1
|
Schaeffer L, Lindner L, Pavlovic G, Hérault Y, Birling MC. CRISMERE Chromosome Engineering in Mouse and Rat. Methods Mol Biol 2023; 2631:277-297. [PMID: 36995673 DOI: 10.1007/978-1-0716-2990-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
CRISPR/Cas9 technology is a versatile tool for engineering biology that has dramatically transformed our ability to manipulate genomes. In this protocol, we use its capacity to generate two double-strand breaks simultaneously, at precise positions in the genome, to generate mouse or rat lines with deletion, inversion, and duplication of a specific genomic segment. The technic is called CRISMERE for CRISpr-MEdiated REarrangement. This protocol describes the different steps to generate and validate the different chromosomal rearrangements that can be obtained with the technology. These new genetic configurations can be useful to model rare diseases with copy number variation, understand the genomic organization, or provide genetic tools (like balancer chromosome) to keep lethal mutations.
Collapse
Affiliation(s)
- Laurence Schaeffer
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Loic Lindner
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Yann Hérault
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
2
|
Strobl F, Stelzer EHK. A deterministic genotyping workflow reduces waste of transgenic individuals by two-thirds. Sci Rep 2021; 11:15325. [PMID: 34321513 PMCID: PMC8319312 DOI: 10.1038/s41598-021-94288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/08/2021] [Indexed: 11/28/2022] Open
Abstract
We present a deterministic workflow for genotyping single and double transgenic individuals directly upon nascence that prevents overproduction and reduces wasted animals by two-thirds. In our vector concepts, transgenes are accompanied by two of four clearly distinguishable transformation markers that are embedded in interweaved, but incompatible Lox site pairs. Following Cre-mediated recombination, the genotypes of single and double transgenic individuals were successfully identified by specific marker combinations in 461 scorings.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe-Universität Frankfurt Am Main (Campus Riedberg), Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany.
| | - Ernst H K Stelzer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe-Universität Frankfurt Am Main (Campus Riedberg), Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Strobl F, Anderl A, Stelzer EHK. A universal vector concept for a direct genotyping of transgenic organisms and a systematic creation of homozygous lines. eLife 2018; 7:e31677. [PMID: 29543587 PMCID: PMC5854464 DOI: 10.7554/elife.31677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022] Open
Abstract
Diploid transgenic organisms are either hemi- or homozygous. Genetic assays are, therefore, required to identify the genotype. Our AGameOfClones vector concept uses two clearly distinguishable transformation markers embedded in interweaved, but incompatible Lox site pairs. Cre-mediated recombination leads to hemizygous individuals that carry only one marker. In the following generation, heterozygous descendants are identified by the presence of both markers and produce homozygous progeny that are selected by the lack of one marker. We prove our concept in Tribolium castaneum by systematically creating multiple functional homozygous transgenic lines suitable for long-term fluorescence live imaging. Our approach saves resources and simplifies transgenic organism handling. Since the concept relies on the universal Cre-Lox system, it is expected to work in all diploid model organisms, for example, insects, zebrafish, rodents and plants. With appropriate adaptions, it can be used in knock-out assays to preselect homozygous individuals and thus minimize the number of wasted animals.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology, BMLS, CEF-MCGoethe UniversitätFrankfurt am MainGermany
| | - Anita Anderl
- Physical Biology, BMLS, CEF-MCGoethe UniversitätFrankfurt am MainGermany
| | - Ernst HK Stelzer
- Physical Biology, BMLS, CEF-MCGoethe UniversitätFrankfurt am MainGermany
| |
Collapse
|
4
|
Birling MC, Herault Y, Pavlovic G. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome 2017; 28:291-301. [PMID: 28677007 PMCID: PMC5569124 DOI: 10.1007/s00335-017-9703-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023]
Abstract
Modeling human disease has proven to be a challenge for the scientific community. For years, generating an animal model was complicated and restricted to very few species. With the rise of CRISPR/Cas9, it is now possible to generate more or less any animal model. In this review, we will show how this technology is and will change our way to obtain relevant disease animal models and how it should impact human health.
Collapse
Affiliation(s)
- Marie-Christine Birling
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France.
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, 67404, Illkirch, France
| |
Collapse
|
5
|
Parmar MS, Mishra SR, Somal A, Pandey S, Kumar GS, Sarkar M, Chandra V, Sharma GT. Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers. Anim Reprod Sci 2017; 180:66-77. [PMID: 28363499 DOI: 10.1016/j.anireprosci.2017.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 11/25/2022]
Abstract
The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs.
Collapse
Affiliation(s)
- Mehtab S Parmar
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - Smruti Ranjan Mishra
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - Anjali Somal
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - Sriti Pandey
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - G Sai Kumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - Mihir Sarkar
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - Vikash Chandra
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India
| | - G Taru Sharma
- Reproductive Physiology Laboratory, Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, UP, India.
| |
Collapse
|
6
|
Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci Rep 2017; 7:43331. [PMID: 28266534 PMCID: PMC5339700 DOI: 10.1038/srep43331] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/24/2017] [Indexed: 01/05/2023] Open
Abstract
Modelling Down syndrome (DS) in mouse has been crucial for the understanding of the disease and the evaluation of therapeutic targets. Nevertheless, the modelling so far has been limited to the mouse and, even in this model, generating duplication of genomic regions has been labour intensive and time consuming. We developed the CRISpr MEdiated REarrangement (CRISMERE) strategy, which takes advantage of the CRISPR/Cas9 system, to generate most of the desired rearrangements from a single experiment at much lower expenses and in less than 9 months. Deletions, duplications, and inversions of genomic regions as large as 24.4 Mb in rat and mouse founders were observed and germ line transmission was confirmed for fragment as large as 3.6 Mb. Interestingly we have been able to recover duplicated regions from founders in which we only detected deletions. CRISMERE is even more powerful than anticipated it allows the scientific community to manipulate the rodent and probably other genomes in a fast and efficient manner which was not possible before.
