1
|
Li H, You C, Yoshikawa M, Yang X, Gu H, Li C, Cui J, Chen X, Ye N, Zhang J, Wang G. A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding. Cell Res 2022; 32:931-945. [PMID: 36068348 PMCID: PMC9525692 DOI: 10.1038/s41422-022-00711-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Male sterility enables hybrid crop breeding to increase yields and has been extensively studied. But thermo-sensitive female sterility, which is an ideal property that may enable full mechanization in hybrid rice breeding, has rarely been investigated due to the absence of such germplasm. Here we identify the spontaneous thermo-sensitive female sterility 1 (tfs1) mutation that confers complete sterility under regular/high temperature and partial fertility under low temperature as a point mutation in ARGONAUTE7 (AGO7). AGO7 associates with miR390 to form an RNA-Induced Silencing Complex (RISC), which triggers the biogenesis of small interfering RNAs (siRNAs) from TRANS-ACTING3 (TAS3) loci by recruiting SUPPRESSOR OF GENE SILENCING (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) to TAS3 transcripts. These siRNAs are known as tasiR-ARFs as they act in trans to repress auxin response factor genes. The mutant TFS1 (mTFS1) protein is compromised in its ability to load the miR390/miR390* duplex and eject miR390* during RISC formation. Furthermore, tasiR-ARF levels are reduced in tfs1 due to the deficiency in RDR6 but not SGS3 recruitment by mTFS1 RISC under regular/high temperature, while low temperature partially restores mTFS1 function in RDR6 recruitment and tasiR-ARF biogenesis. A miR390 mutant also exhibits female sterility, suggesting that female fertility is controlled by the miR390-AGO7 module. Notably, the tfs1 allele introduced into various elite rice cultivars endows thermo-sensitive female sterility. Moreover, field trials confirm the utility of tfs1 as a restorer line in fully mechanized hybrid rice breeding.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manabu Yoshikawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai Tsukuba, Ibaraki, Japan
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Haiyong Gu
- The Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Chuanguo Li
- The Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Floxed exon (Flexon): A flexibly positioned stop cassette for recombinase-mediated conditional gene expression. Proc Natl Acad Sci U S A 2022; 119:2117451119. [PMID: 35027456 PMCID: PMC8784106 DOI: 10.1073/pnas.2117451119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Tools that afford spatiotemporal control of gene expression are crucial for studying genes and processes in multicellular organisms. Stop cassettes consist of exogenous sequences that interrupt gene expression and flanking site-specific recombinase sites to allow for tissue-specific excision and restoration of function by expression of the cognate recombinase. We describe a stop cassette called a flexon, composed of an artificial exon flanked by artificial introns that can be flexibly positioned in a gene. We demonstrate its efficacy in Caenorhabditis elegans for lineage-specific control of gene expression and for tissue-specific RNA interference and discuss other potential uses. The Flexon approach should be feasible in any system amenable to site-specific recombination-based methods and applicable to diverse areas including development, neuroscience, and metabolism. Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.
Collapse
|
3
|
Giudice G, Moffa L, Varotto S, Cardone MF, Bergamini C, De Lorenzis G, Velasco R, Nerva L, Chitarra W. Novel and emerging biotechnological crop protection approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1495-1510. [PMID: 33945200 PMCID: PMC8384607 DOI: 10.1111/pbi.13605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.
Collapse
Affiliation(s)
- Gaetano Giudice
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Loredana Moffa
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A)University of UdineUdineItaly
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE)University of PadovaLegnaroPDItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Riccardo Velasco
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| |
Collapse
|
4
|
Leng C, Sun B, Liu Z, Zhang L, Wei X, Zhou Y, Meng Y, Lai Y, Dai Y, Zhu Z. An optimized double T-DNA binary vector system for improved production of marker-free transgenic tobacco plants. Biotechnol Lett 2020; 42:641-655. [PMID: 31965394 DOI: 10.1007/s10529-020-02797-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES In the plant transformation process, marker genes play a vital role in identifying transformed cells from non-transformed cells. However, once transgenic plants have been obtained, the presence of marker genes may provoke public concern about environmental or biosafety issues. In our previous study, a double T-DNA vector system has been developed to obtain marker-free transgenic plants, but the T-DNA left border (LB) and right border (RB) of the vector showed an RB-LB-RB-LB pattern and led to high linkage integration between the selectable marker gene (SMG) and the gene of interest (GOI). To improve this double T-DNA vector system, we inverted the first T-DNA direction such that a LB-RB-RB-LB pattern resulted to avoid transcriptional read-through at the LB and the subsequent linkage transfer of the SMG and GOI. RESULTS We separately inserted the green fluorescent protein (GFP) gene as the GOI and the neomycin phosphotransferase II (NPTII) gene as the SMG in both optimized and original vectors and carried out Agrobacterium-mediated tobacco transformation. Statistical analysis revealed that the linkage frequency was 25.6% in T0 plants transformed with the optimized vector, which is a 42.1% decrease compared with that of the original vector (44.2%). The frequency of obtaining marker-free transgenic plants was 66.7% in T1 plants transformed with the optimized vector, showing a 33.4% increase compared with that of the original vector (50.0%). CONCLUSION Our results demonstrate that the optimized double T-DNA binary vector system is a more effective, economical and time-saving approach for obtaining marker-free transgenic plants.
Collapse
Affiliation(s)
- Chunxu Leng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Bing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zheming Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Meng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yan Dai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Salonia F, Ciacciulli A, Poles L, Pappalardo HD, La Malfa S, Licciardello C. New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1234. [PMID: 32922420 PMCID: PMC7456868 DOI: 10.3389/fpls.2020.01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
New plant breeding techniques (NPBTs) aim to overcome traditional breeding limits for fruit tree species, in order to obtain new varieties with improved organoleptic traits and resistance to biotic and abiotic stress, and to maintain fruit quality achieved over centuries by (clonal) selection. Knowledge on the gene(s) controlling a specific trait is essential for the use of NPBTs, such as genome editing and cisgenesis. In the framework of the international scientific community working on fruit tree species, including citrus, NPBTs have mainly been applied to address pathogen threats. Citrus could take advantage of NPBTs because of its complex species biology (seedlessness, apomixis, high heterozygosity, and long juvenility phase) and aptitude for in vitro manipulation. To our knowledge, genome editing in citrus via transgenesis has successful for induced resistance to Citrus bacterial canker in sweet orange and grapefruit using the resistance gene CsLOB1. In the future, NPBTs will also be used to improve fruit traits, making them healthier. The regeneration of plants following the application of NPBTs is a bottleneck, making it necessary to optimize the efficiency of current protocols. The strengths and weaknesses of using explants from young in vitro plantlets, and from mature plants, will be discussed. Other major issues addressed in this review are related to the requirement for marker-free systems and shortening the long juvenility phase. This review aims to summarize methods and approaches available in the literature that are suitable to citrus, focusing on the principles observed before the use of NPBTs.
