1
|
Daldoul S, Mliki A, Höfer MU. Suppressive subtractive hybridization method analysis and its application to salt stress in grapevine (Vitis vinifera L.). RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Transcriptomics and proteomics in human African trypanosomiasis: current status and perspectives. J Proteomics 2011; 74:1625-43. [PMID: 21316496 DOI: 10.1016/j.jprot.2011.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis, or sleeping sickness, is a neglected vector-borne parasitic disease caused by protozoa of the species Trypanosoma brucei sensu lato. Within this complex species, T. b. gambiense is responsible for the chronic form of sleeping sickness in Western and Central Africa, whereas T. b. rhodesiense causes the acute form of the disease in East Africa. Presently, 1.5 million disability-adjusted life years (DALYs) per year are lost due to sleeping sickness. In addition, on the basis of the mortality, the disease is ranked ninth out of 25 human infectious and parasitic diseases in Africa. Diagnosis is complex and needs the intervention of a specialized skilled staff; treatment is difficult and expensive and has potentially life-threatening side effects. The use of transcriptomic and proteomic technologies, currently in rapid development and increasing in sensitivity and discriminating power, is already generating a large panel of promising results. The objective of these technologies is to significantly increase our knowledge of the molecular mechanisms governing the parasite establishment in its vector, the development cycle of the parasite during the parasite's intra-vector life, its interactions with the fly and the other microbial inhabitants of the gut, and finally human host-trypanosome interactions. Such fundamental investigations are expected to provide opportunities to identify key molecular events that would constitute accurate targets for further development of tools dedicated to field work for early, sensitive, and stage-discriminant diagnosis, epidemiology, new chemotherapy, and potentially vaccine development, all of which will contribute to fighting the disease. The present review highlights the contributions of the transcriptomic and proteomic analyses developed thus far in order to identify potential targets (genes or proteins) and biological pathways that may constitute a critical step in the identification of new targets for the development of new tools for diagnostic and therapeutic purposes.
Collapse
|
3
|
Gene expression profiling of oral squamous cell carcinoma by differential display rt-PCR and identification of tumor biomarkers. Indian J Surg Oncol 2011; 1:284-93. [PMID: 22693380 DOI: 10.1007/s13193-011-0054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 01/31/2011] [Indexed: 01/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common cancer worldwide. Despite progress in therapeutic and surgical treatments, its survival period at 5 years is the lowest among major cancers, and remains unchanged in the last two decades. The growing epidemiological relevance of oral cancer emphasizes the need to better understand the molecular mechanisms underlying this disease and identify predictive tumor markers and therapeutic targets. To this end, we have used the DDRT-PCR analysis to profile the oral tumor transcriptome and identify differentially regulated genes that may be used as potential biomarkers and therapeutic targets. Our DDRT-PCR analysis identified 51 differentially expressed fragments, of which 25 were revalidated by reverse Northern analysis. Northern blot analysis further corroborated these findings for a few genes. In order to ascertain the utility of some of the identified genes as molecular markers and therapeutic targets, semi-quantitative RT-PCR analysis was carried out in a panel of matched oral normal and tumor samples, that confirmed GLTP, PCNA, RBM28, C17orf75 and DIAPH1 as significantly upregulated, whereas TNKS2, PAM and TUBB2C showed significant downregulation in tumor samples. Taken together, our DDRT-PCR analysis has revealed several genes, belonging to diverse cellular pathways, that have been associated with OSCC for the first time. Thus, these genes could be investigated as biomarkers and therapeutic targets for OSCC.
Collapse
|
4
|
Wang X, Chang L, Sun Z, Ma H. Characterization of genes expressed in response to cadmium exposure in the earthworm Eisenia fetida using DDRT-PCR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1214-1220. [PMID: 20674023 DOI: 10.1016/j.ecoenv.2010.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/04/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
The transition metal cadmium is a pervasive and persistent environmental contaminant that is both a human toxicant and a carcinogen. To inhibit cadmium-induced damage, cells increase the expression of genes encoding stress-response proteins. The transcription of many stress-responsive genes, including those that encode metallothioneins, glutathione-S-transferases (GSTs) and heat shock proteins have been reported. The aim of this work was to investigate in Eisenia fetida the genes whose expressions are regulated following exposure to cadmium. mRNA differential display reverse transcription-polymerase chain reaction was used to analyze gene expression in E. fetida exposed to 50mg/l cadmium solution. Among the derived cDNA clones sequenced, we found 15 genes up-regulated and 12 down-regulated in response to cadmium exposure. The translated amino acid sequences of eight clones were similar to the Lumbricus terrestris hemoglobin dodecamer, Tribolium castaneum membrane protein, Escherichia coli UMN026 DNA-binding transcriptional activator, Brugia malayi immunoglobulin, Homo sapiens cell growth-inhibiting protein, Apis mellifera poly U binding factor, Escherichia fergusonii copper transporter, and the mRNA that encodes E. coli K-12 cytoplasmic insertase into membrane protein. Five cDNA fragments presented no homology with known gene sequences, suggesting that these sequences may either encode proteins not yet identified or correspond to untranslated regions of mRNA molecules. In-depth functional analyses of these genes are needed to reveal their exact roles.
Collapse
Affiliation(s)
- Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University,100193 Beijing, PR China.
| | | | | | | |
Collapse
|
5
|
Cho YJ, Meade JD, Shester BR, Walden JC, Guo Z, Liang P. Proof-reading signal accuracy of gene expression by binary differential display. Biotechnol Lett 2010; 32:1039-44. [PMID: 20379762 DOI: 10.1007/s10529-010-0268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/29/2010] [Indexed: 11/26/2022]
Abstract
Differential display (DD) is commonly used for identifying differentially expressed genes. However, each cDNA species identified by DD must be verified so a "real difference" can be differentiated from false positives. Although Northern blot analysis is the gold standard it is labor intensive, time-consuming and requires a significant amount of RNA. To speed up and streamline the confirmation process, we developed a new strategy: binary differential display (BDD) based on the binding kinetics of the arbitrary primers in DD. After determining a cDNA sequence of interest from a DD screen, two more 13mer primers derived from the original arbitrary primer used can be designed to target a corresponding cDNA sequence of interest: one with perfect 5'-base matches and the other with additional mismatches at the 5'-base to the corresponding mRNA being confirmed. A separate reverse transcription and FDD are then performed with the same RNA samples being compared. BDD can quickly and accurately determine if a cDNA sequence identified by DD corresponds to a truly differentially expressed gene. In addition, the method is especially useful when more than one cDNA sequence was recovered from a DD band where the masking effect of false-positives can be clearly resolved. Given its simplicity and limited RNA sample required, BDD can be used as a general strategy for rapid confirmation of differentially expressed genes discovered by DD.
Collapse
Affiliation(s)
- Yong-jig Cho
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 546 PRB, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Trinchella F, Cannetiello M, Simoniello P, Filosa S, Scudiero R. Differential gene expression profiles in embryos of the lizard Podarcis sicula under in ovo exposure to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:33-9. [PMID: 19695345 DOI: 10.1016/j.cbpc.2009.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
Screening for differentially expressed genes is a straightforward approach to study the molecular basis of contaminant toxicity. In this paper, the mRNA differential display technique was applied to analyze transcriptional regulation in response to cadmium exposure in the lizard embryos. Lizard eggs may be particularly susceptible to soil contamination and in ovo exposure may interfere or disrupt normal physiological function in the developing embryo, including regulation of gene expression. Fertilized eggs of the lizard Podarcis sicula were incubated in cadmium-contaminated soil at 25 degrees C for 20 days. Gene expression profiling showed 5 down- and 9 up-regulated genes. Four cDNAs had no homology to known gene sequences, thus suggesting that may either encode not yet identified proteins, or correspond to untranslated regions of mRNA molecules. Four fragments exhibited significant sequence similarity with genes encoding novel proteins or ESTs derived from other vertebrates. The remaining genes are mainly involved in molecular pathways associated with processes such as membrane trafficking, signal transduction, cytoskeletal organization, cell proliferation and differentiation. Cadmium also affected the expression of factors actively involved in the regulation of the transcription machinery. Down-regulated genes are mainly associated with cellular metabolism and cell-cycle regulation and apoptosis. All of these differentially expressed genes may represent candidates that function in cadmium responses. The present study leads to an increased understanding of genes and/or the biochemical pathways involved in perturbation of embryo development following cadmium exposure.
