1
|
Abdelati Abdelsalam AA, Woods S, Henriquez S, Curran L, Westrop G, Roberts CW. Toxoplasma gondii Infection of BALB/c Mice Perturbs Host Neurochemistry. Parasite Immunol 2024; 46:e13073. [PMID: 39523868 DOI: 10.1111/pim.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Toxoplasma gondii infection has been associated with psychoneurological disease in humans and behavioural changes in rodents. However, the mechanisms accounting for this have not been fully described and in some cases could be argued to reflect the severe neuropathology that some mice suffer during infection. Herein we employ a multi-omics approach to extensively examine BALB/c mice that are resistant to toxoplasmic encephalitis. Using a combination of LCMS (liquid chromatography-mass spectrometry) and RNAseq we demonstrate that infection alters the neurochemistry and the transcriptome of the brains of BALB/c mice. Notable changes to tryptophan, purine, arginine, nicotinamide and carnitine metabolism were observed in infected mice and this was accompanied with changes to the levels of a number of transcripts associated with enzymes these metabolic pathways. In addition, changes were seen in transcripts of many immunologically important genes known to contribute to immunity to T. gondii. Changes in the levels of additional transcripts during infection have previously been associated with psychoneurological diseases. The results demonstrate that the BALB/c mouse, with its relatively mild neurological disease, is a useful model for characterising the effects of T. gondii infection on murine neurochemistry. The results also implicate specific biochemical pathways in mediating these changes and should inform further mechanistic studies and suggest therapeutic targets.
Collapse
Affiliation(s)
| | - Stuart Woods
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- School of Health & Life Sciences, University of the West of Scotland, South Lanarkshire, UK
| | - Selina Henriquez
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lucy Curran
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gareth Westrop
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Dou J, Luo H, Sammad A, Lou W, Wang D, Schenkel F, Yu Y, Fang L, Wang Y. Epigenomics of rats' liver and its cross-species functional annotation reveals key regulatory genes underlying short term heat-stress response. Genomics 2022; 114:110449. [PMID: 35985612 DOI: 10.1016/j.ygeno.2022.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Molecular responses to heat stress are multifaceted and under a complex cellular post-transcriptional control. This study explores the epigenetic and transcriptional alterations induced by heat stress (42 °C for 120 min) in the liver of rats, by integrating ATAC-seq, RNA-Seq, and WGBS information. Out of 2586 differential ATAC-seq peaks induced by heat stress, 36 up-regulated and 22 down-regulated transcript factors (TFs) are predicted, such as Cebpα, Foxa2, Foxo4, Nfya and Sp3. Furthermore, 150,189 differentially methylated regions represent 2571 differentially expressed genes (DEGs). By integrating all data, 45 DEGs are concluded as potential heat stress response markers in rats. To comprehensively annotate and narrow down predicted markers, they are integrated with GWAS results of heat stress parameters in cows, and PheWAS data in humans. Besides better understanding of heat stress responses in mammals, INSR, MAPK8, RHPN2 and BTBD7 are proposed as candidate markers for heat stress in mammals.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenqi Lou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Flavio Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1 Guelph, Ontario, Canada
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Demin KA, Lakstygal AM, Volgin AD, de Abreu MS, Genario R, Alpyshov ET, Serikuly N, Wang D, Wang J, Yan D, Wang M, Yang L, Hu G, Bytov M, Zabegalov KN, Zhdanov A, Harvey BH, Costa F, Rosemberg DB, Leonard BE, Fontana BD, Cleal M, Parker MO, Wang J, Song C, Amstislavskaya TG, Kalueff AV. Cross-species Analyses of Intra-species Behavioral Differences in Mammals and Fish. Neuroscience 2020; 429:33-45. [DOI: 10.1016/j.neuroscience.2019.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022]
|
4
|
McClelland KS, Yao HHC. Leveraging Online Resources to Prioritize Candidate Genes for Functional Analyses: Using the Fetal Testis as a Test Case. Sex Dev 2017; 11:1-20. [PMID: 28196369 PMCID: PMC6171109 DOI: 10.1159/000455113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
With each new microarray or RNA-seq experiment, massive quantities of transcriptomic information are generated with the purpose to produce a list of candidate genes for functional analyses. Yet an effective strategy remains elusive to prioritize the genes on these candidate lists. In this review, we outline a prioritizing strategy by taking a step back from the bench and leveraging the rich range of public databases. This in silico approach provides an economical, less biased, and more effective solution. We discuss the publicly available online resources that can be used to answer a range of questions about a gene. Is the gene of interest expressed in the system of interest (using expression databases)? Where else is this gene expressed (using added-value transcriptomic resources)? What pathways and processes is the gene involved in (using enriched gene pathway analysis and mouse knockout databases)? Is this gene correlated with human diseases (using human disease variant databases)? Using mouse fetal testis as an example, our strategies identified 298 genes annotated as expressed in the fetal testis. We cross-referenced these genes to existing microarray data and narrowed the list down to cell-type-specific candidates (35 for Sertoli cells, 11 for Leydig cells, and 25 for germ cells). Our strategies can be customized so that they allow researchers to effectively and confidently prioritize genes for functional analysis.
