1
|
Tainer JA, Tsutakawa SE. RNA sculpting by the primordial Helix-clasp-Helix-Strand-Loop (HcH-SL) motif enforces chemical recognition enabling diverse KH domain functions. J Biol Chem 2025; 301:108474. [PMID: 40185232 DOI: 10.1016/j.jbc.2025.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/07/2025] Open
Abstract
In all domains of life, the ancient K homology (KH) domain superfamily is central to RNA processes including splicing, transcription, posttranscriptional gene regulation, signaling, and translation. Proteins with 1 to 15 KH domains bind single-strand (ss) RNA or DNA with base sequence specificity. Here, we examine over 40 KH domain experimental structures in complex with nucleic acid (NA) and define a novel Helix-clasp-Helix-Strand-Loop (HcH-SL) NA recognition motif binding 4 to 5 nucleotides using 10 to 18 residues. HcH-SL includes and extends the Gly-X-X-Gly (GXXG) signature sequence "clasp" that brings together two helices as an ∼90° helical corner. The first helix primarily provides side chain interactions to unstack and sculpt 2 to 3 bases on the 5' end for recognition of sequence and chemistry. The clasp and second helix amino dipole recognize a central phosphodiester. Following the helical corner, a beta strand and its loop extension recognize the two 3' nucleotides, primarily through main chain interactions. The HcH-SL structural motif forms a right-handed triangle and concave functional interface for NA interaction that unexpectedly splays four bound nucleotides into conformations matching RNA recognition motif (RRM) bound RNA structures. Evolutionary analyses and its ability to recognize base sequence and chemistry make HcH-SL a primordial NA binding motif distinguished by its binding mode from other NA structural recognition motifs: helix-turn-helix, helix-hairpin-helix, and beta strand RRM motifs. Combined results explain its vulnerability as a viral hijacking target and how mutations and expression defects lead to diverse diseases spanning cancer, cardiovascular, fragile X syndrome, neurodevelopmental disorders, and paraneoplastic disease.
Collapse
Affiliation(s)
- John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
2
|
Vyas P, Santra K, Preeyanka N, Gupta A, Weil-Ktorza O, Zhu Q, Metanis N, Fransson J, Longo LM, Naaman R. Role of Electron Spin, Chirality, and Charge Dynamics in Promoting the Persistence of Nascent Nucleic Acid-Peptide Complexes. J Phys Chem B 2025; 129:3978-3987. [PMID: 40231896 PMCID: PMC12035798 DOI: 10.1021/acs.jpcb.5c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Primitive nucleic acids and peptides likely collaborated in early biochemistry. What forces drove their interactions and how did these forces shape the properties of primitive complexes? We investigated how two model primordial polypeptides associate with DNA. When peptides were coupled to a ferromagnetic substrate, DNA binding depended on the substrate's magnetic moment orientation. Reversing the magnetic field nearly abolished binding despite complementary charges. Inverting the peptide chirality or just the cysteine residue reversed this effect. These results are attributed to the chiral-induced spin selectivity (CISS) effect, where molecular chirality and electron spin alter a protein's electric polarizability. The presence of CISS in simple protein-DNA complexes suggests that it played a significant role in ancient biomolecular interactions. A major consequence of CISS is enhancement of the kinetic stability of protein-nucleic acid complexes. These findings reveal how chirality and spin influence bioassociation, offering insights into primitive biochemical evolution and shaping contemporary protein functions.
Collapse
Affiliation(s)
- Pratik Vyas
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Kakali Santra
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Naupada Preeyanka
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Anu Gupta
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Orit Weil-Ktorza
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Qirong Zhu
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Norman Metanis
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jonas Fransson
- Department
of Physics and Astronomy, Uppsala University, Uppsala 752 36, Sweden
| | - Liam M. Longo
- Earth-Life
Science Institute, Institute of Science
Tokyo, Tokyo 152-8550, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98104, United States
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Zhang L, Gao T, Li Z, Chen C, Jiang D, Yin Y, Zheng Y, Cao P, Gong Y, Yang Z. Alkylated DNA repair by a novel HhH-GPD family protein from Crenarchaea. Nucleic Acids Res 2025; 53:gkaf012. [PMID: 39844456 PMCID: PMC11754123 DOI: 10.1093/nar/gkaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs. Herein, we report that Sis-HhH-GPD is a novel bi-functional glycosylase, capable of removing both 1-methyladenine (1-meA) from DNA and alkylated bases from DNA created by methyl methanesulfonate (MMS). Mutational analyses show that E134 is essential for catalysis, whereas S152 is not essential. Sis-HhH-GPD might utilize aromatic rings of Y154 and W57 to stack against 1-meA base for flipping-out and then be removed by E134. Additionally, R157, R161 and R200 participate in catalysis. Among four cysteine residues that potentially coordinate with the Fe-S cluster loop, C203, C210 and C219 are involved in catalysis. Importantly, Sis-HhH-GPD is responsible for repair of alkylated DNA created by MMS in vivo. Interestingly, genetic complementary data have confirmed physiological function of Sis-HhH-GPD in alkylated DNA repair and clarified functional roles of its four cysteine residues in vivo. Overall, we provide first evidence that HhH-GPD family protein from Crenarchaea functions in alkylated DNA repair.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Tian Gao
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Zheng Li
- College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China
| | - Cai Chen
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Yaqi Zheng
- College of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Yangzhou City, 225127, China
| | - Peng Cao
- College of Chemistry and Life Science, Beijing University of Technology, No. 100 Pingleyuan Road, Chaoyang District, Beijing 100124, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100040, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China
| |
Collapse
|
4
|
Izumi H. Conformational Variability Prediction of Influenza Virus Hemagglutinins with Amino Acid Mutations Using Supersecondary Structure Code. Methods Mol Biol 2025; 2870:63-78. [PMID: 39543031 DOI: 10.1007/978-1-0716-4213-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Supersecondary structure code (SSSC), which is represented as a conformation term using the letters "H," "S," "T," and "D" for each amino acid peptide unit, can be utilized to look up supersecondary structure motifs like a helix-hairpin-helix (HhH) motif as character strings from the Protein Data Bank (PDB) structure files. The deep neural network-based conformational variability prediction system of protein structures (SSSCPreds) can simultaneously predict locations of protein flexibility or rigidity and the shapes of those regions with high accuracy. The sequence flexibility/rigidity map obtained from SSSCPreds has the prediction accuracy enough to discuss the correlation with the sequence-to-phenotype ones by mutations. In this chapter, the protocol of conformational variability prediction methods using SSSC, including the analysis of influenza virus hemagglutinins with amino acid mutations, is described. The conformational variability pattern of hemagglutinins for human influenza A H1N1pdm extremely resembles that of avian influenza A H5N1, except for the furin cleavage site of H5N1. The transition of virus variants is visually understandable from the maps, including the sharply increased flexibility with the insight into the recent unseasonal influenza epidemics in Japan. The prediction accuracy of conformational variability is low for proteins at pH 5 with very few measurement conditions, so this is the limitation of the conformational variability prediction method.
