1
|
Byun MY, Cui LH, Kim WT. Suppression of OsKu80 results in defects in developmental growth and increased telomere length in rice (Oryza sativa L.). Biochem Biophys Res Commun 2015; 468:857-62. [PMID: 26590017 DOI: 10.1016/j.bbrc.2015.11.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
The Ku70-Ku80 heterodimer plays a critical role in the maintenance of genomic stability in humans and yeasts. In this report, we identified and characterized OsKu80 in rice, a model monocot crop. OsKu80 forms a heterodimer with OsKu70 in yeast and plant cells, as demonstrated by yeast two-hybrid, in vivo co-immunoprecipitation, and bimolecular fluorescence complementation assays. RNAi-mediated knock-down T3 transgenic rice plants (Ubi:RNAi-OsKu80) displayed a retarded growth phenotype at the post-germination stage. In addition, the Ubi:RNAi-OsKu80 knock-down progeny exhibited noticeably increased telomere length as compared to wild-type rice. These results are discussed with the idea that OsKu80 plays a role in developmental growth and telomere length regulation in rice plants.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea.
| |
Collapse
|
2
|
Cabantous S, Nguyen HB, Pedelacq JD, Koraïchi F, Chaudhary A, Ganguly K, Lockard MA, Favre G, Terwilliger TC, Waldo GS. A new protein-protein interaction sensor based on tripartite split-GFP association. Sci Rep 2013; 3:2854. [PMID: 24092409 PMCID: PMC3790201 DOI: 10.1038/srep02854] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/16/2013] [Indexed: 11/12/2022] Open
Abstract
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.
Collapse
Affiliation(s)
- Stéphanie Cabantous
- INSERM UMR1037, Cancer Research Center of Toulouse, Université de Toulouse, Institut Claudius Regaud, F-31052 Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Postow L, Ghenoiu C, Woo EM, Krutchinsky AN, Chait BT, Funabiki H. Ku80 removal from DNA through double strand break-induced ubiquitylation. ACTA ACUST UNITED AC 2008; 182:467-79. [PMID: 18678709 PMCID: PMC2500133 DOI: 10.1083/jcb.200802146] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ku70/Ku80 heterodimer, or Ku, is the central component of the nonhomologous end joining (NHEJ) pathway of double strand break (DSB) repair. Because Ku forms a ring through which the DSB threads, it likely becomes topologically attached to DNA during repair. The mechanism for its removal was unknown. Using a method to identify proteins recruited to DSBs in Xenopus laevis egg extract, we show that DSB-containing DNAs accumulate members of the Skp1–Cul1–F-box complex and K48-linked polyubiquitylated proteins in addition to known repair proteins. We demonstrate that Ku80 is degraded in response to DSBs in a ubiquitin-mediated manner. Strikingly, K48-linked polyubiquitylation, but not proteasomal degradation, is required for the efficient removal of Ku80 from DNA. This removal is DNA length dependent, as Ku80 is retained on duplex oligonucleotides. Finally, NHEJ completion and removal of Ku80 from DNA are independent from one another. We propose that DSB-induced ubiquitylation of Ku80 provides a mechanism to efficiently eliminate Ku from DNA for pre- and postrepair processes.
Collapse
Affiliation(s)
- Lisa Postow
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Urano M, Huang Y, He F, Minami A, Ling CC, Li GC. Response to multiple radiation doses of fibroblasts over-expressing dominant negative Ku70. Int J Radiat Oncol Biol Phys 2008; 71:533-41. [PMID: 18374502 DOI: 10.1016/j.ijrobp.2007.12.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 11/21/2007] [Accepted: 12/22/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate the response of cells over-expressing dominant negative (DN) Ku70 to single and multiple small radiation doses. METHODS AND MATERIALS Clones of fibroblasts over-expressing DNKu70, DNKu70-7, DNKu70-11, and parental Rat-1 cells were irradiated under oxic or hypoxic conditions with single or multiple doses. Cells were trypsinized 0 or 6 h after irradiation to determine surviving fraction (SF). RESULTS Oxic DNKu70-7 or -11 cells trypsinized 6 h after irradiation were 1.52 or 1.25 and 1.28 or 1.15 times more sensitive than oxic Rat-1 at SF of 0.5 and 0.1, respectively. Hypoxic DNKu70-7 or -11 cells trypsinized 6 h after irradiation were 1.44 or 1.70 and 1.33 or 1.51 times more sensitive than hypoxic Rat-1 at SF of 0.5 and 0.1, respectively. To the multiple doses, oxic and hypoxic DNKu70-7 or -11 cells were 1.35 or 1.37 and 2.23 or 4.61 times more sensitive than oxic and hypoxic Rat-1, respectively, resulting in very small oxygen enhancement ratios. Namely, enhancement caused by DNKu70 under hypoxia after multiple doses was greater than that under oxic conditions and greater than that after single dose. CONCLUSIONS Over-expression of DNKu70 enhances cells' response to radiation given as a single dose and as multiple small doses. The enhancement after multiple doses was stronger under hypoxic than under oxic conditions. These results encourage the use of DNKu70 fragment in a gene-radiotherapy.
Collapse
Affiliation(s)
- Muneyasu Urano
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.
Collapse
|
6
|
Koike M, Koike A. The Ku70-binding site of Ku80 is required for the stabilization of Ku70 in the cytoplasm, for the nuclear translocation of Ku80, and for Ku80-dependent DNA repair. Exp Cell Res 2005; 305:266-76. [PMID: 15817152 DOI: 10.1016/j.yexcr.2004.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 11/24/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Ku plays a key role in multiple nuclear processes, e.g., DNA repair, transcription regulation, and replication. It is believed that heterodimerization between Ku70 and Ku80 is essential for Ku-dependent DNA repair, although its role is poorly understood. We previously identified the Ku70-binding site of Ku80. In this study, to understand the role of heterodimerization in the function of Ku, we generated and/or analyzed cell lines stably expressing the EGFP-tagged-wild-type human Ku80, its Ku70-binding mutant, its NLS-dysfunctional mutant, or its double mutant in Ku80-deficient cells. Our results show that the Ku70-binding site of Ku80 is required for the stabilization of Ku70 in the cytoplasm and for the nuclear translocation of Ku80 through its heterodimerization with Ku70. In addition, our results suggest that the nuclear translocation of Ku80 through the Ku70-binding site as well as through the NLS of Ku80 play, at least in part, a role in Ku80-dependent DNA repair. Furthermore, our results suggest the possibility that Ku80 has a DNA DSB repair function independent of Ku70 in the nuclei, in addition to that dependent on Ku70.