Collapse
Affiliation(s)
- Kathryn S McClelland
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
5
|
Sudheer S, Liu J, Marks M, Koch F, Anurin A, Scholze M, Senft AD, Wittler L, Macura K, Grote P, Herrmann BG. Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells 2016; 34:1790-800. [DOI: 10.1002/stem.2371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/07/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Smita Sudheer
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU; United Kingdom
| | - Jinhua Liu
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Matthias Marks
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Frederic Koch
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Anna Anurin
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Department of Biology; Chemistry and Pharmacy, Free University Berlin; Berlin Germany
| | - Manuela Scholze
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Anna Dorothea Senft
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE; United Kingdom
| | - Lars Wittler
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Karol Macura
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Phillip Grote
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
- Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main; Germany
| | - Bernhard G. Herrmann
- Department of Developmental Genetics; Max Planck Institute for Molecular Genetics; Berlin Germany
| |
Collapse
|
6
|
Li Y, Xu J, Chen H, Zhao Z, Li S, Bai J, Wu A, Jiang C, Wang Y, Su B, Li X. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues. PLoS One 2013; 8:e65871. [PMID: 23776563 PMCID: PMC3680465 DOI: 10.1371/journal.pone.0065871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/29/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. RESULTS In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. CONCLUSIONS We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Densupsoontorn N, Carpentier YA, Racine R, Murray FM, Seo T, Ramakrishnan R, Deckelbaum RJ. CD36 and proteoglycan-mediated pathways for (n-3) fatty acid enriched triglyceride-rich particle blood clearance in mouse models in vivo and in peritoneal macrophages in vitro. J Nutr 2008; 138:257-61. [PMID: 18203888 PMCID: PMC2440719 DOI: 10.1093/jn/138.2.257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because the mechanisms of (n-3) fatty acid-enriched triglyceride-rich particle [(n-3)-TGRP] uptake are not well characterized, we questioned whether (n-3)-TGRP are removed via "nonclassical" pathways, e.g., pathways other than an LDL receptor and/or involving apolipoprotein E (apoE). Chylomicron-sized model (n-3)-TGRP labeled with [3H]cholesteryl ether were injected into wild-type (WT) and CD36 knockout (CD36-/-) mice at low, nonsaturating and high, saturating doses. Blood clearance of (n-3)-TGRP was determined by calculating fractional catabolic rates. At saturating doses, blood clearance of (n-3)-TGRP was slower in CD36-/- mice relative to WT mice, suggesting that in part CD36 contributes to (n-3)-TGRP uptake. To further examine the potential nonclassical clearance pathways, peritoneal-elicited macrophages from WT and CD36-/- mice were incubated with (n-3)-TGRP in the presence of apoE, lactoferrin, and/or sodium chlorate. Cellular (n-3)-TGRP uptake was measured to test the roles of apoE-mediated pathways and/or proteoglycans. ApoE-mediated pathways compensated in part for defective (n-3)-TGRP uptake in CD36-/- cells. Lactoferrin decreased (n-3)-TGRP uptake in the presence of apoE. Inhibition of cell proteoglycan synthesis by chlorate reduced (n-3)-TGRP uptake in both groups of macrophages, and chlorate effects were independent of apoE. We conclude that although CD36 is involved, it is not the primary contributor to the blood clearance of (n-3)-TGRP. The removal of (n-3)-TGRP likely relies more on nonclassical pathways, such as proteoglycan-mediated pathways.
Collapse
|
8
|
Samant SA, Ogunkua OO, Hui L, Lu J, Han Y, Orth JM, Pilder SH. The mouse t complex distorter/sterility candidate, Dnahc8, expresses a γ-type axonemal dynein heavy chain isoform confined to the principal piece of the sperm tail. Dev Biol 2005; 285:57-69. [PMID: 16054618 DOI: 10.1016/j.ydbio.2005.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 11/16/2022]
Abstract
Heterozygosity for a t haplotype (t) in male mice results in distorted transmission (TRD) of the t-bearing chromosome 17 homolog to their offspring. However, homozygosity for t causes male sterility, thus limiting the spread of t through the population at large. The Ca(2+)-dependent sperm tail curvature phenotypes, "fishhook", where abnormally high levels of sperm exhibit sharp bends in the midpiece, and "curlicue", where motile sperm exhibit a chronic negative curving of the entire tail, have been tightly linked to t-associated male TRD and sterility traits, respectively. Genetic studies have indicated that homozygosity for the t allele of Dnahc8, an axonemal gamma-type dynein heavy chain (gammaDHC) gene, is partially responsible for expression of "curlicue"; however, its involvement in "fishhook"/TRD, if any, is unknown. Here we report that the major isoform of DNAHC8 is copiously expressed, carries an extended N-terminus and full-length C-terminus, and is stable and equally abundant in both testis and sperm from +/+ and t/t animals. By in silico analysis we also demonstrate that at least three of the seventeen DNAHC8(t) mutations at highly conserved positions in wild-type DHCs may be capable of substantially altering normal DNAHC8 function. Interestingly, DNAHC8 is confined to the principal piece of the sperm tail. The combined results of this study suggest possible mechanisms of DNAHC8(t) dysfunction and involvement in "curlicue", and support the hypothesis that "curlicue" is a multigenic phenomenon. They also demonstrate that the accelerated "fishhook" phenotype of sperm from +/t males is not directly linked to DNAHC8(t) dysfunction.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Green ECJ, Gkoutos GV, Lad HV, Blake A, Weekes J, Hancock JM. EMPReSS: European mouse phenotyping resource for standardized screens. Bioinformatics 2005; 21:2930-1. [PMID: 15827082 DOI: 10.1093/bioinformatics/bti441] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Standardized phenotyping protocols are essential for the characterization of phenotypes so that results are comparable between different laboratories and phenotypic data can be related to ontological descriptions in an automated manner. We describe a web-based resource for the visualization, searching and downloading of standard operating procedures and other documents, the European Mouse Phenotyping Resource for Standardized Screens-EMPReSS. AVAILABILITY Direct access: http://www.empress.har.mrc.ac.uk CONTACT e.green@har.mrc.ac.uk.