Collapse
Affiliation(s)
- Fabrizio Salonia
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| | - Concetta Licciardello
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| |
Collapse
|
6
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
7
|
Jensen IS, Inui K, Drakulic S, Jayaprakash S, Sander B, Golas MM. Expression of Flp Protein in a Baculovirus/Insect Cell System for Biotechnological Applications. Protein J 2017; 36:332-342. [PMID: 28660316 DOI: 10.1007/s10930-017-9724-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Saccharomyces cerevisiae Flp protein is a site-specific recombinase that recognizes and binds to the Flp recognition target (FRT) site, a specific sequence comprised of at least two inverted repeats separated by a spacer. Binding of four monomers of Flp is required to mediate recombination between two FRT sites. Because of its site-specific cleavage characteristics, Flp has been established as a genome engineering tool. Amongst others, Flp is used to direct insertion of genes of interest into eukaryotic cells based on single and double FRT sites. A Flp-encoding plasmid is thereby typically cotransfected with an FRT-harboring donor plasmid. Moreover, Flp can be used to excise DNA sequences that are flanked by FRT sites. Therefore, the aim of this study was to determine whether Flp protein and its step-arrest mutant, FlpH305L, recombinantly expressed in insect cells, can be used for biotechnological applications. Using a baculovirus system, the proteins were expressed as C-terminally 3 × FLAG-tagged proteins and were purified by anti-FLAG affinity selection. As demonstrated by electrophoretic mobility shift assays (EMSAs), purified Flp and FlpH305L bind to FRT-containing DNA. Furthermore, using a cell assay, purified Flp was shown to be active in recombination and to mediate efficient insertion of a donor plasmid into the genome of target cells. Thus, these proteins can be used for applications such as DNA-binding assays, in vitro recombination, or genome engineering.
Collapse
Affiliation(s)
- Ida S Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Ken Inui
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Sakthidasan Jayaprakash
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Kasai Y, Harayama S. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System. PLoS One 2016; 11:e0161733. [PMID: 27564988 PMCID: PMC5001723 DOI: 10.1371/journal.pone.0161733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 12/14/2022] Open
Abstract
The Escherichia coli bacteriophage P1 encodes a site-specific recombinase called Cre and two 34-bp target sites of Cre recombinase called loxP. The Cre/loxP system has been used to achieve targeted insertion and precise deletion in many animal and plant genomes. The Cre/loxP system has particularly been used for the removal of selectable marker genes to create marker-free transgenic organisms. For the first time, we applied the Cre/loxP-mediated site-specific recombination system to Chlamydomonas reinhardtii to construct marker-free transgenic strains. Specifically, C. reinhardtii strains cc4350 and cc124 carrying an aphVIII expression cassette flanked by two direct repeats of loxP were constructed. Separately, a synthetic Cre recombinase gene (CrCRE), the codons of which were optimized for expression in C. reinhardtii, was synthesized, and a CrCRE expression cassette was introduced into strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette. Among 46 transformants carrying the CrCRE expression cassette stably, the excision of aphVIII by CrCre recombinase was observed only in one transformant. We then constructed an expression cassette of an in-frame fusion of ble to CrCRE via a short linker peptide. The product of ble (Ble) is a bleomycin-binding protein that confers resistance to bleomycin-related antibiotics such as Zeocin and localizes in the nucleus. Therefore, the ble-(linker)-CrCRE fusion protein is expected to localize in the nucleus. When the ble-(linker)-CrCRE expression cassette was integrated into the genome of strain cc4350 carrying a single copy of the loxP-flanked aphVIII expression cassette, CrCre recombinase-mediated excision of the aphVIII expression cassette was observed at a frequency higher than that in stable transformants of the CrCRE expression cassette. Similarly, from strain cc124 carrying a single loxP-flanked aphVIII expression cassette, the aphVIII expression cassette was successfully excised after introduction of the ble-(linker)-CrCRE expression cassette. The ble-(linker)-CrCRE expression cassette remained in the genome after excision of the aphVIII expression cassette, and it was subsequently removed by crossing with the wild-type strain. This precise Cre-mediated deletion method applicable to transgenic C. reinhardtii could further increase the potential of this organism for use in basic and applied research.
Collapse
Affiliation(s)
- Yuki Kasai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| | - Shigeaki Harayama
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Turan S, Qiao J, Madden S, Benham C, Kotz M, Schambach A, Bode J. Expanding Flp-RMCE options: the potential of Recombinase Mediated Twin-Site Targeting (RMTT). Gene 2014; 546:135-44. [DOI: 10.1016/j.gene.2014.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 01/02/2023]
|
10
|
Schmouth JF, Castellarin M, Laprise S, Banks KG, Bonaguro RJ, McInerny SC, Borretta L, Amirabbasi M, Korecki AJ, Portales-Casamar E, Wilson G, Dreolini L, Jones SJM, Wasserman WW, Goldowitz D, Holt RA, Simpson EM. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice. BMC Biol 2013; 11:106. [PMID: 24124870 PMCID: PMC4015596 DOI: 10.1186/1741-7007-11-106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. RESULTS In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. CONCLUSIONS We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Mauro Castellarin
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lisa Borretta
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Mahsa Amirabbasi
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Gary Wilson
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Steven JM Jones
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert A Holt
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| |
Collapse
|
11
|
De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:172-184. [PMID: 23574114 DOI: 10.1111/tpj.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
12
|
Recombinase-mediated cassette exchange (RMCE) — A rapidly-expanding toolbox for targeted genomic modifications. Gene 2013. [DOI: 10.1016/j.gene.2012.11.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Retina restored and brain abnormalities ameliorated by single-copy knock-in of human NR2E1 in null mice. Mol Cell Biol 2012; 32:1296-311. [PMID: 22290436 DOI: 10.1128/mcb.06016-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified.