Collapse
Affiliation(s)
- Francesca Trinchella
- Department of Biological Sciences, University Federico II, Via Mezzocannone 8, Naples, Italy
| | | | | | | | | |
Collapse
|
7
|
Meade JD, Cho YJ, Shester BR, Walden JC, Guo Z, Liang P. Automated fluorescent differential display for cancer gene profiling. Methods Mol Biol 2009; 576:99-133. [PMID: 19882260 DOI: 10.1007/978-1-59745-545-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Since its invention in 1992, differential display (DD) has become the most commonly used technique for identifying differentially expressed genes because of its many advantages over competing technologies such as DNA microarray, serial analysis of gene expression (SAGE), and subtractive hybridization. A large number of these publications have been in the field of cancer, specifically on p53 target genes. Despite the great impact of the method on biomedical research, there had been a lack of automation of DD technology to increase its throughput and accuracy for systematic gene expression analysis. Many previous DD work has taken a "shotgun" approach of identifying one gene at a time, with a limited number of polymerase chain reactions (PCRs) set up manually, giving DD a low-tech and low-throughput image. We have optimized the DD process with a platform that incorporates fluorescent digital readout, automated liquid handling, and large-format gels capable of running entire 96-well plates. The resulting streamlined fluorescent DD (FDD) technology offers an unprecedented accuracy, sensitivity, and throughput in comprehensive and quantitative analysis of gene expression. These major improvements will allow researchers to find differentially expressed genes of interest, both known and novel, quickly and easily.
Collapse
|
8
|
Reciprocal subtraction differential RNA display (RSDD): an efficient technology for cloning differentially expressed genes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 383:1-14. [PMID: 18217675 DOI: 10.1007/978-1-59745-335-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identification of differentially expressed genes is an essential step in comprehending the molecular basis of complex physiological and pathological processes. Subtraction hybridization and differential RNA display (DDRT-PCR) are two methods that are widely and successfully employed to clone differentially expressed genes. Unfortunately, both methods have inherent problems and limitations requiring improvements in the technique. A combination of these two methods termed reciprocal subtraction differential RNA display is described here that considerably reduces the complexity of DDRT-PCR and facilitates the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes.
Collapse
|
9
|
Liang P, Pardee AB. Differential display of mRNA by PCR. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2008; Chapter 25:Unit 25B.3. [PMID: 18265216 DOI: 10.1002/0471142727.mb25b03s56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formerly UNIT , this unit describes how differential display techniques allow the identification and subsequent isolation of differentially expressed genes that requires no knowledge of sequences, but rather PCR amplification using arbitrary oligonucleotides and high resolution polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- P Liang
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | | |
Collapse
|
10
|
Screening of genes regulated by cold shock in Shewanella piezotolerans WP3 and time course expression of cold-regulated genes. Arch Microbiol 2008; 189:549-56. [PMID: 18193200 DOI: 10.1007/s00203-007-0347-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 12/05/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
The differential gene transcription of a deep-sea bacterium Shewanella piezotolerans WP3 in response to cold shock was analyzed by RNA arbitrarily primed PCR. Ninety primer sets were used to scan two different RNA pools derived from the culture of cold shock and its control (culture at its optimal grown temperature). Ninety-four putative differentially expressed fragments were identified and cloned. Six out of the 94 fragments were confirmed to be truly differentially transcribed in terms of cold shock by reverse Northern dot blot and then sequenced. Sequence blast analysis showed that the six differentially transcribed genes are putative genes for zonular occludens toxin, chaperon GroEL, efflux transporter, Sua5/YciO/YrdC/YwlC family protein, betaine-aldehyde dehydrogenase, and DEAD box RNA helicase, respectively. The time course expression profiles of these six genes from 0 to 90 min upon cold shock were quantified by real-time PCR. Deletion mutation of the highest induced gene--RNA helicase gene, had no significant impact on the growth of the strain no matter upon cold shock or under permanent low temperature. It is suggested that one or more additional DEAD box RNA helicase genes compensate for the loss of the function of the mutated gene.
Collapse
|
11
|
Murray SL, Ingle RA, Petersen LN, Denby KJ. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1431-8. [PMID: 17977154 DOI: 10.1094/mpmi-20-11-1431] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Basal resistance is the ultimately unsuccessful plant defense response to infection with a virulent pathogen. It is thought to be triggered by host recognition of pathogen-associated molecular patterns, with subsequent suppression of particular components by pathogen effectors. To identify novel components of Arabidopsis basal resistance against the bacterial pathogen Pseudomonas syringae pv. tomato, microarray expression profiling was carried out on the cirl mutant, which displays enhanced resistance against P. syringae pv. tomato. This identified two genes, At4g23810 and At2g40000, encoding the transcription factor WRKY53 and the nematode resistance protein-like HSPRO2, whose expression was upregulated in cir1 prior to pathogen infection and in wild-type plants after P. syringae pv. tomato infection. WRKY53 and HSPRO2 are positive regulators of basal resistance. Knockout mutants of both genes were more susceptible to P. syringae pv. tomato infection than complemented lines, with increased growth of the pathogen in planta. WRKY53 and HSPRO2 appear to function downstream of salicylic acid and to be negatively regulated by signaling through jasmonic acid and ethylene.
Collapse
Affiliation(s)
- Shane L Murray
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa 7701
| | | | | | | |
Collapse
|
12
|
Liang P, Meade JD, Pardee AB. A protocol for differential display of mRNA expression using either fluorescent or radioactive labeling. Nat Protoc 2007; 2:457-70. [PMID: 17406608 DOI: 10.1038/nprot.2007.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since its invention in the early 1990s, differential display (DD) has become one of the most commonly used techniques for identifying differentially expressed genes at the mRNA level. Unlike other genomic approaches, such as DNA microarrays, DD systematically detects changes in mRNA profiles among multiple samples being compared without the need of any prior knowledge of genomic information of the living organism being studied. Here, we present an optimized DD protocol with a fluorescent digital readout as well as traditional radioactive labeling. The resulting streamlined fluorescent DD process offers an unprecedented accuracy, sensitivity and throughput in comprehensive and quantitative analysis of eukaryotic gene expression. Results usually can be obtained within days using a limited number of primer combinations, but a comprehensive DD screen may take weeks or months to accomplish, depending on gene coverage required and the number of differentially expressed genes present within a biological system being compared.
Collapse
Affiliation(s)
- Peng Liang
- GenHunter Corporation, 624 Grassmere Park Dr, Suite 17, Nashville, Tennessee 37211, USA.
| | | | | |
Collapse
|
13
|
Hassinen VH, Tervahauta AI, Halimaa P, Plessl M, Peräniemi S, Schat H, Aarts MGM, Servomaa K, Kärenlampi SO. Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. PLANTA 2007; 225:977-89. [PMID: 17013613 DOI: 10.1007/s00425-006-0403-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 08/25/2006] [Indexed: 05/08/2023]
Abstract
Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.
Collapse
Affiliation(s)
- V H Hassinen
- Institute of Applied Biotechnology, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:535-47. [PMID: 17059409 DOI: 10.1111/j.1365-313x.2006.02889.x] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We isolated 76 high-light and heat-shock (HL + HS) stress-inducible genes, including a putative heat-shock transcription factor (HsfA2), by suppression-subtractive hybridization from Arabidopsis. The transcript level of HsfA2 was significantly increased under the several stress conditions or by the H(2)O(2) treatment. Furthermore, the induction of HsfA2 expression was highest among those of other class A HSFs in response to HL + HS stress conditions. The promoter assay revealed that HsfA2 is induced mainly in rosette leaves under HL + HS stress conditions. In the HsfA2-overexpressing Arabidopsis (Pro(35S):HsfA2) plants, 46 genes, including a large number of heat-shock proteins, ascorbate peroxidase 2 and galactinol synthase 1 and 2, were highly expressed compared with those in the wild-type plants. The transcript levels of the HsfA2 target genes are highly correlated with those of HsfA2 in the Pro(35S):HsfA2 plants. The transcript levels of the HsfA2 target genes, as well as HsfA2 transcripts, were induced by treating with exogenous H(2)O(2). In the knockout HsfA2 Arabidopsis plants, the induction of 26 HsfA2 target genes was strongly reduced for up to 2 h under HL + HS stress conditions. Furthermore, the Pro(35S):HsfA2 plants showed increased tolerance to combined environmental stresses. Our present results indicate that HsfA2 is a key regulator in the induction of the defence system under several types of environmental stress.
