1
|
Genomic landscapes of bacterial transposons and their applications in strain improvement. Appl Microbiol Biotechnol 2022; 106:6383-6396. [PMID: 36094654 DOI: 10.1007/s00253-022-12170-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Transposons are mobile genetic elements that can give rise to gene mutation and genome rearrangement. Due to their mobility, transposons have been exploited as genetic tools for modification of plants, animals, and microbes. Although a plethora of reviews have summarized families of transposons, the transposons from fermentation bacteria have not been systematically documented, which thereby constrain the exploitation for metabolic engineering and synthetic biology purposes. In this review, we summarize the transposons from the most used fermentation bacteria including Escherichia coli, Bacillus subtilis, Lactococcus lactis, Corynebacterium glutamicum, Klebsiella pneumoniae, and Zymomonas mobilis by literature retrieval and data mining from GenBank and KEGG. We also outline the state-of-the-art advances in basic research and industrial applications especially when allied with other genetic tools. Overall, this review aims to provide valuable insights for transposon-mediated strain improvement. KEY POINTS: • The transposons from the most-used fermentation bacteria are systematically summarized. • The applications of transposons in strain improvement are comprehensively reviewed.
Collapse
|
2
|
Shah V, Kim JR. Transposon for protein engineering. Mob Genet Elements 2016; 6:e1239601. [PMID: 28090378 DOI: 10.1080/2159256x.2016.1239601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Protein insertional fusion and circular permutation are 2 promising protein engineering techniques for creating integrated functionalities and sequence diversity of a protein, respectively. Finding insertion locations for protein insertional fusion and new termini for circular permutation through a rational approach is not always straightforward, especially, for proteins without detailed structural knowledge. On the contrary, a combinatorial approach facilitates a comprehensive search to evaluate all potential insertion sites and new termini locations. Conventional methods used to create random insertional fusion libraries generate sub-optimal inter-domain linker length and composition between fused proteins. There are also methods available for construction of random circular permutation libraries. However, these methods too, impose many drawbacks, such as significant sequence modification at the new termini of circular permutants and additionally, require re-design of transposons for tailored expression of circular permutants. Furthermore, these conventional methods employ relatively inefficient blunt-end ligation during library construction. In this commentary, we present a concise overview and key findings of engineered Mu transposons, which have recently been developed in our group as a facile and efficient tool to alleviate limitations realized from conventional methods and to construct high quality libraries for random insertional fusion and random circular permutation.
Collapse
Affiliation(s)
- Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University , Brooklyn, NY, USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering, New York University , Brooklyn, NY, USA
| |
Collapse
|
3
|
Zordan RE, Beliveau BJ, Trow JA, Craig NL, Cormack BP. Avoiding the ends: internal epitope tagging of proteins using transposon Tn7. Genetics 2015; 200:47-58. [PMID: 25745023 PMCID: PMC4423380 DOI: 10.1534/genetics.114.169482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
Peptide tags fused to proteins are used in a variety of applications, including as affinity tags for purification, epitope tags for immunodetection, or fluorescent protein tags for visualization. However, the peptide tags can disrupt the target protein function. When function is disrupted by fusing a peptide to either the N or C terminus of the protein of interest, identifying alternative ways to create functional tagged fusion proteins can be difficult. Here, we describe a method to introduce protein tags internal to the coding sequence of a target protein. The method employs in vitro Tn7-transposon mutagenesis of plasmids for random introduction of the tag, followed by subsequent Gateway cloning steps to isolate alleles with mutations in the coding sequence of the target gene. The Tn7-epitope cassette is designed such that essentially all of the transposon is removed through restriction enzyme digestion, leaving only the protein tag at diverse sites internal to the ORF. We describe the use of this system to generate a panel of internally epitope-tagged versions of the Saccharomyces cerevisiae GPI-linked membrane protein Dcw1 and the Candida glabrata transcriptional regulator Sir3. This internal protein tagging system is, in principle, adaptable to tag proteins in any organism for which Gateway-adapted expression vectors exist.
Collapse
Affiliation(s)
- Rebecca E Zordan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Brian J Beliveau
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Jonathan A Trow
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Nancy L Craig
- Department of Molecular Biology and Genetics, The Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| |
Collapse
|
4
|
Pulkkinen E, Haapa-Paananen S, Savilahti H. An assay to monitor the activity of DNA transposition complexes yields a general quality control measure for transpositional recombination reactions. Mob Genet Elements 2014; 4:1-8. [PMID: 26442171 PMCID: PMC4590003 DOI: 10.4161/21592543.2014.969576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Transposon-based technologies have many applications in molecular biology and can be used for gene delivery into prokaryotic and eukaryotic cells. Common transpositional activity measurement assays suitable for many types of transposons would be beneficial, as diverse transposon systems could be compared for their performance attributes. Therefore, we developed a general-purpose assay to enable and standardize the activity measurement for DNA transposition complexes (transpososomes), using phage Mu transposition as a test platform. This assay quantifies transpositional recombination efficiency and is based on an in vitro transposition reaction with a target plasmid carrying a lethal ccdB gene. If transposition targets ccdB, this gene becomes inactivated, enabling plasmid-receiving Escherichia coli cells to survive and to be scored as colonies on selection plates. The assay was validated with 3 mini-Mu transposons varying in size and differing in their marker gene constitution. Tests with different amounts of transposon DNA provided a linear response and yielded a 10-fold operational range for the assay. The colony formation capacity was linearly correlated with the competence status of the E.coli cells, enabling normalization of experimental data obtained with different batches of recipient cells. The developed assay can now be used to directly compare transpososome activities with all types of mini-Mu transposons, regardless of their aimed use. Furthermore, the assay should be directly applicable to other transposition-based systems with a functional in vitro reaction, and it provides a dependable quality control measure that previously has been lacking but is highly important for the evaluation of current and emerging transposon-based applications.
Collapse
Affiliation(s)
- Elsi Pulkkinen
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| | - Saija Haapa-Paananen
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| | - Harri Savilahti
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| |
Collapse
|
5
|
Abstract
In recent years, liposomes have been employed with growing success as pharmaceutical carriers for antineoplastic drugs. One specific strategy used to enhance in vivo liposome-mediated drug delivery is the improvement of intracytoplasmic delivery. In this context, pH-sensitive liposomes (pHSLip) have been designed to explore the endosomal acidification process, which may lead to a destabilization of the liposomes, followed by a release of their contents into the cell cytoplasm. This review considers the current status of pHSLip development and its applicability in cancer treatment, focusing on the mechanisms of pH sensitivity and liposomal composition of pHSLip. The final section will discuss the application of these formulations in both in vitro and in vivo studies of antitumor efficacy.
Collapse
|
6
|
Mularoni L, Zhou Y, Bowen T, Gangadharan S, Wheelan SJ, Boeke JD. Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots. Genome Res 2012; 22:693-703. [PMID: 22219510 DOI: 10.1101/gr.129460.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Saccharomyces cerevisiae genome contains about 35 copies of dispersed retrotransposons called Ty1 elements. Ty1 elements target regions upstream of tRNA genes and other Pol III-transcribed genes when retrotransposing to new sites. We used deep sequencing of Ty1-flanking sequence amplicons to characterize Ty1 integration. Surprisingly, some insertions were found in mitochondrial DNA sequences, presumably reflecting insertion into mitochondrial DNA segments that had migrated to the nucleus. The overwhelming majority of insertions were associated with the 5' regions of Pol III transcribed genes; alignment of Ty1 insertion sites revealed a strong sequence motif centered on but extending beyond the target site duplication. A strong sequence-independent preference for nucleosomal integration sites was observed, in distinction to the preferences of the Hermes DNA transposon engineered to jump in yeast and the Tf1 retrotransposon of Schizosaccharomyces pombe, both of which prefer nucleosome free regions. Remarkably, an exquisitely specific relationship between Ty1 integration and nucleosomal position was revealed by alignment of hotspot Ty1 insertion position regions to peak nucleosome positions, geographically implicating nucleosomal DNA segments at specific positions on the nucleosome lateral surface as targets, near the "bottom" of the nucleosome. The specificity is observed in the three tRNA 5'-proximal nucleosomes, with insertion frequency dropping off sharply 5' of the tRNA gene. The sites are disposed asymmetrically on the nucleosome relative to its dyad axis, ruling out several simple molecular models for Ty1 targeting, and instead suggesting association with a dynamic or directional process such as nucleosome remodeling associated with these regions.