Collapse
|
14
|
|
15
|
Turan S, Bode J. Site‐specific recombinases: from tag‐and‐target‐ to tag‐and‐exchange‐based genomic modifications. FASEB J 2011; 25:4088-107. [DOI: 10.1096/fj.11-186940] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soeren Turan
- Institute for Experimental Hematology, Hannover Medical School Hannover Germany
| | - Juergen Bode
- Institute for Experimental Hematology, Hannover Medical School Hannover Germany
| |
Collapse
|
16
|
Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN. Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. PLANT MOLECULAR BIOLOGY 2011; 75:621-31. [PMID: 21359553 DOI: 10.1007/s11103-011-9756-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/11/2011] [Indexed: 05/07/2023]
Abstract
Transgene escape, a major environmental and regulatory concern in transgenic crop cultivation, could be alleviated by removing transgenes from pollen, the most frequent vector for transgene flow. A transgene excision vector containing a codon optimized serine resolvase CinH recombinase (CinH) and its recognition sites RS2 were constructed and transformed into tobacco (Nicotiana tabacum cv. Xanthi). CinH recombinase recognized 119 bp of nucleic acid sequences, RS2, in pollen and excised the transgene flanked by the RS2 sites. In this system, the pollen-specific LAT52 promoter from tomato was employed to control the expression of CinH recombinase. Loss of expression of a green fluorescent protein (GFP) gene under the control of the LAT59 promoter from tomato was used as an indicator of transgene excision. Efficiency of transgene excision from pollen was determined by flow cytometry (FCM)-based pollen screening. While a transgenic event in the absence of CinH recombinase contained about 70% of GFP-synthesizing pollen, three single-copy transgene events contained less than 1% of GFP-synthesizing pollen based on 30,000 pollen grains analyzed per event. This suggests that CinH-RS2 recombination system could be effectively utilized for transgene biocontainment.
Collapse
Affiliation(s)
- Hong S Moon
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J. Recombinase-Mediated Cassette Exchange (RMCE): Traditional Concepts and Current Challenges. J Mol Biol 2011; 407:193-221. [DOI: 10.1016/j.jmb.2011.01.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 12/18/2022]
|
18
|
Li B, Li N, Duan X, Wei A, Yang A, Zhang J. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 2009; 145:206-13. [PMID: 19932138 DOI: 10.1016/j.jbiotec.2009.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/13/2009] [Accepted: 11/12/2009] [Indexed: 01/31/2023]
Abstract
The possible release of selectable marker genes from genetically modified transgenic plants, or of gut microbes, to the environment, has raised worldwide public concerns. In this study, we showed the generation of marker-free transgenic maize plants constitutively expressing AtNHX1, a Na(+)/H(+) antiporter gene from Arabidopsis that conferred salt tolerance on plants, using the FLP/FRT site-specific recombination system. Transgenic plant expressing a modified FLP recombinase gene was crossed with transgenic plant harboring AtNHX1 and mutant als, a selectable marker gene flanked by two directed FRT sites. The sexual crossing led to precise and complete excision of the FRT-surrounded als marker gene in the F1 progenies. Further salt tolerance examinations indicated that marker-free AtNHX1 transgenic plants accumulated more Na(+) and K(+), and produced greater biomass and yields than did the wild-type plants when grown in high saline fields. These results demonstrate the feasibility of using this FLP/FRT-based marker elimination system to generate marker-free transgenic important cereal crops with improved salt tolerance.
Collapse
Affiliation(s)
- Bei Li
- School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Woo HJ, Cho HS, Lim SH, Shin KS, Lee SM, Lee KJ, Kim DH, Cho YG. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res 2009; 18:455-65. [PMID: 19160066 DOI: 10.1007/s11248-008-9236-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance marker genes are powerful selection tools for use in plant transformation processes. However, once transformation is accomplished, the presence of these resistance genes is no longer necessary and can even be undesirable. We herein describe the successful excision of antibiotic resistance genes from transgenic plants via the use of an oxidative stress-inducible FLP gene. FLP encodes a recombinase that can eliminate FLP and hpt selection genes flanked by two FRT sites. During a transformation procedure in tobacco, transformants were obtained by selection on hygromycin media. Regenerants of the initial transformants were screened for selective marker excision in hydrogen peroxide supplemented media and both the FLP and hpt genes were found to have been eliminated. About 13-41% of regenerated shoots on hydrogen peroxide media were marker-free. This auto-excision system, mediated by the oxidative stress-inducible FLP/FRT system to eliminate a selectable marker gene can be very readily adopted and used to efficiently generate marker-free transgenic plants.
Collapse
Affiliation(s)
- Hee-Jong Woo
- Biosafety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus. Genomics 2008; 93:196-204. [PMID: 18950699 DOI: 10.1016/j.ygeno.2008.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/22/2022]
Abstract
We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 (Hprt1) locus. We employed fine scale mapping to delineate the precise breakpoint location at the Hprt1(b-m3) locus allowing allele specific PCR assays to be established. Our suite of tools contains four targeting expression vectors and a complementing series of embryonic stem cell lines. Two of these vectors encode enhanced green fluorescent protein (EGFP) driven by the human cytomegalovirus immediate-early enhancer/modified chicken beta-actin (CAG) promoter, whereas the other two permit flexible combinations of a chosen promoter combined with a reporter and/or gene of choice. We have validated our tools as part of the Pleiades Promoter Project (http://www.pleiades.org), with the generation of brain-specific EGFP positive germline mouse strains.