Collapse
Affiliation(s)
- Hiroshi Izumi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Amado D, Chaves OA, Cruz PF, Loureiro RJS, Almeida ZL, Jesus CSH, Serpa C, Brito RMM. Folding Kinetics and Volume Variation of the β-Hairpin Peptide Chignolin upon Ultrafast pH-Jumps. J Phys Chem B 2024; 128:4898-4910. [PMID: 38733339 DOI: 10.1021/acs.jpcb.3c08271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
In-depth characterization of fundamental folding steps of small model peptides is crucial for a better understanding of the folding mechanisms of more complex biomacromolecules. We have previously reported on the folding/unfolding kinetics of a model α-helix. Here, we study folding transitions in chignolin (GYDPETGTWG), a short β-hairpin peptide previously used as a model to study conformational changes in β-sheet proteins. Although previously suggested, until now, the role of the Tyr2-Trp9 interaction in the folding mechanism of chignolin was not clear. In the present work, pH-dependent conformational changes of chignolin were characterized by circular dichroism (CD), nuclear magnetic resonance (NMR), ultrafast pH-jump coupled with time-resolved photoacoustic calorimetry (TR-PAC), and molecular dynamics (MD) simulations. Taken together, our results present a comprehensive view of chignolin's folding kinetics upon local pH changes and the role of the Tyr2-Trp9 interaction in the folding process. CD data show that chignolin's β-hairpin formation displays a pH-dependent skew bell-shaped curve, with a maximum close to pH 6, and a large decrease in β-sheet content at alkaline pH. The β-hairpin structure is mainly stabilized by aromatic interactions between Tyr2 and Trp9 and CH-π interactions between Tyr2 and Pro4. Unfolding of chignolin at high pH demonstrates that protonation of Tyr2 is essential for the stability of the β-hairpin. Refolding studies were triggered by laser-induced pH-jumps and detected by TR-PAC. The refolding of chignolin from high pH, mainly due to the protonation of Tyr2, is characterized by a volume expansion (10.4 mL mol-1), independent of peptide concentration, in the microsecond time range (lifetime of 1.15 μs). At high pH, the presence of the deprotonated hydroxyl (tyrosinate) hinders the formation of the aromatic interaction between Tyr2 and Trp9 resulting in a more disorganized and dynamic tridimensional structure of the peptide. This was also confirmed by comparing MD simulations of chignolin under conditions mimicking neutral and high pH.
Collapse
Affiliation(s)
- Daniela Amado
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Otávio A Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Pedro F Cruz
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rui J S Loureiro
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Zaida L Almeida
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Catarina S H Jesus
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Rui M M Brito
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Mustieles-del-Ser P, Ruano-Gallego D, Parro V. Immunoanalytical Detection of Conserved Peptides: Refining the Universe of Biomarker Targets in Planetary Exploration. Anal Chem 2024; 96:4764-4773. [PMID: 38484023 PMCID: PMC10975014 DOI: 10.1021/acs.analchem.3c04165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Ancient peptides are remnants of early biochemistry that continue to play pivotal roles in current proteins. They are simple molecules yet complex enough to exhibit independent functions, being products of an evolved biochemistry at the interface of life and nonlife. Their adsorption to minerals may contribute to their stabilization and preservation over time. To investigate the feasibility of conserved peptide sequences and structures as target biomarkers for the search for life on Mars or other planetary bodies, we conducted a bioinformatics selection of well-conserved ancient peptides and produced polyclonal antibodies for their detection using fluorescence microarray immunoassays. Additionally, we explored how adsorbing peptides to Mars-representative minerals to form organomineral complexes could affect their immunological detection. The results demonstrated that the selected peptides exhibited autonomous folding, with some of them regaining their structure, even after denaturation. Furthermore, their cognate antibodies detected their conformational features regardless of amino acid sequences, thereby broadening the spectrum of target peptide sequences. While certain antibodies displayed unspecific binding to bare minerals, we validated that peptide-mineral complexes can be detected using sandwich immunoassays, as confirmed through desorption and competitive assays. Consequently, we conclude that the diversity of peptide sequences and structures suitable for use as target biomarkers in astrobiology can be constrained to a few well conserved sets, and they can be detected even if they are adsorbed in organomineral complexes.
Collapse
Affiliation(s)
- Pedro Mustieles-del-Ser
- Centro
de Astrobiología (CAB) INTA-CSIC, Torrejón de Ardoz 28850, Spain
- Departments
of Physics and Mathematics, and Automatics, Universidad de Alcalá (UAH), Alcalá de Henares 28805, Spain
| | | | - Víctor Parro
- Centro
de Astrobiología (CAB) INTA-CSIC, Torrejón de Ardoz 28850, Spain
| |
Collapse
|
7
|
Salinas AL, Osorio A, Legorreta-Hissner T, Lara-Martinez R, Jimenez-Garcia LF, Camarena L, Poggio S. A new type of phasin characterized by the presence of a helix-hairpin-helix domain is required for normal polyhydroxybutyrate accumulation and granule organization in Caulobacter crescentus. Mol Microbiol 2023; 120:307-323. [PMID: 37487601 DOI: 10.1111/mmi.15124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Bacteria frequently store excess carbon in hydrophobic granules of polyhydroxybutyrate (PHB) that in some growth conditions can occupy most of the cytoplasmic space. Different types of proteins associate to the surface of the granules, mainly enzymes involved in the synthesis and utilization of the reserve polymer and a diverse group of proteins known as phasins. Phasins have different functions, among which are regulating the size and number of the granules, modulating the activity of the granule-associated enzymes and helping in the distribution of the granules inside the cell. Caulobacter crescentus is an oligotrophic bacterium that shows several morphological and regulatory traits that allow it to grow in very nutrient-diluted environments. Under these conditions, storage compounds should be particularly relevant for survival. In this work, we show an initial proteomic characterization of the PHB granules and describe a new type of phasin (PhaH) characterized by the presence of an N-terminal hydrophobic helix followed by a helix-hairpin-helix (HhH) domain. The hydrophobic helix is required for maximal PHB accumulation and maintenance during the stationary phase while the HhH domain is involved in determining the size of the PHB granules and their distribution in the cell.
Collapse
Affiliation(s)
- Ana Laura Salinas
- Departamento de Biología Molecular y Biotecnología, Instituto de Ivestigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aurora Osorio
- Departamento de Biología Molecular y Biotecnología, Instituto de Ivestigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tonatiuh Legorreta-Hissner
- Departamento de Biología Molecular y Biotecnología, Instituto de Ivestigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Reyna Lara-Martinez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Luis Felipe Jimenez-Garcia
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Laura Camarena
- Departamento de Biología Molecular y Biotecnología, Instituto de Ivestigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Ivestigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Kowalik S, Groszyk J. Profiling of Barley, Wheat, and Rye FPG and OGG1 Genes during Grain Germination. Int J Mol Sci 2023; 24:12354. [PMID: 37569728 PMCID: PMC10418959 DOI: 10.3390/ijms241512354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This research is about the profiling of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.) FPG and OGG1 genes during grain germination. During seed germination, reactive oxygen species accumulate, which leads to DNA damage. In the base excision repair (BER) system, the enzymes formamidopyrimidine DNA glycosylase (FPG) and 8-oxoguanine DNA glycosylase (OGG1), among others, are responsible for repairing such damage. We decided to check how the expression of genes encoding these two enzymes changes in germinating grains. Spring varieties of barley, wheat, and rye from the previous growing season were used in the study. Expression level changes were checked using Real-Time PCR. After analyzing the obtained results, the maximum expression levels of FPG and OGG1 genes during germination were determined for barley, wheat, and rye. The results of the study show differences in expression levels specific to each species. The highest expression was observed at different time points for each of them. There were no differences in the highest expression for FPG and OGG1 within one species. In conclusion, the research provides information on how the level of FPG and OGG1 gene expression changes during the germination process in cereals. This is the first study looking at the expression levels of these two genes in cereals.