Collapse
Affiliation(s)
- Eain C J Green
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Grienberg I, Benayahu D. Osteo-Promoter Database (OPD) -- promoter analysis in skeletal cells. BMC Genomics 2005; 6:46. [PMID: 15790428 PMCID: PMC1087840 DOI: 10.1186/1471-2164-6-46] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 03/25/2005] [Indexed: 11/13/2022] Open
Abstract
Background Increasing our knowledge about the complex expression of genes in skeletal tissue will provide a better understanding of the physiology of skeletal cells. The study summarizes transcriptional regulation factors interacting and cooperating at promoter regions that regulate gene expression. Specifically, we analyzed A/T rich elements along the promoter sequences. Description The Osteo-Promoter Database (OPD) is a collection of genes and promoters expressed in skeletal cells. We have compiled a new viewer, OPD, as unique database developed and created as an accessible tool for skeletal promoter sequences. OPD can navigate to identify genes specific to skeletal cDNA databases and promoter analysis sites. OPD offers exclusive access to facilitate a dynamic extraction of promoters' gene-specific analyses in skeletal tissue. The data on promoters included in OPD contains cloned promoters or predicted promoters that were analyzed by bioinformatics tools. OPD offers MAR-analysis, which allocates A/T rich elements along these promoter sequences. Conclusion The analysis leads to a better insight of proteins that bind to DNA, regulate DNA, and function in chromatin remodeling. The OPD is a distinctive tool for understanding the complex function of chromatin remodeling and transcriptional regulation of specific gene expression in skeletal tissue.
Collapse
Affiliation(s)
- Inbal Grienberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
11
|
Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 2004; 5:R101. [PMID: 15575967 PMCID: PMC545796 DOI: 10.1186/gb-2004-5-12-r101] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 08/31/2004] [Accepted: 10/25/2004] [Indexed: 11/30/2022] Open
Abstract
Tools are presented to identify Gene Ontology terms that are over- or under-represented in a dataset, to cluster genes by function and to find genes with similar annotations. We have developed methods and tools based on the Gene Ontology (GO) resource allowing the identification of statistically over- or under-represented terms in a gene dataset; the clustering of functionally related genes within a set; and the retrieval of genes sharing annotations with a query gene. GO annotations can also be constrained to a slim hierarchy or a given level of the ontology. The source codes are available upon request, and distributed under the GPL license.
Collapse
Affiliation(s)
- David Martin
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, case 907, 13288 Marseille, France
| | - Christine Brun
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, case 907, 13288 Marseille, France
| | - Elisabeth Remy
- Institut de Mathématiques de Luminy, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Pierre Mouren
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, case 907, 13288 Marseille, France
| | - Denis Thieffry
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, case 907, 13288 Marseille, France
| | - Bernard Jacq
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Université de la Méditerranée, Parc Scientifique de Luminy, case 907, 13288 Marseille, France
| |
Collapse
|
12
|
Gkoutos GV, Green ECJ, Greenaway S, Blake A, Mallon AM, Hancock JM. CRAVE: a database, middleware and visualization system for phenotype ontologies. Bioinformatics 2004; 21:1257-62. [PMID: 15550481 DOI: 10.1093/bioinformatics/bti147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. RESULTS CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.
