used for monitoring their in vivo fate, thereby helping us better understand the barriers to its delivery for antisense targeting. These developments have led to a new area of molecular imaging and targeting, utilizing radiolabeled antisense oligonucleotides. However, the success of antisense imaging relies heavily on overcoming the barriers for its targeted delivery in vivo. Furthermore, the low ability of the radiolabeled antisense oligonucleotide to subsequently internalize into the cell and hybridize with its target mRNA poses additional challenges in realizing its potentials. This review covers the advances in the antisense imaging probe development for PET and SPECT, with an emphasis on radiolabeling strategies, stability, delivery and in vivo targeting.
Collapse
Affiliation(s)
- Arun K Iyer
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | | |
Collapse
|
14
|
Mochizuki S, Sakurai K. Dectin-1 targeting delivery of TNF-α antisense ODNs complexed with β-1,3-glucan protects mice from LPS-induced hepatitis. J Control Release 2011; 151:155-61. [PMID: 21281680 DOI: 10.1016/j.jconrel.2011.01.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/06/2011] [Accepted: 01/24/2011] [Indexed: 01/13/2023]
Abstract
Antisense therapy, the first concept of oligonucleotide therapeutics, was proposed more than two decades ago. However, the lack of suitable delivering carriers continues to be a major obstacle to practical therapy. In this study, we present a novel complex consisting of β-1,3-glucan and antisense oligonucleotide (AS-ODN) as a new candidate of the carriers. We used schizophyllan (SPG) as a β-1,3-glucan and an AS-ODN sequence to suppress tumor necrosis factor alpha (TNF-α), where the AS-ODN has a (dA)(60) tail to induce complex with SPG. When the complexes were applied to peritoneal macrophages, they were incorporated into the cells via dectin-1 (a β-1,3-glucan receptor expressed on antigen presenting cells) and suppressed lipopolysaccharide (LPS)-induced TNF-α secretion. In-vivo, AS-ODN/SPG decreased the secretion of TNF-α in serum and drastically reduced the inflammation of LPS-induced hepatitis. This new complex could overcome the long outstanding problem for antisense therapy because of its complexation ability, non-toxicity and high target specificity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/prevention & control
- Drug Delivery Systems/methods
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/prevention & control
- Lectins, C-Type/administration & dosage
- Lectins, C-Type/physiology
- Lipopolysaccharides/toxicity
- Mice
- Mice, Inbred C57BL
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/metabolism
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/blood
- beta-Glucans/administration & dosage
- beta-Glucans/chemistry
- beta-Glucans/metabolism
Collapse
Affiliation(s)
- Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | | |
Collapse
|
15
|
Resina S, Prevot P, Thierry AR. Physico-chemical characteristics of lipoplexes influence cell uptake mechanisms and transfection efficacy. PLoS One 2009; 4:e6058. [PMID: 19557145 PMCID: PMC2699663 DOI: 10.1371/journal.pone.0006058] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/22/2009] [Indexed: 11/24/2022] Open
Abstract
Background Formulation of DNA/cationic lipid complexes (lipoplexes) designed for nucleic acid delivery mostly results in positively charged particles which are thought to enter cells by endocytosis. We recently developed a lipoplex formulation called Neutraplex that allows preparation of both cationic and anionic stable complexes with similar lipid content and ultrastructure. Methodology/Principal Findings To assess whether the global net charge could influence cell uptake and activity of the transported oligonucleotides (ON), we prepared lipoplexes with positive and negative charges and compared: (i) their physicochemical properties by zeta potential analysis and dynamic light scattering, (ii) their cell uptake by fluorescence microscopy and flow cytometry, and (iii) the biological activity of the transported ON using a splicing correction assay. We show that positively or negatively charged lipoplexes enter cells cells using both temperature-dependent and -independent uptake mechanisms. Specifically, positively charged lipoplexes predominantly use a temperature-dependent transport when cells are incubated OptiMEM medium. Anionic lipoplexes favour an energy-independent transport and show higher ON activity than cationic lipoplexes in presence of serum. However, lipoplexes with high positive global net charge and OptiMEM medium give the highest uptake and ON activity levels. Conclusions These findings suggest that, in addition to endocytosis, lipoplexes may enter cell via a temperature-independent mechanism, which could be mediated by lipid mixing. Such characteristics might arise from the specific lipoplex ultrastructure and should be taken into consideration when developing lipoplexes designed for in vivo or ex vivo nucleic acid transfer.