Collapse
Affiliation(s)
| | - Jolanta Groszyk
- Plant Breeding and Acclimatization Institute–National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
9
|
Abstract
DNA polymerase beta (Pol β) is a 39 kD vertebrate polymerase that lacks proofreading ability, yet still maintains a moderate fidelity of DNA synthesis. Pol β is a key enzyme that functions in the base excision repair and non-homologous end joining pathways of DNA repair. Mechanisms of fidelity for Pol β are still being elucidated but are likely to involve dynamic conformational motions of the enzyme upon its binding to DNA and deoxynucleoside triphosphates. Recent studies have linked germline and somatic variants of Pol β with cancer and autoimmunity. These variants induce genomic instability by a number of mechanisms, including error-prone DNA synthesis and accumulation of single nucleotide gaps that lead to replication stress. Here, we review the structure and function of Pol β, and we provide insights into how structural changes in Pol β variants may contribute to genomic instability, mutagenesis, disease, cancer development, and impacts on treatment outcomes.
Collapse
Affiliation(s)
- Danielle L Sawyer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
10
|
The Conformation of the Intrinsically Disordered N-Terminal Region of Barrier-to-Autointegration Factor (BAF) is Regulated by pH and Phosphorylation. J Mol Biol 2023; 435:167888. [PMID: 36402223 DOI: 10.1016/j.jmb.2022.167888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Barrier-to-Autointegration Factor (BAF) is a highly conserved DNA binding protein important for genome integrity. Its localization and function are regulated through phosphorylation. Previously reported structures of BAF suggested that it is fully ordered, but our recent NMR analysis revealed that its N-terminal region is flexible in solution and that S4/T3 di-phosphorylation by VRK1 reduces this flexibility. Here, molecular dynamics (MD) simulation was used to unveil the conformational ensembles accessible to the N-terminal region of BAF either unphosphorylated, mono-phosphorylated on S4 or di-phosphorylated on S4/T3 (pBAF) and to reveal the interactions that contribute to define these ensembles. We show that the intrinsic flexibility observed in the N-terminal region of BAF is reduced by S4 phosphorylation and to a larger extent by S4/T3 di-phosphorylation. Thanks to the atomic description offered by MD supported by the NMR study of several BAF mutants, we identified the dynamic network of salt bridge interactions responsible for the conformational restriction involving pS4 and pT3 with residues located in helix α1 and α6. Using MD, we showed that the flexibility in the N-terminal region of BAF depends on the ionic strength and on the pH. We show that the presence of two negative charges of the phosphoryl groups is required for a substantial decrease in flexibility in pBAF. Using MD supported by NMR, we also showed that H7 deprotonation reduces the flexibility in the N-terminal region of BAF. Thus, the conformation of the intrinsically disordered N-terminal region of BAF is highly tunable, likely related to its diverse functions.
Collapse
|
11
|
Structure-function studies reveal ComEA contains an oligomerization domain essential for transformation in gram-positive bacteria. Nat Commun 2022; 13:7724. [PMID: 36513643 PMCID: PMC9747964 DOI: 10.1038/s41467-022-35129-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
An essential step in bacterial transformation is the uptake of DNA into the periplasm, across the thick peptidoglycan cell wall of Gram-positive bacteria, or the outer membrane and thin peptidoglycan layer of Gram-negative bacteria. ComEA, a DNA-binding protein widely conserved in transformable bacteria, is required for this uptake step. Here we determine X-ray crystal structures of ComEA from two Gram-positive species, Bacillus subtilis and Geobacillus stearothermophilus, identifying a domain that is absent in Gram-negative bacteria. X-ray crystallographic, genetic, and analytical ultracentrifugation (AUC) analyses reveal that this domain drives ComEA oligomerization, which we show is required for transformation. We use multi-wavelength AUC (MW-AUC) to characterize the interaction between DNA and the ComEA DNA-binding domain. Finally, we present a model for the interaction of the ComEA DNA-binding domain with DNA, suggesting that ComEA oligomerization may provide a pulling force that drives DNA uptake across the thick cell walls of Gram-positive bacteria.
Collapse
|
12
|
Franck C, Stéphane G, Julien C, Virginie G, Martine G, Norbert G, Fabrice C, Didier F, Josef SM, Bertrand C. Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing. Nucleic Acids Res 2022; 50:11072-11092. [PMID: 36300625 PMCID: PMC9638937 DOI: 10.1093/nar/gkac932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
8-Oxoguanine (GO) is a major purine oxidation product in DNA. Because of its highly mutagenic properties, GO absolutely must be eliminated from DNA. To do this, aerobic and anaerobic organisms from the three kingdoms of life have evolved repair mechanisms to prevent its deleterious effect on genetic integrity. The major way to remove GO is the base excision repair pathway, usually initiated by a GO-DNA glycosylase. First identified in bacteria (Fpg) and eukaryotes (OGG1), GO-DNA glycosylases were more recently identified in archaea (OGG2 and AGOG). AGOG is the less documented enzyme and its mode of damage recognition and removing remains to be clarified at the molecular and atomic levels. This study presents a complete structural characterisation of apo AGOGs from Pyrococcus abyssi (Pab) and Thermococcus gammatolerans (Tga) and the first structure of Pab-AGOG bound to lesion-containing single- or double-stranded DNA. By combining X-ray structure analysis, site directed mutagenesis and biochemistry experiments, we identified key amino acid residues of AGOGs responsible for the specific recognition of the lesion and the base opposite the lesion and for catalysis. Moreover, a unique binding mode of GO, involving double base flipping, never observed for any other DNA glycosylases, is revealed. In addition to unravelling the properties of AGOGs, our study, through comparative biochemical and structural analysis, offers new insights into the evolutionary plasticity of DNA glycosylases across all three kingdoms of life.
Collapse
Affiliation(s)
- Coste Franck
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Goffinont Stéphane
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Cros Julien
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Gaudon Virginie
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Guérin Martine
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Garnier Norbert
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Confalonieri Fabrice
- Institut de Biologie Intégrative de la cellule (I2BC), UMR 9198 Université Paris-Saclay-CNRS-CEA , Bâtiment 21, Avenue de la Terrasse , F-91190 Gif-sur-Yvette , France
| | - Flament Didier
- Université de Brest, Ifremer, CNRS, Unité Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP) , F-29280 Plouzané , France
| | - Suskiewicz Marcin Josef
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| | - Castaing Bertrand
- Centre de Biophysique Moléculaire (CBM), UPR4301 CNRS, Université d’Orléans , CS 80054, rue Charles Sadron , F-45071 Orléans cedex 02 , France
| |
Collapse
|
13
|
Abstract
Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.