Collapse
Affiliation(s)
- Ayako Nishizawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Fisher JS, Meade J, Walden J, Guo Z, Liang P. FDD PCR, Identification and Analysis of Differentially Expressed cDNAs. Cold Spring Harb Protoc 2006; 2006:2006/1/pdb.prot4128. [PMID: 22485530 DOI: 10.1101/pdb.prot4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
16
|
Ishihata A, Katano Y. Investigation of Differentially Expressed Genes in the Ventricular Myocardium of Senescent Rats. Ann N Y Acad Sci 2006; 1067:142-51. [PMID: 16803979 DOI: 10.1196/annals.1354.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aging alters a variety of physiological functions of the heart. The molecular basis of the age-related functional changes has not been fully understood. Differential gene expression provides the basis for many fundamental cellular processes associated with development and aging. The identification and cloning of genes whose expression is modulated by aging can be of importance for our better understanding of these age-related phenomena. In order to isolate and characterize gene products differentially expressed in senescent hearts, we applied a differential display method for screening those genes in rat ventricular myocardium. Total RNAs were isolated from 2-month-old (young) and 24-month-old rat (senescent) ventricles by the acid-guanidium-phenol-chloroform method. The first-strand synthesis of the cDNAs from each RNA was carried out with oligo-d(T) primers. The differential display screening was performed with three arbitrary primers and eight anchor primers, and the products were isolated on a 6% denaturing polyacrylamide gel. The bands showing differential expression were excised and subcloned into T-vector. We selected 19 upregulated clones and 66 downregulated clones in aged rat hearts. The differential expression of those candidate genes was confirmed by reverse Northern blot analysis. The selected genes were sequenced by dye-terminator methods. Among 31 clones, 15 clones were unknown. The known products included alpha-myosin heavy chain, cytochrome oxidase subunit, H(+)-transporting ATP synthase F0 complex subunit c isoform 3 (ATP5G3), and Na(+)-K(+)-Cl(-) cotransporter. The RT-PCR differential display method effectively identified genes differentially expressed in senescent hearts, and may be a useful tool for investigating factors responsible for age-related physiological changes.
Collapse
Affiliation(s)
- Akira Ishihata
- Department of Physiology I, Yamagata University School of Medicine, Japan.
| | | |
Collapse
|
17
|
Casimiro S, Tenreiro R, Monteiro AA. Identification of pathogenesis-related ESTs in the crucifer downy mildew oomycete Hyaloperonospora parasitica by high-throughput differential display analysis of distinct phenotypic interactions with Brassica oleracea. J Microbiol Methods 2006; 66:466-78. [PMID: 16545472 DOI: 10.1016/j.mimet.2006.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 11/30/2022]
Abstract
Crucifer downy mildew is caused by the obligatory biotrophic oomycete Hyaloperonospora parasitica (formerly Peronospora parasitica). So far, isolates infecting Arabidopsis thaliana have proven to be non-pathogenic on other crucifers and, despite its unequivocal merit as a research model, the pathosystem A. thaliana-H. parasitica by itself will not provide all the answers onto crucifer downy mildew genetics and biology. In this report, we present the development of a differential display (DD)-based strategy, suitable for high-throughput analysis of expressed sequence tags (ESTs) in plant-pathogen interactions, in this work applied to the analysis of the pathosystem Brassica oleracea-H. parasitica interaction transcriptome. Our purpose was the mining for pathogen-specific ESTs that can be used in future research for virulence factors and Avr genes. A total of 743 specific cDNAs showing differential expression in B. oleracea seedlings infected with H. parasitica, as opposed to healthy seedlings, were isolated by DD-PCR. We found 21 exclusively H. parasitica cDNAs from 433 sequenced DD clones, 18 encoding for potential new genes. Our results reinforce the abilities of DD-PCR for differential screening of pathosystems transcriptomes, leading to the finding of more new potential genes than the previously used techniques. Both the improved DD-based methodology and the graphical representations based on Venn diagrams from polyominoes are appropriate for large-scale analysis of multiple interaction transcriptomes. The obtained data are also innovative since this is the first approach to study the interaction of H. parasitica with its natural host.
Collapse
Affiliation(s)
- Sandra Casimiro
- Universidade de Lisboa, Faculdade de Ciências, Centro de Genética e Biologia Molecular and Instituto de Ciência Aplicada e Tecnologia, Edifício ICAT, Campus da FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | |
Collapse
|
18
|
Freed KA, Brennecke SP, Moses EK. Gene expression of the constant region of the heavy chain of immunoglobulin G (IgG CRHC) is down-regulated in human decidua in association with preeclampsia. J Reprod Immunol 2005; 68:105-20. [PMID: 16303183 DOI: 10.1016/j.jri.2005.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/09/2005] [Accepted: 07/15/2005] [Indexed: 11/24/2022]
Abstract
An aberrant interaction at the maternal/fetal interface between the genetically distinct fetal trophoblast cells and cells of the maternal decidua has been proposed as an initiating factor in one of the major complications of human pregnancy, preeclampsia. Biochemical and epidemiological studies suggest that the immune system plays an important role in preeclampsia. Thus, the aim of this study was to determine the decidual gene expression status in preeclampsia of one of the key components of the adaptive immune system. Total RNA was extracted from decidua collected from women with normal pregnancies and those complicated by preeclampsia. Reverse Northern analysis was performed on 72 cDNAs from human decidua and differentially expressed genes identified were analysed further using semi-quantitative RT-PCR and Northern blot analysis. Expression of the gene encoding the constant region of the heavy chain of immunoglobulin G (IgG CRHC) was shown to be down-regulated in association with preeclampsia. These data support the hypothesis that immune maladaptation may play an important role in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- K A Freed
- Department of Perinatal Medicine, The Royal Women's Hospital, 132 Grattan Street, Carlton 3053, Melbourne, Vic., Australia.
| | | | | |
Collapse
|
19
|
Minglin L, Yuxiu Z, Tuanyao C. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 2005; 363:151-8. [PMID: 16226851 DOI: 10.1016/j.gene.2005.07.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/12/2005] [Accepted: 07/30/2005] [Indexed: 01/19/2023]
Abstract
In this paper, the fluorescent mRNA differential display (DD) technique was applied to analyze transcriptional regulation in response to Cd treatment in a heavy-metal accumulator, Brassica juncea. 154 DD bands were identified, of which fragments corresponding to 15 and 13 cDNAs were successfully cloned from leaves and roots, respectively. Many of the genes were confirmed to have a 2-5 fold increase in expression in both roots and leaves after 48 h Cd exposure (approximately 22.4 ppm). However, several isolated genes, e.g., DD2, DD21, DD22, showed a reversed mRNA expression pattern. Sequencing revealed those Cd-induced up-regulated genes displayed mRNAs corresponding to 19 different genes, 18 of which had a clear identity to Arabidopsis thaliana sequences and a putative function was assigned to 15 of them, including the auxin-responsive GH3, ARF-like small GTPases/ARFs, ARD/ARD', APS reductase, Nop, catalase, zinc finger (C3HC4-type RING finger), diacylglycerol kinase, and haloacid dehalogenase-like hydrolase families. Three cDNAs corresponded to predicted membrane proteins (KOG3491) or a ribosome-associated membrane protein RAMP4. One other clone, DD26, did not show significant identities to any translated sequence in the GenBank database, suggesting it may either encode unidentified proteins, or correspond to un-translated, non-conserved regions of mRNA molecules. These Cd-responsive up-regulated genes are mostly also regulated by abiotic or biotic stresses, e.g., dehydration, chilling, high salt, auxin, heat and infection, in other plants. The present study leads to an increased understanding of genes and/or the biochemical pathways involved in heavy-metal resistance and accumulation in plants.