Collapse
Affiliation(s)
- Manabu Koike
- Radiation Hazards Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | |
Collapse
|
7
|
Dudásová Z, Dudás A, Chovanec M. Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 2005; 28:581-601. [PMID: 15539075 DOI: 10.1016/j.femsre.2004.06.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/02/2004] [Accepted: 06/02/2004] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSB) are considered to be a severe form of DNA damage, because if left unrepaired, they can cause a cell death and, if misrepaired, they can lead to genomic instability and, ultimately, the development of cancer in multicellular organisms. The budding yeast Saccharomyces cerevisiae repairs DSB primarily by homologous recombination (HR), despite the presence of the KU70, KU80, DNA ligase IV and XRCC4 homologues, essential factors of the mammalian non-homologous end-joining (NHEJ) machinery. S. cerevisiae, however, lacks clear DNA-PKcs and ARTEMIS homologues, two important additional components of mammalian NHEJ. On the other hand, S. cerevisiae is endowed with a regulatory NHEJ component, Nej1, which has not yet been found in other organisms. Furthermore, there is evidence in budding yeast for a requirement for the Mre11/Rad50/Xrs2 complex for NHEJ, which does not appear to be the case either in Schizosaccharomyces pombe or in mammals. Here, we comprehensively describe the functions of all the S. cerevisiae NHEJ components identified so far and present current knowledge about the NHEJ process in this organism. In addition, this review depicts S. cerevisiae as a powerful model system for investigating the utilization of either NHEJ or HR in DSB repair.
Collapse
Affiliation(s)
- Zuzana Dudásová
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | | | |
Collapse
|
8
|
Koike M, Koike A. The establishment and characterization of cell lines stably expressing human Ku80 tagged with enhanced green fluorescent protein. JOURNAL OF RADIATION RESEARCH 2004; 45:119-125. [PMID: 15133299 DOI: 10.1269/jrr.45.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Ku protein is a complex of two subunits, Ku70 and Ku80, and it plays a role in multiple nuclear processes, e.g., nonhomologous DNA-end-joining (NHEJ), chromosome maintenance, and transcription regulation. On the other hand, several studies have reported a cytoplasmic or cell surface localization of Ku in various cell types. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, though the mechanism that regulates the nuclear localization of Ku70 and Ku80 appears to play, at least in part, a key role in regulating the physiological function of Ku. In this study, we generated cell lines expressing the human Ku80 tagged with the green fluorescent protein (GFP) color variants in Ku80-deficient cells, i.e., xrs-6 derived from CHO-K1. Although Ku70, as well as Ku80, was undetectable in xrs-6 cells, it was seen in these transformants at a level similar to the level of CHO-K1. Furthermore, etoposide- and radiosensitive phenotype of xrs-6 cells were corrected by an introduction of the tagged Ku80. Moreover, the tagged Ku80 suppressed apoptosis triggered by DNA damage. These results demonstrate that fusion to the GFP color variants does not interfere with the functions of the Ku80 in the Ku-dependent DSB repair. Therefore, these transformants might be useful not only in the analysis of Ku80 behavior, but also in an analysis of the dynamics of the NHEJ repair process.
Collapse
Affiliation(s)
- Manabu Koike
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Chiba, Japan.
| | | |
Collapse
|
9
|
Lim JW, Kim H, Kim KH. The Ku antigen-recombination signal-binding protein Jkappa complex binds to the nuclear factor-kappaB p50 promoter and acts as a positive regulator of p50 expression in human gastric cancer cells. J Biol Chem 2003; 279:231-7. [PMID: 14570916 DOI: 10.1074/jbc.m308609200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The p50 subunit of NF-kappaB is a transcription factor that regulates the expression of a variety of genes. Previously, we showed that the expression of Ku antigen, a DNA repair protein, is mediated by NF-kappaB in gastric cancer AGS cells (Lim, J. W., Kim, H., and Kim, K. H. (2002) J. Biol. Chem. 277, 46093-46100). In this study, we report that the inhibition of Ku activity reduced both p50 expression and nuclear NF-kappaB activity in AGS cells. A co-immunoprecipitation experiment demonstrated that Ku antigen interacted with recombination signal-binding protein Jkappa (RBP-Jkappa), a DNA-binding protein. Ku antigen, RBP-Jkappa, and p50 were found to bind to the DNA region containing the kappaB element in the p50 promoter. Supershift and competition experiments demonstrated that Ku antigen and RBP-Jkappa bound sequence-specifically to downstream elements of kappaB at GCTTC and TGGGGG. mRNA expression and de novo synthesis of p50 were inhibited in cells transfected with the mutant gene expression constructs for IkappaBalpha, Ku80, and RBP-Jkappa. A reporter assay demonstrated that p50 transcription was positively mediated by NF-kappaB, Ku antigen, and RBP-Jkappa and that the binding elements for these proteins were required for optimal p50 expression. The interaction of Ku antigen with RBP-Jkappa and NF-kappaB p50 may act as a positive regulator of p50 expression in gastric cancer AGS cells.