Collapse
Affiliation(s)
- Loris Mularoni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
7
|
Novel transcript truncating function of Rap1p revealed by synthetic codon-optimized Ty1 retrotransposon. Genetics 2011; 190:523-35. [PMID: 22135353 DOI: 10.1534/genetics.111.136648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extensive mutagenesis via massive recoding of retrotransposon Ty1 produced a synthetic codon-optimized retrotransposon (CO-Ty1). CO-Ty1 is defective for retrotransposition, suggesting a sequence capable of down-regulating retrotransposition. We mapped this sequence to a critical ~20-bp region within CO-Ty1 reverse transcriptase (RT) and confirmed that it reduced Ty1 transposition, protein, and RNA levels. Repression was not Ty1 specific; when introduced immediately downstream of the green fluorescent protein (GFP) stop codon, GFP expression was similarly reduced. Rap1p mediated this down-regulation, as shown by mutagenesis and chromatin immunoprecipitation. A regular threefold drop is observed in different contexts, suggesting utility for synthetic circuits. A large reduction of RNAP II occupancy on the CO-Ty1 construct was observed 3' to the identified Rap1p site and a novel 3' truncated RNA species was observed. We propose a novel mechanism of transcriptional regulation by Rap1p whereby it serves as a transcriptional roadblock when bound to transcription unit sequences.
Collapse
|
8
|
Xu T, Bharucha N, Kumar A. Genome-wide transposon mutagenesis in Saccharomyces cerevisiae and Candida albicans. Methods Mol Biol 2011; 765:207-24. [PMID: 21815095 DOI: 10.1007/978-1-61779-197-0_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
9
|
Nare B, Garraway LA, Vickers TJ, Beverley SM. PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major. Curr Genet 2009; 55:287-99. [PMID: 19396443 PMCID: PMC2759280 DOI: 10.1007/s00294-009-0244-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Leishmania must survive oxidative stress, but lack many classical antioxidant enzymes and rely heavily on trypanothione-dependent pathways. We used forward genetic screens to recover loci mediating oxidant resistance via overexpression in Leishmania major, which identified pteridine reductase 1 (PTR1). Comparisons of isogenic lines showed ptr1 (-) null mutants were 18-fold more sensitive to H(2)O(2) than PTR1-overproducing lines, and significant three- to fivefold differences were seen with a broad panel of oxidant-inducing agents. The toxicities of simple nitric oxide generators and other drug classes (except antifolates) were unaffected by PTR1 levels. H(2)O(2) susceptibility could be modulated by exogenous biopterin but not folate, in a PTR1- but not dihydrofolate reductase-dependent manner, implicating H(4)B metabolism specifically. Neither H(2)O(2) consumption nor the level of intracellular oxidative stress was affected by PTR1 levels. Coupled with the fact that reduced pteridines are at least 100-fold less abundant than cellular thiols, these data argue strongly that reduced pteridines act through a mechanism other than scavenging. The ability of unconjugated pteridines to counter oxidative stress has implications to infectivity and response to chemotherapy. Since the intracellular pteridine levels of Leishmania can be readily manipulated, these organisms offer a powerful setting for the dissection of pteridine-dependent oxidant susceptibility in higher eukaryotes.
Collapse
Affiliation(s)
- Bakela Nare
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Levi A. Garraway
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Tim J. Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis MO 63110
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
10
|
Whole-genome detection of conditionally essential and dispensable genes in Escherichia coli via genetic footprinting. Methods Mol Biol 2008; 416:83-102. [PMID: 18392962 DOI: 10.1007/978-1-59745-321-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present a whole-genome approach to genetic footprinting in Escherichia coli using Tn5-based transposons to determine gene essentiality. A population of cells is mutagenized and subjected to outgrowth under selective conditions. Transposon insertions in the surviving mutants are detected using nested polymerase chain reaction (PCR), agarose gel electrophoresis, and software-assisted PCR product size determination. Genomic addresses of these inserts are then mapped onto the E. coli genome sequence based on the PCR product lengths and the addresses of the corresponding genome-specific primers. Gene essentiality conclusions were drawn based on a semiautomatic analysis of the number and relative positions of inserts retained within each gene after selective outgrowth.
Collapse
|
11
|
Abstract
Transposon-based technologies are important genetic tools for global genome analysis and, as discussed in the present paper, in detailed studies of protein structure–function. Various different transposition systems can be used in these studies but this paper uses Tn5-related systems as a model. In particular, the following four different technologies are described in this paper: (i) using transposition to generate nested deletion families, (ii) using transposons to generate functional protein fusions to reporter functions, (iii) mapping protein secondary structures through the generation and analysis of in-frame linker insertions and (iv) using sequential transposition events to generate random gene fusions. The success of these forward genetic technologies requires that the transposition system be efficient and manifest near-random target sequence selection.
Collapse
|
12
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
13
|
Shakes LA, Garland DM, Srivastava DK, Harewood KR, Chatterjee PK. Minimal cross-recombination between wild-type and loxP511 sites in vivo facilitates truncating both ends of large DNA inserts in pBACe3.6 and related vectors. Nucleic Acids Res 2005; 33:e118. [PMID: 16061933 PMCID: PMC1182172 DOI: 10.1093/nar/gni119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Contrary to several earlier reports, we find that cross-recombination between wild-type and the mutant loxP511 sites is <0.5% of that between two wild-type sites if Cre protein is expressed by phage P1 during an infection. The finding enabled us to develop a procedure to truncate DNA progressively from both ends of large genomic inserts flanked by these two loxP sites in pBACe3.6 and related vectors with transposons carrying either a wild-type or a loxP511 sequence. Newly constructed loxP511 transposons contained either a kanamycin resistance gene or no marker. Insert DNA ends in deletions were sequenced with primers unique to each transposon-end remaining after the respective recombination. End-sequencing 223 deletions confirmed that the low level of cross-recombination, observed between those sites during the P1 transductions, does not complicate the procedure: truncations from the unintended end of genomic inserts did not occur. Multiple BACs pooled together could also be processed in a single tube to make end-deletions. This deletion technology, utilizing the very minimal cross-recombination between the mutant and wild-type loxP sites of most BAC clones in the public domain and a heterologous one inserted as a transposon, should facilitate functionally mapping long-range gene regulatory sequences and help to isolate genes with defined functional boundaries in numerous projects including those of therapeutic interest.