Collapse
Affiliation(s)
- Sarah Resina
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), Département de Défenses Antivirales et Antitumorales - UMR 5235 - Université de Montpellier II, Montpellier, France
| | - Paul Prevot
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), Département de Défenses Antivirales et Antitumorales - UMR 5235 - Université de Montpellier II, Montpellier, France
| | - Alain R. Thierry
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), Département de Défenses Antivirales et Antitumorales - UMR 5235 - Université de Montpellier II, Montpellier, France
- Modélisation et Ingénierie des Systèmes Complexes Biologiques pour le Diagnostic (SysDiag) – UMR 3145 CNRS/Bio-Rad - Cap Delta, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Wattrang E. Phosphorothioate oligodeoxyribonucleotides induce in vitro proliferation of chicken B-cells. Vet Immunol Immunopathol 2009; 131:218-28. [PMID: 19447503 DOI: 10.1016/j.vetimm.2009.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 12/09/2008] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
The study aimed to evaluate short synthetic oligodeoxyribonucleotides (ODN) as inducers of proliferation of chicken peripheral blood mononuclear cells (PBMC) and to identify the proliferating cells. A panel of different ODN; with phosphodiester and/or phosphorothioate backbone, with and without CpG-motifs, was therefore assessed for in vitro induction of proliferation. Six complete phosphorothioate ODN induced proliferation of PBMC while the complete phosphodiester or chimeric phosphodiester/phosphorohiate ODN did not. Moreover, CpG-motifs were not essential for induction of proliferation as responses to CpG-ODN were similar to those of their GpC controls. Two stimulatory phosphorothioate ODN were also used in phosphodiester form. In this comparison, only the phosphorothioate ODN were active despite the identical nucleotide sequences of their phosphodiester counterparts. In order to deliver DNA to the cytoplasm and decrease degradation of ODN by nucleases, stimulating as well as inactive ODN were treated with lipofectin prior to induction. However, proliferative responses were not influenced by lipofectin treatment and in analogy, none of the inactive ODN induced proliferation after lipofectin treatment. Among PBMC, ODN-responding cells were identified as predominantly Bu-1, immunoglobulin and major histocompatibility complex class II expressing cells, while CD3 expressing cells were not responding. Using magnetic cell separation of Bu-1 expressing cells prior to culture it was found that Bu-1 depleted cells did not proliferate upon ODN stimulation while the Bu-1 enriched cells were able to proliferate upon this stimulus. Taken together, among ODN in the present panel, only phosphorothioate ODN induced proliferation of PBMC. Responses were induced regardless of the presence of CpG-motifs and were not influenced by addition of lipofectin. Amid the chicken PBMC, predominantly cells of a B-cell phenotype proliferated in response to ODN stimulation and they were able to respond to this stimulus without the presence of other cell types.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Virology, Immunobiology and Parasitology (SWEPAR), National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
17
|
Wilson KD, de Jong SD, Tam YK. Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy. Adv Drug Deliv Rev 2009; 61:233-42. [PMID: 19232375 DOI: 10.1016/j.addr.2008.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/15/2008] [Indexed: 11/26/2022]
Abstract
There has been significant interest in the potential of cytosine-guanine (CpG) containing oligodeoxynucleotides (ODN) as an immunotherapy for malignant, infectious and allergic diseases. While human trials have yielded promising results, clinical use of free CpG ODN still faces several challenges which limit their effectiveness. These include suboptimal in vivo stability, toxicity, unfavorable pharmacokinetic/biodistribution characteristics, lack of specificity for target cells and the requirement for intracellular uptake. To overcome these challenges, optimized lipid-based delivery systems have been developed to protect the CpG ODN payload, modify their circulation/distribution so as to enhance immune cell targeting and facilitate intracellular uptake. Ultimately, lipid-mediated delivery has the capacity to increase the immunopotency of CpG ODN and enhance their prophylactic or therapeutic efficacy in a range of diseases. Lipid-encapsulation provides a feasible strategy to optimize the immunostimulatory activity and immunotherapeutic efficacy of CpG ODN, thereby allowing their full clinical potential to be realized.
Collapse
|
18
|
|
19
|
Couvreu P, Fattal E, Malvy C, Dubernet C. pH-Sensitive Liposomes: An Intelligent System for the Delivery of Antisense Oligonucleotides. J Liposome Res 2008. [DOI: 10.3109/08982109709035478] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Tari AM, Stephens C, Rosenblum M, Lopez-Berestein G. Pharmacokinetics, Tissue Distribution, and Safety of P-Ethoxy Oligonucleotides Incorporated in Liposomes. J Liposome Res 2008. [DOI: 10.3109/08982109809035530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Dass CR, Walker TL, Decruz EE, Burton MA. Cationic Liposomes and Gene Therapy for Solid Tumors. Drug Deliv 2008. [DOI: 10.3109/10717549709051887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049309031529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049309015327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
|
25
|
Kirk Field A, Goodchild J. Section Review: Biologicals & Immunologicals: Antisense oligonucleotides: Rational drug design for genetic pharmacology. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.9.799] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Brignole C, Marimpietri D, Pagnan G, Di Paolo D, Zancolli M, Pistoia V, Ponzoni M, Pastorino F. Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD2 immunoliposome: immune cell-mediated anti-tumor activities. Cancer Lett 2005; 228:181-6. [PMID: 15936140 DOI: 10.1016/j.canlet.2004.11.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 11/30/2004] [Indexed: 11/24/2022]