Collapse
Affiliation(s)
- Georgios V Gkoutos
- Bioinformatics Group, MRC Mammalian Genetics Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Mason JM, Naidu MD, Barcia M, Porti D, Chavan SS, Chu CC. IL-4-Induced Gene-1 Is a Leukocyte l-Amino Acid Oxidase with an Unusual Acidic pH Preference and Lysosomal Localization. THE JOURNAL OF IMMUNOLOGY 2004; 173:4561-7. [PMID: 15383589 DOI: 10.4049/jimmunol.173.7.4561] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-4-induced gene-1 (Il4i1 or Fig1) initially isolated as a gene of unknown function from mouse B lymphocytes, is limited in expression to primarily immune tissues and genetically maps to a region of susceptibility to autoimmune disease. The predicted Il4i1 protein (IL4I1) sequence is most similar to apoptosis-inducing protein and Apoxin I, both l-amino acid oxidases (LAAO; Enzyme Commission 1.4.3.2). We demonstrate that IL4I1 has unique LAAO properties. IL4I1 has preference for aromatic amino acid substrates, having highest specific activity with phenylalanine. In support of this selectivity, IL4I1 is inhibited by aromatic competitors (benzoic acid and para-aminobenzoic acid), but not by nonaromatic LAAO inhibitors. Il4i1 protein and enzyme activity is found in the insoluble fraction of transient transfections, implying an association with cell membrane and possibly intracellular organelles. Indeed, IL4I1 has the unique property of being most active at acidic pH (pH 4), suggesting it may reside preferentially in lysosomes. IL4I1 is N-linked glycosylated, a requirement for lysosomal localization. Confocal microscopy of cells expressing IL4I1 translationally fused to red fluorescent protein demonstrated that IL4I1 colocalized with GFP targeted to lysosomes and with acriflavine, a green fluorescent dye that is taken up into lysosomes. Thus, IL4I1 is a unique mammalian LAAO targeted to lysosomes, an important subcellular compartment involved in Ag processing.
Collapse
Affiliation(s)
- James M Mason
- Gene Therapy Vector Laboratory, North Shore-Long Island Jewish Research Institute, Department of Medicine, North Shore University Hospital and New York University School of Medicine, Manhasset, NY 11030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dutheil N, Yoon-Robarts M, Ward P, Henckaerts E, Skrabanek L, Berns KI, Campagne F, Linden RM. Characterization of the mouse adeno-associated virus AAVS1 ortholog. J Virol 2004; 78:8917-21. [PMID: 15280500 PMCID: PMC479059 DOI: 10.1128/jvi.78.16.8917-8921.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonpathogenic human adeno-associated virus (AAV) has developed a mechanism to integrate its genome into human chromosome 19 at 19q13.4 (termed AAVS1), thereby establishing latency. Here, we provide evidence that the chromosomal signals required for site-specific integration are conserved in the mouse genome proximal to the recently identified Mbs85 gene. These sequence motifs can be specifically nicked by the viral Rep protein required for the initiation of site-specific AAV DNA integration. Furthermore, these signals can serve as a minimal origin for Rep-dependent DNA replication. In addition, we isolated the mouse Mbs85 proximal promoter and show transcriptional activity in three mouse cell lines.
Collapse
Affiliation(s)
- Nathalie Dutheil
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Pl., Box 1496, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nishant KT, Ravishankar H, Rao MRS. Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol Cell Biol 2004; 24:5620-34. [PMID: 15169920 PMCID: PMC419864 DOI: 10.1128/mcb.24.12.5620-5634.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our current knowledge of recombination hot spot activity in mammalian systems implicates a role for both the primary DNA sequence and the nature of the chromatin domain around it. In mice, the only recombination hot spots mapped to date have been confined to a cluster within the major histocompatibility complex (MHC) region. We present a high resolution analysis of a new recombination hot spot in the mouse genome which maps to mouse chromosome 8 C-D. Haplotype diversity analysis across 40 different strains of mice has enabled us to map recombination breakpoints to a 1-kb interval. This hot spot has a recombination intensity that is 10- to 100-fold above the genome average and has a mean gene conversion tract length of 371 bp. This meiotically active locus happens to be flanked by a transcribed region encoding a non-protein-coding RNA polymerase II transcript and the previously characterized repair site. Many of the primary DNA sequence features that have been reported for the mouse MHC hot spots are also shared by this hot spot locus and in addition, along with three other MHC hot spot loci, we show a new parallel feature of association of the crossover sites with the nuclear matrix.
Collapse
Affiliation(s)
- K T Nishant
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
16
|
Dubrova YE. Germline mutation induction at mouse and human tandem repeat DNA loci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 518:115-29. [PMID: 12817681 DOI: 10.1007/978-1-4419-9190-4_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuri E Dubrova
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
17
|
Dadoune JP, Siffroi JP, Alfonsi MF. Transcription in haploid male germ cells. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 237:1-56. [PMID: 15380665 DOI: 10.1016/s0074-7696(04)37001-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major modifications in chromatin organization occur in spermatid nuclei, resulting in a high degree of DNA packaging within the spermatozoon head. However, before arrest of transcription during midspermiogenesis, high levels of mRNA are found in round spermatids. Some transcripts are the product of genes expressed ubiquitously, whereas some are generated from male germ cell-specific gene homologs of somatic cell genes. Others are transcript variants derived from genes with expression regulated in a testis-specific fashion. The haploid genome of spermatids also initiates the transcription of testis-specific genes. Various general transcription factors, distinct promoter elements, and specific transcription factors are involved in transcriptional regulation. After meiosis, spermatids are genetically but not phenotypically different, because of transcript and protein sharing through cytoplasmic bridges connecting spermatids of the same generation. Interestingly, different types of mRNAs accumulate in the sperm cell nucleus, raising the question of their origin and of a possible role after fertilization.
