1
|
Hop PJ, Lai D, Keagle PJ, Baron DM, Kenna BJ, Kooyman M, Shankaracharya, Halter C, Straniero L, Asselta R, Bonvegna S, Soto-Beasley AI, Wszolek ZK, Uitti RJ, Isaias IU, Pezzoli G, Ticozzi N, Ross OA, Veldink JH, Foroud TM, Kenna KP, Landers JE. Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson's disease. Nat Genet 2024; 56:1371-1376. [PMID: 38858457 PMCID: PMC11250361 DOI: 10.1038/s41588-024-01787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.
Collapse
Affiliation(s)
- Paul J Hop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pamela J Keagle
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Desiree M Baron
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Brendan J Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maarten Kooyman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shankaracharya
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Cheryl Halter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ioannis Ugo Isaias
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Gianni Pezzoli
- Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin P Kenna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John E Landers
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Sudan J, Sharma S, Salgotra RK, Pandey RK, Neelam D, Singh R. Elucidating the process of SNPs identification in non-reference genome crops. J Biomol Struct Dyn 2023; 41:15682-15690. [PMID: 37021361 DOI: 10.1080/07391102.2023.2194002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
Advances in the next generation sequencing technologies, genome reduction techniques and bioinformatics tools have given a big impetus to the identification of genome-wide single nucleotide polymorphisms (SNPs) in crops. NGS technologies can make available a large amount of sequence data in a short span of time. The huge data requires detailed bioinformatics analysis steps, including preprocessing, mapping, and identification of sequence variants. A plethora of available software meant for sequence analysis is used for different sequence analysis steps. However, SNPs identification is far more challenging for orphaned crops or non-reference genome crops. The current article reports different steps for in silico SNPs identification in a sequential manner and proposes some mapping approaches using CLC Genomics software that could provide an alternative method for SNPs identification in orphan crops having no reference genome. The three mapping approaches: Common reference map from progenitor genomes (CRMPG), step-wise use of progenitor genomes (SWPG) and de novo assembly of sequence read (DASR) were validated with the dd-RAD sequenced data of two genotypes from Brassica juncea.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jebi Sudan
- Department of Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Susheel Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| | - Romesh K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Deepesh Neelam
- Department of Microbiology, JECRC University, Jaipur, Rajasthan, India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| |
Collapse
|
3
|
Rather MA, Agarwal D, Bhat TA, Khan IA, Zafar I, Kumar S, Amin A, Sundaray JK, Qadri T. Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture. Int J Biol Macromol 2023; 233:123549. [PMID: 36740117 DOI: 10.1016/j.ijbiomac.2023.123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Aquaculture has witnessed an excellent growth rate during the last two decades and offers huge potential to provide nutritional as well as livelihood security. Genomic research has contributed significantly toward the development of beneficial technologies for aquaculture. The existing high throughput technologies like next-generation technologies generate oceanic data which requires extensive analysis using appropriate tools. Bioinformatics is a rapidly evolving science that involves integrating gene based information and computational technology to produce new knowledge for the benefit of aquaculture. Bioinformatics provides new opportunities as well as challenges for information and data processing in new generation aquaculture. Rapid technical advancements have opened up a world of possibilities for using current genomics to improve aquaculture performance. Understanding the genes that govern economically relevant characteristics, necessitates a significant amount of additional research. The various dimensions of data sources includes next-generation DNA sequencing, protein sequencing, RNA sequencing gene expression profiles, metabolic pathways, molecular markers, and so on. Appropriate bioinformatics tools are developed to mine the biologically relevant and commercially useful results. The purpose of this scoping review is to present various arms of diverse bioinformatics tools with special emphasis on practical translation to the aquaculture industry.
Collapse
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India.
| | - Deepak Agarwal
- Institute of Fisheries Post Graduation Studies OMR Campus, Vaniyanchavadi, Chennai, India
| | | | - Irfan Ahamd Khan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Sujit Kumar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Adnan Amin
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar-India University of Kurasthra, India; Department of Aquatic Environmental Management, Faculty of Fisheries Rangil- Ganderbel -SKUAST-K, India
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Tahiya Qadri
- Division of Food Science and Technology, SKUAST-K, Shalimar, India
| |
Collapse
|
4
|
Edwards SV, Tonini JFR, Mcinerney N, Welch C, Beerli P. Multilocus phylogeography, population genetics and niche evolution of Australian brown and black-tailed treecreepers (Aves: Climacteris). Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The Carpentarian barrier across north-eastern Australia is a major biogeographic barrier and a generator of biodiversity within the Australian Monsoonal Tropics. Here we present a continent-wide analysis of mitochondrial (control region) and autosomal (14 anonymous loci) sequence and indel variation and niche modelling of brown and black-tailed treecreepers (Climacteris picumnus and Climacteris melanurus), a clade with a classic distribution on either side of the Carpentarian barrier. mtDNA control region sequences exhibited reciprocal monophyly and strong differentiation (Fst = 0.91), and revealed a signature of a recent selective sweep in C. picumnus. A variety of tests support an isolation-with-migration model of divergence, albeit with low levels of gene flow across the Carpentarian barrier and a divergence time between species of ~1.7–2.8 Mya. Palaeoecological niche models show that both range size as measured by available habitat and estimated historical population sizes of both species declined in the past ~600 kyr and that the area of interspecific range overlap was never historically large, perhaps decreasing opportunities for extensive gene flow. The relatively long divergence time and low opportunity for gene flow may have facilitated speciation more so than in other co-distributed bird taxa across the Australian Monsoonal Tropics.
Collapse
Affiliation(s)
- Scott V Edwards
- Museum of Comparative Zoology, Harvard University , Cambridge, MA 02138 , USA
- Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
| | - João F R Tonini
- Museum of Comparative Zoology, Harvard University , Cambridge, MA 02138 , USA
- Department of Organismic and Evolutionary Biology, Harvard University , Cambridge, MA 02138 , USA
- Department of Biology, University of Richmond , Richmond, VA 23217 , USA
| | - Nancy Mcinerney
- Smithsonian's National Zoo and Conservation Biology Institute , NW, Washington, DC 20008 , USA
| | - Corey Welch
- Department of Biology and Burke Museum, University of Washington , Seattle, WA 98195 , USA
- STEM Scholars Program, Student Innovation Center, Iowa State University , Ames, IA 50011 , USA
| | - Peter Beerli
- Department of Scientific Computing, Florida State University, Florida State University , Tallahassee, FL 32306 , USA
| |
Collapse
|
5
|
Sen S, Rathi S, Sahu J, Mandal SC, Ray S, Slama P, Roychoudhury S. In Silico Mining and Characterization of High-Quality SNP/Indels in Some Agro-Economically Important Species Belonging to the Family Euphorbiaceae. Genes (Basel) 2023; 14:332. [PMID: 36833259 PMCID: PMC9956114 DOI: 10.3390/genes14020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: To assess the genetic makeup among the agro-economically important members of Euphorbiaceae, the present study was conducted to identify and characterize high-quality single-nucleotide polymorphism (SNP) markers and their comparative distribution in exonic and intronic regions from the publicly available expressed sequence tags (ESTs). (2) Methods: Quality sequences obtained after pre-processing by an EG assembler were assembled into contigs using the CAP3 program at 95% identity; the mining of SNP was performed by QualitySNP; GENSCAN (standalone) was used for detecting the distribution of SNPs in the exonic and intronic regions. (3) Results: A total of 25,432 potential SNPs (pSNP) and 14,351 high-quality SNPs (qSNP), including 2276 indels, were detected from 260,479 EST sequences. The ratio of quality SNP to potential SNP ranged from 0.22 to 0.75. A higher frequency of transitions and transversions was observed more in the exonic than the intronic region, while indels were present more in the intronic region. C↔T (transition) was the most dominant nucleotide substitution, while in transversion, A↔T was the dominant nucleotide substitution, and in indel, A/- was dominant. (4) Conclusions: Detected SNP markers may be useful for linkage mapping; marker-assisted breeding; studying genetic diversity; mapping important phenotypic traits, such as adaptation or oil production; or disease resistance by targeting and screening mutations in important genes.
Collapse
Affiliation(s)
- Surojit Sen
- Department of Zoology, Mariani College, Mariani 785634, India
| | - Sunayana Rathi
- Department of Biochemistry and Agricultural Chemistry, Assam Agricultural University, Jorhat 785013, India
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar 751003, India
| | - Subhash C. Mandal
- Department of Pharmaceutical Technology, Division of Pharmacognosy, Jadavpur University, Kolkata 700032, India
| | - Supratim Ray
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | | |
Collapse
|
6
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Takenouchi T, Tanaka J, Shimizu M, Kitazawa H, Uenishi H. Polymorphisms in Pattern Recognition Receptor Genes Are Associated with Respiratory Disease Severity in Pig Farms. Animals (Basel) 2022; 12:ani12223163. [PMID: 36428390 PMCID: PMC9686681 DOI: 10.3390/ani12223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Masanori Shimizu
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
7
|
Le Clec'h W, Chevalier FD, Mattos ACA, Strickland A, Diaz R, McDew-White M, Rohr CM, Kinung'hi S, Allan F, Webster BL, Webster JP, Emery AM, Rollinson D, Djirmay AG, Al Mashikhi KM, Al Yafae S, Idris MA, Moné H, Mouahid G, LoVerde P, Marchant JS, Anderson TJC. Genetic analysis of praziquantel response in schistosome parasites implicates a transient receptor potential channel. Sci Transl Med 2021; 13:eabj9114. [PMID: 34936381 DOI: 10.1126/scitranslmed.abj9114] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Winka Le Clec'h
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Ana Carolina A Mattos
- University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Robbie Diaz
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Claudia M Rohr
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Safari Kinung'hi
- National Institute for Medical Research, Mwanza, United Republic of Tanzania
| | - Fiona Allan
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial College, London, UK.,Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, UK
| | - Bonnie L Webster
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial College, London, UK.,Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, UK
| | - Joanne P Webster
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial College, London, UK.,Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, London, UK
| | - Aidan M Emery
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial College, London, UK.,Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, UK
| | - David Rollinson
- London Centre for Neglected Tropical Disease Research (LCNDTR), Imperial College, London, UK.,Wolfson Wellcome Biomedical Laboratories, Natural History Museum, London, UK
| | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL), Niamey, Niger.,World Health Organization, Geneva, Switzerland
| | - Khalid M Al Mashikhi
- Directorate General of Health Services, Dhofar Governorate, Salalah, Sultanate of Oman
| | - Salem Al Yafae
- Directorate General of Health Services, Dhofar Governorate, Salalah, Sultanate of Oman
| | | | - Hélène Moné
- Host-Pathogen-Environment Interactions Laboratory, University of Perpignan, Perpignan, France
| | - Gabriel Mouahid
- Host-Pathogen-Environment Interactions Laboratory, University of Perpignan, Perpignan, France
| | - Philip LoVerde
- University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
8
|
Suzuki K, Shinkai H, Yoshioka G, Matsumoto T, Tanaka J, Hayashi N, Kitazawa H, Uenishi H. NOD2 Genotypes Affect the Symptoms and Mortality in the Porcine Circovirus 2-Spreading Pig Population. Genes (Basel) 2021; 12:genes12091424. [PMID: 34573406 PMCID: PMC8469532 DOI: 10.3390/genes12091424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
The nucleotide oligomerization domain (NOD)-like receptor 2 (NOD2) is an intracellular pattern recognition receptor that detects components of peptidoglycans from bacterial cell walls. NOD2 regulates bowel microorganisms, provides resistance against infections such as diarrhea, and reduces the risk of inflammatory bowel diseases in humans and mice. We previously demonstrated that a specific porcine NOD2 polymorphism (NOD2-2197A > C) augments the recognition of peptidoglycan components. In this study, the relationships between porcine NOD2-2197A/C genotypes affecting molecular functions and symptoms in a porcine circovirus 2b (PCV2b)-spreading Duroc pig population were investigated. The NOD2 allele (NOD2-2197A) with reduced recognition of the peptidoglycan components augmented the mortality of pigs at the growing stage in the PCV2b-spreading population. Comparison of NOD2 allele frequencies in the piglets before and after invasion of PCV2b indicated that the ratio of NOD2-2197A decreased in the population after the PCV2b epidemic. This data indicated that functional differences caused by NOD2-2197 polymorphisms have a marked impact on pig health and livestock productivity. We suggest that NOD2-2197CC is a PCV2 disease resistant polymorphism, which is useful for selective breeding by reducing mortality and increasing productivity.