Abstract
Liposome encapsulation of anticancer agents results in reduced side effects of the entrapped drug and improved therapeutic efficacy. The external surface of the lipidic envelope can be coupled with antibodies directed against tumor-associated antigens. The resulting immunoliposomes allow to increase the therapeutic index of cytotoxic drugs while minimizing their systemic toxicity. In this regard, the disialoganglioside GD2 is a very promising tumor-associated antigen since it is expressed at high intensity on human neuroblastoma cells, but is detected only in normal cerebellum and peripheral nerves. Immunoliposomes can be used as vectors to deliver antisense oligonucleotides to cancer cells with the aim to modulate oncogene expression. Furthermore, antisense oligonucleotides have attracted much interest because of their ability to stimulate immune responses. Here, we will describe a novel experimental therapeutic approach for neuroblastoma based on anti-GD2 liposomal c-myb-selective antisense oligonucleotides.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Oncology, Giannina Gaslini Children's Hospital, Largo Gerolamo Gaslini, 5, 16148 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thierry AR, Abes S, Resina S, Travo A, Richard JP, Prevot P, Lebleu B. Comparison of basic peptides- and lipid-based strategies for the delivery of splice correcting oligonucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1758:364-74. [PMID: 16360115 DOI: 10.1016/j.bbamem.2005.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/28/2022]
Abstract
Expression of alternatively spliced mRNA variants at specific stages of development or in specific cells and tissues contributes to the functional diversity of the human genome. Aberrations in alternative splicing were found as a cause or a contributing factor to the development, progression, or maintenance of numerous diseases. The use of antisense oligonucleotides (ON) to modify aberrant expression patterns of alternatively spliced mRNAs is a novel means of potentially controlling such diseases. Oligonucleotides can be designed to repair genetic mutations, to modify genomic sequences in order to compensate for gene deletions, or to modify RNA processing in order to improve the effects of the underlying gene mutation. Steric block ON approach have proven to be effective in experimental model for various diseases. Here, we describe our experience in investigating two strategies for ON delivery: ON conjugation with basic peptides and lipid-based particulate system (lipoplex). Basic peptides or Cell Penetrating Peptides (CPP) such as the TAT-derived peptide appear to circumvent many problems associated with ON and drug delivery. This strategy may represent the next paradigm in our ability to modulate cell function and offers a unique avenue for the treatment of disease. Lipoplexes result from the intimate interaction of ON with cationic lipids leading to ON carrying particles able to be taken up by cells and to release ON in the cytoplasm. We have used as an experimental model the correction of a splicing alteration of the mutated beta-globin intron causing thalassemia. Data on cell penetration and efficacy of correction of specific steric block ON delivered either by basic peptides or lipoplex are described. A comparison of the properties of both delivery systems is made respective to the use of this new class of therapeutic molecules.
Collapse
Affiliation(s)
- Alain R Thierry
- UMR 5124 CNRS, CC 086, Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Lindner LH, Brock R, Arndt-Jovin D, Eibl H. Structural variation of cationic lipids: minimum requirement for improved oligonucleotide delivery into cells. J Control Release 2005; 110:444-456. [PMID: 16297484 DOI: 10.1016/j.jconrel.2005.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 10/11/2005] [Accepted: 10/13/2005] [Indexed: 01/13/2023]
Abstract
In vivo transfection efficiency (TE) using cationic liposome/oligonucleotide (ODN) complexes is often hampered by interactions with serum components. Novel cationic lipids with different hydroxyethyl or dihydroxypropyl ammonium backbones, esterified hydrocarbon chains and hydroxy substituents have been synthesized and applied in cationic liposome formulations with and without the helper lipid DOPE (1:1, m/m). Their properties for cellular ODN delivery were determined using fluorescently labeled ODNs (F-ODNs). Cationic lipids with hydrocarbon chains esterified to non-glycerol backbones in non-vicinal configuration were completely ineffective in nuclear ODN-delivery. Instead, an increased cytoplasmic localization of F-ODNs was observed. Cationic lipids equipped with only one hydrocarbon were completely incompetent for cellular ODN delivery. In the absence of serum, all cationic lipids tested with hydrocarbon chains in vicinal configuration esterified to a glycerol backbone (the respective N-(1,2-diacyl-dihydroxypropyl)-N,N,N-trimethyl-ammoniumchlorides or N-(1,2-diacyl-dihydroxypropyl)-N(hydroxyethyl)-N,N-dimethyl-ammoniumchlorides as well as N-(1,2-diacyl-dihydroxypropyl)-N(1,2-dihydroxypropyl)-N,N-dimethyl-ammoniumchlorides with lauroyl, myristoyl, palmitoyl, stearoyl and erucoyl chains) were able to transfect cells when combined with DOPE (20-80% nuclear fluorescence). Remarkably, only the analog esterified with two myristoyl chains was equally effective even in the absence of DOPE. By adding hydroxy groups to the N-alkyl residue, TE under serum conditions was improved yielding transfection rates of 55%, 75% and 90% for 0, 1 or 2 substituted hydroxy groups, respectively. For plasmid DNA, different requirements were identified. Again, the analog with two myristoyl chains was most effective but only in the presence of DOPE. However, the addition of hydroxy groups had no influence on the TE in the presence of serum.
Collapse
Affiliation(s)
- Lars H Lindner
- Max Planck Institute for Biophysical Chemistry, Phospholipid Research Group, Goettingen, Germany.