Collapse
Affiliation(s)
- Jean-Pierre Dadoune
- Laboratoire de Cytologie et Histologie, Centre Universitaire des Saints-Pères, 75270 Paris, France
| | | | | |
Collapse
|
18
|
Abstract
Telomere dysfunction causes genomic instability. However, the mechanism that initiates this instability when telomeres become short is unclear. We measured the mutation rate and loss of heterozygosity along a chromosome arm in diploid yeast that lacked telomerase to distinguish between mechanisms for the initiation of instability. Sequence loss was localized near chromosome ends in the absence of telomerase but not after breakage of a dicentric chromosome. In the absence of telomerase, the increase in mutation rate is dependent on the exonuclease Exo1p. Thus, exonucleolytic end resection, rather than chromosome fusion and breakage, is the primary mechanism that initiates genomic instability when telomeres become short.
Collapse
Affiliation(s)
- Jennifer A Hackett
- Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- Bernard de Massy
- Institut de Génétique Humaine, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
20
|
Yamanaka I, Kiyosawa H, Kondo S, Saito T, Carninci P, Shinagawa A, Aizawa K, Fukuda S, Hara A, Itoh M, Kawai J, Shibata K, Arakawa T, Ishii Y, Hayashizaki Y. Mapping of 19032 mouse cDNAs on mouse chromosomes. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:23-8. [PMID: 12836671 DOI: 10.1023/a:1013203019444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Finding genes by the positional candidate approach requires abundant cDNAs mapped to chromosomes. To provide such important information, we computationally mapped 19032 of our mouse cDNAs to mouse chromosomes by using data from public databases. We used 2 approaches. In the first, we integrated the mapping data of cDNAs on the human genome, known gene-related data, and comparative mapping data. From this, we calculated map positions on the mouse chromosomes. For this first approach, we developed a simple and powerful criterion to choose the correct map position from candidate positions in sequence homology searches. In the second approach, we related cDNAs to expressed sequence tags (EST) previously mapped in radiation hybrid experiments. We discuss improving the mapping by combining the 2 methods.
Collapse
Affiliation(s)
- Itaru Yamanaka
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mueller TF, Ma C, Lederer JA, Perkins DL. Differentiation of stress, metabolism, communication, and defense responses following transplantation. J Leukoc Biol 2003; 73:379-90. [PMID: 12629152 DOI: 10.1189/jlb.0102052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The biological complexity of allograft rejection and alloantigen-independent mechanisms is poorly understood. Therefore, we analyzed four components of the biological response following transplantation by global gene analysis. A comparative and kinetic approach was used to identify gene expression profiles. Biological processes were assigned to genes displaying the largest alterations in expression. Metabolism, stress response, and cell organization were the predominant, biological processes associated with ischemia and systemic stress. Innate and adaptive immune responses induced a transcriptional shift toward defense and cell communication. The kinetic analysis showed a shift from innate toward adaptive responses in the post-transplant course.
Collapse
Affiliation(s)
- Thomas F Mueller
- Laboratory of Molecular Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
22
|
Gelernter J, Page GP, Bonvicini K, Woods SW, Pauls DL, Kruger S. A chromosome 14 risk locus for simple phobia: results from a genomewide linkage scan. Mol Psychiatry 2003; 8:71-82. [PMID: 12556910 DOI: 10.1038/sj.mp.4001224] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We conducted a 10 centimorgan (cM) linkage genome scan in a set of American extended pedigrees ascertained through probands with panic disorder. Several anxiety disorders segregate in these families. In this article, we describe results for simple phobia from 14 of these families (including 129 subjects of whom 57 are affected). A total of 422 markers were genotyped. Multipoint lod score analyses (fully parametric and simple parametric models) and nonparametric analyses were completed using ALLEGRO. We observed significant linkage of simple phobia to chromosome 14 markers. The highest lod score under a fully parametric model was 3.17, at marker D14S75, under a dominant model. Under a fully parametric recessive model, the maximum lod score, also at D14S75, was 2.86. Analysis under a simple parametric model resulted in lod scores of 3.70 (dominant model) or 3.30 (recessive model). The highest Zlr score observed was 3.93 (P = 4.1 x 10(-5)). The Zlr score was >1 for an extensive region, >77 cM. In all, 12 of the 14 families studied provided positive or zero lod scores at marker D14S75 (dominant model). The homologous genomic region has been implicated by studies mapping quantitative trait loci for a mouse model of fear. The linkage peak may be regarded as highly promising, owing to the breadth of the peak, the convergence of results under different models of inheritance and different analysis methods, and the support from an animal model. This is the first genome scan linkage study for simple phobia, a common disorder that causes high morbidity in the US population.