Collapse
Affiliation(s)
- Joo Weon Lim
- Department of Pharmacology and the Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
10
|
Kim SH, Han S, You YH, Chen DJ, Campisi J. The human telomere-associated protein TIN2 stimulates interactions between telomeric DNA tracts in vitro. EMBO Rep 2003; 4:685-91. [PMID: 12835755 PMCID: PMC1326318 DOI: 10.1038/sj.embor.embor872] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Revised: 04/16/2003] [Accepted: 05/07/2003] [Indexed: 11/09/2022] Open
Abstract
Human TIN2 interacts with the telomeric-DNA-binding protein TRF1, suppresses telomere elongation in telomerase-positive cells, and may control telomere length by modulating telomere structure. To test the latter idea, we developed an in vitro assay, using biotinylated telomeric DNA probes and streptavidin-agarose, to quantify the ability of TRF1 and TIN2 to stimulate interactions of telomeric DNA tracts with each other (probe clustering). This assay revealed that TRF1 alone had weak probe-clustering activity, but TIN2 stimulated activity fivefold to tenfold. A dominant-negative TIN2 mutant protein that increased telomere length in vivo disrupted probe clusters formed by TRF1 and TIN2, suggesting that the ability to stimulate telomeric DNA interactions is important for telomere-length regulation. Unlike TRF1, TIN2 did not form homodimers. We propose that TIN2 alters the conformation of TRF1, which favours a tertiary telomeric structure that hinders telomerase from gaining access to telomeres.
Collapse
Affiliation(s)
- Sahn-Ho Kim
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Seungil Han
- Present address: Pfizer Global Research and Development, Exploratory Medicinal Sciences (EMS), MS4039 Eastern Point Road, Groton, Connecticut 06340, USA
| | - Young-Hyun You
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - David J. Chen
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Judith Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
- Tel: +1 510 486 4416; Fax: +1 510 486 4545;
| |
Collapse
|
11
|
Przewloka MR, Pardington PE, Yannone SM, Chen DJ, Cary RB. In vitro and in vivo interactions of DNA ligase IV with a subunit of the condensin complex. Mol Biol Cell 2003; 14:685-97. [PMID: 12589063 PMCID: PMC150001 DOI: 10.1091/mbc.e01-11-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Several findings have revealed a likely role for DNA ligase IV, and interacting protein XRCC4, in the final steps of mammalian DNA double-strand break repair. Recent evidence suggests that the human DNA ligase IV protein plays a critical role in the maintenance of genomic stability. To identify protein-protein interactions that may shed further light on the molecular mechanisms of DSB repair and the biological roles of human DNA ligase IV, we have used the yeast two-hybrid system in conjunction with traditional biochemical methods. These efforts have resulted in the identification of a physical association between the DNA ligase IV polypeptide and the human condensin subunit known as hCAP-E. The hCAP-E polypeptide, a member of the Structural Maintenance of Chromosomes (SMC) super-family of proteins, coimmunoprecipitates from cell extracts with DNA ligase IV. Immunofluorescence studies reveal colocalization of DNA ligase IV and hCAP-E in the interphase nucleus, whereas mitotic cells display colocalization of both polypeptides on mitotic chromosomes. Strikingly, the XRCC4 protein is excluded from the area of mitotic chromosomes, suggesting the formation of specialized DNA ligase IV complexes subject to cell cycle regulation. We discuss our findings in light of known and hypothesized roles for ligase IV and the condensin complex.
Collapse
Affiliation(s)
- Marcin R Przewloka
- Los Alamos National Laboratory, Biosciences Division, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
12
|
Lim JW, Kim H, Kim KH. Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem 2002; 277:46093-100. [PMID: 12324457 DOI: 10.1074/jbc.m206603200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) expression is mediated by constitutive NF-kappaB and regulates human gastric cancer cell growth and proliferation. Inactivating Ku70 or Ku80 suppresses cell growth and induces apoptosis. It has been hypothesized that Ku70 and Ku80 expression may be associated with NF-kappaB activation and COX-2 expression and is involved in cell proliferation. In this study, we found that inhibition of constitutive NF-kappaB (by transfecting a mutated IkappaBalpha gene) and of COX-2 (by treatment with indomethacin and NS-398) suppressed Ku70 and Ku80 expression in cells. Treatment with prostaglandin E(2) adenocarcinoma gastric (AGS) increased expression of these Ku proteins in cells with low constitutive NF-kappaB levels. Inhibition of the Ku DNA end-binding activity by transfection with the C-terminal Ku80 expression gene suppressed cell proliferation. Ku70 or Ku80 overexpression by transfection with the Ku70 or Ku80 expression gene, respectively, enhanced proliferation of cells with low NF-kappaB levels. These results demonstrate that Ku70 and Ku80 expression is mediated by constitutively activated NF-kappaB and constitutively expressed COX-2 in gastric cancer cells and that the high Ku DNA end-binding activity contributes to cell proliferation. Ku70 and Ku80 expression may be related to gastric cell proliferation and carcinogenesis.
Collapse
Affiliation(s)
- Joo Weon Lim
- Department of Pharmacology and the Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
13
|
Koike M. Dimerization, translocation and localization of Ku70 and Ku80 proteins. JOURNAL OF RADIATION RESEARCH 2002; 43:223-236. [PMID: 12518983 DOI: 10.1269/jrr.43.223] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Ku protein is a complex of two subunits, Ku70 and Ku80, and was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. The Ku protein plays a key role in multiple nuclear processes, e.g., DNA repair, chromosome maintenance, transcription regulation, and V(D)J recombination. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, although it seems that Ku is a multifunctional protein that works in nuclei. On the other hand, several studies have reported cytoplasmic or cell surface localization of Ku in various cell types. To clarify the fundamental characteristics of Ku, we have examined the expression, heterodimerization, subcellular localization, chromosome location, and molecular mechanisms of the nuclear transport of Ku70 and Ku80. The mechanism that regulates for nuclear localization of Ku70 and Ku80 appears to play, at least in part, a key role in regulating the physiological function of Ku in vivo.