| | - Roland Brock
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Goettingen, Germany
| | - Donna Arndt-Jovin
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Goettingen, Germany
| | - Hansjoerg Eibl
- Max Planck Institute for Biophysical Chemistry, Phospholipid Research Group, Goettingen, Germany
| |
Collapse
|
29
|
Wattrang E, Berg M, Magnusson M. Immunostimulatory DNA activates production of type I interferons and interleukin-6 in equine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol 2005; 107:265-79. [PMID: 15955566 DOI: 10.1016/j.vetimm.2005.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/15/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
This study aimed to evaluate different nucleic acid preparations as cytokine inducers in equine cells. To induce cytokine production, bacterial plasmid DNA or short synthetic oligodeoxyribonucleotides (ODN), with or without the transfection reagent lipofectin, were added to cultures of purified equine peripheral blood mononuclear cells (PBMC). Cytokine activity was detected with bioassays in cell culture supernatants after 24h of induction and cytokine mRNA expression was detected using RT-PCR at 6h post induction. For IFN-alpha/beta it was found that both plasmid DNA and phosphodiester ODN, containing an unmethylated CpG-motif, were able to induce IFN production in the presence of lipofectin but not without. The levels of IFN varied with individuals and were often quite low. Moreover, methylation or removal of the CpG sequence completely abolished IFN induction. CpG-containing ODN with poly-guanine (G) sequences in the 5' and 3' ends induced considerably higher levels of IFN, especially when the poly-G sequences had a phosphorothioate backbone. ODN with poly-G sequences also had the ability to induce IFN in the absence of lipofectin but the levels of IFN induced were radically reduced compared to those induced with lipofectin. In contrast to IFN, which was only detected upon induction, low spontaneous IL-6 production was observed in unstimulated control cultures. Nevertheless, plasmid DNA and CpG-containing ODN were able to increase the IL-6 production threefold. All the IFN inducing ODN also induced IL-6 production and the levels of IL-6 induced seemed influenced by addition of lipofectin and presence of poly-G sequences in the same way as was observed for the IFN-production. However, a complete phosphorothioate ODN with a central CpG-motif and poly-C sequences, that did not induce IFN, readily induced IL-6 both in the presence and absence of lipofectin. In addition, there was also evidence that some ODN induced increased expression of IL-12p40 mRNA. To conclude, equine PBMC were able to recognize CpG-DNA and respond with both IFN-alpha/beta and/or IL-6 production. The levels of cytokine induced, and sometimes which cytokine induced, varied with, e.g., CpG-motifs used, the presence of poly-G sequences, ODN backbone chemistry and presence of lipofectin.
Collapse
Affiliation(s)
- Eva Wattrang
- Section of Veterinary Immunology and Virology, Department of Molecular Biosciences, Swedish University of Agricultural Sciences, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Vasconcelos MH, Maia LF, Sousa C, Beleza SS, Guimarães JE. Evidence for a specific intracellular localization of an antisense oligonucleotide in k562 cells. J Pharmacol Sci 2005; 99:105-8. [PMID: 16141637 DOI: 10.1254/jphs.sce05001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In order to be active, antisense oligonucleotides (ASOs) should be delivered to the nuclei of cells. The lack of effect of some ASOs might be explained by poor distribution inside the cell. Here we describe the study of the intracellular distribution of an ASO in a leukemic cell line in which the ASO was not showing an effect. We used fluorescein isothiocyanate-labeled ASO and fluorescent or confocal microscopy. The internalised ASO was localized in a specific intracellular juxtanuclear region, showing no cytoplasmic or nuclear diffusion. Transfection of the ASO improved cellular distribution to the cytoplasm and nuclei and improved the ASO effect.
Collapse
|
31
|
Tinnefeld P, Sauer M. Branching Out of Single‐Molecule Fluorescence Spectroscopy: Challenges for Chemistry and Influence on Biology. Angew Chem Int Ed Engl 2005; 44:2642-2671. [PMID: 15849689 DOI: 10.1002/anie.200300647] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells.
Collapse
Affiliation(s)
- Philip Tinnefeld
- Applied Laserphysics und Laserspectroscopy, Faculty of Physics, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany, Fax: (+49) 521-106-2958
| | - Markus Sauer
- Applied Laserphysics und Laserspectroscopy, Faculty of Physics, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany, Fax: (+49) 521-106-2958
| |
Collapse
|
32
|
Tinnefeld P, Sauer M. Neue Wege in der Einzelmolekül-Fluoreszenzspektroskopie: Herausforderungen für die Chemie und Einfluss auf die Biologie. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200300647] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Tavitian B. Oligonucleotides as radiopharmaceuticals. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:1-34. [PMID: 15524208 DOI: 10.1007/3-540-26809-x_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- B Tavitian
- INSERM ERM 103 Service Hospitalier, Frédéric Joliot CEA Direction des Sciences du Vivant Direction de la Recherche Medicale, Orsay, France.
| |
Collapse
|
34
|
Domeika K, Magnusson M, Eloranta ML, Fuxler L, Alm GV, Fossum C. Characteristics of oligodeoxyribonucleotides that induce interferon (IFN)-alpha in the pig and the phenotype of the IFN-alpha producing cells. Vet Immunol Immunopathol 2004; 101:87-102. [PMID: 15261695 PMCID: PMC7125693 DOI: 10.1016/j.vetimm.2004.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 03/16/2004] [Accepted: 04/04/2004] [Indexed: 11/26/2022]
Abstract
The immunostimulatory effects of oligodeoxyribonucleotides (ODN) containing unmethylated CpG dinucleotides (CpG-ODN) in certain base contexts have been extensively studied in man and mice. One major action is their ability to trigger production of massive amounts of interferon-alpha (IFN-alpha) by plasmacytoid dendritic cells (PDC), also referred to as natural IFN-alpha/beta producing cells (NIPC). The present study using porcine PBMC activated by CpG-ODN or plasmid DNA revealed a considerable variation in the IFN-alpha production in response to various CpG-ODN constructs. Several phosphodiester ODNs, such as 5' TTTTCAATTCGAAGATGAAT 3' (ODN H), and the plasmid pcDNA3 all required pre-incubation with lipofectin in order to induce IFN-alpha. Intact unmethylated CpGs were also important, because methylation or substitution of the cytosines and CpG-inversion strongly reduced the IFN-alpha induction by single- or double-stranded forms of ODN H. Certain CpG-ODNs that contained flanking phosphorothioate or phosphodiester poly-G sequences were potent inducers of IFN-alpha without pre-incubation with lipofectin, for instance the ODN 2216 (5' GGGGGACGATCGTCGGGGGG 3'). While poly-G sequences have been suggested to increase uptake of ODNs by cells, they did not obviate the need for lipofectin when added to the ODN H. However, they resulted in up to five-fold increases of the IFN-alpha levels caused by ODN H upon lipofection, indicating other enhancing effects of poly-G sequences on the induction of IFN-alpha. The identity of the IFN-alpha producing cells (IPC) stimulated by CpG-ODN or plasmid DNA was studied by means of flow cytometry using combined staining for intracellular IFN-alpha and surface markers. Approximately 1-3 IPC/10(3) PBMC were detected, compared to only 3 IPC/10(4) PBMC stimulated by Aujeszky's disease virus. The IPC frequencies were confirmed by detection of IFN-alpha mRNA positive cells by in situ hybridisation. The IPC induced by CpG-ODN or plasmid DNA had a similar phenotype, expressing CD2 and CD4 and intermediate levels of MHC class II and the myeloid marker SWC3, but not the markers of T and B cells or monocytes (CD3, CD21 and CD14). Consequently, porcine IPC that respond to CpG-DNA seem to correspond to the PDC/NIPC.