Collapse
Affiliation(s)
- Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan;
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Toshimi Matsumoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Junji Tanaka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Noboru Hayashi
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.); (J.T.); (N.H.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
- Correspondence: (H.K.); (H.U.); Tel.: +81-22-757-4372 (H.K.); +81-29-838-6292 (H.U.)
| |
Collapse
|
9
|
Sanderson BJ, Feng G, Hu N, Carlson CH, Smart LB, Keefover-Ring K, Yin T, Ma T, Liu J, DiFazio SP, Olson MS. Sex determination through X-Y heterogamety in Salix nigra. Heredity (Edinb) 2021; 126:630-639. [PMID: 33510464 PMCID: PMC8115673 DOI: 10.1038/s41437-020-00397-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
The development of non-recombining sex chromosomes has radical effects on the evolution of discrete sexes and sexual dimorphism. Although dioecy is rare in plants, sex chromosomes have evolved repeatedly throughout the diversification of angiosperms, and many of these sex chromosomes are relatively young compared to those found in vertebrates. In this study, we designed and used a sequence capture array to identify a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety. We did not detect any genetic overlap with the previously characterized ZW SLRs in willows, which map to a different chromosome. The S. nigra SLR is characterized by strong recombination suppression across a 2 MB region and an excess of low-frequency alleles, resulting in a low Tajima's D compared to the remainder of the genome. We speculate that either a recent bottleneck in population size or factors related to positive or background selection generated this differential pattern of Tajima's D on the X and autosomes. This discovery provides insights into factors that may influence the evolution of sex chromosomes in plants and contributes to a large number of recent observations that underscore their dynamic nature.
Collapse
Affiliation(s)
- Brian J. Sanderson
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA ,grid.268154.c0000 0001 2156 6140Present Address: Department of Biology, West Virginia University, Morgantown, WV 26506-6057 USA
| | - Guanqiao Feng
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| | - Nan Hu
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| | - Craig H. Carlson
- grid.5386.8000000041936877XHorticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456 USA
| | - Lawrence B. Smart
- grid.5386.8000000041936877XHorticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456 USA
| | - Ken Keefover-Ring
- grid.14003.360000 0001 2167 3675Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Tongming Yin
- grid.410625.40000 0001 2293 4910Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Tao Ma
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu, 610065 China
| | - Jianquan Liu
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & College of Life Sciences, Sichuan University, Chengdu, 610065 China ,grid.32566.340000 0000 8571 0482State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Stephen P. DiFazio
- grid.268154.c0000 0001 2156 6140Department of Biology, West Virginia University, Morgantown, WV 26506-6057 USA
| | - Matthew S. Olson
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| |
Collapse
|
10
|
Pira E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. Polymorphisms at Myostatin Gene ( MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals (Basel) 2021; 11:964. [PMID: 33808485 PMCID: PMC8065447 DOI: 10.3390/ani11040964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
One hundred and eighty Anglo-Arabian horses running 1239 races were sampled for the present study. DNA was extracted from the blood and myostatin gene, MSTN, was genotyped. Moreover, prizes won and places were achieved for the 1239 races to perform association analyses between the different genotypes and sport traits. Two SNPs already reported in previous studies regarding the Thoroughbred breed, rs69472472 and rs397152648, were revealed as polymorphic. The linkage disequilibrium analysis investigating the haplotype structure of MSTN did not evidence any association block. Polymorphism at SNP rs397152648, previously known as g.66493737 T>C, significantly influenced sport traits, with heterozygous horses TC showing better results than homozygotes TT. The portion of variance due to the random effect of the individual animal, and the other phenotypic effects of sex, percentage of Arabian blood and race distance, computed together with the genotype at MSTN in the statistical models, exerted a significant influence. Hence, this information is useful to improve knowledge of the genetic profile of Anglo-Arabian horses and a possible selection for better sport performance.
Collapse
Affiliation(s)
- Emanuela Pira
- Local Health Authority 7 Pedemontana, Via dei Lotti 40, 36061 Bassano del Grappa, Italy;
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Gianpiera Piras
- Local Health Authority of Oristano, Via Carducci 35, 09170 Oristano, Italy;
| | - Massimiliano Moro
- Local Health Authority of Nuoro, Via Amerigo Demurtas 1, 08110 Nuoro, Italy;
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| |
Collapse
|
11
|
Scheinfeldt LB, Brangan A, Kusic DM, Kumar S, Gharani N. Common Treatment, Common Variant: Evolutionary Prediction of Functional Pharmacogenomic Variants. J Pers Med 2021; 11:jpm11020131. [PMID: 33669176 PMCID: PMC7919641 DOI: 10.3390/jpm11020131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmacogenomics holds the promise of personalized drug efficacy optimization and drug toxicity minimization. Much of the research conducted to date, however, suffers from an ascertainment bias towards European participants. Here, we leverage publicly available, whole genome sequencing data collected from global populations, evolutionary characteristics, and annotated protein features to construct a new in silico machine learning pharmacogenetic identification method called XGB-PGX. When applied to pharmacogenetic data, XGB-PGX outperformed all existing prediction methods and identified over 2000 new pharmacogenetic variants. While there are modest pharmacogenetic allele frequency distribution differences across global population samples, the most striking distinction is between the relatively rare putatively neutral pharmacogene variants and the relatively common established and newly predicted functional pharamacogenetic variants. Our findings therefore support a focus on individual patient pharmacogenetic testing rather than on clinical presumptions about patient race, ethnicity, or ancestral geographic residence. We further encourage more attention be given to the impact of common variation on drug response and propose a new ‘common treatment, common variant’ perspective for pharmacogenetic prediction that is distinct from the types of variation that underlie complex and Mendelian disease. XGB-PGX has identified many new pharmacovariants that are present across all global communities; however, communities that have been underrepresented in genomic research are likely to benefit the most from XGB-PGX’s in silico predictions.
Collapse
Affiliation(s)
- Laura B. Scheinfeldt
- Coriell Institute for Medical Research, Camden, NJ 08003, USA; (A.B.); (D.M.K.); (N.G.)
- Correspondence:
| | - Andrew Brangan
- Coriell Institute for Medical Research, Camden, NJ 08003, USA; (A.B.); (D.M.K.); (N.G.)
| | - Dara M. Kusic
- Coriell Institute for Medical Research, Camden, NJ 08003, USA; (A.B.); (D.M.K.); (N.G.)
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA;
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Neda Gharani
- Coriell Institute for Medical Research, Camden, NJ 08003, USA; (A.B.); (D.M.K.); (N.G.)
- Gharani Consulting, Surrey KT139PA, UK
| |
Collapse
|
12
|
Dettori ML, Petretto E, Pazzola M, Vidal O, Amills M, Vacca GM. Assessing the Diversity and Population Substructure of Sarda Breed Bucks by Using Mtdna and Y-Chromosome Markers. Animals (Basel) 2020; 10:E2194. [PMID: 33255190 PMCID: PMC7761473 DOI: 10.3390/ani10122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022] Open
Abstract
A sample of 146 Sarda bucks from eight subregions of Sardinia, Italy (Nuorese, Barbagia, Baronia, Ogliastra, Sarrabus, Guspinese, Iglesiente, Sulcis) were characterized for Y-chromosome and mtDNA markers to assess the levels of population substructure. Five polymorphic loci (SRY, AMELY, ZFY, and DDX3Y) on the Y-chromosome were genotyped. The control region of mtDNA was sequenced as a source of complementary information. Analysis of Y-chromosome data revealed the segregation of 5 haplotypes: Y1A (66.43%), Y2 (28.57%), Y1C (3.57%), Y1B1 (0.71%), and Y1B2 (0.71%). High levels of Y-chromosome diversity were observed in populations from Southwest Sardinia. The FST values based on Y-chromosome and mtDNA data were low, although a paternal genetic differentiation was observed when comparing the Nuorese and Barbagia populations (Central Sardinia) with the Sulcis, Iglesiente, and Sarrabus populations (Southern Sardinia). AMOVA analysis supported the lack of population substructure. These results suggest the occurrence of a historical and extensive gene flow between Sarda goat populations from different locations of Sardinia, despite the fact that this island is covered by several large mountain ranges. Introgression with foreign caprine breeds in order to improve milk production might have also contributed to avoiding the genetic differentiation amongst Sarda populations.
Collapse
Affiliation(s)
- Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy; (E.P.); (M.P.); (G.M.V.)
| | - Elena Petretto
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy; (E.P.); (M.P.); (G.M.V.)
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy; (E.P.); (M.P.); (G.M.V.)
| | - Oriol Vidal
- Departament de Biologia, Universitat de Girona, 17003 Girona, Spain;
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Department of Animal Genetics, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy; (E.P.); (M.P.); (G.M.V.)
| |
Collapse
|
13
|
Kumar PS, Dabdoub SM, Ganesan SM. Probing periodontal microbial dark matter using metataxonomics and metagenomics. Periodontol 2000 2020; 85:12-27. [PMID: 33226714 DOI: 10.1111/prd.12349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our view of the periodontal microbial community has been shaped by a century or more of cultivation-based and microscopic investigations. While these studies firmly established the infection-mediated etiology of periodontal diseases, it was apparent from the very early days that periodontal microbiology suffered from what Staley and Konopka described as the "great plate count anomaly", in that these culturable bacteria were only a minor part of what was visible under the microscope. For nearly a century, much effort has been devoted to finding the right tools to investigate this uncultivated majority, also known as "microbial dark matter". The discovery that DNA was an effective tool to "see" microbial dark matter was a significant breakthrough in environmental microbiology, and oral microbiologists were among the earliest to capitalize on these advances. By identifying the order in which nucleotides are arranged in a stretch of DNA (DNA sequencing) and creating a repository of these sequences, sequence databases were created. Computational tools that used probability-driven analysis of these sequences enabled the discovery of new and unsuspected species and ascribed novel functions to these species. This review will trace the development of DNA sequencing as a quantitative, open-ended, comprehensive approach to characterize microbial communities in their native environments, and explore how this technology has shifted traditional dogmas on how the oral microbiome promotes health and its role in disease causation and perpetuation.