Collapse
Affiliation(s)
- Léa Gaucherand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| | - Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, and Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA;
| |
Collapse
|
14
|
Osterman A, Mondragón A. Structures of topoisomerase V in complex with DNA reveal unusual DNA binding mode and novel relaxation mechanism. eLife 2022; 11:72702. [PMID: 35969036 PMCID: PMC9489208 DOI: 10.7554/elife.72702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/14/2022] [Indexed: 11/22/2022] Open
Abstract
Topoisomerase V is a unique topoisomerase that combines DNA repair and topoisomerase activities. The enzyme has an unusual arrangement, with a small topoisomerase domain followed by 12 tandem (HhH)2 domains, which include 3 AP lyase repair domains. The uncommon architecture of this enzyme bears no resemblance to any other known topoisomerase. Here, we present structures of topoisomerase V in complex with DNA. The structures show that the (HhH)2 domains wrap around the DNA and in this manner appear to act as a processivity factor. There is a conformational change in the protein to expose the topoisomerase active site. The DNA bends sharply to enter the active site, which melts the DNA and probably facilitates relaxation. The structures show a DNA-binding mode not observed before and provide information on the way this atypical topoisomerase relaxes DNA. In common with type IB enzymes, topoisomerase V relaxes DNA using a controlled rotation mechanism, but the structures show that topoisomerase V accomplishes this in different manner. Overall, the structures firmly establish that type IC topoisomerases form a distinct type of topoisomerases, with no similarities to other types at the sequence, structural, or mechanistic level. They represent a completely different solution to DNA relaxation.
Collapse
Affiliation(s)
- Amy Osterman
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
15
|
Seal M, Weil-Ktorza O, Despotović D, Tawfik DS, Levy Y, Metanis N, Longo LM, Goldfarb D. Peptide-RNA Coacervates as a Cradle for the Evolution of Folded Domains. J Am Chem Soc 2022; 144:14150-14160. [PMID: 35904499 PMCID: PMC9376946 DOI: 10.1021/jacs.2c03819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-RNA coacervates can result in the concentration and compartmentalization of simple biopolymers. Given their primordial relevance, peptide-RNA coacervates may have also been a key site of early protein evolution. However, the extent to which such coacervates might promote or suppress the exploration of novel peptide conformations is fundamentally unknown. To this end, we used electron paramagnetic resonance spectroscopy (EPR) to characterize the structure and dynamics of an ancient and ubiquitous nucleic acid binding element, the helix-hairpin-helix (HhH) motif, alone and in the presence of RNA, with which it forms coacervates. Double electron-electron resonance (DEER) spectroscopy applied to singly labeled peptides containing one HhH motif revealed the presence of dimers, even in the absence of RNA. Moreover, dimer formation is promoted upon RNA binding and was detectable within peptide-RNA coacervates. DEER measurements of spin-diluted, doubly labeled peptides in solution indicated transient α-helical character. The distance distributions between spin labels in the dimer and the signatures of α-helical folding are consistent with the symmetric (HhH)2-Fold, which is generated upon duplication and fusion of a single HhH motif and traditionally associated with dsDNA binding. These results support the hypothesis that coacervates are a unique testing ground for peptide oligomerization and that phase-separating peptides could have been a resource for the construction of complex protein structures via common evolutionary processes, such as duplication and fusion.
Collapse
Affiliation(s)
- Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orit Weil-Ktorza
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dragana Despotović
- Department of Biomolecular Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dan S Tawfik
- Department of Biomolecular Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Liam M Longo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.,Blue Marble Space Institute of Science, Seattle, Washington 98104, United States
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat Microbiol 2022; 7:953-961. [PMID: 35760837 DOI: 10.1038/s41564-022-01150-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
Asgard archaea are globally distributed prokaryotic microorganisms related to eukaryotes; however, viruses that infect these organisms have not been described. Here, using metagenome sequences recovered from deep-sea hydrothermal sediments, we characterize six relatively large (up to 117 kb) double-stranded DNA (dsDNA) viral genomes that infected two Asgard archaeal phyla, Lokiarchaeota and Helarchaeota. These viruses encode Caudovirales-like structural proteins, as well as proteins distinct from those described in known archaeal viruses. Their genomes contain around 1-5% of genes associated with eukaryotic nucleocytoplasmic large DNA viruses (NCLDVs) and appear to be capable of semi-autonomous genome replication, repair, epigenetic modifications and transcriptional regulation. Moreover, Helarchaeota viruses may hijack host ubiquitin systems similar to eukaryotic viruses. Genomic analysis of these Asgard viruses reveals that they contain features of both prokaryotic and eukaryotic viruses, and provides insights into their potential infection and host interaction mechanisms.
Collapse
|
17
|
Biochemical and functional characterization of an endonuclease III from Thermococcus barophilus Ch5. World J Microbiol Biotechnol 2022; 38:145. [PMID: 35750964 DOI: 10.1007/s11274-022-03328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
Endonuclease III (EndoIII) is a bifunctional DNA glycosylase that is essential to excise thymine glycol (Tg) from DNA. Although EndoIII is widespread in bacteria, eukarya and Archaea, our understanding on archaeal EndoIII function remains relatively incomplete due to the limited reports. Herein, we characterized an EndoIII from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-EndoIII) biochemically, demonstrating that the enzyme can excise Tg from dsDNA and display maximum activity at 50 ~ 70 °C and at pH 6.0 ~ 9.0 without the requirement of a divalent metal ion. Importantly, Tba-EndoIII differs from other reported archaeal EndoIII homologues in thermostability and salt requirement. As observed in other EndoIII homologues, the conserved residues D155 and H157 in Helix-hairpin-Helix motif of Tba-EndoIII are essential for Tg excision. Intriguingly, we first dissected that the conserved residues C215 and C221 in the Fe-S cluster loop in Tba-EndoIII are involved in intermediate formation and Tg excision. Additionally, we first revealed that the conserved residue L48 is flexible for intermediate formation and AP cleavage, but plays no detectable role in Tg excision. Overall, our work has revealed additional archaeal EndoIII function and catalytic mechanism.
Collapse
|
18
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
19
|
Longo LM, Kolodny R, McGlynn SE. Evidence for the emergence of β-trefoils by 'Peptide Budding' from an IgG-like β-sandwich. PLoS Comput Biol 2022; 18:e1009833. [PMID: 35157697 PMCID: PMC8880906 DOI: 10.1371/journal.pcbi.1009833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
As sequence and structure comparison algorithms gain sensitivity, the intrinsic interconnectedness of the protein universe has become increasingly apparent. Despite this general trend, β-trefoils have emerged as an uncommon counterexample: They are an isolated protein lineage for which few, if any, sequence or structure associations to other lineages have been identified. If β-trefoils are, in fact, remote islands in sequence-structure space, it implies that the oligomerizing peptide that founded the β-trefoil lineage itself arose de novo. To better understand β-trefoil evolution, and to probe the limits of fragment sharing across the protein universe, we identified both 'β-trefoil bridging themes' (evolutionarily-related sequence segments) and 'β-trefoil-like motifs' (structure motifs with a hallmark feature of the β-trefoil architecture) in multiple, ostensibly unrelated, protein lineages. The success of the present approach stems, in part, from considering β-trefoil sequence segments or structure motifs rather than the β-trefoil architecture as a whole, as has been done previously. The newly uncovered inter-lineage connections presented here suggest a novel hypothesis about the origins of the β-trefoil fold itself-namely, that it is a derived fold formed by 'budding' from an Immunoglobulin-like β-sandwich protein. These results demonstrate how the evolution of a folded domain from a peptide need not be a signature of antiquity and underpin an emerging truth: few protein lineages escape nature's sewing table.