Collapse
Affiliation(s)
- Lang Minglin
- Department of Biology, Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | | |
Collapse
|
20
|
Villarreal D, Nirdé P, Hide M, Barnabé C, Tibayrenc M. Differential gene expression in benznidazole-resistant Trypanosoma cruzi parasites. Antimicrob Agents Chemother 2005; 49:2701-9. [PMID: 15980339 PMCID: PMC1168707 DOI: 10.1128/aac.49.7.2701-2709.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the differential gene expression among representative Trypanosoma cruzi stocks in relation to benznidazole exposures using a random differentially expressed sequences (RADES) technique. Studies were carried out with drug pressure both at the natural susceptibility level of the wild-type parasite (50% inhibitory concentration for the wild type) and at different resistance levels. The pattern of differential gene expression performed with resistant stocks was compared to the population structure of this parasite, established by random amplified polymorphic DNA analysis and multilocus enzyme electrophoresis. A RADES band polymorphism was observed, and over- or underexpression was linked to the resistance level of the stock. The analysis of RADES bands suggested that different products may be involved in benznidazole resistance mechanisms. No significant association was found between phylogenetic clustering and benznidazole susceptibility. Benznidazole resistance may involve several mechanisms, depending on the level of drug exposure.
Collapse
Affiliation(s)
- Diana Villarreal
- Génétique et Evolution des Maladies Infectieuses G.E.M.I., UMR 2724 CNRS/IRD, UR 165 IRD, Centre de Recherche IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
21
|
Edge SE, Morgan MB, Gleason DF, Snell TW. Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress. MARINE POLLUTION BULLETIN 2005; 51:507-23. [PMID: 16115654 DOI: 10.1016/j.marpolbul.2005.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of a cDNA array of coral genes and its application to investigate changes in coral gene expression associated with stressful conditions is described. The array includes both well-characterized and previously unidentified coral genes from Acropora cervicornis and Montastraea faveolata. Corals were exposed to either natural or anthropogenic stressors to elicit the expression of stress genes for isolation and incorporation onto the array. A total of 32 genes involved in protein synthesis, apoptosis, cell signaling, metabolism, cellular defense and inflammation were included on the array. Labeled cDNA from coral (Montastraea faveolata) exposed to elevated seawater temperature, salinity and ultraviolet light was tested against the microarray to determine patterns of gene expression associated with each stressor. Carbonic anhydrase, thioredoxin, a urokinase plasminogen activator receptor (uPAR) and three ribosomal genes demonstrated differential expression across all replicates on the array and between replicate colonies. Specific gene expression patterns produced in response to different stressors demonstrate the potential for gene expression profiling in characterizing the coral stress response.
Collapse
Affiliation(s)
- Sara E Edge
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA.
| | | | | | | |
Collapse
|
22
|
Arnould T, Mercy L, Houbion A, Vankoningsloo S, Renard P, Pascal T, Ninane N, Demazy C, Raes M. mtCLIC is up-regulated and maintains a mitochondrial membrane potential in mtDNA-depleted L929 cells. FASEB J 2003; 17:2145-7. [PMID: 12958156 DOI: 10.1096/fj.03-0075fje] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explain why mitochondrial DNA (mtDNA)-depleted or rho0 cells still keep a mitochondrial membrane potential (Delta(psi)m) in the absence of respiration, several hypotheses have been proposed. The principal and well accepted one involves a reverse of action for ANT combined to F1-ATPase activity. However, the existence of other putative electrogenic channels has been speculated. Here, using mRNA differential display reverse transcriptase-polymerase chain reaction on L929 mtDNA-depleted cells, we identified mtCLIC as a differentially expressed gene in cells deprived from mitochondrial ATP production. Mitochondrial chloride intracellular channel (mtCLIC), a member of a recently discovered and expanding family of chloride intracellular channels, is up-regulated in mtDNA-depleted and rho0 cells. We showed that its expression is dependent on CREB and p53 and is sensitive to calcium and tumor necrosis factor alpha. Interestingly, up- or down-regulation of mtCLIC protein expression changes Delta(psi)m whereas the chloride channel inhibitor NPPB reduces the Delta(psi)m in mtDNA-depleted L929 cells, measured with the fluorescent probe rhodamine 123. Finally, we demonstrated that purified mitochondria from mtDNA-depleted cells incorporate, in a NPPB-sensitive manner, more 36chloride than parental mitochondria. These findings suggest that mtCLIC could be involved in mitochondrial membrane potential generation in mtDNA-depleted cells, a feature required to prevent apoptosis and to drive continuous protein import into mitochondria.
Collapse
Affiliation(s)
- T Arnould
- Laboratoire de Biochimie et Biologie Cellulaire, University of Namur (F.U.N.D.P), 61 rue de Bruxelles, 5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kong J, Gong JM, Zhang ZG, Zhang JS, Chen SY. A new AOX homologous gene OsIM1 from rice (Oryza sativa L.) with an alternative splicing mechanism under salt stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:326-331. [PMID: 12669200 DOI: 10.1007/s00122-003-1250-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 02/03/2003] [Indexed: 05/24/2023]
Abstract
A differentially expressed OsIM1 gene was isolated from rice salt-tolerant mutant M-20 by differential display. Sequence analysis revealed that the amino-acid sequence of OsIM1 showed 66% and 62% identity with PTOX from tomato ( Capsicum annuum) and AtIM from Arabidopsis, both of which encoded chloroplast-orientated terminal oxidase. Comparison of the nucleotide sequence of the OsIM1 cDNA with its genomic sequence revealed that OsIM1 genomic DNA contained nine exons and eight introns. A pseudo-transcript ( OsIM2), which probably resulted from the abnormal splicing of the OsIM1 pre-mRNA, was also identified. Southern-blot analysis showed that there existed only one copy of the OsIM1 gene in the rice genome. RFLP analysis located it on rice chromosome 3. The Northern blot revealed that OsIM1 was up-regulated by NaCl and ABA treatment. RT-PCR analysis indicated that OsIM1 and OsIM2 co-existed in the OsIM transcript pool, and the ratio of OsIM1/ OsIM2 was differentially regulated by salt stress in the salt-sensitive variety and the salt-tolerant varieties.
Collapse
Affiliation(s)
- Jin Kong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
24
|
Dilks DW, Ring RH, Khawaja XZ, Novak TJ, Aston C. High-throughput confirmation of differential display PCR results using reverse Northern blotting. J Neurosci Methods 2003; 123:47-54. [PMID: 12581848 DOI: 10.1016/s0165-0270(02)00343-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nylon filter arrays spotted with differential display PCR (DD-PCR) clones and hybridized with radiolabeled cRNA generated from the source RNA pool (reverse Northern blot) provide a high-throughput means to screen clones for artifacts. Reverse Northern blots also confirm differential gene expression in parallel and require modest quantities of the source RNA pool. We describe a strategy to screen multiple candidates from DD-PCR by high-throughput ligation and transformation, followed by reverse Northern blotting. Purification of re-amplified DD-PCR clones and fabrication of nylon arrays was facilitated by a batch-processing protocol using the widely available Biomek laboratory robot and Bioworks scripts (available from the authors). A strategy to screen out DD-PCR product artifacts of an inappropriate size was also employed. Using these approaches, we identified several mRNAs that are differentially expressed in response to venlafaxine, fluoxetine or desipramine antidepressant treatment in rat C6 glioma cell lines and are candidates for full length clone isolation using 5'-RACE. Such an approach provides a rapid means to eliminate the high percentage of false positive clones from DD-PCR and enables independent confirmation of differential gene expression patterns generated by various experimental conditions.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Artifacts
- Blotting, Northern/methods
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Data Display
- Drug Evaluation, Preclinical/methods
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins
- Molecular Sequence Data
- Nerve Tissue Proteins
- Neuroglia/drug effects
- Norepinephrine Plasma Membrane Transport Proteins
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Rats
- Receptors, Adrenergic/biosynthesis
- Receptors, Adrenergic/genetics
- Receptors, Serotonin/biosynthesis
- Receptors, Serotonin/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Serotonin Plasma Membrane Transport Proteins
- Symporters/genetics
- Symporters/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Daniel W Dilks
- Wyeth Research, Neuroscience, CN-8000, Princeton, NJ 08543-8000, USA
| | | | | | | | | |
Collapse
|
25
|
Ferreira LRP, Abrantes EF, Rodrigues CV, Caetano B, Cerqueira GC, Salim AC, Reis LFL, Gazzinelli RT. Identification and characterization of a novel mouse gene encoding a Ras‐associated guanine nucleotide exchange factor: expression in macrophages and myocarditis elicited by
Trypanosoma cruzi
parasites. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.6.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ludmila R. P. Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
- Centro de Pesquisas René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, MG, Brazil; and
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil
| | | | - Cibele V. Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Braulia Caetano
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
- Centro de Pesquisas René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, MG, Brazil; and
| | - Gustavo C. Cerqueira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | | | | | - Ricardo T. Gazzinelli
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
- Centro de Pesquisas René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, MG, Brazil; and
| |
Collapse
|
26
|
Moran PJ, Cheng Y, Cassell JL, Thompson GA. Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2002; 51:182-203. [PMID: 12432519 DOI: 10.1002/arch.10064] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phloem feeding involves unique biological interactions between the herbivore and its host plant. The economic importance of aphids, whiteflies, and other phloem-feeding insects as pests has prompted research to isolate sources of resistance to piercing-sucking insects in crops. However, little information exists about the molecular nature of plant sensitivity to phloem feeding. Recent discoveries involving elicitation by plant pathogens and chewing insects and limited studies on phloem feeders suggest that aphids are capable of inducing responses in plants broadly similar to those associated with pathogen infection and wounding. Our past work showed that compatible aphid feeding on leaves of Arabidopsis thaliana induces localized changes in levels of transcripts of genes that are also associated with infection, mechanical damage, chewing herbivory, or resource allocation shifts. We used microarray and macroarray gene expression analyses of infested plants to better define the response profile of A. thaliana to M. persicae feeding. The results suggest that genes involved in oxidative stress, calcium-dependent signaling, pathogenesis-related responses, and signaling are key components of this profile in plants infested for 72 or 96 h. The use of plant resistance to aphids in crops will benefit from a better understanding of induced responses. The establishment of links between insect elicitation, plant signaling associated with phloem feeding, and proximal resistance mechanisms is critical to further research progress in this area.