Collapse
|
7
|
Xing Z, Li Y, Pao A, Bennett AS, Tycko B, Mobley WC, Yu YE. Mouse-based genetic modeling and analysis of Down syndrome. Br Med Bull 2016; 120:111-122. [PMID: 27789459 PMCID: PMC5146682 DOI: 10.1093/bmb/ldw040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Down syndrome (DS), caused by human trisomy 21 (Ts21), can be considered as a prototypical model for understanding the effects of chromosomal aneuploidies in other diseases. Human chromosome 21 (Hsa21) is syntenically conserved with three regions in the mouse genome. SOURCES OF DATA A review of recent advances in genetic modeling and analysis of DS. Using Cre/loxP-mediated chromosome engineering, a substantial number of new mouse models of DS have recently been generated, which facilitates better understanding of disease mechanisms in DS. AREAS OF AGREEMENT Based on evolutionary conservation, Ts21 can be modeled by engineered triplication of Hsa21 syntenic regions in mice. The validity of the models is supported by the exhibition of DS-related phenotypes. AREAS OF CONTROVERSY Although substantial progress has been made, it remains a challenge to unravel the relative importance of specific candidate genes and molecular mechanisms underlying the various clinical phenotypes. GROWING POINTS Further understanding of mechanisms based on data from mouse models, in parallel with human studies, may lead to novel therapies for clinical manifestations of Ts21 and insights to the roles of aneuploidies in other developmental disorders and cancers.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Yichen Li
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Abigail S Bennett
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Benjamin Tycko
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - William C Mobley
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA .,Cellular and Molecular Biology Program, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Park YG, Lee SE, Kim EY, Hyun H, Shin MY, Son YJ, Kim SY, Park SP. Effects of Feeder Cell Types on Culture of Mouse Embryonic Stem Cell In Vitro. Dev Reprod 2016; 19:119-26. [PMID: 27004268 PMCID: PMC4801015 DOI: 10.12717/dr.2015.19.3.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suitable feeder cell layer is important for culture of embryonic stem (ES) cells. In this study, we investigated the effect of two kinds of the feeder cell, MEF cells and STO cells, layer to mouse ES (mES) cell culture for maintenance of stemness. We compare the colony formations, alkaline phosphatase (AP) activities, expression of pluripotency marker genes and proteins of D3 cell colonies cultured on MEF feeder cell layer (D3/MEF) or STO cell layers (D3/STO) compared to feeder free condition (D3/-) as a control group. Although there were no differences to colony formations and AP activities, interestingly, the transcripts level of pluripotency marker genes, Pou5f1 and Nanog were highly expressed in D3/MEF (79 and 93) than D3/STO (61and 77) or D3/- (65 and 81). Also, pluripotency marker proteins, NANOG and SOX-2, were more synthesized in D3/MEF (72.8±7.69 and 81.2±3.56) than D3/STO (32.0±4.30 and 56.0±4.90) or D3/- (55.0±4.64 and 62.0±6.20). These results suggest that MEF feeder cell layer is more suitable to mES cell culture.
Collapse
Affiliation(s)
- Yun-Gwi Park
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea; Mirae Cell Bio, Seoul 05066, Korea
| | - Hyuk Hyun
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Min-Young Shin
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yeo-Jin Son
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Su-Young Kim
- Dept. of Preventive Medicine, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, Jeju 63243, Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea; Mirae Cell Bio, Seoul 05066, Korea
| |
Collapse
|
9
|
Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Res 2015; 1629:340-50. [PMID: 26474913 DOI: 10.1016/j.brainres.2015.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
CYFIP1 maps to the interval between proximal breakpoint 1 (BP1) and breakpoint 2 (BP2) of chromosomal 15q11-q13 deletions that are implicated in the Angelman (AS) and Prader-Willi syndrome (PWS). There is only one breakpoint (BP3) at the distal end of deletion. CYFIP1 is deleted in AS patients with the larger class I deletion (BP1 to BP3) and the neurological presentations in these patients are more severe than that of patients with class II (BP2 to BP3) deletion. The haploinsufficiency of CYFIP1 is hypothesized to contribute to more severe clinical presentations in class I AS patients. The expression of CYFIP1 is suggested to be bi-allelic in literature but the possibility of parental origin of expression is not completely excluded. We generated and characterized Cyfip1 mutant mice. Homozygous Cyfip1 mice were early embryonic lethal. However, there was a parental origin specific effect between paternal Cyfip1 deficiency (m+/p-) and maternal deficiency (m-/p+) on both synaptic transmissions and behaviors in hippocampal CA1 synapses despite no evidence supporting the parental origin difference for the expression. Both m-/p+ and m+/p- showed the impaired input-output response and paired-pulse facilitation. While the long term-potentiation and group I mGluR mediated long term depression induced by DHPG was not different between Cyfip1 m-/p+ and m+/p- mice, the initial DHPG induced response was significantly enhanced in m-/p+ but not in m+/p- mice. m+/p- but not m-/p+ mice displayed increased freezing in cued fear conditioning and abnormal transitions in zero-maze test. The impaired synaptic transmission and behaviors in haploinsufficiency of Cyfip1 mice provide the evidence supporting the role of CYFIP1 modifying the clinical presentation of class I AS patients and in human neuropsychiatric disorders.
Collapse
|
10
|
Brault V, Duchon A, Romestaing C, Sahun I, Pothion S, Karout M, Borel C, Dembele D, Bizot JC, Messaddeq N, Sharp AJ, Roussel D, Antonarakis SE, Dierssen M, Hérault Y. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet 2015; 11:e1005062. [PMID: 25803843 PMCID: PMC4372517 DOI: 10.1371/journal.pgen.1005062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.
Collapse
Affiliation(s)
- Véronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Ignasi Sahun
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Stéphanie Pothion
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, Orléans, France
| | - Mona Karout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Damien Roussel
- LEHNA, CNRS UMR502, Université de Lyon, Villeurbanne, France
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch, France
| |
Collapse
|
11
|
Lagutina IV, Valentine V, Picchione F, Harwood F, Valentine MB, Villarejo-Balcells B, Carvajal JJ, Grosveld GC. Modeling of the human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosome translocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoS Genet 2015; 11:e1004951. [PMID: 25659124 PMCID: PMC4319822 DOI: 10.1371/journal.pgen.1004951] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice.
Collapse
Affiliation(s)
- Irina V. Lagutina
- Departments of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Virginia Valentine
- Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabrizio Picchione
- Departments of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Frank Harwood
- Departments of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Marcus B. Valentine
- Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | - Jaime J. Carvajal
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Sevilla, Spain
| | - Gerard C. Grosveld
- Departments of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yan Q, Quan Y, Sun H, Peng X, Zou Z, Alcorn JL, Wetsel RA, Wang D. A site-specific genetic modification for induction of pluripotency and subsequent isolation of derived lung alveolar epithelial type II cells. Stem Cells 2014; 32:402-13. [PMID: 24123810 DOI: 10.1002/stem.1570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types are still major obstacles. Here we report a novel strategy using a single nonviral site-specific targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific Neomycin(R) transgene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of β-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc, and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random integration-free and exogenous reprogramming factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultrastructural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications.