Collapse
Affiliation(s)
- Leighcraft A. Shakes
- Julius L. Chambers Biomedical/Biotechnology Research InstituteDurham, NC 27707, USA
| | - Douglas M. Garland
- Julius L. Chambers Biomedical/Biotechnology Research InstituteDurham, NC 27707, USA
- Department of Biology, North Carolina Central University1801 Fayetteville Street, Durham, NC 27707, USA
| | - Deepak K. Srivastava
- Julius L. Chambers Biomedical/Biotechnology Research InstituteDurham, NC 27707, USA
| | - Ken R. Harewood
- Julius L. Chambers Biomedical/Biotechnology Research InstituteDurham, NC 27707, USA
| | - Pradeep K. Chatterjee
- Julius L. Chambers Biomedical/Biotechnology Research InstituteDurham, NC 27707, USA
- To whom correspondence should be addressed. Tel: +1 919 530 7017; Fax: +1 919 530 7998;
| |
Collapse
|
14
|
Kumar A, Seringhaus M, Biery MC, Sarnovsky RJ, Umansky L, Piccirillo S, Heidtman M, Cheung KH, Dobry CJ, Gerstein MB, Craig NL, Snyder M. Large-scale mutagenesis of the yeast genome using a Tn7-derived multipurpose transposon. Genome Res 2004; 14:1975-86. [PMID: 15466296 PMCID: PMC524422 DOI: 10.1101/gr.2875304] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present here an unbiased and extremely versatile insertional library of yeast genomic DNA generated by in vitro mutagenesis with a multipurpose element derived from the bacterial transposon Tn7. This mini-Tn7 element has been engineered such that a single insertion can be used to generate a lacZ fusion, gene disruption, and epitope-tagged gene product. Using this transposon, we generated a plasmid-based library of approximately 300,000 mutant alleles; by high-throughput screening in yeast, we identified and sequenced 9032 insertions affecting 2613 genes (45% of the genome). From analysis of 7176 insertions, we found little bias in Tn7 target-site selection in vitro. In contrast, we also sequenced 10,174 Tn3 insertions and found a markedly stronger preference for an AT-rich 5-base pair target sequence. We further screened 1327 insertion alleles in yeast for hypersensitivity to the chemotherapeutic cisplatin. Fifty-one genes were identified, including four functionally uncharacterized genes and 25 genes involved in DNA repair, replication, transcription, and chromatin structure. In total, the collection reported here constitutes the largest plasmid-based set of sequenced yeast mutant alleles to date and, as such, should be singularly useful for gene and genome-wide functional analysis.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rowan KH, Orsetti J, Atkinson PW, O'Brochta DA. Tn5 as an insect gene vector. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:695-705. [PMID: 15242711 DOI: 10.1016/j.ibmb.2004.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to explore alternatives to insect-derived transposable elements as insect gene vectors with the intention of improving existing insect transgenesis methods. The mobility properties of the bacterial transposon, Tn5, were tested in mosquitoes using a transient transposable element mobility assay and by attempting to create transgenic insects. Tn5 synaptic complexes were assembled in vitro in the absence of Mg(2+) and co-injected with a target plasmid into developing yellow fever mosquito, Aedes aegypti, embryos. Target plasmids recovered from embryos a day later were screened for the presence of Tn5. Recombinants (transposition events) were found at a frequency of 1.2 x 10(-3). Some transposition events did not appear to be associated with canonical 9 bp direct duplications at the site of insertion and also were associated with either deletions or rearrangements. A Tn5 element containing the brain-specific transgene, 3 x P3DsRed, was assembled into synaptic complexes in vitro and injected into pre-blastoderm embryos of Ae. aegypti. Of the approximately 900 embryos surviving injection and developing into adults, two produced transgenic progeny. Both transgenic events involved the co-integrations of approximately five elements resulting in nested and tandem arrayed Tn5::3 x P3DsRed elements. This study extends the known host range of Tn5 to insects and makes available to insect biologists and others another eukaryotic genome-manipulation tool. The hyperactivity of synaptic complexes may be responsible for the unusual clustering of elements and managing this aspect of the element's behavior will be important in future applications of this technology to insects.
Collapse
Affiliation(s)
- Kathryn H Rowan
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Plant Sciences Building/Room 5115, College Park, MD 20742-4450, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
17
|
Goryshin IY, Naumann TA, Apodaca J, Reznikoff WS. Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 2003; 13:644-53. [PMID: 12654720 PMCID: PMC430159 DOI: 10.1101/gr.611403] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this communication, we describe the use of specialized transposons (Tn5 derivatives) to create deletions in the Escherichia coli K-12 chromosome. These transposons are essentially rearranged composite transposons that have been assembled to promote the use of the internal transposon ends, resulting in intramolecular transposition events. Two similar transposons were developed. The first deletion transposon was utilized to create a consecutive set of deletions in the E. coli chromosome. The deletion procedure has been repeated 20 serial times to reduce the genome an average of 200 kb (averaging 10 kb per deletion). The second deletion transposon contains a conditional origin of replication that allows deleted chromosomal DNA to be captured as a complementary plasmid. By plating cells on media that do not support plasmid replication, the deleted chromosomal material is lost and if it is essential, the cells do not survive. This methodology was used to analyze 15 chromosomal regions and more than 100 open reading frames (ORFs). This provides a robust technology for identifying essential and dispensable genes.
Collapse
Affiliation(s)
- Igor Y Goryshin
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Centromeres are the site for kinetochore formation and spindle attachment and are embedded in heterochromatin in most eukaryotes. The repeat-rich nature of heterochromatin has hindered obtaining a detailed understanding of the composition and organization of heterochromatic and centromeric DNA sequences. Here, we report the results of extensive sequence analysis of a fully functional centromere present in the Drosophila Dp1187 minichromosome. Approximately 8.4% (31 kb) of the highly repeated satellite DNA (AATAT and TTCTC) was sequenced, representing the largest data set of Drosophila satellite DNA sequence to date. Sequence analysis revealed that the orientation of the arrays is uniform and that individual repeats within the arrays mostly differ by rare, single-base polymorphisms. The entire complex DNA component of this centromere (69.7 kb) was sequenced and assembled. The 39-kb "complex island" Maupiti contains long stretches of a complex A+T rich repeat interspersed with transposon fragments, and most of these elements are organized as direct repeats. Surprisingly, five single, intact transposons are directly inserted at different locations in the AATAT satellite arrays. We find no evidence for centromere-specific sequences within this centromere, providing further evidence for sequence-independent, epigenetic determination of centromere identity and function in higher eukaryotes. Our results also demonstrate that the sequence composition and organization of large regions of centric heterochromatin can be determined, despite the presence of repeated DNA.
Collapse
Affiliation(s)
- Xiaoping Sun
- Molecular and Cell Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
19
|
Vilen H, Aalto JM, Kassinen A, Paulin L, Savilahti H. A direct transposon insertion tool for modification and functional analysis of viral genomes. J Virol 2003; 77:123-34. [PMID: 12477817 PMCID: PMC140628 DOI: 10.1128/jvi.77.1.123-134.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advances in DNA transposition technology have recently generated efficient tools for various types of functional genetic analyses. We demonstrate here the power of the bacteriophage Mu-derived in vitro DNA transposition system for modification and functional characterization of a complete bacterial virus genome. The linear double-stranded DNA genome of Escherichia coli bacteriophage PRD1 was studied by insertion mutagenesis with reporter mini-Mu transposons that were integrated in vitro into isolated genomic DNA. After introduction into bacterial cells by electroporation, recombinant transposon-containing virus clones were identified by autoradiography or visual blue-white screening employing alpha-complementation of E. coli beta-galactosidase. Additionally, a modified transposon with engineered NotI sites at both ends was used to introduce novel restriction sites into the phage genome. Analysis of the transposon integration sites in the genomes of viable recombinant phage generated a functional map, collectively indicating genes and genomic regions essential and nonessential for virus propagation. Moreover, promoterless transposons defined the direction of transcription within several insert-tolerant genomic regions. These strategies for the analysis of viral genomes are of a general nature and therefore may be applied to functional genomics studies in all prokaryotic and eukaryotic cell viruses.