Collapse
Affiliation(s)
- Patrick J Moran
- Center for Insect Science, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
27
|
Morgan MB, Snell TW. Characterizing stress gene expression in reef-building corals exposed to the mosquitoside dibrom. MARINE POLLUTION BULLETIN 2002; 44:1206-1218. [PMID: 12523519 DOI: 10.1016/s0025-326x(02)00177-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We characterize two genes expressed in Acropora cervicornis upon exposure to 0.5 microg/l of dibrom, a pesticide used for mosquito control in the Florida Keys. Fragments of these genes were isolated, sequenced, and developed into chemiluminescent probes for Northern slot blots. Expression of target transcripts was detected in corals exposed to a variety of stressors including organophosphates, organochlorines, heavy metals, naphthalene, and temperature. Within the context of stressors examined, the D25 probe demonstrates toxicant and concentration specificity for organophosphates, whereas the D50 probe had broader specificity, detecting transcripts in corals exposed to dibrom, naphthalene, and temperature stress. After characterizing specificity in the lab, these probes were used on field samples taken from the Florida Keys. Both probes detected their targets in samples taken from the upper Florida Keys in August 2000. Preliminary search of sequence databases suggest similarity exists between D25 and a thioesterase.
Collapse
Affiliation(s)
- Michael B Morgan
- Georgia Institute of Technology, School of Biology, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
28
|
Carginale V, Capasso C, Scudiero R, Parisi E. Identification of cadmium-sensitive genes in the Antarctic fish Chionodraco hamatus by messenger RNA differential display. Gene 2002; 299:117-24. [PMID: 12459259 DOI: 10.1016/s0378-1119(02)01020-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the ability of cadmium to affect gene transcription in fish, the messenger RNA (mRNA) differential display technique was used to analyze gene expression in the Antarctic icefish Chionodraco hamatus exposed to sublethal doses of cadmium salt. Seven DNA complementary to RNA (cDNA) bands whose steady-state levels of expression significantly changed in response to cadmium exposure were identified. The results obtained show that two groups of genes are affected by cadmium in icefish liver. The first group comprises genes that are up-regulated by the metal: in particular, a gene encoding the heat-shock protein HSP70 and another encoding a protein homologous to GP49 of Sparus aurata egg envelope. The other group comprises genes down-regulated by cadmium. These are the transferrin gene and a gene encoding a protein presenting homology to mouse T2K, a kinase having a role in the prevention of apoptosis. Three cDNAs had no homology to known gene sequences, thus suggesting that may either encode not yet identified proteins, or correspond to untranslated regions of mRNA molecules.
Collapse
Affiliation(s)
- V Carginale
- CNR Institute of Protein Biochemistry, Via Marconi 10, I-80125 Naples, Italy.
| | | | | | | |
Collapse
|
29
|
Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, Dumlao TF, Lee JA, Supino PG. Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation 2002; 105:1837-42. [PMID: 11956128 DOI: 10.1161/01.cir.0000014419.71706.85] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial fibrosis is common in patients with chronic aortic regurgitation (AR). Experimentally, fibrosis with disproportionate noncollagen extracellular matrix (ECM) elements precedes and contributes to heart failure in AR. METHODS AND RESULTS We assessed [3H]-glucosamine and [3H]-proline incorporation in ECM, variations in cardiac fibroblast (CF) gene expression, and synthesis of specific ECM proteins in CF cultured from rabbits with surgically induced chronic AR versus controls. To determine whether these variations are primary responses to AR, normal CF were exposed to mechanical strain that mimicked that of AR. Compared with normal CF, AR CF incorporated more glucosamine (1.8:1, P=0.001) into ECM, showed fibronectin gene upregulation (2.0:1, P=0.02), and synthesized more fibronectin (2:1 by Western blot, P<0.06; 1.5:1 by affinity chromatography, P=0.02). Proline incorporation was unchanged by AR (1.1:1, NS); collagen synthesis was unaffected (type I, 0.9:1; type III, 1.0:1, NS). Normal CF exposed to cyclical mechanical strain during culture showed parallel results: glucosamine incorporation increased with strain (2.1:1, P<0.001), proline incorporation was unaffected (1.1:1, NS), fibronectin gene expression (1.6:1, P=0.07) and fibronectin synthesis (Western analysis, 1.3:1, P<0.01; chromatography, 1.9:1, NS) were upregulated. CONCLUSIONS In AR, CF produce abnormal proportions of noncollagen ECM, specifically fibronectin, with relatively little change in collagen synthesis. At least in part, this is a primary response to strain imposed on CF by AR. Further study must relate these findings to the pathogenesis of heart failure in AR.