Collapse
Affiliation(s)
- Liam M. Longo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Shawn E. McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| |
Collapse
|
20
|
Zhang L, Wang L, Wu L, Jiang D, Tang C, Wu Y, Wu M, Chen M. Biochemical characterization and mutational studies of a thermostable endonuclease III from Sulfolobus islandicus REY15A. Int J Biol Macromol 2021; 193:856-865. [PMID: 34743941 DOI: 10.1016/j.ijbiomac.2021.10.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Endonuclease III (EndoIII), which is ubiquitous in bacteria, Archaea and eukaryotes, plays an important role in excising thymine glycol (Tg) from DNA. Herein, we present evidence that an EndoIII from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A (Sis-EndoIII) is capable of removing Tg from DNA at high temperature. Biochemical data show that the optimal temperature and pH of Sis-EndoIII are ca.70 °C and ca.7.0-8.0, respectively. Furthermore, the recombinant Sis-EndoIII retains relative weak activity without a divalent metal ion, and displays maximum activity in the presence of Mg2+ or Ca2+. Additionally, we first revealed the activation energy (Ea) of 39.7 ± 4.2 kcal/mol for Sis-EndoIII to remove Tg from dsDNA. As a bifunctional glycosylase, Sis-EndoIII possesses AP lyase activity in addition to glycosylase activity. Additionally, a covalent intermediate is formed between Sis-EndoIII and Tg-containing dsDNA. Mutational studies demonstrate that residues D50, K133 and D151 in Sis-EndoIII are responsible for removal of Tg from dsDNA and K133 and D151 are essential for formation of the covalent intermediate. To our knowledge, it is the first report of Tg excision by crenarchaeal EndoIII, thus augmenting our understanding on archaeal EndoIII function.
Collapse
Affiliation(s)
- Likui Zhang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China; Guangling College, Yangzhou University, China.
| | - Lei Wang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Leilei Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Chengxuan Tang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Ying Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
21
|
Rudnev VR, Kulikova LI, Nikolsky KS, Malsagova KA, Kopylov AT, Kaysheva AL. Current Approaches in Supersecondary Structures Investigation. Int J Mol Sci 2021; 22:11879. [PMID: 34769310 PMCID: PMC8584461 DOI: 10.3390/ijms222111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins expressed during the cell cycle determine cell function, topology, and responses to environmental influences. The development and improvement of experimental methods in the field of structural biology provide valuable information about the structure and functions of individual proteins. This work is devoted to the study of supersecondary structures of proteins and determination of their structural motifs, description of experimental methods for their detection, databases, and repositories for storage, as well as methods of molecular dynamics research. The interest in the study of supersecondary structures in proteins is due to their autonomous stability outside the protein globule, which makes it possible to study folding processes, conformational changes in protein isoforms, and aberrant proteins with high productivity.
Collapse
Affiliation(s)
- Vladimir R. Rudnev
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Liudmila I. Kulikova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill S. Nikolsky
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| |
Collapse
|
22
|
Trasviña-Arenas CH, Demir M, Lin WJ, David SS. Structure, function and evolution of the Helix-hairpin-Helix DNA glycosylase superfamily: Piecing together the evolutionary puzzle of DNA base damage repair mechanisms. DNA Repair (Amst) 2021; 108:103231. [PMID: 34649144 DOI: 10.1016/j.dnarep.2021.103231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The Base Excision Repair (BER) pathway is a highly conserved DNA repair system targeting chemical base modifications that arise from oxidation, deamination and alkylation reactions. BER features lesion-specific DNA glycosylases (DGs) which recognize and excise modified or inappropriate DNA bases to produce apurinic/apyrimidinic (AP) sites and coordinate AP-site hand-off to subsequent BER pathway enzymes. The DG superfamilies identified have evolved independently to cope with a wide variety of nucleobase chemical modifications. Most DG superfamilies recognize a distinct set of structurally related lesions. In contrast, the Helix-hairpin-Helix (HhH) DG superfamily has the remarkable ability to act upon structurally diverse sets of base modifications. The versatility in substrate recognition of the HhH-DG superfamily has been shaped by motif and domain acquisitions during evolution. In this paper, we review the structural features and catalytic mechanisms of the HhH-DG superfamily and draw a hypothetical reconstruction of the evolutionary path where these DGs developed diverse and unique enzymatic features.
Collapse
Affiliation(s)
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA 95616, U.S.A..
| |
Collapse
|
23
|
Abstract
Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription–repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA. The authors resolve the structure of five complexes containing RNA polymerase II and the CSA and CSB proteins, offering insight into how the repair of DNA lesions is coupled to transcription.
Collapse
|
24
|
Sekurova ON, Sun YQ, Zehl M, Rückert C, Stich A, Busche T, Kalinowski J, Zotchev S. Coupling of the engineered DNA "mutator" to a biosensor as a new paradigm for activation of silent biosynthetic gene clusters in Streptomyces. Nucleic Acids Res 2021; 49:8396-8405. [PMID: 34197612 PMCID: PMC8373060 DOI: 10.1093/nar/gkab583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
DNA replication fidelity in Streptomyces bacteria, prolific producers of many medically important secondary metabolites, is understudied, while in Escherichia coli it is controlled by DnaQ, the ϵ subunit of DNA polymerase III (DNA PolIII). Manipulation of dnaQ paralogues in Streptomyces lividans TK24, did not lead to increased spontaneous mutagenesis in this bacterium suggesting that S. lividans DNA PolIII uses an alternative exonuclease activity for proofreading. In Mycobacterium tuberculosis, such activity is attributed to the DnaE protein representing α subunit of DNA PolIII. Eight DnaE mutants designed based on the literature data were overexpressed in S. lividans, and recombinant strains overexpressing two of these mutants displayed markedly increased frequency of spontaneous mutagenesis (up to 1000-fold higher compared to the control). One of these 'mutators' was combined in S. lividans with a biosensor specific for antibiotic coelimycin, which biosynthetic gene cluster is present but not expressed in this strain. Colonies giving a positive biosensor signal appeared at a frequency of ca 10-5, and all of them were found to produce coelimycin congeners. This result confirmed that our approach can be applied for chemical- and radiation-free mutagenesis in Streptomyces leading to activation of orphan biosynthetic gene clusters and discovery of novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Olga N Sekurova
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Yi-Qian Sun
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Anna Stich
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Sergey B Zotchev
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. Structural Insights into the Mechanism of Base Excision by MBD4. J Mol Biol 2021; 433:167097. [PMID: 34107280 PMCID: PMC8286355 DOI: 10.1016/j.jmb.2021.167097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2'-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary Bright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | | | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
26
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
27
|
Abstract
DNA polymerase β (Pol β) is an essential mammalian enzyme involved in the repair of DNA damage during the base excision repair (BER) pathway. In hopes of faithfully restoring the coding potential to damaged DNA during BER, Pol β first uses a lyase activity to remove the 5'-deoxyribose phosphate moiety from a nicked BER intermediate, followed by a DNA synthesis activity to insert a nucleotide triphosphate into the resultant 1-nucleotide gapped DNA substrate. This DNA synthesis activity of Pol β has served as a model to characterize the molecular steps of the nucleotidyl transferase mechanism used by mammalian DNA polymerases during DNA synthesis. This is in part because Pol β has been extremely amenable to X-ray crystallography, with the first crystal structure of apoenzyme rat Pol β published in 1994 by Dr. Samuel Wilson and colleagues. Since this first structure, the Wilson lab and colleagues have published an astounding 267 structures of Pol β that represent different liganded states, conformations, variants, and reaction intermediates. While many labs have made significant contributions to our understanding of Pol β, the focus of this article is on the long history of the contributions from the Wilson lab. We have chosen to highlight select seminal Pol β structures with emphasis on the overarching contributions each structure has made to the field.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
28
|
The PHP domain of PolX from Staphylococcus aureus aids high fidelity DNA synthesis through the removal of misincorporated deoxyribo-, ribo- and oxidized nucleotides. Sci Rep 2021; 11:4178. [PMID: 33603016 PMCID: PMC7893174 DOI: 10.1038/s41598-021-83498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The X family is one of the eight families of DNA polymerases (dPols) and members of this family are known to participate in the later stages of Base Excision Repair. Many prokaryotic members of this family possess a Polymerase and Histidinol Phosphatase (PHP) domain at their C-termini. The PHP domain has been shown to possess 3'-5' exonuclease activity and may represent the proofreading function in these dPols. PolX from Staphylococcus aureus also possesses the PHP domain at the C-terminus, and we show that this domain has an intrinsic Mn2+ dependent 3'-5' exonuclease capable of removing misincorporated dNMPs from the primer. The misincorporation of oxidized nucleotides such as 8oxodGTP and rNTPs are known to be pro-mutagenic and can lead to genomic instability. Here, we show that the PHP domain aids DNA replication by the removal of misincorporated oxidized nucleotides and rNMPs. Overall, our study shows that the proofreading activity of the PHP domain plays a critical role in maintaining genomic integrity and stability. The exonuclease activity of this enzyme can, therefore, be the target of therapeutic intervention to combat infection by methicillin-resistant-Staphylococcus-aureus.