Collapse
Affiliation(s)
- Qing Yan
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin HJ, Lee SH, Wu JL, Duann YF, Chen JY. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1525-1539. [PMID: 23670400 DOI: 10.1007/s10695-013-9806-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.
Collapse
Affiliation(s)
- Heng-Ju Lin
- Graduate Institute of Engineering Technology-Doctoral, National Taipei University of Technology, 1 Chung-Hsiao E. Rd., Sec. 3, Taipei, 10608, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Migdalska AM, van der Weyden L, Ismail O, The Sanger Mouse Genetics Project, Rust AG, Rashid M, White JK, Sánchez-Andrade G, Lupski JR, Logan DW, Arends MJ, Adams DJ. Generation of the Sotos syndrome deletion in mice. Mamm Genome 2012; 23:749-757. [PMID: 22926222 PMCID: PMC3510424 DOI: 10.1007/s00335-012-9416-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022]
Abstract
Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2-q35.3 in humans (Df(13)Ms2Dja ( +/- ) mice). Surprisingly Df(13)Ms2Dja ( +/- ) mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja ( +/- ) mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik-B4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.
Collapse
Affiliation(s)
- Anna M. Migdalska
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Ozama Ismail
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | | | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Jacqueline K. White
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Gabriela Sánchez-Andrade
- Genetics of Instinctive Behaviour, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Darren W. Logan
- Genetics of Instinctive Behaviour, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Mark J. Arends
- Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0QQ UK
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| |
Collapse
|
15
|
Kim EY, Noh EJ, Park HY, Park MJ, Noh EH, Lee JB, Jeong CJ, Lee DS, Riu KZ, Park SP. Establishment of Bovine Embryonic Stem Cell Lines Using a Minimized Feeder Cell Drop. Cell Reprogram 2012. [DOI: 10.1089/cell.2012.0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Eun Young Kim
- Mirae Biotech, Seoul 143-854, Korea
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
| | - Eun Ji Noh
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Hyo Young Park
- Mirae Biotech, Seoul 143-854, Korea
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
| | - Min Jee Park
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Eun Hyung Noh
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | | | | | - Dong Sun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Key Zung Riu
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Se Pill Park
- Mirae Biotech, Seoul 143-854, Korea
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| |
Collapse
|
16
|
Mervis C, Dida J, Lam E, Crawford-Zelli N, Young E, Henderson D, Onay T, Morris C, Woodruff-Borden J, Yeomans J, Osborne L. Duplication of GTF2I results in separation anxiety in mice and humans. Am J Hum Genet 2012; 90:1064-70. [PMID: 22578324 DOI: 10.1016/j.ajhg.2012.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/08/2012] [Accepted: 04/06/2012] [Indexed: 11/27/2022] Open
Abstract
Duplication (dup7q11.23) and deletion (Williams syndrome) of chromosomal region 7q11.23 cause neurodevelopmental disorders with contrasting anxiety phenotypes. We found that 30% of 4- to 12-year-olds with dup7q11.23 but fewer than 5% of children with WS or in the general population met diagnostic criteria for a separation-anxiety disorder. To address the role of one commonly duplicated or deleted gene in separation anxiety, we compared mice that had varying numbers of Gtf2i copies. Relative to mouse pups with one or two Gtf2i copies, pups with additional Gtf2i copies showed significantly increased maternal separation-induced anxiety as measured by ultrasonic vocalizations. This study links the copy number of a single gene from 7q11.23 to separation anxiety in both mice and humans, highlighting the utility of mouse models in dissecting specific gene functions for genomic disorders that span many genes. This study also offers insight into molecular separation-anxiety pathways that might enable the development of targeted therapeutics.
Collapse
|
17
|
Migdalska AM, van der Weyden L, Ismail O, White JK, Project SMG, Sánchez-Andrade G, Logan DW, Arends MJ, Adams DJ. Modeling partial monosomy for human chromosome 21q11.2-q21.1 reveals haploinsufficient genes influencing behavior and fat deposition. PLoS One 2012; 7:e29681. [PMID: 22276124 PMCID: PMC3262805 DOI: 10.1371/journal.pone.0029681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/02/2011] [Indexed: 01/10/2023] Open
Abstract
Haploinsufficiency of part of human chromosome 21 results in a rare condition known as Monosomy 21. This disease displays a variety of clinical phenotypes, including intellectual disability, craniofacial dysmorphology, skeletal and cardiac abnormalities, and respiratory complications. To search for dosage-sensitive genes involved in this disorder, we used chromosome engineering to generate a mouse model carrying a deletion of the Lipi-Usp25 interval, syntenic with 21q11.2-q21.1 in humans. Haploinsufficiency for the 6 genes in this interval resulted in no gross morphological defects and behavioral analysis performed using an open field test, a test of anxiety, and tests for social interaction were normal in monosomic mice. Monosomic mice did, however, display impaired memory retention compared to control animals. Moreover, when fed a high-fat diet (HFD) monosomic mice exhibited a significant increase in fat mass/fat percentage estimate compared with controls, severe fatty changes in their livers, and thickened subcutaneous fat. Thus, genes within the Lipi-Usp25 interval may participate in memory retention and in the regulation of fat deposition.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Behavior, Animal
- Blotting, Southern
- Cell Line
- Chromosome Deletion
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Diet, High-Fat
- Female
- Haploinsufficiency/genetics
- Haploinsufficiency/physiology
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Maze Learning
- Mice
- Monosomy/genetics
- Recognition, Psychology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | - Ozama Ismail
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | | | | | - Darren W. Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Mark J. Arends
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
18
|
Brault V, Martin B, Costet N, Bizot JC, Hérault Y. Characterization of PTZ-induced seizure susceptibility in a down syndrome mouse model that overexpresses CSTB. PLoS One 2011; 6:e27845. [PMID: 22140471 PMCID: PMC3227573 DOI: 10.1371/journal.pone.0027845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/26/2011] [Indexed: 12/27/2022] Open
Abstract
Down syndrome (DS) is a complex genetic syndrome characterized by intellectual disability, dysmorphism and variable additional physiological traits. Current research progress has begun to decipher the neural mechanisms underlying cognitive impairment, leading to new therapeutic perspectives. Pentylenetetrazol (PTZ) has recently been found to have positive effects on learning and memory capacities of a DS mouse model and is foreseen to treat DS patients. But PTZ is also known to be a convulsant drug at higher dose and DS persons are more prone to epileptic seizures than the general population. This raises concerns over what long-term effects of treatment might be in the DS population. The cause of increased propensity for epilepsy in the DS population and which Hsa21 gene(s) are implicated remain unknown. Among Hsa21 candidate genes in epilepsy, CSTB, coding for the cystein protease inhibitor cystatin B, is involved in progressive myoclonus epilepsy and ataxia in both mice and human. Thus we aim to evaluate the effect of an increase in Cstb gene dosage on spontaneous epileptic activity and susceptibility to PTZ-induced seizure. To this end we generated a new mouse model trisomic for Cstb by homologous recombination. We verified that increasing copy number of Cstb from Trisomy (Ts) to Tetrasomy (Tt) was driving overexpression of the gene in the brain, we checked transgenic animals for presence of locomotor activity and electroencephalogram (EEG) abnormalities characteristic of myoclonic epilepsy and we tested if those animals were prone to PTZ-induced seizure. Overall, the results of the analysis shows that an increase in Cstb does not induce any spontaneous epileptic activity and neither increase or decrease the propensity of Ts and Tt mice to myoclonic seizures suggesting that Ctsb dosage should not interfere with PTZ-treatment.