Collapse
Affiliation(s)
- Kristina Domeika
- Department of Molecular Biosciences, Section of Veterinary Immunology and Virology, Biomedical Centre, Swedish University of Agricultural Sciences, P.O. Box 588, SE-751 23 Uppsala
| | | | | | | | | | | |
Collapse
|
35
|
Jääskeläinen I, Lappalainen K, Honkakoski P, Urtti A. Requirements for delivery of active antisense oligonucleotides into cells with lipid carriers. Methods Enzymol 2004; 387:210-30. [PMID: 15172166 DOI: 10.1016/s0076-6879(04)87013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
36
|
Mukherjee S, Bhattacharyya D. Effect of phosphorothioate chirality on the grooves of DNA double helices: a molecular dynamics study. Biopolymers 2004; 73:269-82. [PMID: 14755583 DOI: 10.1002/bip.10550] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphorothioate oligonucleotides (PS-ODNs) have gained considerable attention in drug therapy, primarily as potent antisense or antigene oligomers, which bind to specific DNA or mRNA sequences and lead to transcriptional or translational arrest. These are obtained by substituting one of the anionic oxygen of the phosphate group by a sulfur atom, which introduces chirality to the phosphorus atom of the DNA backbone. In this molecular dynamics simulation study, structural parameters like groove widths, environmental parameters like hydration or cation binding, and electrostatic energy surfaces of both the chiral forms of DNA/PS-DNA duplexes were assessed and compared with that of a normal DNA. Results indicate that, PS-S form with its sulfur atoms facing the minor groove has a widened minor groove, while the scenario is reverse for the PS-R form. Further analysis reveals the existence of several factors like large van der Waals radius of sulfur and the effect it has on its neighboring hydration pattern along with the net electrostatic environment, influencing such structural alterations. This also indicates, for the first time, the effect of absolute phosphorothioate chirality on the global structure of a DNA/PS-DNA hybrid that otherwise resembles a regular B-DNA structure.
Collapse
Affiliation(s)
- Shayantani Mukherjee
- Biophysics Division, Saha Institute of Nuclear Physics, 37 Belgachia Road, Kolkata 700037, India
| | | |
Collapse
|
37
|
Lavigne C, Lunardi-Iskandar Y, Lebleu B, Thierry AR. Cationic liposomes/lipids for oligonucleotide delivery: application to the inhibition of tumorigenicity of Kaposi's sarcoma by vascular endothelial growth factor antisense oligodeoxynucleotides. Methods Enzymol 2004; 387:189-210. [PMID: 15172165 DOI: 10.1016/s0076-6879(04)87012-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Carole Lavigne
- Institut de Recherche Medicale Beausejour, Moncton, New Brunswick, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Oligonucleotides (ONs) are a new class of therapeutic compounds under investigation for the treatment of a variety of disease states, such as cancer and HIV, and for FDA approval of an anti-CMV retinitis antisense molecule (Vitravene trade mark, Isis Pharmaceuticals). However, these molecules are limited not only by poor cellular uptake, but also by a general lack of understanding regarding the mechanism(s) of ON cellular uptake. As a result, various delivery vehicles have been developed that circumvent the proposed mechanism of uptake, endocytosis, while improving target specific delivery and/or drug stability. This review describes various traditional and novel delivery mechanisms that have been employed to improve ON cellular delivery, cost effectiveness, and therapeutic efficacy.
Collapse
Affiliation(s)
- Melanie A Lysik
- Midwestern University, College of Pharmacy-Glendale, Department of Pharmaceutical Sciences, 19555 N 59th Avenue, Glendale, Arizona 18308, USA.
| | | |
Collapse
|
39
|
McKeon J, Khaledi MG. Evaluation of liposomal delivery of antisense oligonucleotide by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 2003; 1004:39-46. [PMID: 12929959 DOI: 10.1016/s0021-9673(03)00721-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Two widely used commercial cationic liposome formulations, Lipofectamine and Escort, were evaluated for drug delivery efficacy with capillary electrophoresis coupled with laser-induced fluorescence detection using a fluorescein conjugated 2'-O-methyl-phosphorothioate (Me-PS) antisense oligonucleotide and the HeLa cell line. Binding constants were estimated by monitoring changes in the electrophoretic mobility of the oligonucleotide with the liposome solution in the running buffer. From these changes in mobility, the binding constants for Lipofectamine and Escort liposomes with Me-PS oligomer were estimated to be 1139 and 590 M(-1), respectively. Additionally, intracellular concentrations and gene expression were quantified for the liposome formulations.