Collapse
|
29
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
30
|
Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020; 59:4456-4462. [PMID: 33175508 PMCID: PMC7735664 DOI: 10.1021/acs.biochem.0c00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are known to mediate diverse biological processes, and specifically to bind and stabilize compact conformations of nucleic acids, acting as chemical chaperones that promote folding by offsetting the repulsive negative charges of the phosphodiester backbone. However, whether and how polyamines modulate the structure and function of proteins remain unclear. In particular, early proteins are thought to have been highly acidic, like nucleic acids, due to a scarcity of basic amino acids in the prebiotic context. Perhaps polyamines, the abiotic synthesis of which is simple, could have served as chemical chaperones for such primordial proteins? We replaced all lysines of an ancestral 60-residue helix-bundle protein with glutamate, resulting in a disordered protein with 21 glutamates in total. Polyamines efficiently induce folding of this hyperacidic protein at submillimolar concentrations, and their potency scaled with the number of amine groups. Compared to cations, polyamines were several orders of magnitude more potent than Na+, while Mg2+ and Ca2+ had an effect similar to that of a diamine, inducing folding at approximately seawater concentrations. We propose that (i) polyamines and dications may have had a role in promoting folding of early proteins devoid of basic residues and (ii) coil-helix transitions could be the basis of polyamine regulation in contemporary proteins.
Collapse
Affiliation(s)
- Dragana Despotović
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Liam M. Longo
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Earth-Life
Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Einav Aharon
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Amit Kahana
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Department
of Molecular Genetics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Tali Scherf
- Department
of Chemical Research Support, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department
of Chemistry, Faculty of Science, University
of Zagreb, 10000 Zagreb, Croatia
| | - Dan S. Tawfik
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| |
Collapse
|
31
|
Prahlad J, Yuan Y, Lin J, Chang CW, Iwata-Reuyl D, Liu Y, de Crécy-Lagard V, Wilson MA. The DUF328 family member YaaA is a DNA-binding protein with a novel fold. J Biol Chem 2020; 295:14236-14247. [PMID: 32796037 PMCID: PMC7549036 DOI: 10.1074/jbc.ra120.015055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
DUF328 family proteins are present in many prokaryotes; however, their molecular activities are unknown. The Escherichia coli DUF328 protein YaaA is a member of the OxyR regulon and is protective against oxidative stress. Because uncharacterized proteins involved in prokaryotic oxidative stress response are rare, we sought to learn more about the DUF328 family. Using comparative genomics, we found a robust association between the DUF328 family and genes involved in DNA recombination and the oxidative stress response. In some proteins, DUF328 domains are fused to other domains involved in DNA binding, recombination, and repair. Cofitness analysis indicates that DUF328 family genes associate with recombination-mediated DNA repair pathways, particularly the RecFOR pathway. Purified recombinant YaaA binds to dsDNA, duplex DNA containing bubbles of unpaired nucleotides, and Holliday junction constructs in vitro with dissociation equilibrium constants of 200-300 nm YaaA binds DNA with positive cooperativity, forming multiple shifted species in electrophoretic mobility shift assays. The 1.65-Å resolution X-ray crystal structure of YaaA reveals that the protein possesses a new fold that we name the cantaloupe fold. YaaA has a positively charged cleft and a helix-hairpin-helix DNA-binding motif found in other DNA repair enzymes. Our results demonstrate that YaaA is a new type of DNA-binding protein associated with the oxidative stress response and that this molecular function is likely conserved in other DUF328 family members.
Collapse
Affiliation(s)
- Janani Prahlad
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jiusheng Lin
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA
| | - Chou-Wei Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA,University of Florida Genetics Institute, Gainesville, Florida, USA,For correspondence: Valérie de Crécy-Lagard, ; Mark A. Wilson,
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA,For correspondence: Valérie de Crécy-Lagard, ; Mark A. Wilson,
| |
Collapse
|
32
|
Agarwal S, Smith M, De La Rosa I, Verba KA, Swartz P, Segura-Totten M, Mattos C. Development of a structure-analysis pipeline using multiple-solvent crystal structures of barrier-to-autointegration factor. Acta Crystallogr D Struct Biol 2020; 76:1001-1014. [DOI: 10.1107/s2059798320011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
The multiple-solvent crystal structure (MSCS) approach uses high concentrations of organic solvents to characterize the interactions and effects of solvents on proteins. Here, the method has been further developed and an MSCS data-handling pipeline is presented that uses the Detection of Related Solvent Positions (DRoP) program to improve data quality. DRoP is used to selectively model conserved water molecules, so that an advanced stage of structural refinement is reached quickly. This allows the placement of organic molecules more accurately and convergence on high-quality maps and structures. This pipeline was applied to the chromatin-associated protein barrier-to-autointegration factor (BAF), resulting in structural models with better than average statistics. DRoP and Phenix Structure Comparison were used to characterize the data sets and to identify a binding site that overlaps with the interaction site of BAF with emerin. The conserved water-mediated networks identified by DRoP suggested a mechanism by which water molecules are used to drive the binding of DNA. Normalized and differential B-factor analysis is shown to be a valuable tool to characterize the effects of specific solvents on defined regions of BAF. Specific solvents are identified that cause stabilization of functionally important regions of the protein. This work presents tools and a standardized approach for the analysis and comprehension of MSCS data sets.