Collapse
Affiliation(s)
- Véronique Brault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Inserm U596, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Benoît Martin
- Inserm U642, Rennes, France
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France
| | - Nathalie Costet
- Inserm U642, Rennes, France
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France
| | | | - Yann Hérault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC), Inserm U596, CNRS UMR7104, Université de Strasbourg, Illkirch, France
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, Orléans, France
- Institut Français Clinique de la Souris, GIE CERBM, Illkirch, France
| |
Collapse
|
19
|
Carmona-Mora P, Molina J, Encina CA, Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the potocki-lupski syndromes. Curr Genomics 2011; 10:259-68. [PMID: 19949547 PMCID: PMC2709937 DOI: 10.2174/138920209788488508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/29/2022] Open
Abstract
Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed.
Collapse
|
20
|
Carmona-Mora P, Walz K. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior. Curr Genomics 2011; 11:607-17. [PMID: 21629438 PMCID: PMC3078685 DOI: 10.2174/138920210793360952] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/08/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022] Open
Abstract
Genomic structural changes, such as gene Copy Number Variations (CNVs) are extremely abundant in the human genome. An enormous effort is currently ongoing to recognize and catalogue human CNVs and their associations with abnormal phenotypic outcomes. Recently, several reports related neuropsychiatric diseases (i.e. autism spectrum disorders, schizophrenia, mental retardation, behavioral problems, epilepsy) with specific CNV. Moreover, for some conditions, both the deletion and duplication of the same genomic segment are related to the phenotype. Syndromes associated with CNVs (microdeletion and microduplication) have long been known to display specific neurobehavioral traits. It is important to note that not every gene is susceptible to gene dosage changes and there are only a few dosage sensitive genes. Smith-Magenis (SMS) and Potocki-Lupski (PTLS) syndromes are associated with a reciprocal microdeletion and microduplication within chromosome 17p11.2. in humans. The dosage sensitive gene responsible for most phenotypes in SMS has been identified: the Retinoic Acid Induced 1 (RAI1). Studies on mouse models and humans suggest that RAI1 is likely the dosage sensitive gene responsible for clinical features in PTLS. In addition, the human RAI1 gene has been implicated in several neurobehavioral traits as spinocerebellar ataxia (SCA2), schizophrenia and non syndromic autism. In this review we discuss the evidence of RAI1 as a dosage sensitive gene, its relationship with different neurobehavioral traits, gene structure and mutations, and what is known about its molecular and cellular function, as a first step in the elucidation of the mechanisms that relate dosage sensitive genes with abnormal neurobehavioral outcomes.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
21
|
Hérault Y, Duchon A, Maréchal D, Raveau M, Pereira PL, Dalloneau E, Brault V. Controlled somatic and germline copy number variation in the mouse model. Curr Genomics 2011; 11:470-80. [PMID: 21358991 PMCID: PMC3018727 DOI: 10.2174/138920210793176038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022] Open
Abstract
Changes in the number of chromosomes, but also variations in the copy number of chromosomal regions have been described in various pathological conditions, such as cancer and aneuploidy, but also in normal physiological condition. Our classical view of DNA replication and mitotic preservation of the chromosomal integrity is now challenged as new technologies allow us to observe such mosaic somatic changes in copy number affecting regions of chromosomes with various sizes. In order to go further in the understanding of copy number influence in normal condition we could take advantage of the novel strategy called Targeted Asymmetric Sister Chromatin Event of Recombination (TASCER) to induce recombination during the G2 phase so that we can generate deletions and duplications of regions of interest prior to mitosis. Using this approach in the mouse we could address the effects of copy number variation and segmental aneuploidy in daughter cells and allow us to explore somatic mosaics for large region of interest in the mouse.
Collapse
Affiliation(s)
- Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Large-scale projects are providing rapid global access to a wealth of mouse genetic resources to help discover disease genes and to manipulate their function.
Collapse
Affiliation(s)
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
23
|
Abstract
The mouse has become an important model for understanding human development, physiology and disease because of its genetic and biological similarity to humans. Desired mouse mutants with precise genetic alterations can now be generated through gene targeting in mouse embryonic stem cells. The rate-limiting factor in a gene-targeting experiment is the time needed for cloning to construct targeting vectors. The establishment of the Mutagenic Insertion and Chromosome Engineering Resource has made available targeting vectors for the insertional mutagenesis of a large number of mouse genes as well as for chromosome engineering throughout the mouse genome. This unique resource has enriched the repertoire of the genetic reagents for targeted manipulation of the mouse genome.