Collapse
Affiliation(s)
- Manabu Koike
- Radiation Hazards Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
14
|
Riha K, Watson J, Parkey J, Shippen DE. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 2002; 21:2819-26. [PMID: 12032094 PMCID: PMC126030 DOI: 10.1093/emboj/21.11.2819] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2001] [Revised: 04/04/2002] [Accepted: 04/04/2002] [Indexed: 02/05/2023] Open
Abstract
The Ku70/80 heterodimer is a critical component of the non-homologous end-joining (NHEJ) pathway and of the telomere cap in yeast and mammals. We report the molecular characterization of the KU70 and KU80 genes in Arabidopsis and describe the consequences of a Ku70 deficiency. Arabidopsis KU70/80 genes are ubiquitously expressed and their products form stable heterodimers in vitro. Plants harboring a T-DNA insertion in KU70 exhibit no growth or developmental defects under standard growth conditions. However, mutant seedlings are hypersensitive to gamma-irradiation-induced double-strand breaks. Unexpectedly, we found that mutants are hypersensitive to methyl methanosulfonate during seed germination, but lose this sensitivity in seedlings, implying that the requirement for NHEJ varies during plant development. Lack of Ku70 results in a dramatic deregulation of telomere length control, with mutant telomeres expanding to more than twice the size of wild type by the second generation. Furthermore, in contrast to the situation in mammals, chromosome fusions are not associated with a Ku deficiency in Arabidopsis. These findings imply that Ku may play a different role in capping plant and animal telomeres.
Collapse
Affiliation(s)
| | | | | | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
Corresponding author e-mail:
| |
Collapse
|
15
|
Oh WJ, Kim EK, Ko JH, Yoo SH, Hahn SH, Yoo OJ. Nuclear proteins that bind to metal response element a (MREa) in the Wilson disease gene promoter are Ku autoantigens and the Ku-80 subunit is necessary for basal transcription of the WD gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2151-61. [PMID: 11985593 DOI: 10.1046/j.1432-1033.2002.02865.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wilson disease (WD), an inherited disorder affecting copper metabolism, is characterized by hepatic cirrhosis and neuronal degeneration, which result from toxic levels of copper that accumulate in the liver and brain, respectively. We reported previously that the approximately 1.3-kb promoter of the WD gene contains four metal response elements (MREs). Among the four MREs, MREa plays the most important role in the transcriptional activation of the WD promoter. Electrophoretic mobility shift assays (EMSAs) using synthetic MREa and an oligonucleotide containing the binding site for transcription factor Sp1 revealed the presence of nuclear factors that bind specifically to MREa. Two MREa-binding proteins of 70 and 82 kDa were purified using avidin-biotin affinity chromatography. Amino acid sequences of peptides from each protein were found to be highly homologous to the Ku proteins. Immunoblot analysis and EMSAs showed that the MREa-binding proteins are immunologically related to the Ku proteins. To study further the functional significance of these Ku-related proteins in transcriptional regulation of the WD gene, we performed RNA interference (RNAi) assays using a Ku-80 inverted-repeat gene to inhibit expression of the Ku-80 gene in vivo. Results of the RNAi assays showed that expression of the Ku-80 protein was suppressed in transfected cells, which in turn led to the suppression of the WD gene. In addition, a truncated Ku-80 (DeltaKu-80) mutant inhibited WD promoter activity in HepG2 cells in a dominant-negative manner. We also found that WD promoter activity was decreased in Xrs5 cells, which, unlike the CHO-K1 cells, are defective in the Ku-80 protein. When Ku-80 cDNA was transfected into Xrs5 and CHO cells, WD promoter activity was recovered only in Xrs5 cells. Taken together, our findings suggest that the Ku-80 subunit is required for constitutive expression of the WD gene.
Collapse
Affiliation(s)
- Won Jun Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Taejon Korea
| | | | | | | | | | | |
Collapse
|
16
|
Aravind L, Koonin EV. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 2001; 11:1365-74. [PMID: 11483577 PMCID: PMC311082 DOI: 10.1101/gr.181001] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Homologs of the eukaryotic DNA-end-binding protein Ku were identified in several bacterial and one archeal genome using iterative database searches with sequence profiles. Identification of prokaryotic Ku homologs allowed the dissection of the Ku protein sequences into three distinct domains, the Ku core that is conserved in eukaryotes and prokaryotes, a derived von Willebrand A domain that is fused to the amino terminus of the core in eukaryotic Ku proteins, and the newly recognized helix-extension-helix (HEH) domain that is fused to the carboxyl terminus of the core in eukaryotes and in one of the Ku homologs from the Actinomycete Streptomyces coelicolor. The version of the HEH domain present in eukaryotic Ku proteins represents the previously described DNA-binding domain called SAP. The Ku homolog from S. coelicolor contains a distinct version of the HEH domain that belongs to a previously unnoticed family of nucleic-acid-binding domains, which also includes HEH domains from the bacterial transcription termination factor Rho, bacterial and eukaryotic lysyl-tRNA synthetases, bacteriophage T4 endonuclease VII, and several uncharacterized proteins. The distribution of the Ku homologs in bacteria coincides with that of the archeal-eukaryotic-type DNA primase and genes for prokaryotic Ku homologs form predicted operons with genes coding for an ATP-dependent DNA ligase and/or archeal-eukaryotic-type DNA primase. Some of these operons additionally encode an uncharacterized protein that may function as nuclease or an Slx1p-like predicted nuclease containing a URI domain. A hypothesis is proposed that the Ku homolog, together with the associated gene products, comprise a previously unrecognized prokaryotic system for repair of double-strand breaks in DNA.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | |
Collapse
|
17
|
Abstract