Collapse
|
33
|
Engineered viral DNA polymerase with enhanced DNA amplification capacity: a proof-of-concept of isothermal amplification of damaged DNA. Sci Rep 2020; 10:15046. [PMID: 32929102 PMCID: PMC7490695 DOI: 10.1038/s41598-020-71773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022] Open
Abstract
The development of whole genome amplification (WGA) and related methods, coupled with the dramatic growth of sequencing capacities, has changed the paradigm of genomic and genetic analyses. This has led to a continual requirement of improved DNA amplification protocols and the elaboration of new tailored methods. As key elements in WGA, identification and engineering of novel, faithful and processive DNA polymerases is a driving force in the field. We have engineered the B-family DNA polymerase of virus Bam35 with a C-terminal fusion of DNA-binding motifs. The new protein, named B35-HhH, shows faithful DNA replication in the presence of magnesium or an optimised combination of magnesium and manganese divalent cofactors, which enhances the replication of damaged DNA substrates. Overall, the newly generated variant displays improved amplification performance, sensitivity, translesion synthesis and resistance to salt, which are of great interest for several applications of isothermal DNA amplification. Further, rolling-circle amplification of abasic site-containing minicircles provides a proof-of-concept for using B35-HhH for processive amplification of damaged DNA samples.
Collapse
|
34
|
Thakur M, Agarwal A, Muniyappa K. The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J 2020; 288:1179-1200. [PMID: 32602194 DOI: 10.1111/febs.15465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro. In addition, homology modelling of M. tuberculosis UvrC (MtUvrC) revealed the presence of a putative ATP-binding pocket, although its function remains unknown. To elucidate the biochemical properties of UvrC, we constructed and purified wild-type MtUvrC and its eight variants harbouring mutations within the ATP-binding pocket. The data from DNA-binding studies suggest that MtUvrC exhibits high-affinity for duplex DNA containing a bubble or fluorescein-dT moiety, over fluorescein-adducted single-stranded DNA. Most notably, MtUvrC has an intrinsic UvrB-independent ATPase activity, which drives dual incision of the damaged DNA strand. In contrast, EcUvrC is devoid of ATPase activity; however, it retains the ability to bind ATP at levels comparable to that of MtUvrC. The ATPase-deficient variants map to residues lining the MtUvrC ATP-binding pocket. Further analysis of these variants revealed separation of function between ATPase and DNA-binding activities in MtUvrC. Altogether, these findings reveal functional diversity of the bacterial NER machinery and a paradigm for the evolution of a catalytic scaffold in UvrC.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
35
|
Longo LM, Despotović D, Weil-Ktorza O, Walker MJ, Jabłońska J, Fridmann-Sirkis Y, Varani G, Metanis N, Tawfik DS. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc Natl Acad Sci U S A 2020; 117:15731-15739. [PMID: 32561643 PMCID: PMC7355028 DOI: 10.1073/pnas.2001989117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
De novo emergence demands a transition from disordered polypeptides into structured proteins with well-defined functions. However, can polypeptides confer functions of evolutionary relevance, and how might such polypeptides evolve into modern proteins? The earliest proteins present an even greater challenge, as they were likely based on abiotic, spontaneously synthesized amino acids. Here we asked whether a primordial function, such as nucleic acid binding, could emerge with ornithine, a basic amino acid that forms abiotically yet is absent in modern-day proteins. We combined ancestral sequence reconstruction and empiric deconstruction to unravel a gradual evolutionary trajectory leading from a polypeptide to a ubiquitous nucleic acid-binding protein. Intermediates along this trajectory comprise sequence-duplicated functional proteins built from 10 amino acid types, with ornithine as the only basic amino acid. Ornithine side chains were further modified into arginine by an abiotic chemical reaction, improving both structure and function. Along this trajectory, function evolved from phase separation with RNA (coacervates) to avid and specific double-stranded DNA binding. Our results suggest that phase-separating polypeptides may have been an evolutionary resource for the emergence of early proteins, and that ornithine, together with its postsynthesis modification to arginine, could have been the earliest basic amino acids.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dragana Despotović
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orit Weil-Ktorza
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Jagoda Jabłońska
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Fridmann-Sirkis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Norman Metanis
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
36
|
Shiraishi M, Mizutani K, Yamamoto J, Iwai S. Mutational analysis of Thermococcus kodakarensis Endonuclease III reveals the roles of evolutionarily conserved residues. DNA Repair (Amst) 2020; 90:102859. [PMID: 32408140 DOI: 10.1016/j.dnarep.2020.102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Endonuclease III (EndoIII) is nearly ubiquitous in all three domains of life. EndoIII family proteins exhibit a bifunctional (glycosylase/lyase) activity on oxidative/saturated pyrimidine bases, such as thymine glycol. Previous studies on EndoIII homologs have reported the presence of important residues involved in substrate binding and catalytic activity. However, a biochemical clarification of the roles of these residues as well as details of their evolutionary conservation is still lacking. This is particularly true for archaeal orthologs. The current study demonstrated the roles of the evolutionarily conserved residues of euryarchaeon Thermococcus kodakarensis EndoIII (TkoEndoIII). We utilized amino acid sequence analysis and homology modeling to identify highly conserved regions with potential key residues in the EndoIII proteins. Using Ala-substituted TkoEndoIII mutant proteins, residues of interest were quantitatively examined via DNA binding, glycosylase/AP lyase/bifunctional activity, and DNA trapping assays. The obtained results allowed us to determine the roles, as well as the significance of these roles in Schiff base formation (Lys140 as a nucleophile and Asp158), Tg recognition (His160), substrate binding (Arg59, Leu101, Trp102, and Gly136), β-elimination activities (Ser57 and Asp62), and [4Fe-4S] cluster formation (Cys208 and Cys215). Interestingly, a critical role played by the highly conserved Lys105 (predicted as being away from the catalytic site) in substrate binding, accompanied by a significant indirect effect on catalytic activity, were detected. Our results suggest that these particular residues play conserved roles among EndoIII orthologs across the domains. In addition to identifying the critical role of the highly conserved Lys105, the study provides a comprehensive understanding of the functions attributable to the evolutionarily conserved residues found in the EndoIII family, from Escherichia coli to humans.
Collapse
Affiliation(s)
- Miyako Shiraishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan.