Collapse
Affiliation(s)
- J Gelernter
- Department of Psychiatry, Yale University School of Medicine, West haven, CT 06516, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence project: update and current status. Nucleic Acids Res 2003; 31:34-7. [PMID: 12519942 PMCID: PMC165558 DOI: 10.1093/nar/gkg111] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of the NCBI Reference Sequence (RefSeq) project is to provide the single best non-redundant and comprehensive collection of naturally occurring biological molecules, representing the central dogma. Nucleotide and protein sequences are explicitly linked on a residue-by-residue basis in this collection. Ideally all molecule types will be available for each well-studied organism, but the initial database collection pragmatically includes only those molecules and organisms that are most readily identified. Thus different amounts of information are available for different organisms at any given time. Furthermore, for some organisms additional intermediate records are provided when the genome sequence is not yet finished. The collection is supplied by NCBI through three distinct pipelines in addition to collaborations with community groups. The collection is curated on an ongoing basis. Additional information about the NCBI RefSeq project is available at http://www.ncbi.nih.gov/RefSeq/.
Collapse
Affiliation(s)
- Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A Room 6N605, 8600 Rockville Pike, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
24
|
Abstract
Epilepsy is a debilitating disease with a strong genetic component. Positional cloning has identified a few genes for rare monogenic epilepsy syndromes; however, the genetics of common human epilepsies are too complex to be analyzed easily by current techniques. Mouse models of epilepsy can further this analysis by eliminating genetic background heterogeneity and enabling the production of sufficient numbers of offspring. Here, we report that Black Swiss mice have a heretofore unrecognized specific susceptibility to audiogenic seizures. These seizures are characterized by wild running, loss of righting reflex, and tonic flexion and extension, and are followed by a postictal period. The susceptibility to these seizures is developmentally regulated, peaking at 21 d of age and nearly disappearing by adulthood. Interestingly, both the susceptibility to seizures and their developmental regulation appear unrelated to hearing thresholds in the Black Swiss strain and backcrossed progeny. Genetic mapping and linkage analysis of hybrid mice localize the seizure gene, jams1 (juvenile audiogenic monogenic seizures), to a 1.6 +/- 0.5 centimorgan (cM) region on mouse chromosome 10, delimited by the gene basigin (Bsg) and marker D10Mit140. Interestingly, the majority of the critical region is syntenic to a region on human chromosome 19p13.3 implicated in a familial form of juvenile febrile convulsions. Cloning the gene for audiogenic seizures in these mice may provide important insight into the fundamental mechanisms for developmentally regulated human epilepsy syndromes.
Collapse
|
25
|
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 2002; 277:49175-85. [PMID: 12368295 PMCID: PMC2779716 DOI: 10.1074/jbc.m205131200] [Citation(s) in RCA: 332] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Here we report the cloning of a full-length cDNA encoding the human ortholog (HSulf-1) of the developmentally regulated putative sulfatases QSulf-1 (Dhoot, G. K., Gustafsson, M. K., Ai, X., Sun, W., Standiford, D. M., and Emerson, C. P., Jr. (2001) Science 293, 1663-1666) and RSulfFP1 (Ohto, T., Uchida, H., Yamazaki, H., Keino-Masu, K., Matsui, A., and Masu, M. (2002) Genes Cells 7, 173-185) as well as a cDNA encoding a closely related protein, designated HSulf-2. We have also obtained cDNAs for the mouse orthologs of both Sulfs. We demonstrate that the proteins encoded by both classes of cDNAs are endoproteolytically processed in the secretory pathway and are released into conditioned medium of transfected CHO cells. We demonstrate that the mammalian Sulfs exhibit arylsulfatase activity with a pH optimum in the neutral range; moreover, they can remove sulfate from the C-6 position of glucosamine within specific subregions of intact heparin. Taken together, our results establish that the mammalian Sulfs are extracellular endosulfatases with strong potential for modulating the interactions of heparan sulfate proteoglycans in the extracellular microenvironment.
Collapse
Affiliation(s)
| | - Kenji Uchimura
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California 94143-0452
| | | | - Steven D. Rosen
- Department of Anatomy, University of California, San Francisco, California 94143-0452
- To whom correspondence should be addressed. Tel.: 415-476-1579; Fax: 415-476-4845;
| |
Collapse
|
26
|
Misawa H, Sherr EH, Lee DJ, Chetkovich DM, Tan A, Schreiner CE, Bredt DS. Identification of a monogenic locus (jams1) causing juvenile audiogenic seizures in mice. J Neurosci 2002; 22:10088-93. [PMID: 12451109 PMCID: PMC6758732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Epilepsy is a debilitating disease with a strong genetic component. Positional cloning has identified a few genes for rare monogenic epilepsy syndromes; however, the genetics of common human epilepsies are too complex to be analyzed easily by current techniques. Mouse models of epilepsy can further this analysis by eliminating genetic background heterogeneity and enabling the production of sufficient numbers of offspring. Here, we report that Black Swiss mice have a heretofore unrecognized specific susceptibility to audiogenic seizures. These seizures are characterized by wild running, loss of righting reflex, and tonic flexion and extension, and are followed by a postictal period. The susceptibility to these seizures is developmentally regulated, peaking at 21 d of age and nearly disappearing by adulthood. Interestingly, both the susceptibility to seizures and their developmental regulation appear unrelated to hearing thresholds in the Black Swiss strain and backcrossed progeny. Genetic mapping and linkage analysis of hybrid mice localize the seizure gene, jams1 (juvenile audiogenic monogenic seizures), to a 1.6 +/- 0.5 centimorgan (cM) region on mouse chromosome 10, delimited by the gene basigin (Bsg) and marker D10Mit140. Interestingly, the majority of the critical region is syntenic to a region on human chromosome 19p13.3 implicated in a familial form of juvenile febrile convulsions. Cloning the gene for audiogenic seizures in these mice may provide important insight into the fundamental mechanisms for developmentally regulated human epilepsy syndromes.