Collapse
Affiliation(s)
- Jocelyn McKeon
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695-8204, USA
| | | |
Collapse
|
40
|
Tavitian B, Marzabal S, Boutet V, Kühnast B, Terrazzino S, Moynier M, Dollé F, Deverre JR, Thierry AR. Characterization of a synthetic anionic vector for oligonucleotide delivery using in vivo whole body dynamic imaging. Pharm Res 2002; 19:367-76. [PMID: 12033366 DOI: 10.1023/a:1015133205457] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To compare the pharmacokinetics and bioavailability of an oligonucleotide delivered in a free form or using cationic or anionic synthetic carrier systems. METHODS Whole body dynamic quantitative imaging and metabolism of a HIV antisense oligonucleotide intravenously administered either free or incorporated into synthetic carriers were compared in baboons. using non invasive positron emission tomography and an enzyme-based competitive hybridization assay, respectively. RESULTS In its free form, the oligonucleotide showed high liver and kidney concentration, rapid plasmatic degradation and elimination from the body. Use of a cationic vector slightly protected the oligonucleotide against degradation and enhanced uptake by the reticulo-endothelial system. In contrast, the anionic vector dramatically enhanced the uptake in several organs, including the lungs, spleen and brain, with a prolonged accumulation of radioactivity in the brain. Using this vector, intact oligonucleotide was detected in plasma for up to two hours after injection. and the T 1/2beta and distribution volume increased by 4- and 7-fold, respectively. No evidence of toxicity was found after a single dose administration. CONCLUSIONS The anionic vector improves significantly the bioavailability and the pharmacokinetics of the oligonucleotide, and is a promising delivery system for in vivo administration of therapeutic nucleic acids.
Collapse
|
41
|
Abstract
The aim of this contribution is to summarize recent findings on the potential use of cyclodextrins and their derivatives as carriers for oligonucleotide agents. Their peculiar properties could be exploited in such an emerging therapeutic area by virtue of their capability of interacting with cellular membranes, thus giving rise to improved cellular uptake. In particular, some specific derivatives could be considered as promising future excipients for the delivery of "naked" antisense and/or decoy oligonucleotides which are difficult to formulate with existing pharmaceutical excipients.
Collapse
Affiliation(s)
- E Redenti
- R&D Department, Chiesi Farmaceutici S.p.A., Via Palermo 26/A, 43100 Parma, Italy.
| | | | | | | |
Collapse
|
42
|
Düzgünes N, Simões S, Konopka K, Rossi JJ, Pedroso de Lima MC. Delivery of novel macromolecular drugs against HIV-1. Expert Opin Biol Ther 2001; 1:949-70. [PMID: 11728227 DOI: 10.1517/14712598.1.6.949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of new low molecular weight drugs against human immunodeficiency virus Type 1 (HIV-1) targets other than reverse transcriptase (RT) and protease, such as the integrase and the envelope glycoprotein, is likely to take many years. Macromolecular drugs, including antisense oligonucleotides, ribozymes, RNA decoys and transdominant mutant proteins, may be able to interfere with a relatively large number of viral targets, thereby decreasing the likelihood of the emergence of drug-resistant strains. It may also be relatively easy to alter the sequence of some of the macromolecular drugs to counter emerging drug-resistant viruses. The delivery of antisense oligonucleotides and ribozymes to HIV-1 infected or potentially infectable cells by antibody-targeted liposomes, certain cationic lipid formulations and pH-sensitive liposomes results in significant anti-HIV-1 activity. These carriers not only facilitate cytoplasmic delivery but also protect the drugs from nuclease digestion. Delivery of therapeutic genes (another form of macromolecular drug) to target cells is an important challenge of gene therapy. Following delivery by a viral vector, sufficient levels of gene expression must be maintained over an extended period of time to have therapeutic activity. Robust expression of therapeutically useful ribozymes, antisense, decoys and aptamers can be achieved by the use of Pol III expression systems. Moloney murine leukaemia virus- (MoMuLV), adeno-associated virus (AAV)-, or HIV-derived vectors expressing a variety of therapeutic genes have been used successfully to inhibit HIV-1 replication in cultured cells.
Collapse
Affiliation(s)
- N Düzgünes
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA.
| | | | | | | | | |
Collapse
|
43
|
McKeon J, Khaledi MG. Quantitative nuclear and cytoplasmic localization of antisense oligonucleotides by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2001; 22:3765-70. [PMID: 11699916 DOI: 10.1002/1522-2683(200109)22:17<3765::aid-elps3765>3.0.co;2-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We demonstrate the use of simple extraction procedures to separate nuclear and cytoplasmic material from cell extracts, which have been scrape-loaded with a 2-O-methyl phosphorothioate antisense oligonucleotide. Separation and quantitation of the fluorescein-labeled antisense and the flourescein isothiocyanate (FITC)-dextran (molecular weight 40000) as an internal standard is done using capillary electrophoresis coupled with laser-induced fluorescence detection (CE-LIF). The bulky FITC-dextran is unable to penetrate the nuclear membrane thereby making it a quantitative indicator of any overlap between the nuclear and cytoplasmic materials during separation of the two phases. Using this procedure, the fluorescein-labeled phosphorothioate oligomer was quantitated at 4.1 x 10(-13) and 3.4x 10(-14) mol antisense/microg-total cellular protein in the nuclear and cytoplasmic extracts respectively following scrape-load delivery of the phosphorothioate to a batch of confluent HeLa cells at a concentration of 0.5 microM (5 x 10(-10) total moles of oligomer). Additionally, gene expression was monitored by measurement of the luciferase reporter protein activity. Scrape-load, spontaneous and liposomal delivery were investigated and compared for subcellular distribution of the oligomer and subsequent gene expression.