Collapse
Affiliation(s)
- Heikki Vilen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
20
|
Naumann TA, Goryshin IY, Reznikoff WS. Production of combinatorial libraries of fused genes by sequential transposition reactions. Nucleic Acids Res 2002; 30:e119. [PMID: 12409478 PMCID: PMC135842 DOI: 10.1093/nar/gnf118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of in vivo and in vitro transposition reactions to perform non-combinatorial manipulation of DNAs in molecular biology is widespread. In this work we describe a technique that utilizes two sequential, directed transposition reactions in order to carry out combinatorial DNA manipulations. The methodology relies on the use of two different mutant Tn5 transposase proteins that have different transposon end recognition specificities. We demonstrate that the technique can be used to create large libraries of random fusions between two genes. These transpositional fusions are defined by insertion of a 32 bp linker sequence. We applied the technique to a model system, chloramphenicol acetyl transferase, to create functional fusions from N- and C-terminally truncated, non-functional genes. Comparative structural analysis suggests that both sides of the linker are inserted into disordered regions in functional proteins.
Collapse
Affiliation(s)
- Todd A Naumann
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
21
|
Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G. A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 2002; 9:591-605. [PMID: 11721956 DOI: 10.1023/a:1012455520353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Degenerate primers deduced from the TPase region of plant En/Spm-like transposons allowed the amplification of similar sequences from various plant species including sugar beet, wheat and pea. These primers are efficient tools for the detection of this family of transposons in many plant genomes irrespective of sequence knowledge or phenotypic pecularities. An efficient PCR assay was therefore developed for these class II transposons, similar to assays already available for Ty1-copia-, Ty3-gypsy- or LINEs. This approach allowed us not only to show the widespread almost-ubiquitous presence of En/Spm-elements in plant genomes, but also to characterize their genomic organization and chromosomal distribution in the genome of chickpea (Cicer arietinum L.) and its abundance in related Cicer species. This approach can be used for the detection and characterization of endogenous DNA transposable elements in plant species, their complete isolation and evaluation of their use for genome analysis.
Collapse
Affiliation(s)
- C Staginnus
- Plant Molecular Biology, Biocenter, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
22
|
Shevchenko Y, Bouffard GG, Butterfield YSN, Blakesley RW, Hartley JL, Young AC, Marra MA, Jones SJM, Touchman JW, Green ED. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res 2002; 30:2469-77. [PMID: 12034835 PMCID: PMC117195 DOI: 10.1093/nar/30.11.2469] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In parallel with the production of genomic sequence data, attention is being focused on the generation of comprehensive cDNA-sequence resources. Such efforts are increasingly emphasizing the production of high-accuracy sequence corresponding to the entire insert of cDNA clones, especially those presumed to reflect the full-length mRNA. The complete sequencing of cDNA clones on a large scale presents unique challenges because of the generally small, yet heterogeneous, sizes of the cloned inserts. We have developed a strategy for high-throughput sequencing of cDNA clones using the transposon Tn5. This approach has been tailored for implementation within an existing large-scale 'shotgun-style' sequencing program, although it could be readily adapted for use in virtually any sequencing environment. In addition, we have developed a modified version of our strategy that can be applied to cDNA clones with large cloning vectors, thereby overcoming a potential limitation of transposon-based approaches. Here we describe the details of our cDNA-sequencing pipeline, including a summary of the experience in sequencing more than 4200 cDNA clones to produce more than 8 million base pairs of high-accuracy cDNA sequence. These data provide both convincing evidence that the insertion of Tn5 into cDNA clones is sufficiently random for its effective use in large-scale cDNA sequencing as well as interesting insight about the sequence context preferred for insertion by Tn5.
Collapse
Affiliation(s)
- Yuriy Shevchenko
- NIH Intramural Sequencing Center, National Institutes of Health, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kekarainen T, Savilahti H, Valkonen JPT. Functional genomics on potato virus A: virus genome-wide map of sites essential for virus propagation. Genome Res 2002; 12:584-94. [PMID: 11932242 PMCID: PMC187510 DOI: 10.1101/gr.220702] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transposition-based in vitro insertional mutagenesis strategies provide promising new approaches for functional characterization of any cloned gene or genome region. We have extended the methodology and scope of such analysis to a complete viral genome. To map genome regions both essential and nonessential for Potato virus A propagation, we generated a genomic 15-bp insertion mutant library utilizing the efficient in vitro DNA transposition reaction of phage Mu. We then determined the proficiency of 1125 mutants to propagate in tobacco protoplasts by using a genetic footprinting strategy that simultaneously mapped the genomic insertion sites. Over 300 sites critical for virus propagation were identified, and many of them were located in positions previously not assigned to any viral functions. Many genome regions tolerated insertions indicating less important sites for virus propagation and thus pinpointed potential locations for further genome manipulation. The methodology described is applicable to a detailed functional analysis of any viral nucleic acid cloned as DNA and can be used to address many different processes during viral infection cycles.
Collapse
Affiliation(s)
- Tuija Kekarainen
- Department of Plant Biology, Swedish University of Agricultural Sciences (SLU), S-75007 Uppsala, Sweden
| | | | | |
Collapse
|
24
|
Laurent V, Kimble A, Peng B, Zhu P, Pintar JE, Steiner DF, Lindberg I. Mortality in 7B2 null mice can be rescued by adrenalectomy: involvement of dopamine in ACTH hypersecretion. Proc Natl Acad Sci U S A 2002; 99:3087-92. [PMID: 11854475 PMCID: PMC122477 DOI: 10.1073/pnas.261715099] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The serine protease prohormone convertase 2 (PC2), principally involved in the processing of polypeptide hormone precursors in neuroendocrine tissues, requires interaction with the neuroendocrine protein 7B2 to generate an enzymatically active form. 7B2 null mice express no PC2 activity and release large quantities of uncleaved ACTH, resulting in a lethal endocrine condition that resembles pituitary Cushing's (Westphal, C. H., Muller, L., Zhou, A., Bonner-Weir, S., Schambelan, M., Steiner, D. F., Lindberg, I. & Leder, P. (1999) Cell 96, 689). Here, we have compared the 7B2 and PC2 null mouse models to determine why the 7B2 null, but not the PC2 null, exhibits a lethal disease state. Both 7B2 and PC2 nulls contained highly elevated pituitary adrenocorticotropic hormone (ACTH); the neurointermediate lobe content of ACTH in 7B2 nulls was 13-fold higher than in WT mice; that of the PC2 null was 65-fold higher. However, circulating ACTH levels were much higher in the 7B2 null than in the PC2 null. Because hypothalamic inhibitory dopaminergic control represents the major influence on intermediate lobe proopiomelanocortin-derived peptide secretion, dopamine levels were measured, and they revealed that 7B2 null pituitaries contained only one-fourth of WT pituitary dopamine. Adrenalectomized 7B2 null animals survived past the usual time of death at 5 weeks; a month after adrenalectomy, they exhibited normal levels of pituitary dopamine, circulating ACTH, and corticosterone. Elevated corticosterone, therefore, seems to play a central role in the lethal phenotype of the 7B2 null, whereas a 7B2-mediated dopaminergic deficiency state may be involved in the actual ACTH hypersecretion phenomenon. Interestingly, adrenalectomized 7B2 nulls also developed unexpectedly severe obesity.
Collapse
Affiliation(s)
- V Laurent
- Department of Biochemistry and Molecular Biology, and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2223, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lamberg A, Nieminen S, Qiao M, Savilahti H. Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage mu. Appl Environ Microbiol 2002; 68:705-12. [PMID: 11823210 PMCID: PMC126711 DOI: 10.1128/aem.68.2.705-712.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient insertion mutagenesis strategy for bacterial genomes based on the phage Mu DNA transposition reaction was developed. Incubation of MuA transposase protein with artificial mini-Mu transposon DNA in the absence of divalent cations in vitro resulted in stable but inactive Mu DNA transposition complexes, or transpososomes. Following delivery into bacterial cells by electroporation, the complexes were activated for DNA transposition chemistry after encountering divalent metal ions within the cells. Mini-Mu transposons were integrated into bacterial chromosomes with efficiencies ranging from 10(4) to 10(6) CFU/microg of input transposon DNA in the four species tested, i.e., Escherichia coli, Salmonella enterica serovar Typhimurium, Erwinia carotovora, and Yersinia enterocolitica. Efficiency of integration was influenced mostly by the competence status of a given strain or batch of bacteria. An accurate 5-bp target site duplication flanking the transposon, a hallmark of Mu transposition, was generated upon mini-Mu integration into the genome, indicating that a genuine DNA transposition reaction was reproduced within the cells of the bacteria studied. This insertion mutagenesis strategy for microbial genomes may be applicable to a variety of organisms provided that a means to introduce DNA into their cells is available.