Ku, a heterodimer of Ku70 and Ku80, plays a key role in multiple nuclear processes, e.g. DNA repair, chromosome maintenance, and transcription regulation. Heterodimerization is essential for Ku-dependent DNA repair in vivo, although its role is poorly understood. Some lines of evidence suggest that heterodimerization is required for the stabilization of Ku70 and Ku80. Here we show that the heterodimerization of these Ku subunits is important for their nuclear entry. When transfected into Ku-deficient xrs-6 cells, exogenous Ku70 and Ku80 tagged with green fluorescent protein accumulated into the nucleus, whereas each nuclear localization signal (NLS)-dysfunctional mutant was undetectable in the nucleus, supporting the idea that each Ku can translocate to the nucleus through its own NLS. On the other hand, the nuclear accumulation of each NLS-dysfunctional mutant was markedly enhanced by the presence of an exogenous wild-type counterpart. In Ku-expressing HeLa cells, each NLS-dysfunctional mutant, as well as wild-type Ku70 and Ku80, was still detectable in the nucleus, whereas the double mutant of each Ku subunit with decreased functions of both nuclear targeting and dimerization was undetectable in the nucleus. Our results indicate that each Ku subunit can translocate to the nucleus not only through its own NLS but also through heterodimerization with each other.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | |
Collapse
|
18
|
Bertinato J, Schild-Poulter C, Haché RJ. Nuclear localization of Ku antigen is promoted independently by basic motifs in the Ku70 and Ku80 subunits. J Cell Sci 2001; 114:89-99. [PMID: 11112693 DOI: 10.1242/jcs.114.1.89] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ku antigen is a heteromeric (Ku70/Ku80), mostly nuclear protein. Ku participates in multiple nuclear processes from DNA repair to V(D)J recombination to telomere maintenance to transcriptional regulation and serves as a DNA binding subunit and allosteric regulator of DNA-dependent protein kinase. While some evidence suggests that subcellular localization of Ku may be subject to regulation, how Ku gains access to the nucleus is poorly understood. In this work, using a combination of indirect immunofluorescence and direct fluorescence, we have demonstrated that transfer of the Ku heterodimer to the nucleus is determined by basic nuclear localization signals in each of the Ku subunits that function independently. A bipartite basic nuclear localization signal between amino acids 539–556 of Ku70 was observed to be required for nuclear import of full-length Ku70 monomer, while a short Ku80 motif of four amino acids from 565–568 containing three lysines was required for the nuclear import of full-length Ku80. Ku heterodimers containing only one nuclear localization signal accumulated in the nucleus as efficiently as wild-type Ku, while site directed mutagenesis inactivating the basic motifs in each subunit, resulted in a Ku heterodimer that was completely localized to the cytoplasm. Lastly, our results indicate that mutations in Ku previously proposed to abrogate Ku70/Ku80 heterodimerization, markedly reduced the accumulation of Ku70 without affecting heterodimer formation in mammalian cells.
Collapse
Affiliation(s)
- J Bertinato
- Graduate Program in Biochemistry, Department of Medicine, University of Ottawa, Ontario, Canada, K1Y 4K9
| | | | | |
Collapse
|
19
|
Marangoni E, Foray N, O'Driscoll M, Douc-Rasy S, Bernier J, Bourhis J, Jeggo P. A Ku80 fragment with dominant negative activity imparts a radiosensitive phenotype to CHO-K1 cells. Nucleic Acids Res 2000; 28:4778-82. [PMID: 11095690 PMCID: PMC115156 DOI: 10.1093/nar/28.23.4778] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA non-homologous end joining, the major mechanism for the repair of DNA double-strands breaks (DSB) in mammalian cells requires the DNA-dependent protein kinase (DNA-PK), a complex composed of a large catalytic subunit of 460 kDa (DNA-PKcs) and the heterodimer Ku70-Ku80 that binds to double-stranded DNA ends. Mutations in any of the three subunits of DNA-PK lead to extreme radiosensitivity and DSB repair deficiency. Here we show that the 283 C-terminal amino acids of Ku80 introduced into the Chinese hamster ovary cell line CHO-K1 have a dominant negative effect. Expression of Ku(449-732) in CHO cells was verified by northern blot analysis and resulted in decreased Ku-dependent DNA end-binding activity, a diminished capacity to repair DSBs as determined by pulsed field gel electrophoresis and decreased radioresistance determined by clonogenic survival. The stable modifications observed at the molecular and cellular level suggest that this fragment of Ku80 confers a dominant negative effect providing an important mechanism to sensitise radioresistant cells.
Collapse
Affiliation(s)
- E Marangoni
- Unité Propre de l'Enseignement Supérieur 'Radiosensibilité-Radiocarcinogenèse Humaine' (UPRES EA no. 2710, Pr. Eschwege), IFR no. 54, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Tai YT, Teoh G, Lin B, Davies FE, Chauhan D, Treon SP, Raje N, Hideshima T, Shima Y, Podar K, Anderson KC. Ku86 variant expression and function in multiple myeloma cells is associated with increased sensitivity to DNA damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6347-55. [PMID: 11086072 DOI: 10.4049/jimmunol.165.11.6347] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ku is a heterodimer of Ku70 and Ku86 that binds to double-stranded DNA breaks (DSBs), activates the catalytic subunit (DNA-PKcs) when DNA is bound, and is essential in DSB repair and V(D)J recombination. Given that abnormalities in Ig gene rearrangement and DNA damage repair are hallmarks of multiple myeloma (MM) cells, we have characterized Ku expression and function in human MM cells. Tumor cells (CD38(+)CD45RA(-)) from 12 of 14 (86%) patients preferentially express a 69-kDa variant of Ku86 (Ku86v). Immunoblotting of whole cell extracts (WCE) from MM patients shows reactivity with Abs targeting Ku86 N terminus (S10B1) but no reactivity with Abs targeting Ku86 C terminus (111), suggesting that Ku86v has a truncated C terminus. EMSA confirmed a truncated C terminus in Ku86v and further demonstrated that Ku86v in MM cells had decreased Ku-DNA end binding activity. Ku86 forms complexes with DNA-PKcs and activates kinase activity, but Ku86v neither binds DNA-PKcs nor activates kinase activity. Furthermore, MM cells with Ku86v have increased sensitivity to irradiation, mitomycin C, and bleomycin compared with patient MM cells or normal bone marrow donor cells with Ku86. Therefore, this study suggests that Ku86v in MM cells may account for decreased DNA repair and increased sensitivity to radiation and chemotherapeutic agents, whereas Ku86 in MM cells confers resistance to DNA damaging agents. Coupled with a recent report that Ku86 activity correlates with resistance to radiation and chemotherapy, these results have implications for the potential role of Ku86 as a novel therapeutic target.