Collapse
|
21
|
Rubtsova M, Kempe K, Gils A, Ismagul A, Weyen J, Gils M. Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants. PLANT CELL REPORTS 2008; 27:1821-1831. [PMID: 18797873 DOI: 10.1007/s00299-008-0604-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/05/2008] [Accepted: 08/24/2008] [Indexed: 05/26/2023]
Abstract
Site-specific recombination systems are becoming an important tool for the genetic modification of crop plants. Here we report the functional expression of the Streptomyces phage-derived phiC31 recombinase (integrase) in wheat. T-DNA constructs containing a phiC31 integrase transgene were stably transformed into wheat plants via particle gun bombardment. A plant-virus-based assay system was used to monitor the site-specific recombination activity of the recombinant integrase protein in vivo. We established several independent doubled haploid (DH) inbred lines that constitutively express an active integrase enzyme without any apparent detrimental effects on plant growth and development. The potential of phiC31 integrase expression in crop plants related to transgene control technologies or hybrid breeding systems is discussed.
Collapse
Affiliation(s)
- Myroslava Rubtsova
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, Viola D, Zeng P, Liu H, Kausch AP, Chandlee JM, Hodges TK, Luo H. FLP recombinase-mediated site-specific recombination in rice. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:176-188. [PMID: 18021190 DOI: 10.1111/j.1467-7652.2007.00310.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The feasibility of using the FLP/FRT site-specific recombination system in rice for genome engineering was evaluated. Transgenic rice plants expressing the FLP recombinase were crossed with plants harbouring the kanamycin resistance gene (neomycin phosphotransferase II, nptII) flanked by FRT sites, which also served to separate the corn ubiquitin promoter from a promoterless gusA. Hybrid progeny were tested for excision of the nptII gene and the positioning of the ubiquitin promoter proximal to gusA. While the hybrid progeny from various crosses exhibited beta-glucuronidase (GUS) expression, the progeny of selfed parental rice plants did not show detectable GUS activity. Despite the variable GUS expression and incomplete recombination displayed in hybrids from some crosses, uniform GUS staining and complete recombination were observed in hybrids from other crosses. The recombined locus was shown to be stably inherited by the progeny. These data demonstrate the operation of FLP recombinase in catalysing excisional DNA recombination in rice, and confirm that the FLP/FRT recombination system functions effectively in the cereal crop rice. Transgenic rice lines expressing active FLP recombinase generated in this study provide foundational stock material, thus facilitating the future application and development of the FLP/FRT system in rice genetic improvement.
Collapse
Affiliation(s)
- Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu W, Lamb JC, Han F, Birchler JA. Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 2006; 103:17331-6. [PMID: 17085598 PMCID: PMC1859930 DOI: 10.1073/pnas.0605750103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct repeats of Arabidopsis telomeric sequence were constructed to test telomere-mediated chromosomal truncation in maize. Two constructs with 2.6 kb of telomeric sequence were used to transform maize immature embryos by Agrobacterium-mediated transformation. One hundred seventy-six transgenic lines were recovered in which 231 transgene loci were revealed by a FISH analysis. To analyze chromosomal truncations that result in transgenes located near chromosomal termini, Southern hybridization analyses were performed. A pattern of smear in truncated lines was seen as compared with discrete bands for internal integrations, because telomeres in different cells are elongated differently by telomerase. When multiple restriction enzymes were used to map the transgene positions, the size of the smears shifted in accordance with the locations of restriction sites on the construct. This result demonstrated that the transgene was present at the end of the chromosome immediately before the integrated telomere sequence. Direct evidence for chromosomal truncation came from the results of FISH karyotyping, which revealed broken chromosomes with transgene signals at the ends. These results demonstrate that telomere-mediated chromosomal truncation operates in plant species. This technology will be useful for chromosomal engineering in maize as well as other plant species.
Collapse
Affiliation(s)
- Weichang Yu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Jonathan C. Lamb
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Fangpu Han
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Hu Q, Nelson K, Luo H. FLP-mediated site-specific recombination for genome modification in turfgrass. Biotechnol Lett 2006; 28:1793-804. [PMID: 16912917 DOI: 10.1007/s10529-006-9162-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022]
Abstract
To develop molecular strategies for gene containment in genetically modified (GM) turfgrass, we have studied the feasibility of using the FLP/FRT site-specific DNA recombination system from yeast for controlled genome modification in turfgrass. Suspension cell cultures of creeping bentgrass (Agrostis stolonifera L.) and Kentucky bluegrass (Poa pratensis) were co-transformed with a FLP recombinase expression vector and a recombination-reporter test plasmid containing beta-glucuronidase (gusA) gene which was separated from the maize ubiquitin (ubi) promoter by an FRT-flanked blocking DNA sequence to prevent its transcription. GUS activity was observed in co-transformed cells, in which molecular analyses indicated that FLP-mediated excision of the blocking sequence had brought into proximity the upstream promoter and the downstream reporter gene, resulting in GUS expression. Functional evaluation of the FLP/FRT system using transgenic creeping bentgrass stably expressing FLP recombinase confirmed the observation in suspension cell culture. Our results indicate that FLP/FRT system is a useful tool for genetic manipulation of turfgrass, pointing to the great potential of exploiting the system to develop molecular strategies for transgene containment in perennials.
Collapse
Affiliation(s)
- Qian Hu
- Department of Genetics, Biochemistry and Life Science Studies, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | | | | |
Collapse
|
25
|
Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 2005; 99:7-23. [PMID: 15960661 DOI: 10.1111/j.1365-2672.2005.02595.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. PLANT CELL REPORTS 2005; 24:86-94. [PMID: 15662501 DOI: 10.1007/s00299-004-0909-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/28/2004] [Accepted: 11/29/2004] [Indexed: 05/08/2023]
Abstract
Removal of a selectable marker gene from genetically modified (GM) crops alleviates the risk of its release into the environment and hastens the public acceptance of GM crops. Here we report the production of marker-free transgenic rice by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination in a single transformation. Among 86 independent transgenic lines, ten were found to be marker-free in the T0 generation and an additional 17 lines segregated marker-free transgenic plants in the T1 generation. Molecular and genetic analyses indicated that the DNA recombination and excision in transgenic rice were precise and the marker-free recombinant T-DNA was stable and heritable.