| | - Kento Mizutani
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| | - Junpei Yamamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| | - Shigenori Iwai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 5608531, Japan
| |
Collapse
|
37
|
Hoyas S, Halin E, Lemaur V, De Winter J, Gerbaux P, Cornil J. Helicity of Peptoid Ions in the Gas Phase. Biomacromolecules 2020; 21:903-909. [DOI: 10.1021/acs.biomac.9b01567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sébastien Hoyas
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
| | - Emilie Halin
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
- Department of General, Organic Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons (UMONS), 23 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
38
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Ciudad T, Bellido A, Hermosa B, Andaluz E, Larriba G. DLH1, the Candida albicans homologue of the meiosis-specific DMC1, is not involved in DNA repair but catalyses spontaneous interhomologue recombination and might promote non-crossover events. Cell Microbiol 2019; 22:e13137. [PMID: 31701646 DOI: 10.1111/cmi.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Toni Ciudad
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Alberto Bellido
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Belén Hermosa
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Encarnación Andaluz
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| | - Germán Larriba
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Área de Microbiología, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
40
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
41
|
In vivo demonstration of enhanced binding between β-clamp and DnaE of pol III bearing consensus i-CBM. Genes Genomics 2019; 41:613-619. [PMID: 30929144 DOI: 10.1007/s13258-019-00796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Among several key protein-protein and protein-DNA interactions within the replisome, the interaction between β-clamp and the DNA polymerase (Pol) III is of crucial importance. This interaction is mediated by a five or six-residue conserved sequence of the DnaE subunit of Pol III, referred to as the Clamp Binding Motif (CBM). In E. coli, DnaE contains two CBMs designated as e-CBM and i-CBM. A consensus sequence (QL[S/D]LF) for the CBMs has previously been proposed and studies involving mutagenesis of both the CBMs have evaluated their protein-binding properties. Surface Plasmon Resonance has been used to show that replacing i-CBM in DnaE with the consensus sequence enhances its binding to β-clamp 120-fold. OBJECTIVE The current study was aimed to evaluate in vivo interaction between DnaE bearing the consensus i-CBM and β-clamp. METHOD The C-terminal 405 residues of DnaE, bearing either the consensus i-CBM or the WT i-CBM, with β-clamp were co-expressed in E. coli followed by co-purification of the protein complexes. The interaction was assessed by the ability of the co-expressed proteins to form stable complexes during both affinity and gel filtration chromatography. RESULT The interaction of β-clamp with DnaEΔ755M containing the consensus i-CBM was found to be more stable than with WT DnaEΔ755, consistent with the in vitro data previously reported. CONCLUSION The presence of the pieces of sheared DNA generated during sonication promote the interaction of DnaEΔ755M with β-clamp by binding the OB-fold of DnaEΔ755M and β-clamp and serves as a bridge between them.
Collapse
|
42
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
43
|
The polyanions heparin and suramin impede binding of free adenine to a DNA glycosylase from C. pseudotuberculosis. Int J Biol Macromol 2019; 125:459-468. [DOI: 10.1016/j.ijbiomac.2018.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
|
44
|
Patoli AA, Patoli BB. The N-Terminal 6×His Tag on β-Clamp Processivity Factor Occludes Gly66 and Affects the Growth of Escherichia coli B834 (DE3) Cells. Mol Biol 2019. [DOI: 10.1134/s0026893319010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
46
|
Mishra A, Siwach P, Misra P, Jayaram B, Bansal M, Olson WK, Thayer KM, Beveridge DL. Toward a Universal Structural and Energetic Model for Prokaryotic Promoters. Biophys J 2018; 115:1180-1189. [PMID: 30172386 DOI: 10.1016/j.bpj.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
With almost no consensus promoter sequence in prokaryotes, recruitment of RNA polymerase (RNAP) to precise transcriptional start sites (TSSs) has remained an unsolved puzzle. Uncovering the underlying mechanism is critical for understanding the principle of gene regulation. We attempted to search the hidden code in ∼16,500 promoters of 12 prokaryotes representing two kingdoms in their structure and energetics. Twenty-eight fundamental parameters of DNA structure including backbone angles, basepair axis, and interbasepair and intrabasepair parameters were used, and information was extracted from x-ray crystallography data. Three parameters (solvation energy, hydrogen-bond energy, and stacking energy) were selected for creating energetics profiles using in-house programs. DNA of promoter regions was found to be inherently designed to undergo a change in every parameter undertaken for the study, in all prokaryotes. The change starts from some distance upstream of TSSs and continues past some distance from TSS, hence giving a signature state to promoter regions. These signature states might be the universal hidden codes recognized by RNAP. This observation was reiterated when randomly selected promoter sequences (with little sequence conservation) were subjected to structure generation; all developed into very similar three-dimensional structures quite distinct from those of conventional B-DNA and coding sequences. Fine structural details at important motifs (viz. -11, -35, and -75 positions relative to TSS) of promoters reveal novel to our knowledge and pointed insights for RNAP interaction at these locations; it could be correlated with how some particular structural changes at the -11 region may allow insertion of RNAP amino acids in interbasepair space as well as facilitate the flipping out of bases from the DNA duplex.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology; Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Priyanka Siwach
- Supercomputing Facility for Bioinformatics & Computational Biology; Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Pallavi Misra
- Supercomputing Facility for Bioinformatics & Computational Biology
| | - Bhyravabhotla Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology; Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India; Department of Chemistry, Indian Institute of Technology, Delhi, India.
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Wilma K Olson
- Department of Chemistry & Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, Piscataway, New Jersey
| | - Kelly M Thayer
- Department of Chemistry, Vassar College, Poughkeepsie, New York
| | - David L Beveridge
- Departments of Chemistry, Molecular Biology, and Biochemistry and Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut
| |
Collapse
|
47
|
Yu B, Lin YA, Parhad SS, Jin Z, Ma J, Theurkauf WE, Zhang ZZ, Huang Y. Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification. EMBO Rep 2018; 19:embr.201745418. [PMID: 29858487 DOI: 10.15252/embr.201745418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/28/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu An Lin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhaohui Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zz Zhao Zhang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ying Huang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
49
|
Hepp C, Maier B. Bacterial Translocation Ratchets: Shared Physical Principles with Different Molecular Implementations: How bacterial secretion systems bias Brownian motion for efficient translocation of macromolecules. Bioessays 2017; 39. [PMID: 28895164 DOI: 10.1002/bies.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism.
Collapse
Affiliation(s)
- Christof Hepp
- Department of Physics Universität zu Köln, Köln, Nordrhein-Westfalen, Germany
| | - Berenike Maier
- Department of Physics Universität zu Köln, Köln, Nordrhein-Westfalen, Germany
| |
Collapse
|
50
|
Paschalis V, Le Chatelier E, Green M, Nouri H, Képès F, Soultanas P, Janniere L. Interactions of the Bacillus subtilis DnaE polymerase with replisomal proteins modulate its activity and fidelity. Open Biol 2017; 7:170146. [PMID: 28878042 PMCID: PMC5627055 DOI: 10.1098/rsob.170146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
During Bacillus subtilis replication two replicative polymerases function at the replisome to collectively carry out genome replication. In a reconstituted in vitro replication assay, PolC is the main polymerase while the lagging strand DnaE polymerase briefly extends RNA primers synthesized by the primase DnaG prior to handing-off DNA synthesis to PolC. Here, we show in vivo that (i) the polymerase activity of DnaE is essential for both the initiation and elongation stages of DNA replication, (ii) its error rate varies inversely with PolC concentration, and (iii) its misincorporations are corrected by the mismatch repair system post-replication. We also found that the error rates in cells encoding mutator forms of both PolC and DnaE are significantly higher (up to 15-fold) than in PolC mutants. In vitro, we showed that (i) the polymerase activity of DnaE is considerably stimulated by DnaN, SSB and PolC, (ii) its error-prone activity is strongly inhibited by DnaN, and (iii) its errors are proofread by the 3' > 5' exonuclease activity of PolC in a stable template-DnaE-PolC complex. Collectively our data show that protein-protein interactions within the replisome modulate the activity and fidelity of DnaE, and confirm the prominent role of DnaE during B. subtilis replication.
Collapse
Affiliation(s)
- Vasileios Paschalis
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Emmanuelle Le Chatelier
- Institut National de la Recherche Agronomique, Génétique Microbienne, 78350 Jouy-en-Josas, France
| | - Matthew Green
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Hamid Nouri
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - François Képès
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- iSSB, Genopole, CNRS, Univ EVRY, Université Paris-Saclay, Génopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030 Evry, France
| |
Collapse
|