Collapse
Affiliation(s)
- Y T Tai
- Department of Adult Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koike M, Shiomi T, Koike A. Ku70 can translocate to the nucleus independent of Ku80 translocation and DNA-PK autophosphorylation. Biochem Biophys Res Commun 2000; 276:1105-11. [PMID: 11027597 DOI: 10.1006/bbrc.2000.3567] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ku plays an important role in multiple nuclear processes, e.g., DNA repair, chromosome maintenance, and transcriptional regulation. Although some evidence suggests that the nuclear translocation of Ku plays a key role in regulating the function of Ku, the mechanism is poorly understood. Using the site-directed mutagenesis technique, we demonstrate here that Ku70 can translocate to the nucleus without heterodimerization with Ku80. The nuclear accumulation of Ku70 mutants of the nuclear localization signal, which retained their binding ability with Ku80, was diminished. On the other hand, Ku70 mutants which lacked the ability to bind with Ku80 could translocate to the nuclei. Human Ku70, when transfected, accumulated within the nuclei of hamster xrs-6 cells which had undetectable DNA-PK activity and Ku80. Ku70 and Ku80 mutants of DNA-PK phosphorylation sites showed normal heterodimerization and nuclear translocation. These findings also support the idea that Ku70 can translocate to the nucleus independent of DNA-PK autophosphorylation.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | | | | |
Collapse
|
22
|
Coffey G, Campbell C. An alternate form of Ku80 is required for DNA end-binding activity in mammalian mitochondria. Nucleic Acids Res 2000; 28:3793-800. [PMID: 11000272 PMCID: PMC110772 DOI: 10.1093/nar/28.19.3793] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Revised: 08/18/2000] [Accepted: 08/18/2000] [Indexed: 11/14/2022] Open
Abstract
Mammalian mitochondrial DNA end-binding activity is nearly indistinguishable from that of nuclear Ku. This observation led to the hypothesis that mitochondrial DNA end-binding activity is in part dependent upon Ku80 gene expression. To test this hypothesis, we assayed for Ku activity in mitochondrial extracts prepared from the xrs-5 hamster cell line that lacks Ku80 mRNA expression. Mitochondrial protein extracts prepared from this cell line lacked the DNA end-binding activity found in similar extracts prepared from wild-type cells. Azacytidine-reverted xrs-5 cells that acquired nuclear DNA end-binding activity also acquired mitochondrial DNA end-binding activity. Western blot analysis of human mitochondrial protein extracts using a monoclonal antibody specific for an N-terminal epitope of Ku80 identified a protein with an apparent molecular weight of 68 kDa. This mitochondrial protein was not detected by a monoclonal antibody specific for an epitope at the C-terminal end of Ku80. Consistently, while both the N- and C-terminal Ku80 monoclonal antibodies supershifted the nuclear DNA end-binding complex on an electrophoretic mobility shift assay, only the N-terminal monoclonal antibody supershifted the mitochondrial DNA end-binding complex. To confirm that the 68 kDa Ku protein was not a consequence of nuclear protein contamination of mitochondrial preparations, highly purified intact nuclei and mitochondria were treated with proteinase K which traverses the pores of intact nuclei but gains limited access into intact mitochondria. Ku80 in purified intact nuclei was sensitive to treatment with this protease, while the 68 kDa Ku protein characteristic of purified intact mitochondria was resistant. Further, immunocytochemical analysis revealed the co-localization of the N-terminal specific Ku80 monoclonal antibody with a mitochondrial-targeted green fluorescence protein. Mitochondrial localization of the C-terminal Ku80 monoclonal antibody was not observed. These data are consistent with the hypothesis that a C-terminally truncated form of Ku80 is localized in mammalian mitochondria where it functions in a DNA end-binding activity.
Collapse
Affiliation(s)
- G Coffey
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
23
|
Siegel RW, Allen B, Pavlik P, Marks JD, Bradbury A. Mass spectral analysis of a protein complex using single-chain antibodies selected on a peptide target: applications to functional genomics. J Mol Biol 2000; 302:285-93. [PMID: 10970733 DOI: 10.1006/jmbi.2000.4070] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome projects are identifying an ever-increasing number of genes, accelerating the need for reagents to study the expression of these genes and elucidate the function and cellular location of the gene products. Our goal was to develop a strategy to allow human single-chain variable fragment (scFv) antibodies to be used for these endeavors. A library containing 7x10(9) individual variants was displayed by bacteriophage and selected against a biotinylated peptide corresponding to the C-terminal 15 amino acid residues of Ku86, one component of a heterodimer involved in double-stranded DNA break repair. Four unique scFv antibodies were recovered that not only recognized the selected peptide, but also the intact protein. Three of the scFv antibodies were expressed in soluble form and recognized Ku86 by Western analysis. The affinity of one of the scFv antibodies for Ku86 was 16 nM as measured by BIAcore analysis. scFv immunoprecipitation of Ku86 also isolated the other component of the heterodimer, Ku70, as determined by Western analysis and mass spectrometry. These results demonstrate the utility of scFv antibodies as invaluable reagents for functional genomics.
Collapse
Affiliation(s)
- R W Siegel
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Ku, a heterodimer of 70- and 80-kDa subunits, plays a general role in the metabolism of DNA ends in eukaryotic cells, including double-strand DNA break repair, V(D)J recombination, and maintenance of telomeres. We have utilized the yeast two-hybrid system to identify Ku70-interacting proteins other than Ku80. Two reactive clones were found to encode the dimerization domain of TRF2, a mammalian telomeric protein that binds to duplex TTAGGG repeats at chromosome ends. This interaction was confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells overexpressing TRF2. The transfected TFR2 colocalized with Ku70.