Collapse
Affiliation(s)
- J McKeon
- Department of Chemistry, North Carolina State University, Raleigh 27695, USA
| | | |
Collapse
|
44
|
McKeon J, Cho MJ, Khaledi MG. Quantitation of intracellular concentration of a delivered morpholino oligomer by capillary electrophoresis-laser- induced fluorescence: correlation with upregulation of luciferase gene expression. Anal Biochem 2001; 293:1-7. [PMID: 11373071 DOI: 10.1006/abio.2001.5087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antisense oligonucleotides have shown great promise over the past several years as viable drugs to combat various forms of cancer and viral diseases. However, quantitative detection to monitor cellular association is difficult using conventional methods such as radiolabeling of the oligonucleotide or fluorescence confocal microscopy. In this paper quantitation of intracellular concentration of the morpholino oligonucleotide is investigated using capillary electrophoresis coupled with laser-induced fluorescence detection (CE-LIF). HeLa cells, which produce luciferase as the antisense oligomer enters the cell, were scrape-loaded with varying concentrations of the morpholino antisense. The intracellular antisense concentration measured by CE-LIF was found to correlate with those obtained with the cellular functional assay based on upregulation of luciferase. Intracellular concentrations of the antisense were found to be in the range of 6 to 29 nmol/g total cell protein, depending on the amounts that were scrape-loaded. To our best knowledge, this is the first reported quantitative correlation between delivered antisense concentration in a cell extract and the subsequent antisense upregulation of gene expression.
Collapse
Affiliation(s)
- J McKeon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
45
|
Abstract
Lysine, an essential cationic amino acid, has a positively charged R group. The structure of lysine is given as (H(3)N(+)-)CH(-COO(-))-CH(2)-CH(2)-CH(2)-CH(2)-N(+)H(3).While the anabolic role(s) of the molecule has been in focus for quite a few decades now, its biological properties, e.g. role in cellular proliferation in vitro (both anchorage dependent and anchorage independent) and in vivo, its ability to induce strong inflammatory and immune responses - both humoral and cell mediated, its role in augmented healing of all types of wounds in animal models as well as in human subjects (both acute and chronic), as well as its role in inducing extensive angiogenic responses, have never received reasonable attention so far. In the current brief and indicative review (rather than exhaustive reviews of each area), we intend to bring these biological properties of the molecule to focus while discussing a few other interesting aspects - lysine as a food preservative as well as its possible role(s) in immune therapy. While the areas look extremely divergent, we propose a common denominator in the form of a possible molecular mechanism of action of the molecule in all these diverse situations.
Collapse
Affiliation(s)
- D Datta
- School of BioMedical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India,
| | | | | |
Collapse
|
46
|
Abe T, Mizuta T, Hatta T, Miyano-Kurosaki N, Fujiwara M, Takai K, Shigeta S, Yokota T, Takaku H. Antisense therapy of influenza. Eur J Pharm Sci 2001; 13:61-9. [PMID: 11292569 DOI: 10.1016/s0928-0987(00)00208-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The liposomally encapsulated and the free antisense phosphorothioate oligonucleotides (S-ODNs) with four target sites (PB1, PB2, PA, and NP) were tested for their abilities to inhibit virus-induced cytopathogenic effects by a MTT assay using MDCK cells. The liposomally encapsulated S-ODN complementary to the sites of the PB2-AUG initiation codon showed highly inhibitory effects. On the other hand, the inhibitory effect of the liposomally encapsulated S-ODN targeted to PB1 was considerably decreased in comparison with those directed to the PB2 target sites. The liposomally encapsulated antisense phosphorothioate oligonucleotides exhibited higher inhibitory activities than the free oligonucleotides, and showed sequence-specific inhibition, whereas the free antisense phosphorothioate oligonucleotides were observed to inhibit viral absorption to MDCK cells. Therefore, the antiviral effects of S-ODN-PB2-AUG and PA-AUG were examined in a mouse model of influenza virus A infection. Balb/c mice exposed to the influenza virus A (A/PR/8/34) strain at dose of 100 LD(50)s were treated i.v. with various doses (5-40 mg/kg) of liposomally (Tfx-10) encapsulated PB2-AUG or PA-AUG before virus infection and 1 and 3 days postinfection. PB2-AUG oligomer treated i.v. significantly prolonged the mean survival time in days (MDS) and increased the survival rates with a dose-dependent manner. We demonstrate the first successful in vivo antiviral activity of antisense administered i.v. in experimental respiratory tract infections induced with influenza virus A.
Collapse
Affiliation(s)
- T Abe
- Department of Industrial Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Semple SC, Klimuk SK, Harasym TO, Dos Santos N, Ansell SM, Wong KF, Maurer N, Stark H, Cullis PR, Hope MJ, Scherrer P. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:152-66. [PMID: 11342155 DOI: 10.1016/s0005-2736(00)00343-6] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.