Collapse
Affiliation(s)
- Arja Lamberg
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
26
|
Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller B, Pacleb J, Park S, Wan K, Rubin GM, Celniker SE. A Drosophila full-length cDNA resource. Genome Biol 2002; 3:RESEARCH0080. [PMID: 12537569 PMCID: PMC151182 DOI: 10.1186/gb-2002-3-12-research0080] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 11/27/2002] [Accepted: 11/27/2002] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND A collection of sequenced full-length cDNAs is an important resource both for functional genomics studies and for the determination of the intron-exon structure of genes. Providing this resource to the Drosophila melanogaster research community has been a long-term goal of the Berkeley Drosophila Genome Project. We have previously described the Drosophila Gene Collection (DGC), a set of putative full-length cDNAs that was produced by generating and analyzing over 250,000 expressed sequence tags (ESTs) derived from a variety of tissues and developmental stages. RESULTS We have generated high-quality full-insert sequence for 8,921 clones in the DGC. We compared the sequence of these clones to the annotated Release 3 genomic sequence, and identified more than 5,300 cDNAs that contain a complete and accurate protein-coding sequence. This corresponds to at least one splice form for 40% of the predicted D. melanogaster genes. We also identified potential new cases of RNA editing. CONCLUSIONS We show that comparison of cDNA sequences to a high-quality annotated genomic sequence is an effective approach to identifying and eliminating defective clones from a cDNA collection and ensure its utility for experimentation. Clones were eliminated either because they carry single nucleotide discrepancies, which most probably result from reverse transcriptase errors, or because they are truncated and contain only part of the protein-coding sequence.
Collapse
Affiliation(s)
- Mark Stapleton
- Berkeley Drosophila Genome Project Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumar A, Snyder M. Genome-wide transposon mutagenesis in yeast. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2001; Chapter 13:Unit13.3. [PMID: 18265099 DOI: 10.1002/0471142727.mb1303s51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This unit provides comprehensive protocols for the use of insertional libraries generated by shuttle mutagenesis. From the basic protocol, a small aliquot of insertional library DNA may be used to mutagenize yeast, producing strains containing a single transposon insertion within a transcribed and translated region of the genome. This transposon-mutagenized bank of yeast strains may be screened for any desired mutant phenotype. Alternatively, since the transposon contains a reporter gene lacking its start codon and promoter, transposon-tagged strains may also be screened for specific patterns of gene expression. Strains of interest may be characterized by vectorette PCR (protocol provided) in order to locate the precise genomic site of transposon insertion within each mutant. A method by which Cre/lox recombination may be used to reduce the transposon in yeast to a small insertion element encoding an epitope tag is described. This tag serves as a tool by which transposon-mutagenized gene products may be analyzed further (e.g., localized to a discrete subcellular site).
Collapse
Affiliation(s)
- A Kumar
- Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
28
|
Hamer L, Adachi K, Montenegro-Chamorro MV, Tanzer MM, Mahanty SK, Lo C, Tarpey RW, Skalchunes AR, Heiniger RW, Frank SA, Darveaux BA, Lampe DJ, Slater TM, Ramamurthy L, DeZwaan TM, Nelson GH, Shuster JR, Woessner J, Hamer JE. Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci U S A 2001; 98:5110-5. [PMID: 11296265 PMCID: PMC33172 DOI: 10.1073/pnas.091094198] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filamentous fungi are a large group of diverse and economically important microorganisms. Large-scale gene disruption strategies developed in budding yeast are not applicable to these organisms because of their larger genomes and lower rate of targeted integration (TI) during transformation. We developed transposon-arrayed gene knockouts (TAGKO) to discover genes and simultaneously create gene disruption cassettes for subsequent transformation and mutant analysis. Transposons carrying a bacterial and fungal drug resistance marker are used to mutagenize individual cosmids or entire libraries in vitro. Cosmids are annotated by DNA sequence analysis at the transposon insertion sites, and cosmid inserts are liberated to direct insertional mutagenesis events in the genome. Based on saturation analysis of a cosmid insert and insertions in a fungal cosmid library, we show that TAGKO can be used to rapidly identify and mutate genes. We further show that insertions can create alterations in gene expression, and we have used this approach to investigate an amino acid oxidation pathway in two important fungal phytopathogens.
Collapse
Affiliation(s)
- L Hamer
- Paradigm Genetics, 108 Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The genomic revolution is undeniable: in the past year alone, the term 'genomics' was found in nearly 500 research articles, and at least 6 journals are devoted solely to genomic biology. More than just a buzzword, molecular biology has genuinely embraced genomics (the systematic, large-scale study of genomes and their functions). With its facile genetics, the budding yeast Saccharomyces cerevisiae has emerged as an important model organism in the development of many current genomic methodologies. These techniques have greatly influenced the manner in which biology is studied in yeast and in other organisms. In this review, we summarize the most promising technologies in yeast genomics.
Collapse
Affiliation(s)
- A Kumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
30
|
Hamer L, DeZwaan TM, Montenegro-Chamorro MV, Frank SA, Hamer JE. Recent advances in large-scale transposon mutagenesis. Curr Opin Chem Biol 2001; 5:67-73. [PMID: 11166651 DOI: 10.1016/s1367-5931(00)00162-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transposons were identified as mobile genetic elements over fifty years ago and subsequently became powerful tools for molecular-genetic studies. Recently, transposon-mutagenesis strategies have been developed to identify essential and pathogenicity-related genes in pathogenic microorganisms. Also, a number of in vitro transposition systems have been used to facilitate genome sequence analysis. Finally, transposon mutagenesis of yeast and complex eukaryotes has provided valuable functional genomic information to complement genome-sequencing projects.
Collapse
Affiliation(s)
- L Hamer
- Paradigm Genetics Inc., 104 Alexander Drive, Building 2, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
31
|
Vilen H, Eerikäinen S, Tornberg J, Airaksinen MS, Savilahti H. Construction of gene-targeting vectors: a rapid Mu in vitro DNA transposition-based strategy generating null, potentially hypomorphic, and conditional alleles. Transgenic Res 2001; 10:69-80. [PMID: 11252384 DOI: 10.1023/a:1008959231644] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene targeting into mammalian genomes by means of homologous recombination is a powerful technique for analyzing gene function through generation of transgenic animals. Hundreds of mouse strains carrying targeted alleles have already been created and recent modifications of the technology, in particular generation of conditional alleles, have extended the usefulness of the methodology for a variety of special purposes. Even though the standard protocols, including the construction of gene-targeting vector plasmids, are relatively straightforward, they typically involve time-consuming and laborious gene mapping and/or sequencing steps. To produce various types of gene-targeting constructions rapidly and with minimum effort, we developed a strategy, that utilizes a highly efficient in vitro transposition reaction of phage Mu, and tested it in a targeting of the mouse Kcc2 gene locus. A vast number and different types of targeting constructions can be generated simultaneously with little or no prior sequence knowledge of the gene locus of interest. This quick and efficient general strategy will facilitate easy generation of null, potentially hypomorphic, and conditional alleles. Especially useful it will be in the cases when effects of several exons within a given gene are to be studied, a task that necessarily will involve generation of multiple constructions. The strategy extends the use of diverse recombination reactions for advanced genome engineering and complements existing recombination-based approaches for generation of gene-targeting constructions.