Collapse
Affiliation(s)
- K Song
- Department of Biochemistry, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
25
|
Abstract
Ku is a heterodimeric protein composed of approximately 70- and approximately 80-kDa subunits (Ku70 and Ku80) originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. Ku has high binding affinity for DNA ends and that is why originally it was known as a DNA end binding protein, but now it is known to also bind the DNA structure at nicks, gaps, hairpins, as well as the ends of telomeres. It has been reported also to bind with sequence specificity to DNA and with weak affinity to RNA. Ku is an abundant nuclear protein and is present in vertebrates, insects, yeast, and worms. Ku contains ssDNA-dependent ATPase and ATP-dependent DNA helicase activities. It is the regulatory subunit of the DNA-dependent protein kinase that phosphorylates many proteins, including SV-40 large T antigen, p53, RNA-polymerase II, RP-A, topoisomerases, hsp90, and many transcription factors such as c-Jun, c-Fos, oct-1, sp-1, c-Myc, TFIID, and many more. It seems to be a multifunctional protein that has been implicated to be involved directly or indirectly in many important cellular metabolic processes such as DNA double-strand break repair, V(D)J recombination of immunoglobulins and T-cell receptor genes, immunoglobulin isotype switching, DNA replication, transcription regulation, regulation of heat shock-induced responses, regulation of the precise structure of telomeric termini, and it also plays a novel role in G2 and M phases of the cell cycle. The mechanism underlying the regulation of all the diverse functions of Ku is still obscure.
Collapse
Affiliation(s)
- R Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi.
| | | |
Collapse
|
26
|
Koike M, Ikuta T, Miyasaka T, Shiomi T. Ku80 can translocate to the nucleus independent of the translocation of Ku70 using its own nuclear localization signal. Oncogene 1999; 18:7495-505. [PMID: 10602508 DOI: 10.1038/sj.onc.1203247] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ku antigen is a complex of Ku70 and Ku80 subunits and plays an important role in not only DNA double-strand breaks (DSB) repair and V(D)J recombination, but also in growth regulation. Ku is generally believed to always form and function as heterodimers on the basis of in vitro observations. Here we demonstrate that the localization of Ku80 does not completely coincide with that of Ku70. Ku70 and Ku80 were colocalized in the nucleus in the interphase but not in the late telophase/early G1 phase of the cell cycle. Since the in vivo function of Ku might be partially regulated by the control of its transport, we attempted to investigate the molecular mechanisms underlying the nuclear translocation of Ku. The nuclear translocation of Ku80 started during the late telophase/early G1 phase after the nuclear envelope was formed and this was preceded by the nuclear translocation of Ku70. Furthermore, we found that the Ku80 protein was transported to the nucleus without heterodimerization with Ku70. To understand in detail the mechanism of transport of Ku80, we attempted to identify the nuclear localization signal (NLS) of Ku80 and defined to a region spanning nine amino acid residues (positions 561 - 569). The Ku80 NLS was demonstrated to be mediated to the nuclear rim by two components of PTAC58 and PTAC97. All these findings support the idea that Ku80 can translocate to the nucleus using its own NLS independent of the translocation of Ku70.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | |
Collapse
|
27
|
Gell D, Jackson SP. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 1999; 27:3494-502. [PMID: 10446239 PMCID: PMC148593 DOI: 10.1093/nar/27.17.3494] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80.
Collapse
Affiliation(s)
- D Gell
- Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
28
|
Osipovich O, Duhe RJ, Hasty P, Durum SK, Muegge K. Defining functional domains of Ku80: DNA end binding and survival after radiation. Biochem Biophys Res Commun 1999; 261:802-7. [PMID: 10441505 DOI: 10.1006/bbrc.1999.1118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ku heterodimeric protein (Ku80/Ku70) is an essential component of the double-strand break DNA repair pathway in mammalian cells. We have recently defined a central region within Ku80 that is required for heterodimerization with Ku70. We now identified a core region within Ku80 (amino acids 210 to 531) that is necessary for binding of Ku to DNA ends. Interaction with Ku70 and DNA end binding are important for Ku80 function in vivo, since Ku80 mutants lacking DNA end binding activity were unable to restore radiation resistance in Ku80 deficient fibroblast cell lines. However, Ku80 mutants were identified that retained DNA end binding activity but were unable to restore radiation survival, thus pointing to additional functional properties of Ku80. An N-terminal deletional mutant of Ku80 was able to suppress wild type Ku80 function for radiation survival in several cell lines, thus demonstrating dominant negative function.
Collapse
Affiliation(s)
- O Osipovich
- SAIC, National Cancer Institute, Frederick, Maryland, 21702-1201, USA
| | | | | | | | | |
Collapse
|
29
|
Singleton BK, Torres-Arzayus MI, Rottinghaus ST, Taccioli GE, Jeggo PA. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 1999; 19:3267-77. [PMID: 10207052 PMCID: PMC84121 DOI: 10.1128/mcb.19.5.3267] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity.
Collapse
Affiliation(s)
- B K Singleton
- MRC Cell Mutation Unit, University of Sussex, Brighton BN1 9RR, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Yagura T, Sumi K. Molecular cloning and sequencing of cDNAs encoding homologues of human Ku70 and Ku80 autoantigen from Xenopus and their expression in various Xenopus tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:160-4. [PMID: 10209269 DOI: 10.1016/s0167-4781(99)00028-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We isolated cDNA clones encoding Ku70 and Ku80 homologues of Xenopus laevis from a cDNA library prepared from Xenopus oocytes. The nucleotide sequences of these Ku70 and Ku80 homologues have coding sequences of 1833 bp and a 611 aa protein, and 2178 bp and a 726 aa protein, respectively. The amino acid sequences deduced from the open reading frame of the Ku70 and Ku80 cDNA clones were highly homologous to those from Ku genes previously isolated, such as human (ca. 65% and ca. 62% identity, respectively) and mouse (ca. 65% and ca. 60%), and show a certain degree of homology to Drosophila (ca. 27% with Ku70), Caenorhabditis elegans (ca. 20% with Ku80) and Saccharomyces cerevisiae (ca. 23% and ca. 19%). Our detailed comparison of the predicted amino acid sequences among these species revealed the highly conserved octa-peptide LPFXXDIR common to both Xenopus Ku70 and Ku80 homologues in the region showing the high homology throughout the species tested. A Northern analysis using specific cDNA probes showed that Ku poly(A)+ mRNAs are expressed at high levels in Xenopus adult oocyte and testis.