Collapse
Affiliation(s)
- Jeffrey S Borer
- Division of Cardiovascular Pathophysiology, the Howard Gilman Institute for Valvular Heart Diseases, Department of Anatomy and Cell Biology, Weill Medical College of Cornell University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Park CJ, Shin R, Park JM, Lee GJ, You JS, Paek KH. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. PLANT MOLECULAR BIOLOGY 2002; 48:243-254. [PMID: 11855726 DOI: 10.1023/a:1013383329361] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pepper (Capsicum annuum) plants exhibit hypersensitive response (HR) against infection by many tobamoviruses. A clone encoding a putative nonspecific lipid transfer protein (CaLTP1) was isolated by differential screening of a cDNA library from resistant pepper leaves when inoculated with tobacco mosaic virus (TMV) pathotype P0. The predicted amino acid sequence of CaLTP1 is highly similar to that of the other plant LTPs. Southern blot analysis showed that a small gene family of LTP-related sequences was present in the pepper genome. Transcripts homologous to CaLTP1 accumulated abundantly in old leaves and flowers. CaLTP1 expression was induced in the incompatible interaction with TMV-P0 but was not induced in the compatible interaction with TMV-P1.2. In correlation with the temporal progression of HR in the inoculated leaves, CaLTP1 transcripts started to accumulate at 24 h after TMV-P0 inoculation, reaching a maximal level at 48 h. A strain of Xanthomonas campestris pv. vesicatoria (Xcv) that carries the bacterial avirulence gene, avrBs2, was infiltrated into leaves of a pepper cultivar containing the Bs2 resistance gene. A marked induction of CaLTP1 expression was observed in Xcv-infiltrated leaves. Effects of exogenously applied abiotic elicitors on CaLTP1 expression were also examined. Salicylic acid caused a rapid accumulation of CaLTP1 transcripts in pepper leaves and ethephon treatment also induced the expression of the CaLTP1 gene. Transient expression in the detached pepper leaves by biolistic gene bombardment indicated that CaLTP1 is localized mostly at the plant cell surface, possibly in the cell wall. These results suggest possible role(s) for LTPs in plant defense against pathogens including viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Plant
- Base Sequence
- Capsicum/genetics
- Capsicum/microbiology
- Capsicum/virology
- Carrier Proteins/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Green Fluorescent Proteins
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Molecular Sequence Data
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Diseases/virology
- Plant Growth Regulators/pharmacology
- Plant Proteins
- RNA, Plant/drug effects
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tobacco Mosaic Virus/growth & development
- Xanthomonas campestris/growth & development
Collapse
Affiliation(s)
- Chang-Jin Park
- Graduate School of Biotechnology, Korea University, Seoul
| | | | | | | | | | | |
Collapse
|
31
|
Wang ZX, Wang HY, Wu MC. Identification and characterization of a novel human hepatocellular carcinoma-associated gene. Br J Cancer 2001; 85:1162-7. [PMID: 11710830 PMCID: PMC2375167 DOI: 10.1054/bjoc.2001.2059] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate liver cancer-associated genes and to explore the molecular basis of liver cancer genesis, we have cloned a novel hepatocellular carcinoma (HCC)-related gene with a transcript of 2520 base pairs in length named HCCA2 by mRNA differential display polymerase chain reaction (DDPCR) and screening a placenta cDNA library. No significant homologous protein with known genes was found. Western blot analysis showed that HCCA2 could be expressed in transfected 293 cells. Northern hybridization analysis showed that HCCA2 mRNA was expressed in 79% (34/43) patients with HCC, most of whom had significantly high expression in HCC tissues, while not expressed in corresponding noncancerous liver tissues. The clinical pathological data showed that the HCCA2 was significantly associated with the invasion of tumour capsule (P = 0.0007) and the expression of ki-67 protein (P = 0.0022). Immunohistochemical staining confirmed that the HCCA2 protein was localized in cytoplasm of liver cancer tissues. According to amino acid analysis of the protein and its localization, it may play a role in a cascade of intracellular signal transduction because the protein was characterized with two Src homology 3 (SH3) binding-domains and several functional motifs of phosphorylation.
Collapse
Affiliation(s)
- Z X Wang
- The Department of General Surgery of the Jingcheng Hospital, No 98, Xiaoxihu West Street, Block Qilihe, Lanzhou, Gansu Province, 730050, PR China
| | | | | |
Collapse
|
32
|
Fredrickson HL, Perkins EJ, Bridges TS, Tonucci RJ, Fleming JK, Nagel A, Diedrich K, Mendez-Tenorio A, Doktycz MJ, Beattie KL. Towards environmental toxicogenomics -- development of a flow-through, high-density DNA hybridization array and its application to ecotoxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2001; 274:137-149. [PMID: 11453290 DOI: 10.1016/s0048-9697(01)00739-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Assessment of the environmental hazard posed by soils/sediments containing low to moderate levels of contaminants using standard analytical chemical methods is uncertain due (in part) to a lack of information on contaminant bioavailability, the unknown interactive effects of contaminant mixtures, our inability to determine the species of a metal in an environmental matrix, and the relative sensitivity of bioassay species. Regulatory agencies compensate for this uncertainty by lowering cleanup goals, but in this process they effectively exclude otherwise attractive cleanup options (i.e. bioremediation). Direct evaluations of soil and sediment toxicity preclude uncertainty from most of these sources. However, the time and cost of chronic toxicity tests limits their general application to higher levels of tiered toxicity assessments. Transcriptional level (mRNA) toxicity assessments offer great advantages in terms of speed, cost and sample throughput. These advantages are currently offset by questions about the environmental relevance of molecular level responses. To this end a flow-through, high-density DNA hybridization array (genosensor) system specifically designed for environmental risk assessment was developed. The genosensor is based on highly regular microchannel glass wafers to which gene probes are covalently bound at discrete (200-microm diameter spot) and addressable (250-microm spot pitch) locations. The flow-through design enables hybridization and washing times to be reduced from approximately 18 h to 20 min. The genosensor was configured so that DNA from 28 environmental samples can be simultaneously hybridized with up to 64 different gene probes. The standard microscopic slide format facilitates data capture with most automated array readers and, thus high sample throughput (> 350 sample/h). In conclusion, hardware development for molecular analysis is enabling very tractable means for analyzing RNA and DNA. These developments have underscored the need for further developmental work in probe design software, and the need to relate transcriptional level data to whole-organism toxicity indicators.
Collapse
Affiliation(s)
- H L Fredrickson
- US Army Engineer Research and Development Center, Environmental Laboratory, Waterways Experiment Station, Vicksburg, MS 39180-6199, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jo H, Cho YJ, Zhang H, Liang P. Differential display analysis of gene expression altered by ras oncogene. Methods Enzymol 2001; 332:233-44. [PMID: 11305100 DOI: 10.1016/s0076-6879(01)32206-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The goal of the signal transduction pathways, such as those controlled by Ras, is in large part to ensure highly stringent regulation of the target genes in the nucleus, which are collectively responsible for the signal output, or phenotypes, of the cell. Understanding of the Ras effect ultimately requires the identification of these downstream target genes. Reverse genetic approaches would trace back the pathways by which they are regulated by Ras. While newer methods such as DNA microarray are emerging, differential display has allowed the identification of a greater number of differentially expressed genes than have been cloned by all the other methods combined, based on Medline search. Much of this success has been attributed to its simplicity (RT-PCR and DNA-sequencing gel) and versatility (compare more than two RNAs for both up- and downregulated genes). It has become obvious that finding the genes by either differential display or DNA microarray is only the first step toward the understanding of biological problems under investigation. It is hoped that finding the right genes through careful experimental designs, such as outlined here, will narrow down the number of relevant genes and increase the odds for solving the puzzles of nature, such as ras.
Collapse
Affiliation(s)
- H Jo
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232-6838, USA
| | | | | | | |
Collapse
|
34
|
Kim H, You S, Farris J, Foster LK, Choi YJ, Foster DN. Gonad-specific expression of two novel chicken complementary DNA isoforms. Biol Reprod 2001; 64:1473-80. [PMID: 11319154 DOI: 10.1095/biolreprod64.5.1473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Differential display reverse transcription polymerase chain reaction was used to isolate a novel cDNA clone (C47) that was initially shown to be downregulated in senescent chicken embryo fibroblast cells. In a tissue environment, C47 transcripts were only detected in gonadal tissue. The expression of the larger isoform (C47L) was essentially restricted to the ovary, and the smaller isoform (C47S) was predominately expressed in the testis. Although levels of the C47L mRNA were relatively high in both the small white and the developing larger follicles, there was very low expression in regressed and postovulated follicles. Nucleotide sequence analysis indicated that two different transcripts of the single-copy C47 gene were generated by differential polyadenylation in the 3' untranslated region. As a result of a single nucleotide deletion, the C47L mRNA produced a smaller 48-kDa protein, and the C47S mRNA generated a larger 57-kDa protein when both were translated in vitro. Both protein isoforms were shown to contain conserved C2H2 Zn finger motifs and nuclear localization signals suggestive of being putative transcription factors. These results suggest that the C47L and C47S isoforms might play an important role in the regulation and maintenance of ovarian and testicular functions, respectively, in the chicken.
Collapse
Affiliation(s)
- H Kim
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
35
|
Harrington JJ, Sherf B, Rundlett S, Jackson PD, Perry R, Cain S, Leventhal C, Thornton M, Ramachandran R, Whittington J, Lerner L, Costanzo D, McElligott K, Boozer S, Mays R, Smith E, Veloso N, Klika A, Hess J, Cothren K, Lo K, Offenbacher J, Danzig J, Ducar M. Creation of genome-wide protein expression libraries using random activation of gene expression. Nat Biotechnol 2001; 19:440-5. [PMID: 11329013 DOI: 10.1038/88107] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here we report the use of random activation of gene expression (RAGE) to create genome-wide protein expression libraries. RAGE libraries containing only 5 x 10(6) individual clones were found to express every gene tested, including genes that are normally silent in the parent cell line. Furthermore, endogenous genes were activated at similar frequencies and expressed at similar levels within RAGE libraries created from multiple human cell lines, demonstrating that RAGE libraries are inherently normalized. Pools of RAGE clones were used to isolate 19,547 human gene clusters, approximately 53% of which were novel when tested against public databases of expressed sequence tag (EST) and complementary DNA (cDNA). Isolation of individual clones confirmed that the activated endogenous genes can be expressed at high levels to produce biologically active proteins. The properties of RAGE libraries and RAGE expression clones are well suited for a number of biotechnological applications including gene discovery, protein characterization, drug development, and protein manufacturing.