Collapse
Affiliation(s)
- H Vilen
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
32
|
Abstract
The elucidation of whole-genome sequences is expected to have a revolutionary impact on the discovery of novel medicines. With the availability of complete genome sequences of more than 30 different species, the field of antimicrobial drug discovery has the opportunity to access a remarkable diversity of genomic information. In this review, I summarize how microbial genomics has changed strategies of drug discovery by applying bioinformatics, novel genetic approaches and genomics-based technologies, including analysis of gene expression using DNA microarrays.
Collapse
Affiliation(s)
- H Loferer
- GPC Biotech AG, Fraunhoferstrasse 20, D-82152 Martinsried/Munich, Germany.
| |
Collapse
|
33
|
Behrens R, Hayles J, Nurse P. Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames. Nucleic Acids Res 2000; 28:4709-16. [PMID: 11095681 PMCID: PMC115174 DOI: 10.1093/nar/28.23.4709] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.
Collapse
Affiliation(s)
- R Behrens
- Imperial Cancer Research Fund, Cell Cycle Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
34
|
Abstract
The retrovirus-like mobile genetic element of Saccharomyces cerevisiae, Ty1, transposes to new genomic locations via the element-encoded integrase (IN). Here we report that purified recombinant IN catalyzed correct integration of a linear DNA into a supercoiled target plasmid. Ty1 virus-like particles (VLPs) integrated donor DNA more efficiently than IN. VLP and IN-mediated insertions occurred at random sites in the target. Mg(2+) was preferred over Mn(2+) for correct integration, and neither cation enhanced nonspecific nuclease activity of IN. Products consistent with correct integration events were also obtained by Southern analysis. Recombinant IN and VLPs utilized many, but not all, linear donor fragments containing non-Ty1 ends, including a U3 mutation which has been shown to be defective for transposition in vivo. Together, our results suggest that IN is sufficient for Ty1 integration in vitro and IN interacts with exogenous donors less stringently than with endogenous elements.
Collapse
Affiliation(s)
- S P Moore
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702-1201, USA.
| | | |
Collapse
|
35
|
Gehring AM, Nodwell JR, Beverley SM, Losick R. Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci U S A 2000; 97:9642-7. [PMID: 10931952 PMCID: PMC16918 DOI: 10.1073/pnas.170059797] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous soil bacterium Streptomyces coelicolor undergoes a complex cycle of morphological differentiation involving the formation of an aerial mycelium and the production of pigmented antibiotics. We have developed a procedure for generating insertional mutants of S. coelicolor based on in vitro transposition of a plasmid library of cloned S. coelicolor DNAs. The insertionally mutated library was introduced into S. coelicolor, and transposon insertions were recovered at widely scattered locations around the chromosome. Many of the insertions revealed previously uncharacterized genes, and several caused novel mutant phenotypes, such as altered pigment production, enhanced antibiotic sensitivity, delayed or impaired formation of aerial hyphae, and a block in spore formation. The sporulation mutant harbored an insertion in one of three adjacent genes that are apparently unique to Streptomyces but are each represented by at least 20 paralogs at dispersed locations in the chromosome. Individual members of the three families often are found grouped together in a characteristic arrangement, suggesting that they have a common function.
Collapse
Affiliation(s)
- A M Gehring
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
36
|
Biery MC, Stewart FJ, Stellwagen AE, Raleigh EA, Craig NL. A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 2000; 28:1067-77. [PMID: 10666445 PMCID: PMC102592 DOI: 10.1093/nar/28.5.1067] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A robust Tn7-based in vitro transposition system is described that displays little target site selectivity, allowing the efficient recovery of many different transposon insertions in target DNAs ranging from small plasmids to cosmids to whole genomes. Two miniTn7 derivatives are described that are useful for the analysis of genes: one a derivative for making translational and transcriptional target gene fusions and the other a derivative that can generate 15 bp (5 amino acid) insertions in target DNAs (proteins).
Collapse
Affiliation(s)
- M C Biery
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
37
|
Loferer I, Jacobi I, Posch I, Gauss I, Meier-Ewert I, Seizinger I. Integrated bacterial genomics for the discovery of novel antimicrobials. Drug Discov Today 2000; 5:107-114. [PMID: 10675884 DOI: 10.1016/s1359-6446(99)01455-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequencing of bacterial genomes has been progressing with breathtaking speed. Currently, the genomes of 23 bacterial species are sequenced, with approximately 40 more sequencing projects in progress. Industrial research is now facing the challenge of translating this information efficiently into drug discovery. This review will summarize the impact of bacterial genomics, bioinformatics and second-generation genomic technologies on target identification, assay development, lead optimization and compound characterization.
Collapse
Affiliation(s)
- I Loferer
- Genome Pharmaceuticals Corporation, Fraunhoferstrasse 20, D-82152 Martinsried/Munich, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Tosi LR, Beverley SM. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 2000; 28:784-90. [PMID: 10637331 PMCID: PMC102556 DOI: 10.1093/nar/28.3.784] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1999] [Revised: 12/04/1999] [Accepted: 12/04/1999] [Indexed: 11/13/2022] Open
Abstract
Mos1 and other mariner / Tc1 transposons move horizon-tally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10(-3)/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis -acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein over-expression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the 'natural' Mos1 and 'reconstructed' Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naïve population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.
Collapse
MESH Headings
- Animals
- DNA Transposable Elements/genetics
- DNA Transposable Elements/physiology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- Drosophila/enzymology
- Drosophila/genetics
- Evolution, Molecular
- Genome
- Magnesium/metabolism
- Manganese/metabolism
- Mutagenesis, Insertional/methods
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Protein Folding
- Protein Renaturation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Recombination, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Deletion/genetics
- Substrate Specificity
- Terminal Repeat Sequences/genetics
- Trans-Activators/physiology
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- L R Tosi
- Department of Molecular Microbiology, Washington University Medical School, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
39
|
Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 2000; 18:97-100. [PMID: 10625401 DOI: 10.1038/72017] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA transposition is an important biological phenomenon that mediates genome rearrangements, inheritance of antibiotic resistance determinants, and integration of retroviral DNA. Transposition has also become a powerful tool in genetic analysis, with applications in creating insertional knockout mutations, generating gene-operon fusions to reporter functions, providing physical or genetic landmarks for the cloning of adjacent DNAs, and locating primer binding sites for DNA sequence analysis. DNA transposition studies to date usually have involved strictly in vivo approaches, in which the transposon of choice and the gene encoding the transposase responsible for catalyzing the transposition have to be introduced into the cell to be studied (microbial systems and applications are reviewed in ref. 1). However, all in vivo systems have a number of technical limitations. For instance, the transposase must be expressed in the target host, the transposon must be introduced into the host on a suicide vector, and the transposase usually is expressed in subsequent generations, resulting in potential genetic instability. A number of in vitro transposition systems (for Tn5, Tn7, Mu, Himar1, and Ty1) have been described, which bypass many limitations of in vivo systems. For this purpose, we have developed a technique for transposition that involves the formation in vitro of released Tn5 transposition complexes (TransposomesTM) followed by introduction of the complexes into the target cell of choice by electroporation. In this report, we show that this simple, robust technology can generate high-efficiency transposition in all tested bacterial species (Escherichia coli, Salmonella typhimurium, and Proteus vulgaris) We also isolated transposition events in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- I Y Goryshin
- Department of Biochemistry, University of Wisconsin, 433 Babcock Dr., Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Reznikoff WS, Bhasin A, Davies DR, Goryshin IY, Mahnke LA, Naumann T, Rayment I, Steiniger-White M, Twining SS. Tn5: A molecular window on transposition. Biochem Biophys Res Commun 1999; 266:729-34. [PMID: 10603311 DOI: 10.1006/bbrc.1999.1891] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA transposition is an underlying process involved in the remodeling of genomes in all types of organisms. We analyze the multiple steps in cut-and-paste transposition using the bacterial transposon Tn5 as a model. This system is particularly illuminating because of the existence of structural, genetic, and biochemical information regarding the two participating specific macromolecules: the transposase and the 19-bp sequences that define the ends of the transposon. However, most of the insights should be of general interest because of similarities to other transposition-like systems such as HIV-1 DNA integration into the host genome.