Collapse
Affiliation(s)
- Chunhong Liu
- Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo, New York, NY, USA
| | | | | |
Collapse
|
24
|
Yu T, Clapcote SJ, Li Z, Liu C, Pao A, Bechard AR, Carattini-Rivera S, Matsui SI, Roder JC, Baldini A, Mobley WC, Bradley A, Yu YE. Deficiencies in the region syntenic to human 21q22.3 cause cognitive deficits in mice. Mamm Genome 2010; 21:258-67. [PMID: 20512340 DOI: 10.1007/s00335-010-9262-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Copy-number variation in the human genome can be disease-causing or phenotypically neutral. This type of genetic rearrangement associated with human chromosome 21 (Hsa21) underlies partial Monosomy 21 and Trisomy 21. Mental retardation is a major clinical manifestation of partial Monosomy 21. To model this human chromosomal deletion disorder, we have generated novel mouse mutants carrying heterozygous deletions of the 2.3- and 1.1-Mb segments on mouse chromosome 10 (Mmu10) and Mmu17, respectively, which are orthologous to the regions on human 21q22.3, using Cre/loxP-mediated chromosome engineering. Alterations of the transcriptional levels of genes within the deleted intervals reflect gene-dosage effects in the mutant mice. The analysis of cognitive behaviors shows that the mutant mice carrying the deletion on either Mmu10 or Mmu17 are impaired in learning and memory. Therefore, these mutants represent mouse models for Monosomy 21-associated mental retardation, which can serve as a powerful tool to study the molecular mechanism underlying the clinical phenotype and should facilitate efforts to identify the haploinsufficient causative genes.
Collapse
Affiliation(s)
- Tao Yu
- Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui SI, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE. A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 2010; 19:2780-91. [PMID: 20442137 DOI: 10.1093/hmg/ddq179] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Down syndrome (DS) is caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is the most common genetic cause for developmental cognitive disability. The regions on Hsa21 are syntenically conserved with three regions located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. In this report, we describe a new mouse model for DS that carries duplications spanning the entire Hsa21 syntenic regions on all three mouse chromosomes. This mouse mutant exhibits DS-related neurological defects, including impaired cognitive behaviors, reduced hippocampal long-term potentiation and hydrocephalus. These results suggest that when all the mouse orthologs of the Hsa21 genes are triplicated, an abnormal cognitively relevant phenotype is the final outcome of the elevated expressions of these orthologs as well as all the possible functional interactions among themselves and/or with other mouse genes. Because of its desirable genotype and phenotype, this mutant may have the potential to serve as one of the reference models for further understanding the developmental cognitive disability associated with DS and may also be used for developing novel therapeutic interventions for this clinical manifestation of the disorder.
Collapse
Affiliation(s)
- Tao Yu
- Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis 2010; 48:73-85. [PMID: 20095055 DOI: 10.1002/dvg.20594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research.
Collapse
Affiliation(s)
- Chunmei Guan
- College of Life Science, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Bailey JM, Creamer BA, Hollingsworth MA. What a fish can learn from a mouse: principles and strategies for modeling human cancer in mice. Zebrafish 2010; 6:329-37. [PMID: 20047466 DOI: 10.1089/zeb.2009.0626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review highlights the current techniques used to generate transgenic mouse models of cancer, with an emphasis on recent advances in the use of ubiquitous promoters, models that use Cre-loxP and Flip-FRT recombinase technology, inducible systems, RNAi to target genes, and transposon mutagenesis. A concluding section discusses new imaging systems that visualize tumor progression and the microenvironment in vivo. In this review, these techniques and strategies used in mouse models of cancer are highlighted, as they are pertinent and relevant to the development of zebrafish models of cancer.
Collapse
Affiliation(s)
- Jennifer M Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
28
|
Li HH, Roy M, Kuscuoglu U, Spencer CM, Halm B, Harrison KC, Bayle JH, Splendore A, Ding F, Meltzer LA, Wright E, Paylor R, Deisseroth K, Francke U. Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice. EMBO Mol Med 2010; 1:50-65. [PMID: 20049703 PMCID: PMC3378107 DOI: 10.1002/emmm.200900003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The neurodevelopmental disorder Williams-Beuren syndrome is caused by spontaneous approximately 1.5 Mb deletions comprising 25 genes on human chromosome 7q11.23. To functionally dissect the deletion and identify dosage-sensitive genes, we created two half-deletions of the conserved syntenic region on mouse chromosome 5G2. Proximal deletion (PD) mice lack Gtf2i to Limk1, distal deletion (DD) mice lack Limk1 to Fkbp6, and the double heterozygotes (D/P) model the complete human deletion. Gene transcript levels in brain are generally consistent with gene dosage. Increased sociability and acoustic startle response are associated with PD, and cognitive defects with DD. Both PD and D/P males are growth-retarded, while skulls are shortened and brains are smaller in DD and D/P. Lateral ventricle (LV) volumes are reduced, and neuronal cell density in the somatosensory cortex is increased, in PD and D/P. Motor skills are most impaired in D/P. Together, these partial deletion mice replicate crucial aspects of the human disorder and serve to identify genes and gene networks contributing to the neural substrates of complex behaviours and behavioural disorders.
Collapse
Affiliation(s)
- Hong Hua Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mikkola ML, Costanzo A, Thesleff I, Roop DR, Koster MI. Treasure or artifact: a decade of p63 research speaks for itself. Cell Death Differ 2010; 17:180-3; author reply 184-6. [PMID: 19876067 PMCID: PMC2795030 DOI: 10.1038/cdd.2009.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
30
|
Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18:625-34. [PMID: 20087316 DOI: 10.1038/mt.2009.317] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Collapse
Affiliation(s)
- Dachun Wang
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
31
|
TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 2009; 11:1451-7. [PMID: 19898465 DOI: 10.1038/ncb1988] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/19/2009] [Indexed: 12/14/2022]
Abstract
p63 is distinct from its homologue p53 in that its role as a tumour suppressor is controversial, an issue complicated by the existence of two classes of p63 isoforms. Here we show that TAp63 isoforms are robust mediators of senescence that inhibit tumorigenesis in vivo. Whereas gain of TAp63 induces senescence, loss of p63 enhances sarcoma development in mice lacking p53. Using a new TAp63-specific conditional mouse model, we demonstrate that TAp63 isoforms are essential for Ras-induced senescence, and that TAp63 deficiency increases proliferation and enhances Ras-mediated oncogenesis in the context of p53 deficiency in vivo. TAp63 induces senescence independently of p53, p19(Arf) and p16(Ink4a), but requires p21(Waf/Cip1) and Rb. TAp63-mediated senescence overrides Ras-driven transformation of p53-deficient cells, preventing tumour initiation, and doxycycline-regulated expression of TAp63 activates p21(Waf/Cip1), induces senescence and inhibits progression of established tumours in vivo. Our findings demonstrate that TAp63 isoforms function as tumour suppressors by regulating senescence through p53-independent pathways. The ability of TAp63 to trigger senescence and halt tumorigenesis irrespective of p53 status identifies TAp63 as a potential target of anti-cancer therapy for human malignancies with compromised p53.