Collapse
Affiliation(s)
- Purnima S Kumar
- Department of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Shareef M Dabdoub
- Department of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Sukirth M Ganesan
- Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Santos CRO, Gouveia JJDS, Gouveia GV, Bezerra FCM, Nogueira JF, Baraúna Júnior D. Molecular screening for the mutation associated with canine degenerative myelopathy (SOD1:c.118G > A) in German Shepherd dogs in Brazil. PLoS One 2020; 15:e0242347. [PMID: 33196688 PMCID: PMC7668602 DOI: 10.1371/journal.pone.0242347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/30/2020] [Indexed: 12/01/2022] Open
Abstract
Canine Degenerative Myelopathy is a late onset recessive autosomal disease characterized by a progressive ascending degeneration of the spinal cord. Two causal mutations are associated with this disease: a transition (c.118G>A) in exon 2 of the SOD1 that was described in several breeds and a transversion (c.52A>T) in exon 1 of the same gene described in Bernese Mountain dogs. The aim of this study was to understand the impact of the SOD1:c.118G > A mutation by genotyping a population of German Shepherd dogs in Brazil. A PCR-RFLP approach was used to genotype 97 healthy individuals belonging from the Northeast (Bahia and Pernambuco states) and South (Santa Catarina state) regions of Brazil. A total of 95 individuals were successfully genotyped resulting in an observed genotype frequency (with 95% confidence interval) of: 0.758 (0.672–0.844), 0.242 (0.156–0.328) and 0.000 (0.000–0.000) for “GG”, “AG” and “AA” genotypes, respectively. To our knowledge, this is the first attempt to describe the presence of the “A” allele associated with CDM (SOD1:c.118G > A) in German Shepherd dogs in Brazil and, as such, these results contribute toward important epidemiological data in this country and to the knowledge of the distribution of the aforementioned mutation worldwide.
Collapse
Affiliation(s)
- Cássia Regina Oliveira Santos
- Postgraduate Program in Veterinary Sciences in the Semiarid, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
- University Veterinary Clinic, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
- * E-mail:
| | | | - Gisele Veneroni Gouveia
- Department of Animal Sciences, Federal University of Vale do São Francisco, Pernambuco, Brazil
| | - Flávia Caroline Moreira Bezerra
- Postgraduate Program in Veterinary Sciences in the Semiarid, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Joel Fonseca Nogueira
- Postgraduate Program in Veterinary Sciences in the Semiarid, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Durval Baraúna Júnior
- Department of Veterinary Medicine, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
| |
Collapse
|
15
|
Penicillin G acylase production by Mucor griseocyanus and the partial genetic analysis of its pga gene. Int Microbiol 2020; 24:37-45. [PMID: 32705496 DOI: 10.1007/s10123-020-00137-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Penicillin acylases (penicillin amidohydrolase, EC 3.5.1.11) are a group of enzymes with many applications within the pharmaceutical industry, and one of them is the production of semi-synthetic beta-lactam antibiotics. This enzyme is mainly produced by bacteria but also by some fungi. In the present study, the filamentous fungus Mucor griseocyanus was used to produce penicillin acylase enzyme (PGA). Its ability to express PGA enzyme in submerged fermentation process was assessed, finding that this fungal strain produces the biocatalyst of interest in an extracellular way at a level of 570 IU/L at 72 h of fermentation; in this case, a saline media using lactose as carbon source and penicillin G as inducer was employed. In addition, a DNA fragment (859 bp) of the pga from a pure Mucor griseocyanus strain was amplified, sequenced, and analyzed in silico. The partial sequence of pga identified in the fungi showed high identity percentage with penicillin G acylase sequences deposited in NCBI through BLAST, especially with the β subunit of PGA from the Alcaligenes faecalis bacterium¸ which is a region involved in the catalytic function of this protein. Besides, the identification of domains in the penicillin G acylase sequence of Mucor griseocyanus showed three conserved regions of this protein. The bioinformatic results support the identity of the gen as penicillin G acylase. This is the first report that involves sequencing and in silico analysis of Mucor griseocyanus strain gene encoding PGA.
Collapse
|
16
|
Mutations in a Novel Cadherin Gene Associated with Bt Resistance in Helicoverpa zea. G3-GENES GENOMES GENETICS 2020; 10:1563-1574. [PMID: 32179620 PMCID: PMC7202007 DOI: 10.1534/g3.120.401053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transgenic corn and cotton produce crystalline (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt) that are toxic to lepidopteran larvae. Helicoverpa zea, a key pest of corn and cotton in the U.S., has evolved widespread resistance to these proteins produced in Bt corn and cotton. While the genomic targets of Cry selection and the mutations that produce resistant phenotypes are known in other lepidopteran species, little is known about how selection by Cry proteins shape the genome of H. zea. We scanned the genomes of Cry1Ac-selected and unselected H. zea lines, and identified twelve genes on five scaffolds that differed between lines, including cadherin-86C (cad-86C), a gene from a family that is involved in Cry1A resistance in other lepidopterans. Although this gene was expressed in the H. zea larval midgut, the protein it encodes has only 17 to 22% identity with cadherin proteins from other species previously reported to be involved in Bt resistance. An analysis of midgut-expressed cDNAs showed significant between-line differences in the frequencies of putative nonsynonymous substitutions (both SNPs and indels). Our results indicate that cad-86C is a likely target of Cry1Ac selection in H. zea. It remains unclear, however, whether genomic changes at this locus directly disrupt midgut binding of Cry1Ac and cause Bt resistance, or indirectly enhance fitness of H. zea in the presence of Cry1Ac by some other mechanism. Future work should investigate phenotypic effects of these nonsynonymous substitutions and their impact on fitness of H. zea larvae that ingest Cry1Ac.
Collapse
|
17
|
Ahn JG, Bae Y, Shin D, Nam J, Kim KY, Kim DS. HMGB1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Rheumatology (Oxford) 2020; 58:770-775. [PMID: 30535242 DOI: 10.1093/rheumatology/key356] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/25/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Kawasaki disease (KD) is an acute systemic vasculitis of unknown aetiology that affects infants and young children. Recent reports of elevated serum high mobility group box 1 (HMGB1) level during the acute phase of KD and its relationship to poor response to IVIG treatment suggest a possible association of HMGB1 polymorphisms with KD. We investigated the association between the polymorphisms of the HMGB1 gene, KD susceptibility, coronary artery lesions, and KD response to IVIG treatment. METHODS Whole genome sequencing of the HMGB1 gene was performed to identify causative variants. Two tagging single nucleotide polymorphisms of the HMGB1 gene were selected using linkage disequilibrium analysis. The tagging single nucleotide polymorphisms were genotyped using the TaqMan Allelic Discrimination assay in a total of 468 subjects (265 KD patients and 203 controls). RESULTS The HMGB1 single nucleotide polymorphisms were not associated with KD susceptibility. However, in KD patients, there was a significant association of rs1412125 with coronary artery lesions formation in the recessive model (GG vs AA + GA: odds ratio = 4.98, 95% CI = 1.69-14.66, P = 0.005). In addition, rs1412125 was associated with IVIG resistance in the recessive (GG vs AA + GA: odds ratio = 4.11, 95% CI = 1.38-12.23, P = 0.017) and allelic models (G vs A: odds ratio = 1.80, 95% CI = 1.06-3.06, P = 0.027). CONCLUSION The rs1412125 in HMGB1 might be a risk factor for the development of coronary artery lesions and IVIG resistance in KD patients.
Collapse
Affiliation(s)
- Jong Gyun Ahn
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine
| | - Yoonsun Bae
- Department of Microbiology, College of Medicine, The Catholic University of Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea.,Research and Development Center, Medizen Humancare Incorporated, Seoul, Republic of Korea
| | - Dongjik Shin
- Research and Development Center, Medizen Humancare Incorporated, Seoul, Republic of Korea
| | - Jiho Nam
- Research and Development Center, Medizen Humancare Incorporated, Seoul, Republic of Korea
| | - Kyu Yeun Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine
| | - Dong Soo Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine
| |
Collapse
|
18
|
Li P, Gao Q, Jiang X, Zhan Z, Yan Q, Li Z, Huang C. Comparison of Clinicopathological Features and Prognosis between ALK Rearrangements and EGFR Mutations in Surgically Resected Early-stage Lung Adenocarcinoma. J Cancer 2019; 10:61-71. [PMID: 30662526 PMCID: PMC6329857 DOI: 10.7150/jca.26947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background: A number of mutations in key oncogenes have been identified as important for the initiation and maintenance of lung adenocarcinoma (LAC). This study elucidated the prevalence and prognostic significance of mutations in the epidermal growth factor receptor gene (EGFR) and rearrangements in the anaplastic lymphoma kinase gene (ALK) in patients with surgically resected primary LAC. Patients and Methods: We retrospectively analyzed 675 consecutive patients who underwent radical resection at a single institution. We concurrently analyzed mutations in EGFR and the Kirsten rat sarcoma viral oncogene homolog gene (KRAS) by reverse transcription (RT)-PCR, and investigated ALK rearrangements by immunohistochemistry. LAC with or without various oncogenic mutations was studied for clinicopathological features and their association with disease-free survival (DFS) and overall survival (OS). Result: ALK rearrangements and EGFR mutations were detected in 75 and 312 patients, respectively, with coexistence in 5 cases. ALK rearrangements and mutations in EGFR and KRAS were mutually exclusive. Compared with patients with EGFR mutations, ALK rearrangements were more common in younger patients, and those with advanced tumors, lymph node metastases, and higher rates of postoperative adjuvant therapy. Histologically, EGFR mutations were more common than ALK rearrangements in patients with the acinar predominant subtype and the lepidic predominant subtype of LAC, whereas ALK rearrangements were more frequent in the solid predominant subtype with mucin production and invasive mucinous adenocarcinomas. ALK-positive patients had a significantly worse DFS than those with EGFR mutations and wild-type (WT) patients. The mean OS after surgical procedures was significantly longer in EGFR-mutated versus WT patients. No significant differences were found in patients with ALK-positive tumors compared with EGFR-mutated and WT patients. Conclusion: Clinicopathological features of LAC with ALK rearrangements differ from those of LAC with EGFR mutations. Patients with ALK rearrangements had a significantly worse DFS than those harboring EGFR mutations. Thus, ALK rearrangements are an adverse prognostic factor in surgically-resected LAC patients, while EGFR mutations are associated with a better prognosis.
Collapse
Affiliation(s)
- Pupu Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital
| | - Qiongqiong Gao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital
| | - Xiangli Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital
| | - Zhongli Zhan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Pathology, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Qingna Yan
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Pathology, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P.R. China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital
| | - Chun Huang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer.,Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer.,Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital
| |
Collapse
|
19
|
Workman AM, Chitko-McKown CG, Smith TPL, Bennett GL, Kalbfleisch TS, Basnayake V, Heaton MP. A bovine CD18 signal peptide variant with increased binding activity to Mannheimia hemolytica leukotoxin. F1000Res 2018; 7:1985. [PMID: 30881690 PMCID: PMC6406179 DOI: 10.12688/f1000research.17187.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Mannheimia haemolytica is the major bacterial infectious agent of bovine respiratory disease complex and causes severe morbidity and mortality during lung infections.