Collapse
Affiliation(s)
- C Sreekala
- Laboratory of Molecular Plant Pathology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
27
|
Welte MA, Tetrault JM, Dellavalle RP, Lindquist SL. A new method for manipulating transgenes: engineering heat tolerance in a complex, multicellular organism. Curr Biol 2005; 3:842-53. [PMID: 15335817 DOI: 10.1016/0960-9822(93)90218-d] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1993] [Revised: 11/03/1993] [Accepted: 11/08/1993] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heat-shock proteins (hsps) are thought to protect cells against stresses, especially due to elevated temperatures. But while genetic manipulation of hsp gene expression can protect microorganisms and cultured metazoan cells against lethal stress, this has so far not been demonstrated in multicellular organisms. Testing whether expression of an hsp transgene contributes to increased stress tolerance is complicated by a general problem of transgene analysis: if the transgene cannot be targeted to a precise site in the genome, newly observed phenotypes may be due to either the action of the transgene or mutations caused by the transgene insertion. RESULTS To study the relationship between heat tolerance and hsp expression in Drosophila melanogaster, we have developed a novel method for transgene analysis, based upon the site-specific FLP recombinase. The method employs site-specific sister chromatid exchange to create an allelic series of transgene insertions that share the same integration site, but differ in transgene copy number. Phenotypic differences between members of this series can be confidently attributed to the transgenes. Using such an allelic series and a novel thermotolerance assay for Drosophila embryos, we investigated the role of the 70 kD heat-shock protein, Hsp 70, in thermotolerance. At early embryonic stages, Hsp70 accumulation was rate-limiting for thermotolerance, and elevated Hsp70 expression increased survival at extreme temperatures. CONCLUSION Our results provide an improved method for analyzing transgenes and demonstrate that, in Drosophila, Hsp70 is a critical thermotolerance factor. They show, moreover, that manipulating the expression of a single hsp can be sufficient to improve the stress tolerance of a complex multicellular organism.
Collapse
Affiliation(s)
- M A Welte
- Howard Hughes Medical Institute and Department of Molecular Genetics and Cell Biology, The University of Chicago, 5841 South Maryland, MC 1028 Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
28
|
Radhakrishnan P, Srivastava V. Utility of the FLP-FRT recombination system for genetic manipulation of rice. PLANT CELL REPORTS 2005; 23:721-726. [PMID: 15480685 DOI: 10.1007/s00299-004-0876-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/12/2004] [Accepted: 08/16/2004] [Indexed: 05/24/2023]
Abstract
To develop an FLP-FRT recombination system- (derived from 2 mu plasmid of Saccharomyces cerevisiae) based marker gene removal application for rice, we introduced the gene for FLP recombinase, under the control of the maize ubiquitin-1 promoter, into the rice genome. FLP activity was monitored in callus and regenerated plants by an assay based on the deletion of the FRT-flanked DNA fragment, leading to the activation of the beta-glucuronidase gene. FLP activity was detected both in the callus and leaves of some of the transgenic lines. Based on our comparison of the recombination efficiency of the FLP-FRT system expressed in the transgenic lines with that of the widely used Cre-lox system (derived from bacteriophage P1), we suggest that the FLP-FRT system is a useful tool for the genetic manipulation of rice.
Collapse
Affiliation(s)
- Parthiban Radhakrishnan
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| | | |
Collapse
|
29
|
König A. A framework for designing transgenic crops--science, safety and citizen's concerns. Nat Biotechnol 2004; 21:1274-9. [PMID: 14595351 DOI: 10.1038/nbt1103-1274] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ariane König
- Harvard University, Harvard Center for Risk Analysis, 718 Huntington Avenue, Boston, Masschusetts 02115, USA.
| |
Collapse
|
30
|
Vain P, De Buyser J, Bui Trang V, Haicour R, Henry Y. Foreign gene delivery into monocotyledonous species. Biotechnol Adv 2003; 13:653-71. [PMID: 14536368 DOI: 10.1016/0734-9750(95)02009-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Monocotyledonous plants are generally more recalcitrant to genetic transformation than dicotyledonous species. The absence of reliable Agrobacterium-mediated transformation methods and the difficulties associated with the culture of monocotyledonous tissues in vitro are mainly responsible for this situation. Until recently, the genetic transformation of monocotyledons was essentially performed by direct transfer of DNA into regenerable protoplasts or intact cells cultured in vitro, via polyethylene glycol treatment, electroporation or particle bombardment. Since 1990, the use of particle gun technology has revolutionized the genetic engineering of monocotyledonous species, allowing transformation to be more independent of the in vitro culture requirements. Today, at least one genotype of each major monocotyledonous crop species, including cereals, can be genetically transformed.
Collapse
Affiliation(s)
- P Vain
- Institut de Biotechnologie des plantes, bat 630, URA CNRS 1128, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
31
|
Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:1157-1168. [PMID: 14513214 DOI: 10.1007/s00122-003-1368-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 04/17/2003] [Indexed: 05/24/2023]
Abstract
After the initial transformation and tissue culture process is complete, selectable marker genes, which are used in virtually all transformation approaches, are not required for the expression of the gene of interest in the transgenic plants. There are several advantages to removing the selectable marker gene after it is no longer needed, such as enabling the reuse of selectable markers and simplifying transgene arrays. We have tested the Cre/ lox system from bacteriophage P1 for its ability to precisely excise stably integrated marker genes from chromosomes in transgenic maize plants. Two strategies, crossing and autoexcision, have been tested and demonstrated. In the crossing strategy, plants expressing the Cre recombinase are crossed with plants bearing a transgene construct in which the selectable marker gene is flanked by directly repeated lox sites. Unlike previous reports in which incomplete somatic and germline excision were common, in our experiments complete somatic and germline marker gene excision occurred in the F(1) plants from most crosses with multiple independent Cre and lox lines. In the autoexcision strategy, the cre gene, under the control of a heat shock-inducible promoter, is excised along with the nptII marker gene. Our results show that a transient heat shock treatment of primary transgenic callus is sufficient for inducing cre and excising the cre and nptII genes. Genetic segregation and molecular analysis confirmed that marker gene removal is precise, complete and stable. The autoexcision strategy provides a way of removing the selectable marker gene from callus or other tissues such as embryos and kernels.