Collapse
|
32
|
Goossens D, Trinh-Trang-Tan MM, Debbia M, Ripoche P, Vilela-Lamego C, Louache F, Vainchenker W, Colin Y, Cartron JP. Generation and characterisation of Rhd and Rhag null mice. Br J Haematol 2009; 148:161-72. [PMID: 19807729 DOI: 10.1111/j.1365-2141.2009.07928.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mouse Rhd* and Rhag* genes were targeted using insertional vectors; the resulting knockout mice, and double-knockout descendants, were analysed. Rhag glycoprotein deficiency entailed defective assembly of the erythroid Rh complex with complete loss of Rh and intercellular adhesion molecule 4 (ICAM-4), but not CD47, expression. Absence of the Rh protein induced a loss of ICAM-4, and only a moderate reduction of Rhag expression. Double knockout phenotype was similar to that of Rhag targeted mice. Rhd and Rhag deficient mice exhibited neither the equivalent of human Rh(null) haemolytic anaemia nor any clinical or cellular abnormalities. Rhd-/- and Rhag-/- erythrocytes showed decreased basal adhesion to an endothelial cell line resulting from defective ICAM-4 membrane expression. There was no difference in recovery from phenylhydrazine-induced haematopoietic stress for double knockout mice as compared to controls, suggesting that ICAM-4 might be dispensable during stress erythropoiesis. Ammonia and methylammonia transport in erythrocytes was severely impaired in Rhag-/- but only slightly in Rhd-/- animals that significantly expressed Rhag, supporting the view that RhAG and Rhag, but not Rh, may act as ammonium transporters in human and mouse erythrocytes. These knockout mice should prove useful for further dissecting the physiological roles of Rh and Rhag proteins in the red cell membrane.
Collapse
Affiliation(s)
- Dominique Goossens
- Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pereira PL, Magnol L, Sahún I, Brault V, Duchon A, Prandini P, Gruart A, Bizot JC, Chadefaux-Vekemans B, Deutsch S, Trovero F, Delgado-García JM, Antonarakis SE, Dierssen M, Herault Y. A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet 2009; 18:4756-69. [PMID: 19783846 PMCID: PMC2778371 DOI: 10.1093/hmg/ddp438] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1–U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1–U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1–U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1–U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory.
Collapse
Affiliation(s)
- Patricia Lopes Pereira
- Molecular Embryology and Immunology, Université d'Orléans, UMR6218, Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009; 137:1235-46. [PMID: 19563756 PMCID: PMC3710970 DOI: 10.1016/j.cell.2009.04.024] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 09/09/2008] [Accepted: 04/03/2009] [Indexed: 11/22/2022]
Abstract
Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca2+ responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.
Collapse
Affiliation(s)
- Jin Nakatani
- Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Deletion of the mouse Fmo1 gene results in enhanced pharmacological behavioural responses to imipramine. Pharmacogenet Genomics 2009; 19:289-99. [DOI: 10.1097/fpc.0b013e328328d507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
The alpha/beta carboxy-terminal domains of p63 are required for skin and limb development. New insights from the Brdm2 mouse which is not a complete p63 knockout but expresses p63 gamma-like proteins. Cell Death Differ 2009; 16:1108-17. [PMID: 19300453 PMCID: PMC2778344 DOI: 10.1038/cdd.2009.25] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
p63, an ancestral transcription factor of the p53 family, has three C-terminal isoforms whose relative in vivo functions are elusive. The p63 gene is essential for skin and limb development, as vividly shown by two independent global knockout mouse models. Both strains, although constructed differently, have identical and severe phenotypes, characterized by absent epidermis and hindlimbs and only rudimentary forelimbs at birth. Here we show that mice from one model, Brdm2, express normal levels of truncated p63 proteins that contain the DNA binding and oligomerization domain but lack the long carboxy-terminal SAM (sterile alpha-motif) and post-SAM domains that are specific for the alpha and beta isoforms. As such, transcriptionally active p63 proteins from Brdm2 mice resemble the naturally occurring p63gamma isoforms, which of all the p63 isoforms most closely resemble p53. Thus, Brdm2 mice are p63alpha/beta isoform-specific knockout mice, gaining unexpected new importance. Our studies identify that p63alpha/beta but not p63gamma are absolutely required for proper skin and limb development.
Collapse
|
38
|
Abstract
Glucose sensing by hypothalamic neurons triggers adaptive metabolic and behavioral responses. In orexin neurons, extracellular glucose activates a leak K(+) current promoting electrical activity inhibition. Sensitivity to external acidification and halothane, and resistance to ruthenium red designated the tandem-pore K(+) (K(2P)) channel subunit TASK3 as part of the glucose-induced channel. Here, we show that glucose inhibition and its pH sensitivity persist in mice lacking TASK3 or TASK1, or both subunits. We also tested the implication of another class of K(2P) channels activated by halothane. In the corresponding TREK1/2/TRAAK triple knock-out mice, glucose inhibition persisted in hypothalamic neurons ruling out a major contribution of these subunits to the glucose-activated K(+) conductance. Finally, block of this glucose-induced hyperpolarizing current by low Ba(2+) concentrations was consistent with the conclusion that K(2P) channels are not required for glucosensing in hypothalamic neurons.
Collapse
|
39
|
Abstract
Chromosomal rearrangements, such as deletions, duplications, inversions and translocations, occur frequently in humans and can be disease-associated or phenotypically neutral. To understand the genetic consequences of such genomic changes, these mutations need to be modelled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, the ease with which its genome can be manipulated and the similarity of observed affects. Through chromosome engineering, defined rearrangements can be introduced into the mouse genome. The resulting mouse models are leading to a better understanding of the molecular and cellular basis of dosage alterations in human disease phenotypes, in turn opening new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | | | | |
Collapse
|
40
|
Inducing segmental aneuploid mosaicism in the mouse through targeted asymmetric sister chromatid event of recombination. Genetics 2008; 180:51-9. [PMID: 18757940 DOI: 10.1534/genetics.108.092312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss or gain of whole chromosomes, or parts of chromosomes, is found in various pathological conditions, such as cancer and aneuploidy, and results from the missegregation of chromosomes during cellular division or abnormal mitotic recombination. We introduce a novel strategy for determining the consequences of segmental aneuploid mosaicism, called targeted asymmetric sister chromatin event of recombination (TASCER). We took advantage of the Cre/loxP system, used extensively in embryonic stem cells for generating deletions and duplications of regions of interest, to induce recombination during the G2 phase. Using two loxP sites in a Cis configuration, we generated in vivo cells harboring microdeletions and microduplications for regions of interest covering up to 2.2 Mb. Using this approach in the mouse provides insight into the consequences of segmental aneuploidy for homologous regions of the human chromosome 21 on cell survival. Furthermore, TASCER shows that Cre-induced recombination is more efficient after DNA replication in vivo and provides an opportunity to evaluate, through genetic mosaics, the outcome of copy number variation and segmental aneuploidy in the mouse.