M. haemolytica secretes a protein leukotoxin (Lkt) that binds to the CD18 receptor on leukocytes, initiates lysis, induces inflammation, and causes acute fibrinous bronchopneumonia. Lkt binds the 22-amino acid CD18 signal peptide domain, which remains uncleaved in ruminant species. Our aim was to identify missense variation in the bovine CD18 signal peptide and measure the effects on Lkt binding. Methods: Missense variants in the integrin beta 2 gene (
ITGB2) encoding CD18 were identified by whole genome sequencing of 96 cattle from 19 breeds, and targeted Sanger sequencing of 1238 cattle from 46 breeds. The ability of different CD18 signal peptide variants to bind Lkt was evaluated by preincubating the toxin with synthetic peptides and applying the mixture to susceptible bovine cell cultures in cytotoxicity-blocking assays. Results: We identified 14 missense variants encoded on 15 predicted haplotypes, including a rare signal peptide variant with a cysteine at position 5 (C
5) instead of arginine (R
5). Preincubating Lkt with synthetic signal peptides with C
5 blocked cytotoxicity significantly better than those with R
5. The most potent synthetic peptide (C
5PQLLLLAGLLA) had 30-fold more binding activity compared to that with R
5. Conclusions: The results suggest that missense variants in the CD18 signal peptide affect Lkt binding, and animals carrying the C
5 allele may be more susceptible to the effects of Lkt. The results also identify a potent class of non-antibiotic Lkt inhibitors that could potentially protect cattle from cytotoxic effects during acute lung infections.
Collapse
Affiliation(s)
- Aspen M Workman
- USDA, US Meat Animal Research Center (USMARC), Clay Center, Nebraska, 68933, USA
| | | | - Timothy P L Smith
- USDA, US Meat Animal Research Center (USMARC), Clay Center, Nebraska, 68933, USA
| | - Gary L Bennett
- USDA, US Meat Animal Research Center (USMARC), Clay Center, Nebraska, 68933, USA
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, 40292, USA
| | | | - Michael P Heaton
- USDA, US Meat Animal Research Center (USMARC), Clay Center, Nebraska, 68933, USA
| |
Collapse
|
20
|
McWilliams RR, Wieben ED, Chaffee KG, Antwi SO, Raskin L, Olopade OI, Li D, Highsmith WE, Colon-Otero G, Khanna LG, Permuth JB, Olson JE, Frucht H, Genkinger J, Zheng W, Blot WJ, Wu L, Almada LL, Fernandez-Zapico ME, Sicotte H, Pedersen KS, Petersen GM. CDKN2A Germline Rare Coding Variants and Risk of Pancreatic Cancer in Minority Populations. Cancer Epidemiol Biomarkers Prev 2018; 27:1364-1370. [PMID: 30038052 PMCID: PMC6214745 DOI: 10.1158/1055-9965.epi-17-1065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/13/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Pathogenic germline mutations in the CDKN2A tumor suppressor gene are rare and associated with highly penetrant familial melanoma and pancreatic cancer in non-Hispanic whites (NHW). To date, the prevalence and impact of CDKN2A rare coding variants (RCV) in racial minority groups remain poorly characterized. We examined the role of CDKN2A RCVs on the risk of pancreatic cancer among minority subjects.Methods: We sequenced CDKN2A in 220 African American (AA) pancreatic cancer cases, 900 noncancer AA controls, and 183 Nigerian controls. RCV frequencies were determined for each group and compared with that of 1,537 NHW patients with pancreatic cancer. Odds ratios (OR) and 95% confidence intervals (CI) were calculated for both a case-case comparison of RCV frequencies in AAs versus NHWs, and case-control comparison between AA cases versus noncancer AA controls plus Nigerian controls. Smaller sets of Hispanic and Native American cases and controls also were sequenced.Results: One novel missense RCV and one novel frameshift RCV were found among AA patients: 400G>A and 258_278del. RCV carrier status was associated with increased risk of pancreatic cancer among AA cases (11/220; OR, 3.3; 95% CI, 1.5-7.1; P = 0.004) compared with AA and Nigerian controls (17/1,083). Further, AA cases had higher frequency of RCVs: 5.0% (OR, 13.4; 95% CI, 4.9-36.7; P < 0.001) compared with NHW cases (0.4%).Conclusions: CDKN2A RCVs are more common in AA than in NHW patients with pancreatic cancer and associated with moderately increased pancreatic cancer risk among AAs.Impact: RCVs in CDKN2A are frequent in AAs and are associated with risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev; 27(11); 1364-70. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Samuel O Antwi
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Leon Raskin
- Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Olufunmilayo I Olopade
- Departments of Medicine and Human Genetics, University of Chicago Medical Center, Chicago, Illinois
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - W Edward Highsmith
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gerardo Colon-Otero
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic, Jacksonville, Florida
| | - Lauren G Khanna
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jennifer B Permuth
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Harold Frucht
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jeanine Genkinger
- Department of Epidemiology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - William J Blot
- Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Lang Wu
- Division of Epidemiology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Hugues Sicotte
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Takakura Y, Udagawa H, Shinjo A, Koga K. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato virus Y. MOLECULAR PLANT PATHOLOGY 2018; 19:2124-2133. [PMID: 29633509 PMCID: PMC6638035 DOI: 10.1111/mpp.12686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 05/23/2023]
Abstract
Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains.
Collapse
Affiliation(s)
- Yoshimitsu Takakura
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Hisashi Udagawa
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Akira Shinjo
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Kazuharu Koga
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| |
Collapse
|
22
|
Tonoyama Y, Shinya M, Toyoda A, Kitano T, Oga A, Nishimaki T, Katsumura T, Oota H, Wan MT, Yip BWP, Helen MOL, Chisada S, Deguchi T, Au DWT, Naruse K, Kamei Y, Taniguchi Y. Abnormal nuclear morphology is independent of longevity in a zmpste24-deficient fish model of Hutchinson-Gilford progeria syndrome (HGPS). Comp Biochem Physiol C Toxicol Pharmacol 2018; 209:54-62. [PMID: 29567411 DOI: 10.1016/j.cbpc.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Lamin is an intermediate protein underlying the nuclear envelope and it plays a key role in maintaining the integrity of the nucleus. A defect in the processing of its precursor by a metalloprotease, ZMPSTE24, results in the accumulation of farnesylated prelamin in the nucleus and causes various diseases, including Hutchinson-Gilford progeria syndrome (HGPS). However, the role of lamin processing is unclear in fish species. Here, we generated zmpste24-deficient medaka and evaluated their phenotype. Unlike humans and mice, homozygous mutants did not show growth defects or lifespan shortening, despite lamin precursor accumulation. Gonadosomatic indices, blood glucose levels, and regenerative capacity of fins were similar in 1-year-old mutants and their wild-type (WT) siblings. Histological examination showed that the muscles, subcutaneous fat tissues, and gonads were normal in the mutants at the age of 1 year. However, the mutants showed hypersensitivity to X-ray irradiation, although p53target genes, p21 and mdm2, were induced 6 h after irradiation. Immunostaining of primary cultured cells from caudal fins and visualization of nuclei using H2B-GFP fusion proteins revealed an abnormal nuclear shape in the mutants both in vitro and in vivo. The telomere lengths were significantly shorter in the mutants compared to WT. Taken together, these results suggest that zmpste24-deficient medaka phenocopied HGPS only partially and that abnormal nuclear morphology and lifespan shortening are two independent events in vertebrates.
Collapse
Affiliation(s)
- Yasuhiro Tonoyama
- Branch Laboratory of Gene Medicine, School of Medicine, Keio University, 2 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Minori Shinya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Atsunori Oga
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | - Toshiyuki Nishimaki
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0674, Japan
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0674, Japan
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0674, Japan
| | - Miles T Wan
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Bill W P Yip
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Mok O L Helen
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Shinichi Chisada
- Department of Preventive Medicine and Public Health, Kyorin University, School of Medicine, Tokyo 181-8611, Japan
| | - Tomonori Deguchi
- Advanced Genome Design Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577, Japan
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of, Hong Kong, China
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yoshihito Taniguchi
- Department of Preventive Medicine and Public Health, Kyorin University, School of Medicine, Tokyo 181-8611, Japan.
| |
Collapse
|
23
|
Shinkai H, Terada K, Toki D, Tohno M, Uenishi H. Q969R polymorphism in NLRP3 is associated with immune responses to vaccination against bacterial infections in pigs. Anim Sci J 2018; 89:1043-1050. [DOI: 10.1111/asj.13020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Shinkai
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| | - Kei Terada
- Shizuoka Swine and Poultry Experiment Center; Kikugawa Shizuoka Japan
| | - Daisuke Toki
- Animal Research Division; Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries (JATAFF); Tsukuba Ibaraki Japan
| | - Masanori Tohno
- Feed Preparation Unit; Division of Animal Feeding and Management Research; Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization (NARO); Nasushiobara Tochigi Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki Japan
| |
Collapse
|
24
|
Langenmayer MC, Jung S, Majzoub-Altweck M, Trefz FM, Seifert C, Knubben-Schweizer G, Fries R, Hermanns W, Gollnick NS. Zinc Deficiency-Like Syndrome in Fleckvieh Calves: Clinical and Pathological Findings and Differentiation from Bovine Hereditary Zinc Deficiency. J Vet Intern Med 2018; 32:853-859. [PMID: 29424482 PMCID: PMC5866964 DOI: 10.1111/jvim.15040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
Background Zinc deficiency‐like (ZDL) syndrome is an inherited defect of Fleckvieh calves, with striking similarity to bovine hereditary zinc deficiency (BHZD). However, the causative mutation in a phospholipase D4 encoding gene (PLD4) shows no connection to zinc metabolism. Objectives To describe clinical signs, laboratory variables, and pathological findings of ZDL syndrome and their utility to differentiate ZDL from BHZD and infectious diseases with similar phenotype. Animals Nine hospitalized calves with crusting dermatitis and confirmed mutation in PLD4 and medical records from 25 calves with crusting dermatitis or suspected zinc deficiency. Methods Prospective and retrospective case series. Results The 9 calves (age: 5–53 weeks) displayed a moderate to severe crusting dermatitis mainly on the head, ventrum, and joints. Respiratory and digestive tract inflammations were frequently observed. Zinc supplementation did not lead to remission of clinical signs in 4 calves. Laboratory variables revealed slight anemia in 8 calves, hypoalbuminemia in 6 calves, but reduced serum zinc concentrations in only 3 calves. Mucosal erosions/ulcerations were present in 7 calves and thymus atrophy or reduced thymic weights in 8 calves. Histologically, skin lesions were indistinguishable from BHZD. Retrospective analysis of medical records revealed the presence of this phenotype since 1988 and pedigree analysis revealed a common ancestor of several affected calves. Conclusions and Clinical Importance ZDL syndrome should be suspected in Fleckvieh calves with crusting dermatitis together with diarrhea or respiratory tract inflammations without response to oral zinc supplementation. Definite diagnosis requires molecular genetic confirmation of the PLD4 mutation.