Collapse
Affiliation(s)
- W S Reznikoff
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, Wisconsin, 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu H, Fives-Taylor PM. Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesin, Fap1, of Streptococcus parasanguis. Mol Microbiol 1999; 34:1070-81. [PMID: 10594831 DOI: 10.1046/j.1365-2958.1999.01670.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fap1, a fimbriae-associated protein, is involved in fimbriae assembly and adhesion of Streptococcus parasanguis FW213 (Wu et al., 1998). In this study, the sequence of the fap1 gene was resolved using a primer island transposition system. Sequence analysis indicated that fap1 was composed of 7659 nucleotides. The predicted Fap1 protein contains an unusually long signal sequence (50 amino acid residues), a cell wall sorting signal and two repeat regions. Repeat regions I and II have a similar dipeptide composition (E/V/I)S, composed of 28 and 1000 repeats respectively. The two regions combined accounted for 80% of the Fap1 coding region. The experimental amino acid composition and isoelectric point (pI) of Fap1 were similar to that predicted from the deduced Fap1 protein. Results of Northern analyses revealed that the fap1 open reading frame (ORF) was transcribed as a 7.8 kb monocistronic message. Insertional inactivation at the 3' end, downstream of the fap1 ORF, did not affect Fap1, fimbrial expression or bacterial adhesion. Insertional inactivation of fap1 immediately upstream of the repeat region II abolished expression of Fap1 and fimbriae, and was concurrent with a diminution in adhesion of FW213. Inactivation of the cell wall sorting signal of fap1 also eliminated long fimbrial formation and reduced the ability of FW213 to bind to SHA. Fap1 was no longer anchored on the cell surface. Large quantities of truncated Fap1 were found in the growth medium instead. These results suggest that the fap1 ORF alone is sufficient to support Fap1 expression and adhesion, and demonstrate that anchorage of Fap1 on the cell surface is required for long fimbriae formation. These data further document the role of long fimbriae in adhesion of S. parasanguis FW213 to SHA.
Collapse
Affiliation(s)
- H Wu
- Room 117, Stafford Hall, Department of Microbiology and Molecular Genetics, College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
42
|
Volorio S, Simon G, Repetto M, Cucciardi M, Banfi S, Borsani G, Ballabio A, Zollo M. Sequencing analysis of forty-eight human image cDNA clones similar to Drosophila mutant protein. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:307-15. [PMID: 10524757 DOI: 10.3109/10425179809008469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have sequenced 48 human IMAGE cDNA clones selected from the public EST database (dbEST) for their significant homology to Drosophila mutant genes. A dynamically updated analysis report was produced by BlastX and BlastN analysis searches in the latest databases available. This analysis led us to estimate the grade of similarity with homologous genes isolated in other species. Bottlenecks were detected in the sequencing process and here we have presented our problem-solving approach. We think the value of this full-length sequencing project is an enrichment of the sequence database information that is currently available to the human genome community.
Collapse
Affiliation(s)
- S Volorio
- Telethon Institute of Genetics and Medicine (TIGEM), San Raffaele Biomedical Science Park, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Reich KA, Chovan L, Hessler P. Genome scanning in Haemophilus influenzae for identification of essential genes. J Bacteriol 1999; 181:4961-8. [PMID: 10438768 PMCID: PMC93985 DOI: 10.1128/jb.181.16.4961-4968.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a method for identifying essential genes by using an in vitro transposition system, with a small (975 bp) insertional element containing an antibiotic resistance cassette, and mapping these inserts relative to the deduced open reading frames of Haemophilus influenzae by PCR and Southern analysis. Putative essential genes are identified by two methods: mutation exclusion or zero time analysis. Mutation exclusion consists of growing an insertional library and identifying open reading frames that do not contain insertional elements: in a growing population of bacteria, insertions in essential genes are excluded. Zero time analysis consists of monitoring the fate of individual insertions after transformation in a growing culture: the loss of inserts in essential genes is observed over time. Both methods of analysis permit the identification of genes required for bacterial survival. Details of the mutant library construction and the mapping strategy, examples of mutant exclusion, and zero time analysis are presented.
Collapse
Affiliation(s)
- K A Reich
- Genomics and Molecular Biology, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | |
Collapse
|
44
|
Haapa S, Taira S, Heikkinen E, Savilahti H. An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res 1999; 27:2777-84. [PMID: 10373596 PMCID: PMC148488 DOI: 10.1093/nar/27.13.2777] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposons are mobile genetic elements and have been utilized as essential tools in genetics over the years. Though highly useful, many of the current transposon-based applications suffer from various limitations, the most notable of which are: (i) transposition is performed in vivo, typically species specifically, and as a multistep process; (ii) accuracy and/or efficiency of the in vivo or in vitro transposition reaction is not optimal; (iii) a limited set of target sites is used. We describe here a genetic analysis methodology that is based on bacteriophage Mu DNA transposition and circumvents such limitations. The Mu transposon tool is composed of only a few components and utilizes a highly efficient and accurate in vitro DNA transposition reaction with a low stringency of target preference. The utility of the Mu system in functional genetic analysis is demonstrated using restriction analysis and genetic footprinting strategies. The Mu methodology is readily applicable in a variety of current and emerging transposon-based techniques and is expected to generate novel approaches to functional analysis of genes, genomes and proteins.
Collapse
Affiliation(s)
- S Haapa
- Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 9, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
45
|
Abstract
Microbial genome sequencing is driven by the need to understand and control pathogens and to exploit extremophiles and their enzymes in bioremediation and industry. It is hard for the traditional bacteriologist to grasp the scale and pace of the venture. Around two dozen microbial genomes have now been completed and, within a decade, genomes from every significant species of bacterial pathogen of humans, animals and plants will have been sequenced. Indeed, we will often have more than one sequence from a species or genus--for example, we already have sequences from two strains of Helicobacter pylori, from two strains of Mycobacterium tuberculosis and from three species of Pyrococcus. However, genome sequencing risks becoming expensive molecular stamp-collecting without the tools to mine the data and fuel hypothesis-driven laboratory-based research. Bioinformatics, twinned with the new experimental approaches forming functional genomics', provides some of the needed tools. Nonetheless, there will be an increasing need for us to explore the detailed implications of genomic findings. Microbial genome sequencing thus represents not a threat, but an exciting opportunity for molecular microbiologists.