Collapse
Affiliation(s)
- J J Harrington
- Athersys, Inc., 3201 Carnegie Ave., Cleveland, OH 44115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The majority of immunological processes are mediated by cell-to-cell contact or receptor-ligand interactions that transmit intracellular signals and affect the regulation of transcription in the nucleus. As a consequence, precursor cells develop into their respective lineages and cells differentiate further during an immune response. In order to study changes in normal cells or even cells that have been isolated from diseased tissue, a number of approaches have been developed. One such method, differential display (DDRT-PCR), is a versatile technique for the analysis of gene expression that is based on RT-PCR and denaturing polyacrylamide gel electrophoresis. This technique is applicable to multiple samples of clonal or purified cell populations as well as to complex tissues and can be used to provide mRNA fingerprints. However, the main purpose of DDRT-PCR is to isolate differentially regulated genes in biological systems. The method is carried out without prior hypothesis as to which genes should be examined and so increases the possibility of identifying completely novel and unexpected changes in transcription. A major drawback has been the isolation of false positive clones and the need to confirm the results of analysis by another method. This makes DDRT-PCR labour intensive. A number of strategies have been recommended to reduce these problems, including reverse-northern analysis as a confirmatory step for screening putative differentials. In order to reduce the number of gel fingerprints that would be required to cover all the mRNAs in a cell, several focused approaches have been suggested. These include targeted differential display for the isolation of multigene families that have conserved protein domains or gene signatures and subtractive differential display whereby one population is subtracted from the other prior to screening. The purpose of this review is to provide some guidance to the immunologist who might wish to apply DDRT-PCR in their research. A number of examples where DDRT-PCR has been used successfully in immunological research are included.
Collapse
Affiliation(s)
- M Ali
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St. James's Hospital, LS9 7TF, Leeds, UK.
| | | | | |
Collapse
|
37
|
Teixeira AR, Simões-Barbosa A, Faudry E, Lozzi SP, Argañaraz ER, D'Souza-Ault M, Santana JM. Current millennium biotechniques for biomedical research on parasites and host-parasite interactions. Mem Inst Oswaldo Cruz 2001; 95 Suppl 1:123-31. [PMID: 11142701 DOI: 10.1590/s0074-02762000000700021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae). In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land" often proclaimed by the mass media.
Collapse
Affiliation(s)
- A R Teixeira
- Laboratório de Pesquisa Multidisciplinar da Doença de Chagas, Faculdade de Medicina, Universidade de Brasília, Caixa Postal 04536, 70919-970 Brasília, DF, Brasil.
| | | | | | | | | | | | | |
Collapse
|
38
|
DeGregorio-Rocasolano N, Gasull T, Trullas R. Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K(+) in cerebellar granule cells. J Biol Chem 2001; 276:796-803. [PMID: 11031272 DOI: 10.1074/jbc.m007967200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mature cerebellar granule cells in culture die by a process that requires new RNA and protein synthesis when deprived of depolarizing concentrations of potassium. We investigated gene expression during the early phase of the cell death program evoked by potassium deprivation. Using a differential gene display technique, we isolated a cDNA that was increased by potassium deprivation. This cDNA was homologous to the 3' mRNA end of neuronal pentraxin 1 (NP1), a gene encoding a secreted glycoprotein whose expression is restricted to the nervous system. Reverse-Northern and Northern blot analyses confirmed that treatment with low potassium induces overexpression of NP1 mRNA, with a subsequent increase in NP1 protein levels. Time-course studies indicated that overexpression of NP1 protein reaches a maximum after 4 h of exposure to potassium deprivation and 4 h before significant cell death. Incubation of cerebellar granule cells with an antisense oligodeoxyribonucleotide directed against NP1 mRNA reduced low potassium-evoked NP1 protein levels by 60% and attenuated neuronal death by 50%, whereas incubation with the corresponding sense oligodeoxyribonucleotide was ineffective. Furthermore, acute treatment with lithium significantly inhibited both overexpression of NP1 and cell death evoked by low potassium. These results indicate that NP1 is part of the gene expression program of apoptotic cell death activated by nondepolarizing culture conditions in cerebellar granule cells.
Collapse
Affiliation(s)
- N DeGregorio-Rocasolano
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Cientificas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló 161, 08036 Barcelona, Spain
| | | | | |
Collapse
|
39
|
DesJardin LE, Schlesinger LS. Identifying Mycobacterium tuberculosis virulence determinants - new technologies for a difficult problem. Trends Microbiol 2000; 8:97-100; discussion 100. [PMID: 10707056 DOI: 10.1016/s0966-842x(99)01696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- L E DesJardin
- Veterans Administration Medical Center and Depts of Medicine and Microbiology, Divn of Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
40
|
Ito T, Sakaki Y. Fluorescent differential display: a fast and reliable method for message display polymerase chain reaction. Methods Enzymol 1999; 303:298-309. [PMID: 10349651 DOI: 10.1016/s0076-6879(99)03019-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- T Ito
- Human Genome Center, University of Tokyo, Japan
| | | |
Collapse
|
41
|
Regazzoni C, Winterhalter KH, Rohrer L. Modified differential display technique to generate long cDNA fragments within the coding region. Anal Biochem 1999; 269:192-4. [PMID: 10094793 DOI: 10.1006/abio.1998.3066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C Regazzoni
- Laboratory of Biochemistry, Swiss Federal Institute of Technology (ETH), Zurich, CH-8092, Switzerland
| | | | | |
Collapse
|
42
|
Poirier GM, Erlander MG. Postdifferential display: parallel processing of candidates using small amounts of RNA. Methods 1998; 16:444-52. [PMID: 10049652 DOI: 10.1006/meth.1998.0699] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The necessity of screening differentially expressed candidate genes has imposed a limit on the application of differential display to large-scale analysis of gene expression patterns. Screening candidates has indeed proven a burden because traditional screening methods require the purification of large amounts of RNA. In this article we describe an assay that allows the screening of 240 candidate genes with only 5 microg of total RNA. This assay consists of using cDNA probes synthesized from amplified RNA in differential screening and can be performed in a 96-well plate format.
Collapse
Affiliation(s)
- G M Poirier
- Department of Anatomy, Medical School, Birmingham University, Edgbaston, United Kingdom.
| | | |
Collapse
|
43
|
Jo H, Zhang H, Zhang R, Liang P. Cloning oncogenic ras-regulated genes by differential display. Methods 1998; 16:365-72. [PMID: 10049644 DOI: 10.1006/meth.1998.0691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The coordinated regulation of gene expression is a key cellular function that specifies cell characteristics as well as controls normal physiological processes of the organism. Deregulation of this gene expression leads to a variety of abnormal conditions such as cancer. The ras oncogene is one of the most frequently found mutations in various types of human cancer. The mutated Ras protein constitutively elicits multiple mitogenic signals to the nucleus to alter gene expression of target genes that are involved in a broad range of normal cellular functions. Thus the identification of these genes may provide an important tool toward the understanding of these pathogenic processes. As a first step to reveal these processes at the molecular level and to dissect the key pathway employed by oncogenic Ras protein, we have looked for its target genes in rodent model cell lines using the differential display method. Our initial screening has isolated a number of genes either up- or downregulated by oncogenic ras activation. Although the functional analyses of these genes in terms of ras-mediated cell transformation will be the major challenge, differential display has come to be a very efficient tool that helped us move to the next step. In this short report, we focus primarily on the technical aspects of differential display and experimental designs used in this study.