Collapse
Affiliation(s)
- M C Langenmayer
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.,Institute for Infectious Diseases and Zoonoses, LMU Munich, Munich, Germany
| | - S Jung
- Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany
| | - M Majzoub-Altweck
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - F M Trefz
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - C Seifert
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - G Knubben-Schweizer
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| | - R Fries
- Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan, Germany
| | - W Hermanns
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - N S Gollnick
- Clinic for Ruminants with Ambulatory and Herd Health Services at the Centre for Clinical Veterinary Medicine, LMU Munich, Oberschleißheim, Germany
| |
Collapse
|
25
|
|
26
|
Kim KY, Bae YS, Ji W, Shin D, Kim HS, Kim DS. ITPKC and SLC11A1 Gene Polymorphisms and Gene-Gene Interactions in Korean Patients with Kawasaki Disease. Yonsei Med J 2018; 59:119-127. [PMID: 29214786 PMCID: PMC5725348 DOI: 10.3349/ymj.2018.59.1.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Kawasaki disease (KD) is an acute systemic vasculitis. Both the etiology of KD and the erythema of Bacille Calmette-Guérin (BCG) injection sites observed in the disease are poorly understood. We investigated the association between KD and single nucleotide polymorphisms (SNPs) in two candidate genes: inositol 1,4,5-triphosphate 3-kinase (ITPKC), a well-studied KD-associated gene, and solute carrier 11a1 (SLC11A1), which is associated with the hypersensitive reaction to the BCG strain in Koreans. MATERIALS AND METHODS Associations between KD and SNPs in two genes were evaluated. Potential associations between BCG injection site erythema and SNPs in two genes were also evaluated. Gene-gene interactions between ITPKC and SLC11A1 in KD and BCG injection site erythema were also analyzed. RESULTS Three tagging SNPs in ITPKC and five tagging SNPs in SLC11A1 were genotyped in 299 KD patients and 210 control children. SNP rs28493229 in ITPKC was associated with KD and coronary artery complications. SNP rs77624405 in SLC11A1 was associated with KD. Comparisons of KD patients with and without BCG injection site erythema revealed that SNP rs17235409 in SLC11A1 was associated with erythema; no erythema-associated SNPs in ITPKC were identified. Interactions between ITPKC rs28493229_GG and SLC11A1 rs17235409_GA and between ITPKC rs10420685_GG and SLC11A1 rs17235409_AA were strongly associated with BCG injection site erythema. CONCLUSION This study identified several important polymorphisms in the ITPKC and SLC11A1 genes in Koreans. The genetic variants identified in this study affected KD and erythema of BCG injection sites independently and through gene-gene interactions. Also, the effects of the polymorphisms were age-dependent.
Collapse
Affiliation(s)
- Kyu Yeun Kim
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | | | - Woohyuk Ji
- School of Medicine, Kyung Hee University, Seoul, Korea
| | | | - Ho Seong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Dong Soo Kim
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea.
| |
Collapse
|
27
|
Abstract
Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics.
Collapse
Affiliation(s)
- Simon Creer
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, United Kingdom
| |
Collapse
|
28
|
Eguchi-Ogawa T, Matsubara T, Toki D, Okumura N, Ando A, Kitagawa H, Uenishi H. Distribution of the CD4 Alleles in Sus scrofa Demonstrates the Genetic Profiles of Western Breeds and Miniature Pigs. Anim Biotechnol 2017; 29:227-233. [PMID: 29035142 DOI: 10.1080/10495398.2017.1367691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Widely used antipig CD4 monoclonal antibodies (mAbs) fail to recognize CD4 alleles characteristic of miniature pig lines such as the National Institutes of Health (NIH) miniature pigs and microminipigs. We surveyed polymorphisms in the coding sequence of the porcine CD4 gene among Western and Oriental pig breeds and Japanese wild boars and investigated their distribution. Of the 13 alleles that we identified among the 47 animals, 2 in group I and 3 in group II were found exclusively in Western breed pigs. Group IV alleles, which included mAb-nonbinding alleles, were found frequently in Oriental breed pigs, suggesting that the mAb-nonbinding allele arose from the gene pool of Oriental pigs. Group IV alleles were also found in Duroc and Large White pigs, suggesting genetic inflow from Oriental pig breeds into Western breeds. Comparison of the CD4 sequences of species in Cetartiodactyla suggested that the group IV alleles in Sus scrofa occurred before the divergence of this species from the other artiodactyls. The different antibody specificities of the various CD4 alleles may facilitate the discrimination of T-cell populations in transplantation studies using miniature pigs. The significance of the preservation of CD4 polymorphisms to immune function in pigs warrants further investigation.
Collapse
Affiliation(s)
- Tomoko Eguchi-Ogawa
- a Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences , Tsukuba , Ibaraki , Japan.,b Office of Evaluation, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| | - Tatsuya Matsubara
- c United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | - Daisuke Toki
- d Animal Research DIvision , Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries , Tsukuba , Ibaraki , Japan.,e Daisuke Toki, National Livestock Breeding Center , Nishigo , Fukushima , Japan
| | - Naohiko Okumura
- d Animal Research DIvision , Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries , Tsukuba , Ibaraki , Japan
| | - Asako Ando
- f Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine , Isehara , Kanagawa , Japan
| | - Hitoshi Kitagawa
- c United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | - Hirohide Uenishi
- a Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences , Tsukuba , Ibaraki , Japan.,g Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization , Tsukuba , Ibaraki , Japan
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Genome sequencing is now available as a clinical diagnostic test. There is a significant knowledge and translation gap for nongenetic specialists of the processes necessary to generate and interpret clinical genome sequencing. The purpose of this review is to provide a primer on contemporary clinical genome sequencing for nongenetic specialists describing the human genome project, current techniques and applications in genome sequencing, limitations of current technology, and techniques on the horizon. RECENT FINDINGS As currently implemented, genome sequencing compares short pieces of an individual's genome with a reference sequence developed by the human genome project. Genome sequencing may be used for obtaining timely diagnostic information, cancer pharmacogenomics, or in clinical cases when previous genetic testing has not revealed a clear diagnosis. At present, the implementation of clinical genome sequencing is limited by the availability of clinicians qualified for interpretation, and current techniques in used clinical testing do not detect all types of genetic variation present in a single genome. SUMMARY Clinicians considering a genetic diagnosis have wide array of testing choices which now includes genome sequencing. Although not a comprehensive test in its current form, genome sequencing offers more information than gene-panel or exome sequencing and has the potential to replace targeted single-gene or gene-panel testing in many clinical scenarios.
Collapse
|
30
|
van Doormaal PTC, Ticozzi N, Weishaupt JH, Kenna K, Diekstra FP, Verde F, Andersen PM, Dekker AM, Tiloca C, Marroquin N, Overste DJ, Pensato V, Nürnberg P, Pulit SL, Schellevis RD, Calini D, Altmüller J, Francioli LC, Muller B, Castellotti B, Motameny S, Ratti A, Wolf J, Gellera C, Ludolph AC, van den Berg LH, Kubisch C, Landers JE, Veldink JH, Silani V, Volk AE. The role of de novo mutations in the development of amyotrophic lateral sclerosis. Hum Mutat 2017; 38:1534-1541. [PMID: 28714244 DOI: 10.1002/humu.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
The genetic basis combined with the sporadic occurrence of amyotrophic lateral sclerosis (ALS) suggests a role of de novo mutations in disease pathogenesis. Previous studies provided some evidence for this hypothesis; however, results were conflicting: no genes with recurrent occurring de novo mutations were identified and different pathways were postulated. In this study, we analyzed whole-exome data from 82 new patient-parents trios and combined it with the datasets of all previously published ALS trios (173 trios in total). The per patient de novo rate was not higher than expected based on the general population (P = 0.40). We showed that these mutations are not part of the previously postulated pathways, and gene-gene interaction analysis found no enrichment of interacting genes in this group (P = 0.57). Also, we were able to show that the de novo mutations in ALS patients are located in genes already prone for de novo mutations (P < 1 × 10-15 ). Although the individual effect of rare de novo mutations in specific genes could not be assessed, our results indicate that, in contrast to previous hypothesis, de novo mutations in general do not impose a major burden on ALS risk.
Collapse
Affiliation(s)
- Perry T C van Doormaal
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center-Università degli Studi di Milano, Milan, Italy
| | | | - Kevin Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Frank P Diekstra
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center-Università degli Studi di Milano, Milan, Italy
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Annelot M Dekker
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | - Daniel J Overste
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sara L Pulit
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond D Schellevis
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniela Calini
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Laurent C Francioli
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Susanne Motameny
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center-Università degli Studi di Milano, Milan, Italy
| | - Joachim Wolf
- Department of Neurology, Diakonissenkrankenhaus Mannheim, Mannheim, Germany
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | | | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian Kubisch
- Institute of Human Genetics, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center-Università degli Studi di Milano, Milan, Italy
| | - Alexander E Volk
- Institute of Human Genetics, Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Zhao W, Shi M, Ye XQ, Li F, Wang XW, Chen XX. Comparative transcriptome analysis of venom glands from Cotesia vestalis and Diadromus collaris, two endoparasitoids of the host Plutella xylostella. Sci Rep 2017; 7:1298. [PMID: 28465546 PMCID: PMC5431001 DOI: 10.1038/s41598-017-01383-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/29/2017] [Indexed: 11/09/2022] Open
Abstract
Venoms secreted by the venom gland (VG) of parasitoid wasp help ensure successful parasitism by host immune suppression and developmental regulation. Cotesia vestalis, a larval endoparasitoid, and Diadromus collaris, a pupal endoparasitoid, parasitize the diamondback moth (DBM), Plutella xylostella. To explore and compare the venom components of two endoparasitoids, we sequenced transcriptomes of the VGs and wasp bodies without VGs (BWVGs) of the two endoparasitoids. Statistically enriched GO terms and KEGG pathways of the two VGs compared to respective whole-body background were similar and reflected active protein biosynthesis activities in the two VGs. 1,595 VG specific genes of the D. collaris VG and 1,461 VG specific genes of the C. vestalis VG were identified by comparative transcript profiling. A total of 444 and 513 genes encoding potential secretory proteins were identified and defined as putative venom genes in D. collaris VG and C. vestalis VG, respectively. The putative venom genes of the two wasps showed no significant similarity or convergence. More venom genes were predicted in D. collaris VG than C. vestalis VG, especially hydrolase-coding genes. Differences in the types and quantities of putative venom genes shed light on different venom functions.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min Shi
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fei Li
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- State Key Lab of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Shen Y, Wang Y, Chen T, Gao F, Gong J, Abramczyk D, Walker R, Zhao H, Chen S, Liu W, Luo Y, Müller CA, Paul-Dubois-Taine A, Alver B, Stracquadanio G, Mitchell LA, Luo Z, Fan Y, Zhou B, Wen B, Tan F, Wang Y, Zi J, Xie Z, Li B, Yang K, Richardson SM, Jiang H, French CE, Nieduszynski CA, Koszul R, Marston AL, Yuan Y, Wang J, Bader JS, Dai J, Boeke JD, Xu X, Cai Y, Yang H. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 2017; 355:eaaf4791. [PMID: 28280153 PMCID: PMC5390853 DOI: 10.1126/science.aaf4791] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
Abstract
Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.