Collapse
Affiliation(s)
- W Zhang
- Monsanto Company, 700 Chesterfield Parkway North, St. Louis, MO 63017-1732, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lyznik LA, Gordon-Kamm WJ, Tao Y. Site-specific recombination for genetic engineering in plants. PLANT CELL REPORTS 2003; 21:925-932. [PMID: 12835900 DOI: 10.1007/s00299-003-0616-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Revised: 02/19/2003] [Accepted: 02/24/2003] [Indexed: 05/24/2023]
Abstract
Site-specific recombination has been developed into a genetic engineering tool for higher eukaryotes. The manipulation of newly introduced DNA is now possible in the course of genetic transformation procedures, thus making the process more predictable and reliable. Also, a wide variety of chromosomal rearrangements using site-specific recombination have been documented both in metazoan and plant species. Applying such methods to plants opens new avenues for large-scale chromosome engineering in the future.
Collapse
Affiliation(s)
- L A Lyznik
- Transformation Research, Pioneer Hi-Bred International Inc., 7300 NW 62nd Avenue, Johnston, IA 50131, USA.
| | | | | |
Collapse
|
33
|
Luo H, Kausch AP. Application of FLP/FRT site-specific DNA recombination system in plants. GENETIC ENGINEERING 2003; 24:1-16. [PMID: 12416298 DOI: 10.1007/978-1-4615-0721-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Hong Luo
- HybriGene L.L.C., 530 Liberty Lane, West Kingston, RI 02892, USA
| | | |
Collapse
|
34
|
Toriyama K, Chiba A, Nakagawa Y. Visualization of somatic deletions mediated by R/RS site-specific recombination and induction of germinal deletions caused by callus differentiation and regeneration in rice. PLANT CELL REPORTS 2003; 21:605-610. [PMID: 12789437 DOI: 10.1007/s00299-002-0553-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Revised: 10/12/2002] [Accepted: 10/14/2002] [Indexed: 05/24/2023]
Abstract
A transgenic rice plant expressing the recombinase of Zygosaccharomyces rouxii under the control of the CaMV 35S promoter was crossed with a transgenic plant carrying a cryptic (beta-glucuronidase) GUS reporter gene, which was activated by recombinase-mediated deletions between two specific recombination sites ( RSs). In F(1) plants, GUS activity was observed as blue spots and stripes in vascular bundles in several parts of the leaves. GUS expression was detected in all of the calli induced from F(1) seeds and throughout the regenerated plants. DNA analysis using the polymerase chain reaction and Southern blotting showed that R/ RS-mediated deletions occurred in all of the cells of the regenerated plants. Stable GUS expression was confirmed in the progeny resulting from self-pollination. Thus, the deletions obtained in the regenerated plants were genetically equivalent to the germinal deletions. These results indicate that the induction of callus differentiation and shoot regeneration is an effective manner to activate the R/ RS system and to produce plants with chromosomal deletions.
Collapse
Affiliation(s)
- K Toriyama
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, 981-8555 Sendai, Japan.
| | | | | |
Collapse
|
35
|
Lauth M, Spreafico F, Dethleffsen K, Meyer M. Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucleic Acids Res 2002; 30:e115. [PMID: 12409474 PMCID: PMC135837 DOI: 10.1093/nar/gnf114] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Work of the last decade has proven the 'one gene- one product-one function' hypothesis an oversimplification. To further unravel the emerging 'one gene-multiple products-even more functions' concept, new methods (such as subtle knock-in and tightly regulated conditional mutations) for the analysis of gene function in health and disease are required. Another class of improvements (such as tetraploid fusion and cassette exchange) addresses the efficiency with which targeted mutant strains can be generated. Recombinase-mediated cassette exchange (RMCE), which in theory is well suited for the rapid generation of multiple alleles of a given locus, is hampered by its low efficiency in the absence of selection and, especially in vivo, by the promiscuity of the participating recombinase recognition sites. Here we present a novel approach which circumvents this problem by the use of two independent recombinase systems. The strategy, which uses loxP on one and FRT on the other side of the cassette together with a Cre/Flpe expression vector, prevents excisive events and results in higher rates of cassette integration without selection than previously described. This method has a huge potential for the generation of allelic series in embryonic stem cells and, importantly, in pre-implantation embryos in vivo.
Collapse
Affiliation(s)
- Matthias Lauth
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | |
Collapse
|
36
|
Abstract
Mobile genetic elements are often employed for constructing gene fusions or to perform mutagenesis. mariner transposons are well-suited to such applications because of their low site specificity, in vitro activity, and exceptionally broad host range. This report describes a mariner-based method for rapidly creating a large number of insertion mutants that can be converted to in-frame epitope fusions in a single step. First, a mariner-based vector is used to deliver a FLP recombinase substrate randomly into a target molecule. Expression of the FLP recombinase is then induced to catalyse the excision of sequences flanked by FLP recombinase target recognition sites, leaving behind a triple-FLAG epitope. The reversibility of the excision event provides opportunities for using genomic targeting methods easily to create transcriptional or translational fusions to genes of interest.
Collapse
Affiliation(s)
- Su L Chiang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Ow DW. Recombinase-directed plant transformation for the post-genomic era. PLANT MOLECULAR BIOLOGY 2002; 48:183-200. [PMID: 11860209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant genomics promises to accelerate genetic discoveries for plant improvements. Machine-driven technologies are ushering in gene structural and expressional data at an unprecedented rate. Potential bottlenecks in this crop improvement process are steps involving plant transformation. With few exceptions, genetic transformation is an obligatory final step by which useful traits are engineered into plants. In addition, transgenesis is most often needed to confirm gene function, after deductions made through comparative genomics, expression profiles, and mutation analysis. This article reviews the use of recombinase systems to deliver DNA more efficiently into the plant genome.
Collapse
Affiliation(s)
- David W Ow
- Plant Gene Expression Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.
| |
Collapse
|
38
|
Abstract
The creation of transgenic plants has brought significant advances to light in plant biotechnology. However, in spite of the fact that transgenic plants are beginning to be grown widely, controlled transgene integration into a pre-determined site remains to be achieved. Here we suggest two alternative approaches for gene targeting in plants: manipulating the host and donor sequence, and targeting during active homologous recombination stages.