Collapse
MESH Headings
- Acoustic Stimulation
- Age Factors
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Auditory Threshold
- Avian Proteins
- Basigin
- Blood Proteins
- Carrier Proteins/genetics
- Disease Models, Animal
- Epilepsy, Reflex/chemically induced
- Epilepsy, Reflex/genetics
- Evoked Potentials, Auditory, Brain Stem/genetics
- Gene Expression Regulation, Developmental
- Genes, Recessive
- Genetic Linkage
- Genetic Predisposition to Disease
- Genotype
- Hearing Tests
- Membrane Glycoproteins/genetics
- Membrane Proteins
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Microsatellite Repeats/genetics
- N-Methylaspartate
- Physical Chromosome Mapping
- Picrotoxin
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Hidemi Misawa
- Department of Physiology, University of California at San Francisco, School of Medicine, San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Ooplasmic transplantation is based on the premise that ooplasmic components are compromised in some individuals. In theory, the transfer of small amounts of healthy ooplasm can correct such deficits, allowing for improved development and implantation. The technique is based on a well-established background of experimental embryology demonstrating that cytoplasmic manipulation in oocytes and early embryos can be entirely compatible with normal development. Cytoplasm has been manipulated via karyoplast and cytoplast transfer and by cytoplasmic injection. Term development has been obtained following such manipulations in a variety of mammalian species. While some manipulative scenarios have exhibited compromised development, others have exhibited improved development. Developmental problems involving specific epigenetic and mitochondrial incompatibilities have been observed in a very limited subset of animal studies. These studies are based on genetic and physical models that have little relation to the actual substance of ooplasmic transplantation in the human. In fact, the majority of animal studies suggest that ooplasmic transplantation is well-founded and unlikely to result in negative developmental consequences. Furthermore, there are considerable physical, physiological and developmental differences between human and rodent eggs and embryos. These differences suggest that potentially negative issues raised by rodent results may not be relevant in the human.
Collapse
Affiliation(s)
- Henry E Malter
- The Institute for Reproductive Medicine and Science of Saint Barnabas Medical Center, 101 Old Short Hills Road, Suite 501, West Orange, NJ 07052, USA.
| | | |
Collapse
|
28
|
Boulard O, Damotte D, Deruytter N, Fluteau G, Carnaud C, Garchon HJ. An interval tightly linked to but distinct from the H2 complex controls both overt diabetes (Idd16) and chronic experimental autoimmune thyroiditis (Ceat1) in nonobese diabetic mice. Diabetes 2002; 51:2141-7. [PMID: 12086944 DOI: 10.2337/diabetes.51.7.2141] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The major histocompatibility complex (MHC) has long been associated with predisposition to several autoimmune diseases, including type 1 diabetes and autoimmune thyroiditis. In type 1 diabetes, a primary role has been assigned to class II genes, both in humans and in the nonobese diabetic (NOD) mouse model. However, an involvement of other tightly linked genes is strongly suspected. Here, through two independent sets of experiments, we provide solid evidence for the existence of at least one such gene. First, using a new recombinant congenic NOD strain, R114, we definitively individualized the Idd16 locus from the MHC in a 6-cM interval proximal to H2-K. It affords almost complete protection against diabetes and is associated with delayed insulitis. Second, by genome scan, we mapped non-H2 genes associated with the highly penetrant form of chronic experimental autoimmune thyroiditis (EAT) that is elicited in NOD and NOD.H2(k) mice by immunization with thyroglobulin. We identified one major dominant locus, Ceat1, on chromosome 17, overlapping with Idd16. Most importantly, R114 recombinant congenic mice challenged with thyroglobulin did not develop chronic EAT. This new major region defined by both Idd16 and Ceat1 might thus concur to the unique strength of the MHC in autoimmune susceptibility of NOD mice.