Collapse
Affiliation(s)
- Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
- BGI-Qingdao, Qingdao 266555, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266555, China
| | - Tai Chen
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266555, China
| | - Feng Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Dariusz Abramczyk
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Roy Walker
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | | | - Wei Liu
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yisha Luo
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Carolin A. Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | - Bonnie Alver
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Giovanni Stracquadanio
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205 USA
- Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016
| | - Zhouqing Luo
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zexiong Xie
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Bingzhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Kun Yang
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205 USA
| | - Sarah M. Richardson
- High-Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205 USA
- Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Romain Koszul
- Department of Genomes and Genetics, Institut Pasteur / CNRS UMR3525, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Adele L. Marston
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Joel S. Bader
- Department of Biomedical Engineering, School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218 USA
- Institute for Systems Genetics, NYU Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, ACLSW Room 503, 430 East 29th Street, New York, NY 10016
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Qingdao, Qingdao 266555, China
| | - Yizhi Cai
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| |
Collapse
|
33
|
Clozato CL, Miranda FR, Lara-Ruiz P, Collevatti RG, Santos FR. Population structure and genetic diversity of the giant anteater (Myrmecophaga tridactyla: Myrmecophagidae, Pilosa) in Brazil. Genet Mol Biol 2017; 40:50-60. [PMID: 28199447 PMCID: PMC5409771 DOI: 10.1590/1678-4685-gmb-2016-0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022] Open
Abstract
The giant anteater (Myrmecophaga tridactyla, Pilosa, Linnaeus 1758)
belongs to the mammalian order Pilosa and presents a large distribution along South
America, occupying a great variety of habitats. It is listed in the IUCN Red List of
threatened species as Vulnerable. Despite threatened, there is a lack of studies
regarding its genetic variability. The aim of this study was to examine the genetic
diversity and patterns of genetic structure within remaining populations. We analyzed
77 individuals from seven different populations distributed in four biomes across
Brazil: Cerrado, Pantanal, Atlantic Forest and Amazon Forest. We sequenced two
mitochondrial markers (control region and Cyt-b) and two nuclear markers (AMELY and
RAG2). We found high genetic diversity within subpopulations from
National Parks of Serra da Canastra and Emas, both within the Cerrado biome, with
signs of population expansion. Besides, we found a notable population structure
between populations from the Cerrado/Pantanal and Amazon Forest biomes. This data is
a major contribution to the knowledge of the evolutionary history of the species and
to future management actions concerning its conservation.
Collapse
Affiliation(s)
- Camila L Clozato
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Biologia Geral, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Projeto Tamanduá, São Paulo, SP, Brazil
| | - Flávia R Miranda
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Biologia Geral, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Projeto Tamanduá, São Paulo, SP, Brazil
| | - Paula Lara-Ruiz
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Biologia Geral, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rosane G Collevatti
- Laboratorio de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Biologia Geral, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Zhou J, Lu Y, Gao XH, Chen YC, Lu JJ, Bai YX, Shen Y, Wang BK. The Growth Hormone Receptor Gene is Associated with Mandibular Height in a Chinese Population. J Dent Res 2016; 84:1052-6. [PMID: 16246940 DOI: 10.1177/154405910508401116] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genetic influences are important in the determination of mandibular morphology, and growth hormone receptor ( GHR) is believed to have an important influence on the growth of craniofacial bone. In this study, we used quantitative trait locus methods to evaluate the relationship between craniofacial morphology and single-nucleotide polymorphisms (SNPs) in GHR in an unselected healthy Chinese population. We systematically screened the 10 exons and nearby introns of GHR and identified 6 SNPs. Using 4 SNPs as markers, we studied the relationships between genotypes and craniofacial linear measurements. Individuals with the genotype CC of polymorphism I526L had a significantly greater mandibular ramus length (condylion-gonion/ articulare-gonion) than those with genotype AC or AA. Haplotype analysis showed that there were also significant differences between the long and short mandibular height groups in an extreme population. Our results indicate that the GHR gene polymorphism I526L is associated with mandibular height in the Chinese population.
Collapse
Affiliation(s)
- J Zhou
- Department of Orthodontics Faculty of Stomatology Capital, University of Medical Sciences, Beijing 100050, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ueda N, Ida H, Washio M, Miyahara H, Tokunaga S, Tanaka F, Takahashi H, Kusuhara K, Ohmura K, Nakayama M, Ohara O, Nishikomori R, Minota S, Takei S, Fujii T, Ishigatsubo Y, Tsukamoto H, Tahira T, Horiuchi T. Clinical and Genetic Features of Patients WithTNFRSF1AVariants in Japan: Findings of a Nationwide Survey. Arthritis Rheumatol 2016; 68:2760-2771. [DOI: 10.1002/art.39793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Hiroaki Ida
- Kurume University School of Medicine; Kurume Japan
| | | | - Hisaaki Miyahara
- National Hospital Organization Kyushu Medical Center; Fukuoka Japan
| | | | - Fumiko Tanaka
- National Hospital Organization Ureshino Medical Center; Ureshino Japan
| | | | - Koichi Kusuhara
- University of Occupational and Environmental Health; Kitakyushu Japan
| | | | | | - Osamu Ohara
- Kazusa DNA Research Institute; Kisarazu Japan
| | | | | | - Shuji Takei
- Kagoshima University Graduate School of Health Science; Kagoshima Japan
| | - Takao Fujii
- Kyoto University Graduate School of Medicine; Kyoto Japan
| | | | | | | | | |
Collapse
|
36
|
Parida SK, Kalia S, Pandit A, Nayak P, Singh RK, Gaikwad K, Srivastava PS, Singh NK, Mohapatra T. Single nucleotide polymorphism in sugar pathway and disease resistance genes in sugarcane. PLANT CELL REPORTS 2016; 35:1629-1653. [PMID: 27289592 DOI: 10.1007/s00299-016-1978-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays. The SNPs were abundant in the non-coding 3'UTRs than 5'UTRs and coding sequences depicting a strong bias toward C to T transition substitutions than transversions. Sequencing of cloned amplicons validated 61.6 and 45.2 % SNPs detected in silico in 21 sugar pathway and 16 disease resistance genes, respectively. Sixteen SNPs in four sugar pathway genes and 10 SNPs in nine disease resistance genes were validated through cost-effective CAPS assay. Functional and adaptive significance of SNP and protein haplotypes identified in sugar pathway and disease resistance genes was assessed by correlating their allelic variation with missense amino acid substitutions in the functional domains, alteration in protein structure models and possible modulation of catalytic enzyme activity in contrasting high and low sugar and moderately red rot resistant and highly susceptible sugarcane genotypes. A strong genetic association of five SNPs in the sugar pathway and disease resistance genes, and an InDel marker in the promoter sequence of sucrose synthase-2 gene, with sugar content and red rot resistance, was evident. The functionally relevant SNPs and InDels, detected and validated in sugar pathway and disease resistance genes, and genic CAPS markers designed, would be of immense use in marker-assisted genetic improvement of sugarcane for sugar content and disease resistance.
Collapse
Affiliation(s)
- Swarup K Parida
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjay Kalia
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, 110003, India
| | - Awadhesh Pandit
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- National Centre for Biological Sciences, Bengaluru, 560065, Karnataka , India
| | - Preetam Nayak
- Utkal University, Vanivihar, Bhubaneswar, Odisha, 751004, India
| | - Ram Kushal Singh
- U.P. Council of Sugarcane Research, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | | | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Trilochan Mohapatra
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
37
|
Fritz ML, Paa S, Baltzegar J, Gould F. Application of a dense genetic map for assessment of genomic responses to selection and inbreeding in Heliothis virescens. INSECT MOLECULAR BIOLOGY 2016; 25:385-400. [PMID: 27097739 DOI: 10.1111/imb.12234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adaptation of pest species to laboratory conditions and selection for resistance to toxins in the laboratory are expected to cause inbreeding and genetic bottlenecks that reduce genetic variation. Heliothis virescens, a major cotton pest, has been colonized in the laboratory many times, and a few laboratory colonies have been selected for Bacillus thuringiensis (Bt) resistance. We developed 350-bp double-digest restriction-site associated DNA-sequencing (ddRAD-seq) molecular markers to examine and compare changes in genetic variation associated with laboratory adaptation, artificial selection and inbreeding in this nonmodel insect species. We found that allelic and nucleotide diversity declined dramatically in laboratory-reared H. virescens as compared with field-collected populations. The declines were primarily a result of the loss of low frequency alleles present in field-collected H. virescens. A further, albeit modest decline in genetic diversity was observed in a Bt-selected population. The greatest decline was seen in H. virescens that were sib-mated for 10 generations, in which more than 80% of loci were fixed for a single allele. To determine which regions of the genome were resistant to fixation in our sib-mated line, we generated a dense intraspecific linkage map containing three PCR-based and 659 ddRAD-seq markers. Markers that retained polymorphism were observed in small clusters spread over multiple linkage groups, but this clustering was not statistically significant. Overall, we have confirmed and extended the general expectations for reduced genetic diversity in laboratory colonies, provided tools for further genomic analyses and produced highly homozygous genomic DNA for future whole genome sequencing of H. virescens.
Collapse
Affiliation(s)
- M L Fritz
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, USA
| | - S Paa
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - J Baltzegar
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, USA
| | - F Gould
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
38
|
Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir Med 2016; 116:8-18. [PMID: 27296815 DOI: 10.1016/j.rmed.2016.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/02/2016] [Indexed: 01/24/2023]
|
39
|
Daubert DM, Kelley JL, Udod YG, Habor C, Kleist CG, Furman IK, Tikonov IN, Swanson WJ, Roberts FA. Human enamel thickness and ENAM polymorphism. Int J Oral Sci 2016; 8:93-7. [PMID: 27357321 PMCID: PMC4932773 DOI: 10.1038/ijos.2016.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 01/16/2023] Open
Abstract
The tooth enamel development gene, enamelin (ENAM), showed evidence of positive selection during a genome-wide scan of human and primate DNA for signs of adaptive evolution. The current study examined the hypothesis that a single-nucleotide polymorphism (SNP) C14625T (rs7671281) in the ENAM gene identified in the genome-wide scan is associated with a change in enamel phenotype. African Americans were selected as the target population, as they have been reported to have a target SNP frequency of approximately 50%, whereas non-Africans are predicted to have a 96% SNP frequency. Digital radiographs and DNA samples from 244 teeth in 133 subjects were analysed, and enamel thickness was assessed in relation to SNP status, controlling for age, sex, tooth number and crown length. Crown length was found to increase with molar number, and females were found to have thicker enamel. Teeth with larger crowns also had thicker enamel, and older subjects had thinner enamel. Linear regression and generalized estimating equations were used to investigate the relationship between enamel thickness of the mandibular molars and ENAM SNP status; enamel in subjects with the derived allele was significantly thinner (P=0.040) when the results were controlled for sex, age, tooth number and crown length. The derived allele demonstrated a recessive effect on the phenotype. The data indicate that thinner dental enamel is associated with the derived ENAM genotype. This is the first direct evidence of a dental gene implicated in human adaptive evolution as having a phenotypic effect on an oral structure.