Collapse
Affiliation(s)
- S Kumar
- Federal Research Center for Forestry and Forest Products (BFH), Institute for Forest Genetics and Forest Tree Breeding, Sieker Land Str. 2, D-22927 Grosshansdorf, Germany.
| | | |
Collapse
|
39
|
Bode J, Schlake T, Iber M, Schübeler D, Seibler J, Snezhkov E, Nikolaev L. The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes. Biol Chem 2000; 381:801-13. [PMID: 11076013 DOI: 10.1515/bc.2000.103] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Classical techniques for gene transfer into mammalian cells involve tedious screening procedures to identify transgenic clones or animals with the appropriate level and stability of expression or with the correct developmental patterns. These first generation technologies are clearly inadequate for complex genetic strategies by which gene regulation can be studied in its entire complexity. While site-specific insertions can principally be achieved by homologous recombination or by adapting the recombination apparatus from phages or yeast, these methods usually lack the required efficiency or they perturb expression patterns by the co-insertion of prokaryotic vector parts. Virtually all of these problems can be overcome by recombinase-mediated cassette exchange (RMCE) techniques which cleanly replace a resident cassette that is flanked by two hetero-specific recombination target sites for a second cassette with the analogous design, presented on a targeting vector. After illustrating the fundamentals of site-specific recombination by selected experiments, the authors (arranged in the chronological order of their contribution) will describe their efforts to develop RMCE into a method of wide applicability. Further developments that have been initiated utilizing the particular potential of the RMCE principle will be outlined.
Collapse
Affiliation(s)
- J Bode
- German Center for Biotechnological Research (GBF), RDIF/Epigenetic Regulation, Braunschweig
| | | | | | | | | | | | | |
Collapse
|
40
|
Luo H, Lyznik LA, Gidoni D, Hodges TK. FLP-mediated recombination for use in hybrid plant production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:423-430. [PMID: 10929135 DOI: 10.1046/j.1365-313x.2000.00782.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have studied the feasibility in Arabidopsis of using a site-specific recombination system FLP/FRT, from the 2 microm plasmid of yeast, for making plant hybrids. Initially, Arabidopsis plants expressing the FLP site-specific recombinase were crossed with plants transformed with a vector containing kanamycin-resistance gene (npt) flanked by FRT sites, which also served to separate the CaMV35S promoter from a promoterless gusA. Hybrid progeny were tested for excision of the npt gene and the positioning of 35S promoter proximal to gusA. GUS activity was observed in the progeny of all crosses, but not in the progeny derived from the self-pollinated homozygous parents. We then induced male sterility in Arabidopsis plants using the antisense expression of a pollen- and tapetum-specific gene, bcp1, flanked by FRT sites. Upon cross-pollination of flowers on the same male-sterile plants with pollen from FLP-containing plants, viable seeds were produced and the progeny hybrid plants developed normally. Molecular analyses revealed that the antisense expression cassette of bcp1 had been excised in these plants. These results show for the first time that a site-specific recombinase can be used to restore fertility in male-sterile plants, providing an alternative method for the production of hybrid seeds and plants.
Collapse
Affiliation(s)
- H Luo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- J J Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Ohio State University, Wooster 44691, USA
| | | | | |
Collapse
|
42
|
|
43
|
Schübeler D, Mielke C, Bode J. Excision of an integrated provirus by the action of FLP recombinase. In Vitro Cell Dev Biol Anim 1997; 33:825-30. [PMID: 9466689 DOI: 10.1007/s11626-997-0163-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retroviral vectors can be used to insert a single, intact copy of a transgene into a chromosome. If the duplication of the LTR (long-terminal repeat) that naturally occurs during reverse transcription of the retroviral genome is exploited to introduce two equally oriented FLP recognition target (FRT) sites, a substrate for FLP recombinase is created. A pulse of FLP recombinase activity can then be applied to excise the intervening sequences with the retention of a single LTR. This procedure is of potential use for manipulating an integration site after a period of expression enabling a variety of critical controls. We describe the properties of such a retroviral vector containing a dicistronic expression cassette with a reporter gene in the first and a positive/negative selection marker in the second cistron. This vector permits the selection and control of each step during the sequence of genomic manipulations enabled by site-specific recombination events.
Collapse
Affiliation(s)
- D Schübeler
- Gesellschaft für Biotechnologische Forschung m.b.H., Generegulation und Differenzierung/Genetik von Eukaryonten, Mascheroder Weg, Germany
| | | | | |
Collapse
|
44
|
Dean JF, LaFayette PR, Eriksson KE, Merkle SA. Forest tree biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 57:1-44. [PMID: 9204750 DOI: 10.1007/bfb0102071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The forest products industry has traditionally viewed trees as merely a raw, and more or less immutable, natural resource. However, unlike such inanimate resources as metallic ores, trees have the potential to be modified genetically, essentially transmuting lead into gold. Increasingly, modern alchemists are applying the tools of biotechnology in efforts to reduce the biological constraints on forest productivity. Several new methodologies being used to address problems in forest biology are described with respect to their potential impact on forest tree improvement. In addition to addressing problems inherent to the current use of trees for production of pulp and paper or solid wood products, genetic manipulation of trees brings with it the potential to create new industries based on the novel characteristics of transgenic trees, e.g. trees containing transgenes to detoxify specific pollutants could be used in the remediation of sites contaminated with hazardous wastes. Efforts to modify trees through biotechnology are in their infancy, and this review seeks to outline the underpinnings of what will undoubtedly be an area of increased emphasis in the next millennium.
Collapse
Affiliation(s)
- J F Dean
- Daniel B. Warnell School of Forest Resources, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
45
|
Abstract
We show that site-specific recombination can be used to engineer chromosome rearrangements in Drosophila melanogaster. The FLP site-specific recombinase acts on chromosomal target sites located within specially constructed P elements to provide an easy screen for the recovery of rearrangements with breakpoints that can be chosen in advance. Paracentric and pericentric inversions are easily recovered when two elements lie in the same chromosome in opposite orientation. These inversions are readily reversible. Duplications and deficiencies can be recovered by recombination between two elements that lie in the same orientation on the same chromosome or on homologues. We observe that the frequency of recombination between FRTs at ectopic locations decreases as the distance that separates those FRTs increases. We also describe methods to determine the absolute orientation of these P elements within the chromosome. The ability to produce chromosome rearrangements precisely between preselected sites provides a powerful new tool for investigations into the relationships between chromosome arrangement, structure, and function.