Collapse
|
41
|
Adams DJ, van der Weyden L. Contemporary approaches for modifying the mouse genome. Physiol Genomics 2008; 34:225-38. [PMID: 18559964 PMCID: PMC2519963 DOI: 10.1152/physiolgenomics.90242.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/11/2008] [Indexed: 12/05/2022] Open
Abstract
The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and assess gene function. In this review we outline recent advances in mouse experimental genetics and provide a "how-to" guide for those people wishing to access this technology. We also discuss new technologies, such as transposon-mediated mutagenesis, and resources of targeting vectors and ES cells, which are likely to dramatically accelerate the pace with which we can assess gene function in vivo, and the progress of forward and reverse genetic screens in mice.
Collapse
Affiliation(s)
- David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
42
|
Abstract
Insulin controls glucose homeostasis and lipid metabolism, and insulin impairment plays a critical role in the pathogenesis of diabetes mellitus. Human skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) is a member of the phosphatidylinositol 3,4,5-trisphosphate phosphatase family (T. Ijuin et al. J. Biol. Chem. 275:10870-10875, 2000; T. Ijuin and T. Takenawa, Mol. Cell. Biol. 23:1209-1220, 2003). Previous studies showed that SKIP negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling (Ijuin and Takenawa, Mol. Cell. Biol. 23:1209-1220, 2003). We now have generated mice with a targeted mutation of the mouse ortholog of the human SKIP gene, Pps. Adult heterozygous Pps mutant mice show increased insulin sensitivity and reduced diet-induced obesity with increased Akt/protein kinase B (PKB) phosphorylation in skeletal muscle but not in adipose tissue. The insulin-induced uptake of 2-deoxyglucose into the isolated soleus muscle was significantly enhanced in Pps mutant mice. A hyperinsulinemic-euglycemic clamp study also revealed a significant increase in the rate of systemic glucose disposal in Pps mutant mice without any abnormalities in hepatic glucose production. Furthermore, in vitro knockdown studies in L6 myoblast cells revealed that reduction of SKIP expression level increased insulin-stimulated Akt/PKB phosphorylation and 2-deoxyglucose uptake. These results imply that SKIP regulates insulin signaling in skeletal muscle. Thus, SKIP may be a promising pharmacologic target for the treatment of insulin resistance and diabetes.
Collapse
|
43
|
Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 2008; 112:2539-45. [PMID: 18523150 DOI: 10.1182/blood-2008-04-149773] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Proteolytic events at the cell surface are essential in the regulation of signal transduction pathways. During the past years, the family of type II transmembrane serine proteases (TTSPs) has acquired an increasing relevance because of their privileged localization at the cell surface, although our current understanding of the biologic function of most TTSPs is limited. Here we show that matriptase-2 (Tmprss6), a recently described member of the TTSP family, is an essential regulator of iron homeostasis. Thus, Tmprss6(-/-) mice display an overt phenotype of alopecia and a severe iron deficiency anemia. These hematologic alterations found in Tmprss6(-/-) mice are accompanied by a marked up-regulation of hepcidin, a negative regulator of iron export into plasma. Likewise, Tmprss6(-/-) mice have reduced ferroportin expression in the basolateral membrane of enterocytes and accumulate iron in these cells. Iron-dextran therapy rescues both alopecia and hematologic alterations of Tmprss6(-/-) mice, providing causal evidence that the anemic phenotype of these mutant mice results from the blockade of intestinal iron export into plasma after dietary absorption. On the basis of these findings, we conclude that matriptase-2 activity represents a novel and relevant step in hepcidin regulation and iron homeostasis.
Collapse
|
44
|
Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40:751-60. [PMID: 18469815 DOI: 10.1038/ng.138] [Citation(s) in RCA: 456] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/13/2008] [Indexed: 02/08/2023]
Abstract
Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.
Collapse
|
45
|
Abstract
Chromosomal rearrangements are frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the ease with which its genome can be manipulated. Through chromosome engineering, defined rearrangements can be introduced into the mouse genome. The resulting mouse models are leading to a better understanding of the molecular and cellular basis of dosage alterations in human disease phenotypes, in turn opening new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Louise van der Weyden
- Mouse Genomics Lab, Wellcome Trust Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
| | | |
Collapse
|
46
|
Best D, Sahlender DA, Walther N, Peden AA, Adams IR. Sdmg1 is a conserved transmembrane protein associated with germ cell sex determination and germline-soma interactions in mice. Development 2008; 135:1415-25. [PMID: 18321981 PMCID: PMC2584365 DOI: 10.1242/dev.019497] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In mammals, the supporting cell lineage in an embryonic gonad communicates the sex-determining decision to various sexually dimorphic cell types in the developing embryo, including the germ cells. However, the molecular nature of the sex-determining signals that pass from the supporting cells to the germ cells is not well understood. We have identified a conserved transmembrane protein, Sdmg1, owing to its male-specific expression in mouse embryonic gonads. Sdmg1 is expressed in the Sertoli cells of embryonic testes from 12.5 dpc, and in granulosa cells of growing follicles in adult ovaries. In Sertoli cells, Sdmg1 is localised to endosomes, and knock-down of Sdmg1 in Sertoli cell lines causes mis-localisation of the secretory SNARE Stx2 and defects in membrane trafficking. Upregulation of Sdmg1 appears to be part of a larger programme of changes to membrane trafficking pathways in embryonic Sertoli cells, and perturbing secretion in male embryonic gonads in organ culture causes male-to-female germ cell sex reversal. These data suggest that changes that occur in the cell biology of embryonic Sertoli cells may facilitate the communication of male sex-determining decisions to the germ cells during embryonic development.