Collapse
Affiliation(s)
- T Yagura
- Laboratory of Life Science, Department of Chemistry, Faculty of Science, Kwansei Gakuin University, Nishinomiya-shi, Hyogo 662-8501, Japan.
| | | |
Collapse
|
31
|
Jeggo P, Singleton B, Beamish H, Priestley A. Double strand break rejoining by the Ku-dependent mechanism of non-homologous end-joining. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:109-12. [PMID: 10196660 DOI: 10.1016/s0764-4469(99)80031-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA-dependent protein kinase functions in the repair of DNA double strand breaks (DSBs) and in V(D)J recombination. To gain insight into the function of DNA-PK in this process we have carried out a mutation analysis of Ku80 and DNA-PKcs. Mutations at multiple sites within the N-terminal two thirds of Ku80 result in loss of Ku70/80 interaction, loss of DNA end-binding activity and inability to complement Ku80 defective cell lines. In contrast, mutations in the carboxy terminal region of the protein do not impair DNA end-binding activity but decrease the ability of Ku to activate DNA-PK. To gain insight into important functional domains within DNA-PKcs, we have analysed defective mutants, including the mouse scid cell line, and the rodent mutants, irs-20 and V-3. Mutational changes in the carboxy terminal region have been identified in all cases. Our results strongly suggest that the C-terminus of DNA-PKcs is required for kinase activity.
Collapse
Affiliation(s)
- P Jeggo
- MRCCMU, University of Sussex, Brighton, East Sussex, UK
| | | | | | | |
Collapse
|
32
|
Zdzienicka MZ. Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie 1999; 81:107-16. [PMID: 10214915 DOI: 10.1016/s0300-9084(99)80043-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all organisms multiple pathways to repair DNA double-strand breaks (DSB) have been identified. In mammalian cells DSB are repaired by two distinct pathways, homologous and non-homologous (illegitimate) recombination. X-ray-sensitive mutants have provided a tool for the identification and understanding of the illegitimate recombination pathway in mammalian cells. Two (sub-)pathways can be distinguished, the first mediated by DNA-PK-dependent protein kinase (DNA-PK), and the second directed by the hMre11/hRad50 complex. A variety of mutants impaired in DSB repair by illegitimate recombination, with mutations in Ku, DNA-PKcs, XRCC4 or nibrin, have been described. Herein, the characterization of these mutants with respect to the impaired cellular function and the molecular defect is provided. Further studies on these mutants, as well as on new mutants impaired in as-of-yet unidentified pathways, should be helpful to a better understanding of DSB repair and of the processes leading to genome instability and cancer.
Collapse
Affiliation(s)
- M Z Zdzienicka
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University-LUMC, The Netherlands
| |
Collapse
|
33
|
Koike M, Miyasaka T, Mimori T, Shiomi T. Subcellular localization and protein-protein interaction regions of Ku proteins. Biochem Biophys Res Commun 1998; 252:679-85. [PMID: 9837766 DOI: 10.1006/bbrc.1998.9368] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ku protein is a complex of Ku70 and Ku80 subunits and is capable of binding promoters in a sequence-specific manner, although it remains unclear whether Ku is involved in transcriptional regulation. We examined the subcellular localization and determined the interaction regions of Ku. Our results indicate that heterodimers of Ku70 and Ku80 are localized in the nucleus, and that the stretches from amino acid (aa) 378 to 482 of Ku70 and from aa 374 to 502 of Ku80 are necessary for heterodimerization. These interaction regions do not contain any previously recognized protein-protein interaction motifs. To determine whether Ku contains a potential transcriptional activation domain, we examined N- and C-terminal deletion mutants of Ku70 and Ku80 for their ability to activate transcription in the GAL4-based one-hybrid system. We found that the whole Ku protein had no transcriptional activity, although the N-terminal peptide fragment of Ku70 was capable of activating transcription of the HIS3 and lacZ reporter genes in yeast cells.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba, Inage-ku, 263-8555, Japan
| | | | | | | |
Collapse
|
34
|
Wang J, Dong X, Reeves WH. A model for Ku heterodimer assembly and interaction with DNA. Implications for the function of Ku antigen. J Biol Chem 1998; 273:31068-74. [PMID: 9813006 DOI: 10.1074/jbc.273.47.31068] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ku autoantigen, a heterodimer of 70- and 80-kDa subunits, is a DNA end-binding factor critical for DNA repair. Two domains of p70 mediate DNA binding, one on the C-terminal and one on the N-terminal portion. The latter must dimerize with p80 in order to bind DNA, whereas the former is p80-independent. Both must be intact for end binding activity in gel shift assays. To evaluate the role of p80 in DNA binding, deletion mutants were co-expressed with full-length p70 using recombinant baculoviruses. We show by several criteria that amino acids 371-510 of p80 interact with p70. Both of the p70 dimerization domains bind to the same region of p80, but apparently to separate sites within that region. In DNA immunoprecipitation assays, amino acids 179-510 of p80 were required for p80-dependent DNA binding of p70, whereas in gel shift assays, amino acids 179-732 were necessary. Interestingly, both the p80-dependent and the p80-independent DNA binding sites preferentially bound to DNA ends, suggesting a model in which a single Ku heterodimer may juxtapose two broken DNA ends physically, facilitating their rejoining by DNA ligases.
Collapse
Affiliation(s)
- J Wang
- Departments of Medicine, Microbiology and Immunology, Thurston Arthritis Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7280, USA
| | | | | |
Collapse
|