Collapse
Affiliation(s)
- S C Semple
- Inex Pharmaceutical Corp., Burnaby, B.C., Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kusunoki A, Saitou T, Miyano-Kurosaki N, Takaku H. Inhibition of the human chemokine receptor CXCR4 by antisense phosphorothioate oligodeoxyribonucleotides. FEBS Lett 2001; 488:64-8. [PMID: 11163797 DOI: 10.1016/s0014-5793(00)02381-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CXC chemokine receptor CXCR4/fusion, a major coreceptor for the T-cell line T-tropic (X4) HIV-1 virus, plays a critical role in T-tropic virus fusion and entry into permissive cells. In the present study, we describe the effects of an antisense phosphorothioate oligodeoxyribonucleotide (anti-S-ODN) on the inhibition of CXCR4 gene expression in X4 HIV-1 infected HeLa-CD4 cells, to find more efficacious therapeutic possibilities for human immunodeficiency virus type 1 (HIV-1) infection. The naked antisense phosphorothioate oligodeoxyribonucleotide (anti-S-ODN-1), containing the AUG initiation codon at the center of the oligodeoxyribonucleotide, showed a slightly higher inhibitory effect on HIV-1 gag p24 production among all sequences tested. We also examined the concomitant use of a basic peptide transfection reagent, nucleosomal histone proteins (RNP), for the delivery of the anti-S-ODN-1. The anti-S-ODN-1 encapsulated with RNP had higher inhibitory effects on p24 products than the naked anti-S-ODN-1. When the anti-S-ODN-1 encapsulated with RNP was incubated with HeLa-CD4 cells, the surface levels of this chemokine receptor showed high suppression, indicating sequence-specific inhibition. The activities of unmodified oligodeoxyribonucleotide are effectively enhanced by using a basic peptide, RNP.
Collapse
Affiliation(s)
- A Kusunoki
- Department of Industrial Chemistry, Chiba Institute of Technology, Narashino, Chiba, Japan
| | | | | | | |
Collapse
|
49
|
Magnusson M, Johansson E, Berg M, Eloranta ML, Fuxler L, Fossum C. The plasmid pcDNA3 differentially induces production of interferon-alpha and interleukin-6 in cultures of porcine leukocytes. Vet Immunol Immunopathol 2001; 78:45-56. [PMID: 11182147 DOI: 10.1016/s0165-2427(00)00251-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An adjuvant effect of invertebrate DNA has been attributed to its relative high frequency of unmethylated CpG dinucleotides. Here we describe the interferon-alpha (IFN-alpha) and interleukin-6 (IL-6) inducing properties of a commonly used eukaryotic expression vector, pcDNA3, in porcine leukocytes. The magnitude of the cytokine response was compared to that induced by the synthetic ds RNA analogue poly(I):poly(C), inactivated preparations of Aujeszky's disease virus (ADV) and the Gram-negative bacteria Actinobacillus pleuropneumoniae. The plasmid, as well as poly(I):poly(C), required lipofectin to induce IFN-alpha production whereas both preparations induced IL-6 irrespective of preincubation with lipofectin. However, the nucleic acid-induced levels of IL-6 were low compared to those induced by A. pleuropneumoniae. The IFN-alpha response elicited by pcDNA3 in the presence of lipofectin was as high as, or higher than that induced by ADV. Interestingly, also A. pleuropneumoniae induced a substantial production of IFN-alpha when preincubated with lipofectin. Plasmid expression was not necessary for induction of IFN-alpha. Furthermore, the IFN-alpha inducing capacity of pcDNA3 was not reduced when the two predicted immunostimulatory sequences 5'AACGTT3' were deleted. Nor did the ability of the plasmid to induce IFN-alpha production decrease when the ampicillin resistance (ampR) gene was replaced with the kanamycin resistance (kanR) gene. However, methylation of all cytidines in CpG dinucleotides of pcDNA3 abolished the IFN-alpha inducing capacity. These in vitro results indicate an immunomodulatory role of bacterial DNA also in the pig. Unmethylated CpG dinucleotides are crucial for induction of IFN-alpha by the plasmid, but other CpG motifs than those within the 5'AACGTT3' sequences of the ampR gene contribute to this induction in porcine cells.
Collapse
Affiliation(s)
- M Magnusson
- Department of Veterinary Microbiology, Division of Immunology, Swedish University of Agricultural Sciences, BMC, Box 588, S-751 23, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
50
|
Mizuta T, Fujiwara M, Abe T, Miyano-Kurosaki N, Yokota T, Shigeta S, Takaku H. Inhibitory effects of an antisense oligonucleotide in an experimentally infected mouse model of influenza A virus. Biochem Biophys Res Commun 2000; 279:158-61. [PMID: 11112432 DOI: 10.1006/bbrc.2000.3924] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The antiviral effects of a 20-mer antisense phosphorothioate oligonucleotide, PB2-as, on influenza A virus infection in mice were examined and compared to those of PB2-as encapsulated with several cationic liposomes. Intravenous injection of PB2-as, as a complex with DMRIE-C, a cationic liposome, was most effective for prolonging the mean survival time in days (MSDs) and increasing the survival rates of mice infected with the influenza A virus. In addition, the liposomal PB2-as significantly inhibited viral growth in lung tissues. These results suggest that PB2-as encapsulated with DMRIE-C may be active against the influenza A virus infection through the inhibition of virus replication in the mouse lung.
Collapse
Affiliation(s)
- T Mizuta
- Department of Microbiology, Fukushima University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|