Collapse
Affiliation(s)
- Diane M Daubert
- Department of Periodontics, University of Washington, Seattle, USA
| | - Joanna L Kelley
- Center for Reproductive Biology and School of Biological Sciences, Washington State University, Pullman, USA
| | - Yuriy G Udod
- Department of Periodontics, University of Washington, Seattle, USA
| | - Carolina Habor
- Department of Periodontics, University of Washington, Seattle, USA
| | - Chris G Kleist
- Department of Periodontics, University of Washington, Seattle, USA
| | - Ilona K Furman
- Department of Periodontics, University of Washington, Seattle, USA
| | - Igor N Tikonov
- Department of Periodontics, University of Washington, Seattle, USA
- Department of Oral and Maxillofacial Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Frank A Roberts
- Department of Periodontics, University of Washington, Seattle, USA
| |
Collapse
|
40
|
Tohno M, Shinkai H, Toki D, Okumura N, Tajima K, Uenishi H. Identification of the Q969R gain-of-function polymorphism in the gene encoding porcine NLRP3 and its distribution in pigs of Asian and European origin. Immunogenetics 2016; 68:693-701. [PMID: 27236661 DOI: 10.1007/s00251-016-0917-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
The nucleotide-binding domain, leucine-rich-containing family, pyrin-domain containing-3 (NLRP3) inflammasome comprises the major components caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and NLRP3. NLRP3 plays important roles in maintaining immune homeostasis mediated by intestinal microorganisms and in the immunostimulatory properties of vaccine adjuvants used to induce an immune response. In the present study, we first cloned a complementary DNA (cDNA) encoding porcine ASC because its genomic sequence was not completely determined. The availability of the ASC cDNA enabled us to reconstitute porcine NLRP3 inflammasomes using an in vitro system that led to the identification of the immune functions of porcine NLRP3 and ASC based on the production of interleukin-1β (IL-1β). Further, we identified six synonymous and six nonsynonymous single-nucleotide polymorphisms (SNPs) in the coding sequence of NLRP3 of six breeds of pigs, including major commercial breeds. Among the nonsynonymous SNPs, the Q969R polymorphism is associated with an increased release of IL-1β compared with other porcine NLRP3 variants, indicating that this polymorphism represents a gain-of-function mutation. This allele was detected in 100 % of the analyzed Chinese Jinhua and Japanese wild boars, suggesting that the allele is maintained in the major commercial native European breeds Landrace, Large White, and Berkshire. These findings represent an important contribution to our knowledge of the diversity of NLRP3 nucleotide sequences among various pig populations. Moreover, efforts to exploit the gain of function induced by the Q969R polymorphism promise to improve pig breeding and husbandry by conferring enhanced resistance to pathogens as well as contributing to vaccine efficacy.
Collapse
Affiliation(s)
- Masanori Tohno
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan.
| | - Hiroki Shinkai
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Daisuke Toki
- Animal Research Division, Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Naohiko Okumura
- Animal Research Division, Institute of Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Kiyoshi Tajima
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
41
|
Chevalier FD, Le Clec'h W, Eng N, Rugel AR, Assis RRD, Oliveira G, Holloway SP, Cao X, Hart PJ, LoVerde PT, Anderson TJC. Independent origins of loss-of-function mutations conferring oxamniquine resistance in a Brazilian schistosome population. Int J Parasitol 2016; 46:417-24. [PMID: 27073078 DOI: 10.1016/j.ijpara.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Abstract
Molecular surveillance provides a powerful approach to monitoring the resistance status of parasite populations in the field and for understanding resistance evolution. Oxamniquine was used to treat Brazilian schistosomiasis patients (mid-1970s to mid-2000s) and several cases of parasite infections resistant to treatment were recorded. The gene underlying resistance (SmSULT-OR) encodes a sulfotransferase required for intracellular drug activation. Resistance has a recessive basis and occurs when both SmSULT-OR alleles encode for defective proteins. Here we examine SmSULT-OR sequence variation in a natural schistosome population in Brazil ∼40years after the first use of this drug. We sequenced SmSULT-OR from 189 individual miracidia (1-11 per patient) recovered from 49 patients, and tested proteins expressed from putative resistance alleles for their ability to activate oxamniquine. We found nine mutations (four non-synonymous single nucleotide polymorphisms, three non-coding single nucleotide polymorphisms and two indels). Both mutations (p.E142del and p.C35R) identified previously were recovered in this field population. We also found two additional mutations (a splice site variant and 1bp coding insertion) predicted to encode non-functional truncated proteins. Two additional substitutions (p.G206V, p.N215Y) tested had no impact on oxamniquine activation. Three results are of particular interest: (i) we recovered the p.E142del mutation from the field: this same deletion is responsible for resistance in an oxamniquine selected laboratory parasite population; (ii) frequencies of resistance alleles are extremely low (0.27-0.8%), perhaps due to fitness costs associated with carriage of these alleles; (iii) that four independent resistant alleles were found is consistent with the idea that multiple mutations can generate loss-of-function alleles.
Collapse
Affiliation(s)
- Frédéric D Chevalier
- Texas Biomedical Research Institute, Department of Genetics, P.O. Box 760549, San Antonio, TX 78245-0549, USA.
| | - Winka Le Clec'h
- Texas Biomedical Research Institute, Department of Genetics, P.O. Box 760549, San Antonio, TX 78245-0549, USA
| | - Nina Eng
- Texas Biomedical Research Institute, Department of Genetics, P.O. Box 760549, San Antonio, TX 78245-0549, USA
| | - Anastasia R Rugel
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Rafael Ramiro de Assis
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil; Vale Institute of Technology, Rua Boaventura da Silva, 955, Belém, Pará 66055-090, Brazil
| | - Stephen P Holloway
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Xiaohang Cao
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - P John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Philip T LoVerde
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Timothy J C Anderson
- Texas Biomedical Research Institute, Department of Genetics, P.O. Box 760549, San Antonio, TX 78245-0549, USA.
| |
Collapse
|
42
|
High-performance detection of somatic D-loop mutation in urothelial cell carcinoma patients by polymorphism ratio sequencing. J Mol Med (Berl) 2016; 94:1015-24. [PMID: 27030170 DOI: 10.1007/s00109-016-1407-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Utilizing a polymorphism ratio sequencing platform, we performed a complete somatic mutation analysis of the mitochondrial D-loop region in 14 urothelial cell carcinomas. A total of 28 somatic mutations, all heteroplasmic, were detected in 8 of 14 individuals (57.1 %). Insertion/deletion changes in unstable mono- and dinucleotide repeat segments comprise the most pervasive class of mutations (9 of 28), while two recurring single-base substitution loci were identified. Seven variants, mostly insertion/deletions, represent population shifts from a heteroplasmic germline toward dominance in the tumor. In four cases, DNA from matched urine samples was similarly analyzed, with all somatic variants present in associated tumors readily detectable in the bodily fluid. Consistent with previous findings, mutant populations in urine were similar to those detected in tumor and in three of four cases were more prominent in urine. KEY MESSAGES PRS accurately detects high mtDNA mutations in UCCs and their body fluids. mtDNA mutations are universally heteroplasmic and often appear at low levels. The PRS technology could be a viable approach to develop mitochondrial biomarkers.
Collapse
|
43
|
Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MDM, Wendl MC, Zhang Q, Koboldt DC, Xie M, Kandoth C, McMichael JF, Wyczalkowski MA, Larson DE, Schmidt HK, Miller CA, Fulton RS, Spellman PT, Mardis ER, Druley TE, Graubert TA, Goodfellow PJ, Raphael BJ, Wilson RK, Ding L. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun 2016; 5:3156. [PMID: 24448499 PMCID: PMC4025965 DOI: 10.1038/ncomms4156] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/19/2013] [Indexed: 01/05/2023] Open
Abstract
We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.
Collapse
Affiliation(s)
- Krishna L Kanchi
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2]
| | - Kimberly J Johnson
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Brown School, Washington University, St. Louis, Missouri 63130, USA [3] Oregon Health and Science University, Portland, Oregon 97239, USA [4]
| | - Charles Lu
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2]
| | - Michael D McLellan
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Mark D M Leiserson
- Department of Computer Science, Brown University, Providence, Rhode Island 02912, USA
| | - Michael C Wendl
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Department of Mathematics, Washington University, St. Louis, Missouri 63108, USA
| | - Qunyuan Zhang
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA
| | - Daniel C Koboldt
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Mingchao Xie
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Cyriac Kandoth
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Joshua F McMichael
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | | | - David E Larson
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA
| | - Heather K Schmidt
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | | | - Robert S Fulton
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA
| | - Paul T Spellman
- Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Elaine R Mardis
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA
| | - Todd E Druley
- 1] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [2] Department of Pediatrics, Washington University, St. Louis, Missouri 63108, USA
| | - Timothy A Graubert
- 1] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA [2] Department of Medicine, Washington University, St. Louis, Missouri 63108, USA
| | - Paul J Goodfellow
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J Raphael
- Department of Computer Science, Brown University, Providence, Rhode Island 02912, USA
| | - Richard K Wilson
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA
| | - Li Ding
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA [4] Department of Medicine, Washington University, St. Louis, Missouri 63108, USA
| |
Collapse
|
44
|
Coates BS, Alves AP, Wang H, Zhou X, Nowatzki T, Chen H, Rangasamy M, Robertson HM, Whitfield CW, Walden KK, Kachman SD, French BW, Meinke LJ, Hawthorne D, Abel CA, Sappington TW, Siegfried BD, Miller NJ. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera. INSECT MOLECULAR BIOLOGY 2016; 25:1-15. [PMID: 26566705 DOI: 10.1111/imb.12194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera, is an insect pest of corn and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency amongst D. v. virgifera populations, resulting in the reduced efficacy in many corn-growing regions of the USA. We used comparative functional genomic and quantitative trait locus (QTL) mapping approaches to investigate the genetic basis of D. v. virgifera resistance to the organophosphate methyl-parathion. RNA from adult methyl-parathion resistant and susceptible adults was hybridized to 8331 microarray probes. The results predicted that 11 transcripts were significantly up-regulated in resistant phenotypes, with the most significant (fold increases ≥ 2.43) being an α-esterase-like transcript. Differential expression was validated only for the α-esterase (ST020027A20C03), with 11- to 13-fold greater expression in methyl-parathion resistant adults (P < 0.05). Progeny with a segregating methyl-parathion resistance trait were obtained from a reciprocal backcross design. QTL analyses of high-throughput single nucleotide polymorphism genotype data predicted involvement of a single genome interval. These data suggest that a specific carboyxesterase may function in field-evolved corn rootworm resistance to organophosphates, even though direct linkage between the QTL and this locus could not be established.