Collapse
Affiliation(s)
- M J Pallen
- Department of Medical Microbiology, St Bartholomew's and the Royal London School of Medicine and Dentistry, West Smithfield, London, UK.
| |
Collapse
|
46
|
Garcia E, Nedialkov YA, Elliott J, Motin VL, Brubaker RR. Molecular characterization of KatY (antigen 5), a thermoregulated chromosomally encoded catalase-peroxidase of Yersinia pestis. J Bacteriol 1999; 181:3114-22. [PMID: 10322012 PMCID: PMC93766 DOI: 10.1128/jb.181.10.3114-3122.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The first temperature-dependent proteins (expressed at 37 degrees C, but not 26 degrees C) to be identified in Yersinia pestis were antigens 3 (fraction 1), 4 (pH 6 antigen), and 5 (hereafter termed KatY). Antigens 3 and 4 are now established virulence factors, whereas little is known about KatY, except that it is encoded chromosomally, produced in abundance, possesses modest catalase activity, and is shared by Yersinia pseudotuberculosis, but not Yersinia enterocolitica. We report here an improved chromatographic method (DEAE-cellulose, calcium hydroxylapatite, and Sephadex G-150) that yields enzymatically active KatY (2,423 U/mg of protein). Corresponding mouse monoclonal antibody 1B70.1 detected plasminogen activator-mediated hydrolysis of KatY, and a polyclonal rabbit antiserum raised against outer membranes of Y. pestis was enriched for anti-KatY. A sequenced approximately 16-kb Y. pestis DNA insert of a positive pLG338 clone indicated that katY encodes an 81.4-kDa protein (pI 6.98) containing a leader sequence of 2.6 kDa; the deduced molecular mass and pI of processed KatY were 78.8 kDa and 6. 43, respectively. A minor truncated variant (predicted molecular mass of 53.6 kDa) was also expressed. KatY is similar (39 to 59% identity) to vegetative bacterial catalase-peroxidases (KatG in Escherichia coli) and is closely related to plasmid-encoded KatP of enterohemorrhagic E. coli O157:H7 (75% identity). katY encoded a putative Ca2+-binding site, and its promoter contained three homologues to the consensus recognition sequence of the pCD-encoded transcriptional activator LcrF. rbsA was located upstream of katY, and cybB, cybC, dmsABC, and araD were mapped downstream. These genes are not linked to katG or katP in E. coli.
Collapse
Affiliation(s)
- E Garcia
- Human Genome Center, Lawrence Livermore Laboratory, Livermore, California 94550, USA
| | | | | | | | | |
Collapse
|
47
|
Cloning and characterization of RGS9-2: a striatal-enriched alternatively spliced product of the RGS9 gene. J Neurosci 1999. [PMID: 10066255 DOI: 10.1523/jneurosci.19-06-02016.1999] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) for alpha subunits of heterotrimeric G-proteins. Previous in situ hybridization analysis of mRNAs encoding RGS3-RGS11 revealed region-specific expression patterns in rat brain. RGS9 showed a particularly striking pattern of almost exclusive enrichment in striatum. In a parallel study, RGS9 cDNA, here referred to as RGS9-1, was cloned from retinal cDNA libraries, and the encoded protein was identified as a GAP for transducin (Galphat) in rod outer segments. In the present study we identify a novel splice variant of RGS9, RGS9-2, cloned from a mouse forebrain cDNA library, which encodes a striatal-specific isoform of the protein. RGS9-2 is 191 amino acids longer than the retinal isoform, has a unique 3' untranslated region, and is highly enriched in striatum, with much lower levels seen in other brain regions and no expression detectable in retina. Immunohistochemistry showed that RGS9-2 protein is restricted to striatal neuropil and absent in striatal terminal fields. The functional activity of RGS9-2 is supported by the finding that it, but not RGS9-1, dampens the Gi/o-coupled mu-opioid receptor response in vitro. Characterization of a bacterial artificial chromosome genomic clone of approximately 200 kb indicates that these isoforms represent alternatively spliced mRNAs from a single gene and that the RGS domain, conserved among all known RGS members, is encoded over three distinct exons. The distinct C-terminal domains of RGS9-2 and RGS9-1 presumably contribute to unique regulatory properties in the neural and retinal cells in which these proteins are selectively expressed.
Collapse
|
48
|
Rahman Z, Gold SJ, Potenza MN, Cowan CW, Ni YG, He W, Wensel TG, Nestler EJ. Cloning and characterization of RGS9-2: a striatal-enriched alternatively spliced product of the RGS9 gene. J Neurosci 1999; 19:2016-26. [PMID: 10066255 PMCID: PMC6782559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Regulators of G-protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) for alpha subunits of heterotrimeric G-proteins. Previous in situ hybridization analysis of mRNAs encoding RGS3-RGS11 revealed region-specific expression patterns in rat brain. RGS9 showed a particularly striking pattern of almost exclusive enrichment in striatum. In a parallel study, RGS9 cDNA, here referred to as RGS9-1, was cloned from retinal cDNA libraries, and the encoded protein was identified as a GAP for transducin (Galphat) in rod outer segments. In the present study we identify a novel splice variant of RGS9, RGS9-2, cloned from a mouse forebrain cDNA library, which encodes a striatal-specific isoform of the protein. RGS9-2 is 191 amino acids longer than the retinal isoform, has a unique 3' untranslated region, and is highly enriched in striatum, with much lower levels seen in other brain regions and no expression detectable in retina. Immunohistochemistry showed that RGS9-2 protein is restricted to striatal neuropil and absent in striatal terminal fields. The functional activity of RGS9-2 is supported by the finding that it, but not RGS9-1, dampens the Gi/o-coupled mu-opioid receptor response in vitro. Characterization of a bacterial artificial chromosome genomic clone of approximately 200 kb indicates that these isoforms represent alternatively spliced mRNAs from a single gene and that the RGS domain, conserved among all known RGS members, is encoded over three distinct exons. The distinct C-terminal domains of RGS9-2 and RGS9-1 presumably contribute to unique regulatory properties in the neural and retinal cells in which these proteins are selectively expressed.
Collapse
Affiliation(s)
- Z Rahman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06508, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Westphal CH, Muller L, Zhou A, Zhu X, Bonner-Weir S, Schambelan M, Steiner DF, Lindberg I, Leder P. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell 1999; 96:689-700. [PMID: 10089884 DOI: 10.1016/s0092-8674(00)80579-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neuroendocrine protein 7B2 has been implicated in activation of prohormone convertase 2 (PC2), an important neuroendocrine precursor processing endoprotease. To test this hypothesis, we created a null mutation in 7B2 employing a novel transposon-facilitated technique and compared the phenotypes of 7B2 and PC2 nulls. 7B2 null mice have no demonstrable PC2 activity, are deficient in processing islet hormones, and display hypoglycemia, hyperproinsulinemia, and hypoglucagonemia. In contrast to the PC2 null phenotype, these mice show markedly elevated circulating ACTH and corticosterone levels, with adrenocortical expansion. They die before 9 weeks of severe Cushing's syndrome arising from pituitary intermediate lobe ACTH hypersecretion. We conclude that 7B2 is indeed required for activation of PC2 in vivo but has additional important functions in regulating pituitary hormone secretion.
Collapse
Affiliation(s)
- C H Westphal
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Haapa S, Suomalainen S, Eerikäinen S, Airaksinen M, Paulin L, Savilahti H. An efficient DNA sequencing strategy based on the bacteriophage mu in vitro DNA transposition reaction. Genome Res 1999; 9:308-15. [PMID: 10077537 PMCID: PMC310728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A highly efficient DNA sequencing strategy was developed on the basis of the bacteriophage Mu in vitro DNA transposition reaction. In the reaction, an artificial transposon with a chloramphenicol acetyltransferase (cat) gene as a selectable marker integrated into the target plasmid DNA containing a 10.3-kb mouse genomic insert to be sequenced. Bacterial clones carrying plasmids with the transposon insertions in different positions were produced by transforming transposition reaction products into Escherichia coli cells that were then selected on appropriate selection plates. Plasmids from individual clones were isolated and used as templates for DNA sequencing, each with two primers specific for the transposon sequence but reading the sequence into opposite directions, thus creating a minicontig. By combining the information from overlapping minicontigs, the sequence of the entire 10,288-bp region of mouse genome including six exons of mouse Kcc2 gene was obtained. The results indicated that the described methodology is extremely well suited for DNA sequencing projects in which considerable sequence information is on demand. In addition, massive DNA sequencing projects, including those of full genomes, are expected to benefit substantially from the Mu strategy.
Collapse
Affiliation(s)
- S Haapa
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|