Collapse
Affiliation(s)
- H Jo
- The Vanderbilt Cancer Center, Department of Cell Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Characterization of regulated gene expression in eukaryotic cells is essential for studying cell growth and differentiation as well as for understanding the molecular mechanisms of diseases. Differential display was developed for such comparative studies by allowing a systematic and nonbiased screening for molecular differences at the level of mRNA expression between or among different cells or tissues. The essence of the method is to amplify messenger RNA 3' termini using a pair of anchored oligo-dT primer and a short primer with an arbitrary sequence. The amplified cDNAs labeled with radioisotope are then distributed on a denaturing polyacrylamide gel and visualized by autoradiography. Side-by-side comparison of mRNA species from two or more related samples allows identification of both up- and downregulation genes of interest. Some of the most recent improvements have been incorporated into this general protocol for differential display.
Collapse
Affiliation(s)
- P Liang
- Vanderbilt Cancer Center, Nashville, TN 37232-6838, USA.
| | | |
Collapse
|
45
|
Liao VH, Freedman JH. Cadmium-regulated genes from the nematode Caenorhabditis elegans. Identification and cloning of new cadmium-responsive genes by differential display. J Biol Chem 1998; 273:31962-70. [PMID: 9822667 DOI: 10.1074/jbc.273.48.31962] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transition metal cadmium is a pervasive and persistent environmental contaminant that has been shown to be both a human toxicant and carcinogen. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes encoding stress-response proteins. In most cases, the mechanism by which cadmium affects the expression of these genes remains unknown. It has been demonstrated in several instances that cadmium activates gene transcription through signal transduction pathways, mediated by protein kinase C, cAMP-dependent protein kinase, or calmodulin. A codicil is that cadmium should influence the expression of numerous genes. To investigate the ability of cadmium to affect gene transcription, the differential display technique was used to analyze gene expression in the nematode Caenorhabditis elegans. Forty-nine cDNAs whose steady-state levels of expression change 2-6-fold in response to cadmium exposure were identified. The nucleotide sequences of the majority of the differentially expressed cDNAs are identical to those of C. elegans cosmids, yeast artificial chromosomes, expressed sequence tags, or predicted genes. The translated amino acid sequences of several clones are identical to C. elegans metallothionein-1, HSP70, collagens, and rRNAs. In addition, C. elegans homologues of pyruvate carboxylase, DNA gyrase, beta-adrenergic receptor kinase, and human hypothetical protein KIAA0174 were identified. The translated amino acid sequences of the remaining differentially expressed cDNAs encode novel proteins.
Collapse
Affiliation(s)
- V H Liao
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
46
|
Kang DC, LaFrance R, Su ZZ, Fisher PB. Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences. Proc Natl Acad Sci U S A 1998; 95:13788-93. [PMID: 9811879 PMCID: PMC24898 DOI: 10.1073/pnas.95.23.13788] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1998] [Accepted: 09/22/1998] [Indexed: 11/18/2022] Open
Abstract
A reciprocal subtraction differential RNA display (RSDD) approach has been developed that permits the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes. RSDD comprises reciprocal subtraction of cDNA libraries followed by differential RNA display. The RSDD strategy was applied to analyze the gene expression alterations resulting during cancer progression as adenovirus-transformed rodent cells developed an aggressive transformed state, as documented by elevated anchorage-independence and enhanced in vivo oncogenesis in nude mice. This approach resulted in the identification and cloning of both known and a high proportion (>65%) of unknown sequences, including cDNAs displaying elevated expression as a function of progression (progression-elevated gene) and cDNAs displaying suppressed expression as a function of progression (progression-suppressed gene). Sixteen differentially expressed genes, including five unknown progression-elevated genes and six unknown progression-suppressed genes, have been characterized. The RSDD scheme should find wide application for the effective detection and isolation of differentially expressed genes.
Collapse
Affiliation(s)
- D C Kang
- Departments of Neurosurgery, Pathology and Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
47
|
Roschier M, Kuusisto E, Kyrylenko S, Salminen A. Expression of seizure-related PTZ-17 is induced by potassium deprivation in cerebellar granule cells. Biochem Biophys Res Commun 1998; 252:10-3. [PMID: 9813137 DOI: 10.1006/bbrc.1998.9589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to identify changes in gene expression during neuronal apoptosis using the differential display (DD) technique. Potassium deprivation was used to induce neuronal apoptosis in cultured rat cerebellar granule cells. DD analysis of about 1600 transcripts resulted in 8 cDNA clones that confirmed differential expression in a slot blot analysis. One of these clones was homologous to the 3' end of seizure-related PTZ-17 RNA. Northern blot analysis showed a marked upregulation of a 2.2 kb RNA 24 hours after potassium withdrawal. This upregulation was prevented by the RNA synthesis inhibitor actinomycin D. The increase in PTZ-17 expression was specific for potassium deprivation induced apoptosis, since the other apoptosis inducers, okadaic acid and staurosporine, did not affect PTZ-17 expression. The level of PTZ-17 RNA was not significantly affected by aging in rat cerebellum. Our data suggest that the upregulation of the PTZ-17 RNA is a part of the steps leading to apoptosis during potassium deprivation in cerebellar granule cells.
Collapse
Affiliation(s)
- M Roschier
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio, FIN-70211, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Differential display of mRNA (DD) is a technique in which mRNA species expressed by a cell population are reverse transcribed and then amplified by many separate polymerase chain reactions (PCR). PCR primers and conditions are chosen so that any given reaction yields a limited number of amplified cDNA fragments, permitting their visualization as discrete bands following gel electrophoresis. This robust and relatively simple procedure allows identification of genes that are differentially expressed in different cell populations. Here we review DD including some recent modifications, and compare it with other techniques for analyzing differential mRNA expression.
Collapse
Affiliation(s)
- J S Zhang
- Children's Medical Research Institute, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Mathieu-Daudé F, Welsh J, Davis C, McClelland M. Differentially expressed genes in the Trypanosoma brucei life cycle identified by RNA fingerprinting. Mol Biochem Parasitol 1998; 92:15-28. [PMID: 9574906 DOI: 10.1016/s0166-6851(97)00221-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA fingerprinting by arbitrarily primed polymerase chain reaction (RAP-PCR) was used to identify genes that were differentially expressed during the life cycle of Trypanosoma brucei, as well as in response to heat shock. The standard RAP-PCR protocol was varied in two ways. First, the PCR reactions sometimes included a primer derived from the 5' mini-exon sequence, to ensure that most of the products contained the 5' end of mRNAs. Second, differentially amplified products were reamplified, isolated on single strand conformation polymorphism (SSCP) gels, cloned, and sequenced. Clones representing 32 different expressed sequence tags (ESTs) were obtained. Twenty-four ESTs were confirmed as differentially expressed by RT-PCR between different stages of the parasite cycle, or in response to temperature elevation. Nine clones had significant similarities to sequences already in the database. These transcripts included genes encoding cell surface proteins, metabolic enzymes, and heat shock proteins, either from trypanosomes or other organisms. Of particular interest, ESAG1 was shown to be heat-inducible in the procyclic stage. Most of the transcripts were unrelated to any other sequences in the database, and were deposited as new ESTs. The identification of stage-specific and heat shock-regulated transcripts will complement the growing T. brucei database. In addition, this experimental approach allows previous entries in the sequence database to be annotated with regulatory information.
Collapse
|
50
|
Pardinas JR, Combates NJ, Prouty SM, Stenn KS, Parimoo S. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes. Anal Biochem 1998; 257:161-8. [PMID: 9514785 DOI: 10.1006/abio.1997.2550] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a novel efficient approach, termed differential subtraction display, for the identification of differentially expressed genes. Several critical parameters for the reproducibility and enhanced sensitivity of display, as well as steps to reduce the number of false positive cDNA species, have been defined. These include- (a) use of standardized oligo(dT)-primed cDNA pools rather than total RNA as the starting material for differential display, (b) critical role of optimal cDNA input for each distinct class of primers, (c) phenomena of primer dominance and interference, and (d) design of a novel set of enhanced specificity anchor primers. Introduction of an efficient subtractive hybridization step prior to cloning of cDNA species enriches the bona fide cDNA species that are either exclusively present in one sample (+/-) or show altered expression (up-/down-regulation) in RNA samples from two different tissues or cell types. This approach, in comparison to differential display, has several advantages in terms of reproducibility and enhanced sensitivity of display coupled to the cloning of enriched bona fide cDNA species corresponding to differentially expressed RNAs.
Collapse
Affiliation(s)
- J R Pardinas
- Skin Biology Research Center, Johnson & Johnson CPWW, Skillman, New Jersey 08558-9418, USA
| | | | | | | | | |
Collapse
|