Collapse
Affiliation(s)
- K G Golic
- Department of Biology, University of Utah, Salt Lake City 84112, USA.
| | | |
Collapse
|
46
|
Lyznik LA, Rao KV, Hodges TK. FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 1996; 24:3784-9. [PMID: 8871559 PMCID: PMC146161 DOI: 10.1093/nar/24.19.3784] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Molecular evidence is provided for genomic recombinations in maize cells induced by the yeast FLP/FRT site-specific recombination system. The FLP protein recombined FRT sites previously integrated into the maize genome leading to excision of a selectable marker, the neo gene. NPTII activity was not observed after the successful recombination process; instead, the gusA gene was activated by the removal of the blocking DNA fragment. Genomic sequencing in the region of the FRT site (following the recombination reaction) indicated that a precise rearrangement of genomic DNA sequences had taken place. The functional FLP gene could be either expressed transiently or after stable integration into the maize genome. The efficiency of genomic recombinations was high enough that a selection for recombination products, or for FLP expression, was not required. The results presented here establish the FLP/FRT site-specific recombination system as an important tool for controlled modifications of maize genomic DNA.
Collapse
Affiliation(s)
- L A Lyznik
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
47
|
Bar M, Leshem B, Gilboa N, Gidoni D. Visual characterization of recombination at FRT-gusA loci in transgenic tobacco mediated by constitutive expression of the native FLP recombinase. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1996; 93:407-413. [PMID: 24162298 DOI: 10.1007/bf00223183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/1996] [Accepted: 03/29/1996] [Indexed: 06/02/2023]
Abstract
FLP/FRT-mediated site-specific recombination was studied with a recombination-reporter gene system which allows visualization of β-glucuronidase (GUS) expression after site-specific excisional activation of a silent gusA gene. This system was used for characterization of the functional activity of the Saccharomyces cerevisiae native FLP recombinase driven by the cauliflower mosaic virus (CaMV) 35s promoter [linked to the tobacco mosaic virus (TMV) omega translational leader] in mediating site-specific recombination of chromosomal FRT sites in tobacco FLP x FRT-reporter hybrids. Six hybrids were generated from crosses of lines containing either a stably integrated recombination-reporter or a FLP-expression construct. The activated gusA phenotype was specific to hybrid progenies and was not observed in either parental plants or their selfed progenies. Recombination efficiency in whole seedlings was estimated by the percent of radioactivity on a Southern blot which was incorporated into the recombined DNA product. Estimated efficiency mean values for the six crosses ranged from 5.2 to 52.0%. Histochemical analysis in hybrid plants visualized GUS activity with variable chimeric patterns and intensities. Recombination efficiency and GUS expression varied both among and within crosses, while higher recombination efficiency coincided with larger and more intense patterns of GUS activity. These data suggest that recombination is induced randomly during somatic developmental stages and that the pattern and intensity generated in a given plant are affected by factors imposing varibility not only between but also within crosses. Additionally, while recombination in a population of FLP/FRT hybrids may occur in all plants, recombination efficiency may still be low in any given plant. The activity of the native, as compared to a modified, FLP (Kilby et al. 1995) in the activation of transgenic traits in tobacco is discussed.
Collapse
Affiliation(s)
- M Bar
- Department of Plant Genetics, Institute of Field and Garden Crops, ARO, The Volcani Center, P.O. Box 6, 50250, Bet Dagan, Israel
| | | | | | | |
Collapse
|
48
|
|
49
|
Bergemann J, Kühlcke K, Fehse B, Ratz I, Ostertag W, Lother H. Excision of specific DNA-sequences from integrated retroviral vectors via site-specific recombination. Nucleic Acids Res 1995; 23:4451-6. [PMID: 7501469 PMCID: PMC307403 DOI: 10.1093/nar/23.21.4451] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vectors for gene transfer and gene therapy were developed which combine the advantages of the integrase and recombinase systems. This was achieved by inserting two loxP sites for specific DNA excision into an MESV based retroviral vector. We show that this 'retroviral lox system' allows the infection of cells and the expression of transferred genes. In addition, we constructed an efficient retrovirus-based expression system for a modified Cre recombinase. Functional tests for DNA excision from integrated retroviral lox vectors were performed by the use of a negative selectable marker gene (thymidine kinase). Cre expression in cells infected with retroviral lox vectors and subsequent BrdU selection for cells in which site-specific recombination has occurred results in large numbers of independent cell clones. These results were confirmed by detailed molecular analysis. In addition we developed retroviral suicide vectors in which the enhancer/promoter elements of both LTRs were replaced by lox sequences. We show that lox-sequences located in the LTRs of retroviral vectors are stable during retroviral replication. Potential applications of this system would be the establishment of revertants of retrovirus-infected cells by controlled excision of nearly the complete proviral DNA.
Collapse
Affiliation(s)
- J Bergemann
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Sonti RV, Tissier AF, Wong D, Viret JF, Signer ER. Activity of the yeast FLP recombinase in Arabidopsis. PLANT MOLECULAR BIOLOGY 1995; 28:1127-1132. [PMID: 7548830 DOI: 10.1007/bf00032673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The coding sequence for FLP recombinase, originally from the 2 mu plasmid of Saccharomyces cerevisiae, was introduced into Arabidopsis behind the cauliflower mosaic virus 35S promoter. FLP activity was monitored by the glucuronidase activity resulting from inversion of an antisense-oriented GUS reporter gene flanked by a pair of FRT target sites in inverted repeat. FLP-dependent Gus activity was observed in both transient assays and transgenic plants. The FLP system will be useful for a variety of in planta genetic manipulations.
Collapse
Affiliation(s)
- R V Sonti
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | | | | | |
Collapse
|