Collapse
Affiliation(s)
- B S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, USA
| | - A P Alves
- University of Nebraska, Lincoln, NE, USA
| | - H Wang
- University of Nebraska, Lincoln, NE, USA
| | - X Zhou
- University of Nebraska, Lincoln, NE, USA
| | - T Nowatzki
- University of Nebraska, Lincoln, NE, USA
| | - H Chen
- University of Nebraska, Lincoln, NE, USA
| | | | | | | | - K K Walden
- University of Illinois, Champaign-Urbana, IL, USA
| | | | - B W French
- USDA-ARS, North-Central Agricultural Research Laboratory, Brooking, SD, USA
| | - L J Meinke
- University of Nebraska, Lincoln, NE, USA
| | - D Hawthorne
- University of Maryland, College Park, MD, USA
| | - C A Abel
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, USA
- Iowa State University, Ames, IA, USA
| | - T W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, USA
- Iowa State University, Ames, IA, USA
| | | | - N J Miller
- University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
45
|
Shinkai H, Toki D, Okumura N, Takenouchi T, Kitani H, Uenishi H. Polymorphisms of the immune-modulating receptor dectin-1 in pigs: their functional influence and distribution in pig populations. Immunogenetics 2016; 68:275-84. [PMID: 26762386 DOI: 10.1007/s00251-016-0900-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Dectin-1, a C-type lectin receptor that recognizes fungal β-glucans, is involved in antifungal immunity and the regulation of intestinal immune homeostasis. Dectin-1 is involved in both synthesis and maturation of interleukin-1β, a key pro-inflammatory cytokine in immunity. Here, we assessed the genetic diversity in the gene encoding dectin-1 (CLEC7A) within various pig populations and examined the influence of these polymorphisms on the two different signaling pathways after ligand recognition. An amino-acid polymorphism located in the carbohydrate-recognition domain, leucine to serine at position 138 (L138S), which occurred exclusively in Japanese wild boars at low frequency, significantly increased NF-κB induction but not caspase-8 activity after stimulation with zymosan. In contrast, other amino-acid polymorphisms present at comparatively high frequency in commercial pig populations had little influence on ligand recognition. These results suggest that functionally neutral polymorphisms in dectin-1 are widespread in pig populations.
Collapse
Affiliation(s)
- Hiroki Shinkai
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Daisuke Toki
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Naohiko Okumura
- Animal Research Division, Institute of Japan Association for Techno-Innovation in Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hirohide Uenishi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan. .,Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
46
|
Xu Y, Zhang R, Jiao N. Complete genome sequence of Paracoccus marcusii phage vB_PmaS-R3 isolated from the South China Sea. Stand Genomic Sci 2015; 10:94. [PMID: 26561517 PMCID: PMC4641407 DOI: 10.1186/s40793-015-0089-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 10/26/2015] [Indexed: 04/23/2023] Open
Abstract
Paracoccus spp. are isolated from both terrestrial and aquatic habitats, indicating their ubiquitous existence in the environment. Here we present the first phage isolated from this genus, vB_PmaS-R3, and its complete genome sequence. Paracoccus phage vB_PmaS-R3 is a siphophage isolated from the South China Sea. The genome sequence is 42,093 bp, with a G + C content of 56.36 %. Fifty-two open reading frames were predicted from the genome. The genome can mainly be divided into three regions: genes for DNA metabolism, regulatory genes and structure forming genes. Genes encoding DNA metabolism and structural proteins showed high sequence homology to corresponding genes of Burkholderia phage KL1 and Pseudomonas phage PA73. In addition, four gene transfer agent-like genes were found in the vB_PmaS-R3 genome. A putative L-alanoyl-D-glutamate peptidase was predicted as the endolysin. A MazG gene was found in the vB_PmaS-R3 genome, which indicates genomic adaption to the nutrient-limited marine environment.
Collapse
Affiliation(s)
- Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Venturini GC, Stafuzza NB, Cardoso DF, Baldi F, Ledur MC, Peixoto JO, El Faro L, Munari DP. Association between ACTA1 candidate gene and performance, organs and carcass traits in broilers. Poult Sci 2015; 94:2863-9. [PMID: 26476088 DOI: 10.3382/ps/pev285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
This study investigates the genetic association of the SNP present in the ACTA1 gene with performance traits, organs and carcass of broilers to help marker-assisted selection of a paternal broiler line (TT) from EMBRAPA Swine and Poultry, Brazil. Genetic and phenotypic data of 1,400 broilers for 68 traits related to body performance, organ weights, weight of carcass parts, and yields as a percentage of organs and carcass parts were used. The maximum likelihood method, considering 4 analytical models, was used to analyze the genetic association between the SNP and these important economic traits. The association analysis was performed using a mixed animal model including the random effect of the animal (polygenic), and the fixed effects of sex (2 levels), hatch (5 levels) and SNP (3 levels), besides the random error. The traits significantly associated (P<0.05) with the SNP were analyzed, along with body weight at 42 days of age (BW42), by the restricted maximum likelihood method using the multi-trait animal model to estimate genetic parameters. The analysis included the residual and additive genetic random effects and the sex-hatch fixed effect. The additive effects of the SNP were associated with breast meat (BMY), liver yield (LIVY), body weight at 35 days of age (BW35); drumstick skin (DSW), drumstick (DW) and breast (BW) weights. The heritability estimates for these traits, in addition to BW42, ranged from 0.24±0.06 to 0.45±0.08 for LIVY and BW35, respectively. The genetic correlation ranged from 0.02±0.18 for LIVY and BMY to 0.97±0.01 for BW35 and BW42. Based on the results of this study, it can be concluded that ACTA1 gene is associated with performance traits BW35, LIV and BMY, DW, BW and DW adjusted for body weight at 42 days of age. Therefore, the ACTA1 gene is an important molecular marker that could be used together with others already described to increase the economically important traits in broilers.
Collapse
Affiliation(s)
- G C Venturini
- UNESP São Paulo State University, College of Agriculture and Veterinary Sciences, 14884-900, Jaboticabal (SP), Brazil
| | - N B Stafuzza
- UNESP São Paulo State University, College of Agriculture and Veterinary Sciences, 14884-900, Jaboticabal (SP), Brazil
| | - D F Cardoso
- UNESP São Paulo State University, College of Agriculture and Veterinary Sciences, 14884-900, Jaboticabal (SP), Brazil
| | - F Baldi
- UNESP São Paulo State University, College of Agriculture and Veterinary Sciences, 14884-900, Jaboticabal (SP), Brazil
| | - M C Ledur
- Embrapa Suínos e Aves, 89700-000, Concórdia (SC), Brazil
| | - J O Peixoto
- Embrapa Suínos e Aves, 89700-000, Concórdia (SC), Brazil
| | - L El Faro
- Agencia Paulista de Tecnologia dos Agronegócios (APTA) Centro Leste/Secretaria de Agricultura e Abastecimento (SAA), 14001-970, Ribeirão Preto (SP), Brazil
| | - D P Munari
- UNESP São Paulo State University, College of Agriculture and Veterinary Sciences, 14884-900, Jaboticabal (SP), Brazil
| |
Collapse
|
48
|
Marques PI, Fonseca F, Sousa T, Santos P, Camilo V, Ferreira Z, Quesada V, Seixas S. Adaptive Evolution Favoring KLK4 Downregulation in East Asians. Mol Biol Evol 2015; 33:93-108. [PMID: 26420451 DOI: 10.1093/molbev/msv199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human kallikrein (KLK) cluster, located at chromosome 19q13.3-13.4, encodes 15 serine proteases, including neighboring genes (KLK3, KLK2, KLK4, and KLK5) with key roles in the cascades of semen liquefaction, tooth enamel maturation, and skin desquamation. KLK2 and KLK3 were previously identified as targets of adaptive evolution in primates through different mechanisms linked to reproductive biology and, in humans, genome-wide scans of positive selection captured, a yet unexplored, evidence for KLK neutrality departure in East Asians. We perform a detailed evaluation of KLK3-KLK5 variability in the 1000 Genomes samples from East Asia, Europe, and Africa, which was sustained by our own sequencing. In East Asians, we singled out a 70-kb region surrounding KLK4 that combined unusual low levels of diversity, high frequency variants with significant levels of population differentiation (FST > 0.5) and fairly homogenous haplotypes given the large local recombination rates. Among these variants, rs1654556_G, rs198968_T, and rs17800874_A stand out for their location on putative regulatory regions and predicted functional effects, namely the introduction of several microRNA binding sites and a repressor motif. Our functional assays carried out in different cellular models showed that rs198968_T and rs17800874_A operate synergistically to reduce KLK4 expression and could be further assisted by rs1654556_G. Considering the previous findings that KLK4 inactivation causes enamel malformations in humans and mice, and that this gene is coexpressed in epidermal layers along with several substrates involved in either cell adhesion or keratinocyte differentiation, we propose KLK4 as another target of selection in East Asians correlated to tooth and epidermal morphological traits.
Collapse
Affiliation(s)
- Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal Department of Biochemistry and Molecular Biology-IUOPA, University of Oviedo, Oviedo, Spain Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Filipa Fonseca
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Tânia Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Paulo Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Vânia Camilo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Zélia Ferreira
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Victor Quesada
- Department of Biochemistry and Molecular Biology-IUOPA, University of Oviedo, Oviedo, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
49
|
Next-Generation Sequencing Approaches in Cancer: Where Have They Brought Us and Where Will They Take Us? Cancers (Basel) 2015; 7:1925-58. [PMID: 26404381 PMCID: PMC4586802 DOI: 10.3390/cancers7030869] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022] Open
Abstract
Next-generation sequencing (NGS) technologies and data have revolutionized cancer research and are increasingly being deployed to guide clinicians in treatment decision-making. NGS technologies have allowed us to take an “omics” approach to cancer in order to reveal genomic, transcriptomic, and epigenomic landscapes of individual malignancies. Integrative multi-platform analyses are increasingly used in large-scale projects that aim to fully characterize individual tumours as well as general cancer types and subtypes. In this review, we examine how NGS technologies in particular have contributed to “omics” approaches in cancer research, allowing for large-scale integrative analyses that consider hundreds of tumour samples. These types of studies have provided us with an unprecedented wealth of information, providing the background knowledge needed to make small-scale (including “N of 1”) studies informative and relevant. We also take a look at emerging opportunities provided by NGS and state-of-the-art third-generation sequencing technologies, particularly in the context of translational research. Cancer research and care are currently poised to experience significant progress catalyzed by accessible sequencing technologies that will benefit both clinical- and research-based efforts.
Collapse
|
50
|
Variability of the caprine whey protein genes and their association with milk yield, composition and renneting properties in the Sarda breed: 2. The BLG gene. J DAIRY RES 2015; 82:442-8. [PMID: 26373476 DOI: 10.1017/s0022029915000473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The variability of the promoter region and the 3'UTR (exon-7) of the BLG gene, encoding the β-lactoglobulin, was investigated by sequencing in 263 lactating Sarda goats in order to assess its association with milk traits. Milk traits included: milk yield, fat, total protein and lactose content, pH, daily fat and protein yield (DFPY), freezing point, milk energy, somatic cell count, total microbial mesophilic count, rennet coagulation time (RCT), curd firming rate (k20) and curd firmness (a30). A total of 7 polymorphic sites were detected and the sequence analysed was given accession number KM817769. Only three SNPs (c.-381C>T, c.-323C>T and c.*420C>A) had minor allele frequency higher than 0.05. The effects of farm, stage of lactation and the interaction farm × stage of lactation significantly influenced all the milk traits (P T and c.*420C>A (P T (P < 0.001). The c.-381TT homozygous goats showed lower pH, RCT and k20 than c.-381CT (P < 0.05). In conclusion the polymorphism of the goat BLG gene did not affect the total protein content of the Sarda goat milk, and only weakly influenced RCT and k20. On the other hand, an interesting effect on milk yields and DFPY emerged in two SNPs. This information might be useful in dairy goat breeding programs.
Collapse
|