Collapse
Affiliation(s)
- Diana Best
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
47
|
Rahuel C, Filipe A, Ritie L, El Nemer W, Patey-Mariaud N, Eladari D, Cartron JP, Simon-Assmann P, Le Van Kim C, Colin Y. Genetic inactivation of the laminin alpha5 chain receptor Lu/BCAM leads to kidney and intestinal abnormalities in the mouse. Am J Physiol Renal Physiol 2007; 294:F393-406. [PMID: 18032551 DOI: 10.1152/ajprenal.00315.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lutheran blood group and basal cell adhesion molecule (Lu/BCAM) has been recognized as a unique receptor for laminin alpha5 chain in human red blood cells and as a coreceptor in epithelial, endothelial, and smooth muscle cells. Because limited information is available regarding the function of this adhesion glycoprotein in vivo, we generated Lu/BCAM-null mice and looked for abnormalities in red blood cells as well as in kidney and intestine, two tissues showing alteration in laminin alpha5 chain-deficient mice. We first showed that, in contrast to humans, wild-type murine red blood cells failed to express Lu/BCAM. Lu/BCAM-null mice were healthy and developed normally. However, although no alteration of the renal function was evidenced, up to 90% of the glomeruli from mutant kidneys exhibited abnormalities characterized by a reduced number of visible capillary lumens and irregular thickening of the glomerular basement membrane. Similarly, intestine analysis of mutant mice revealed smooth muscle coat thickening and disorganization. Because glomerular basement membrane and smooth muscle coat express laminin alpha5 chain and are in contact with cell types expressing Lu/BCAM in wild-type mice, these results provide evidence that Lu/BCAM, as a laminin receptor, is involved in vivo in the maintenance of normal basement membrane organization in the kidney and intestine.
Collapse
Affiliation(s)
- Cécile Rahuel
- Institut National de la Santé et de la Recherche Médicale, Unité 665, Institut National de la Transfusion Sanguine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Besson V, Brault V, Duchon A, Togbe D, Bizot JC, Quesniaux VFJ, Ryffel B, Hérault Y. Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 2007; 16:2040-52. [PMID: 17591625 DOI: 10.1093/hmg/ddm152] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monosomy 21 is a rare human disease due to gene dosage errors disturbing a variety of physiological and morphological systems including brain, skeletal, immune and respiratory functions. Most of the human condition corresponds to partial or mosaic monosomy suggesting that Monosomy 21 may be lethal. In order to search for dosage-sensitive genes involved in the human pathology, we generated by chromosomal engineering a monosomic mouse for the Prmt2-Col6a1 interval corresponding to the most telomeric part of human chromosome 21. Haploinsufficiency of the 13 genes, located in the 0.5 Mb genetic interval and conserved in man and mouse, caused apparently no morphological defect as observed in patients. However, monosomic mice displayed an enhanced inflammatory response after local intranasal lipopolysaccharide administration with enhanced recruitment of neutrophils and secretion of cytokines such as tumor necrosis factor-alpha (TNF-alpha), IL-1beta, IL-12p70 and IFN-gamma in the lung as well increased TNF-alpha production after systemic administration. Further analysis demonstrates that monosomic macrophages were involved and that a few genes, Prmt2, Pcnt2, Mcm3ap and Lss located in the region were candidate for the inflammatory response. Altogether, these results demonstrate the existence of dosage-sensitive genes in the Prmt2-Col6a1 region that control the inflammation and the lung function. Furthermore, they point out that similar partial Monosomies 21 in human might have eluded the diagnosis due to the very specific defects observed in this murine model.
Collapse
Affiliation(s)
- Vanessa Besson
- Institut de Tansgenose, Molecular Immunology and Embryology, Université Orléans, Férollerie, Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tucci V, Achilli F, Blanco G, Lad HV, Wells S, Godinho S, Nolan PM. Reaching and grasping phenotypes in the mouse (Mus musculus): a characterization of inbred strains and mutant lines. Neuroscience 2007; 147:573-82. [PMID: 17574766 DOI: 10.1016/j.neuroscience.2007.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/19/2022]
Abstract
Skilled movements, such as reaching and grasping, have classically been considered as originating in the primate lineage. For this reason, the use of rodents to investigate the genetic and molecular machinery of reaching and grasping has been limited in research. A few studies in rodents have now shown that these movements are not exclusive to primates. Here we present a new test, the Mouse Reaching and Grasping (MoRaG) performance scale, intended to help researchers in the characterization of these motor behaviors in the mouse. Within the MoRaG test battery we identified early phenotypes for the characterization of motor neurone (Tg[SOD1-G93A](dl)1Gur mice) and neurodegenerative (TgN(HD82Gln)81Dbo transgenic mice) disease models in addition to specific motor deficits associated with aging (C3H/HeH inbred strain). We conclude that the MoRaG test can be used to further investigate complex neuromuscular, neurological, neurodegenerative and behavioral disorders. Moreover, our study supports the validity of the mouse as a model for reaching and grasping studies.
Collapse
Affiliation(s)
- V Tucci
- MRC Mammalian Genetics Unit, Harwell, Didcot, Oxfordshire OX11 0RD, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, Nowak N, Matsui SI, Shiraishi I, Yu YE. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 2007; 16:1359-66. [PMID: 17412756 DOI: 10.1093/hmg/ddm086] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Down syndrome is caused by a genomic imbalance of human chromosome 21 which is mainly observed as trisomy 21. The regions on human chromosome 21 are syntenically conserved in three regions on mouse chromosomes 10, 16 and 17. Ts65Dn mice, the most widely used model for Down syndrome, are trisomic for approximately 56.5% of the human chromosome 21 syntenic region on mouse chromosome 16. To generate a more complete trisomic mouse model of Down syndrome, we have established a 22.9 Mb duplication spanning the entire human chromosome 21 syntenic region on mouse chromosome 16 in mice using Cre/loxP-mediated long-range chromosome engineering. The presence of the intact duplication in mice was confirmed by fluorescent in situ hybridization and BAC-based array comparative genomic hybridization. The expression levels of the genes within the duplication interval reflect gene-dosage effects in the mutant mice. The cardiovascular and gastrointestinal phenotypes of the mouse model were similar to those of patients with Down syndrome. This new mouse model represents a powerful tool to further understand the molecular and cellular mechanisms of Down syndrome.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Cancer Genetics and Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo,NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|