Collapse
Affiliation(s)
- Olivier Boulard
- INSERM U25, Hôpital Necker-Enfants malades, 161 rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
29
|
Chavan SS, Tian W, Hsueh K, Jawaheer D, Gregersen PK, Chu CC. Characterization of the human homolog of the IL-4 induced gene-1 (Fig1). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:70-80. [PMID: 12031486 DOI: 10.1016/s0167-4781(02)00295-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mouse interleukin-four induced gene-1 (mFig1) maps to a region of susceptibility for systemic lupus erythematosus (SLE) that includes the Sle3 locus. To begin examining this relationship in humans, we have isolated and characterized the human homolog of mFig1. Human Fig1 (hFig1) has the same eight exon genomic structure as mFig1. The predicted 63-kDa protein, like mFig1, contains a signal peptide, a large internal sequence that is most similar (43% identical over 484 amino acids) to L-amino acid oxidase (LAAO), and a carboxy terminal domain with no similarity to known genes. When compared to the LAAO crystal structure, hFig1 conserves key residues thought to be involved in catalysis and binding of the flavin adenine dinucleotide cofactor. Surprisingly, the carboxy terminal domains of hFig1 and mFig1 have little similarity (<11% identity), different lengths and amino acid composition. Like mFig1, hFig1 RNA is induced by interleukin-4 (IL-4) in B lymphocytes, and is primarily found in immune tissues. Finally, hFig1 maps to the predicted mFig1 syntenic region on human chromosome 19q13.3-19q13.4, a hot spot for susceptibility to several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Sangeeta S Chavan
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
30
|
Janssen BJA, Smits JFM. Autonomic control of blood pressure in mice: basic physiology and effects of genetic modification. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1545-64. [PMID: 12010736 DOI: 10.1152/ajpregu.00714.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Control of blood pressure and of blood flow is essential for maintenance of homeostasis. The hemodynamic state is adjusted by intrinsic, neural, and hormonal mechanisms to optimize adaptation to internal and environmental challenges. In the last decade, many studies showed that modification of the mouse genome may alter the capacity of cardiovascular control systems to respond to homeostatic challenges or even bring about a permanent pathophysiological state. This review discusses the progress that has been made in understanding of autonomic cardiovascular control mechanisms from studies in genetically modified mice. First, from a physiological perspective, we describe how basic hemodynamic function can be measured in conscious conditions in mice. Second, we focus on the integrative role of autonomic nerves in control of blood pressure in the mouse, and finally, we depict the opportunities and insights provided by genetic modification in this area.
Collapse
Affiliation(s)
- Ben J A Janssen
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Universiteit Maastricht, Maastricht, 6200 MD, The Netherlands.
| | | |
Collapse
|
31
|
Jones DO, Mattei MG, Horsley D, Cowell IG, Singh PB. The gene and pseudogenes of Cbx3/mHP1 gamma. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2002; 12:147-60. [PMID: 11762190 DOI: 10.3109/10425170109080769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The HP1 class of chromobox (Cbx) genes encode an evolutionarily conserved family of proteins involved in the packaging of chromosomal domains into a repressive heterochromatic state. The murine Cbx5, Cbx1 and Cbx3 genes encode the three mouse HP1 proteins, mHP1 alpha, -beta and -gamma respectively. Here, we report the cloning of the mouse Cbx3/HP1 gamma gene and the chromosomal localisation of Cbx3 and three Cbx3-related pseudogenes. The Cbx3 structural gene is located on mouse Chromosome 6, close to the Hoxa cluster. Two Cbx3 processed pseudogenes are separated by just 300 bp and are arranged in a head-to-tail configuration on Chromosome 13 while a third pseudogene is found on mouse Chromosome 4. The genomic intron-exon arrangement of Cbx3 is different from the conserved organisation of three other mammalian HP1 genes, Cbx1 (mHP1 beta), CBX3 (hHP1 gamma), and Cbx5 (mHP1 alpha) in that Cbx3 lacks an intron that is present in the others.
Collapse
Affiliation(s)
- D O Jones
- Chromatin Function Laboratory, Babraham Institute, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | |
Collapse
|
32
|
Boulard O, Fluteau G, Eloy L, Damotte D, Bedossa P, Garchon HJ. Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4192-201. [PMID: 11937580 DOI: 10.4049/jimmunol.168.8.4192] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nonobese diabetic (NOD) mouse strain provides a good study model for Sjögren's syndrome (SS). The genetic control of SS was investigated in this model using different matings, including a (NOD x C57BL/6 (B6))F(2) cross, a (NOD x NZW)F(2) cross, and ((NOD x B6) x NOD) backcross. Multiple and different loci were detected depending on parent strain combination and sex. Despite significant complexity, two main features were prominent. First, the middle region of chromosome 1 (chr.1) was detected in all crosses. Its effect was most visible in the (NOD x B6)F(2) cross and dominated over that of other loci, including those mapping on chr.8, 9, 10, and 16; the effect of these minor loci was observed only in the absence of the NOD haplotype on chr.1. Most critically, the chr.1 region was sufficient to trigger an SS-like inflammatory infiltrate of salivary glands as shown by the study of a new C57BL/6 congenic strain carrying a restricted segment derived from NOD chr.1. Second, several chromosomal regions were previously associated with NOD autoimmune phenotypes, including Iddm (chr.1, 2, 3, 9, and 17, corresponding to Idd5, Idd13, Idd3, Idd2, and Idd1, respectively), accounting for the strong linkage previously reported between insulitis and sialitis, and autoantibody production (chr.10 and 16, corresponding to Bana2 and Bah2, respectively). Interestingly, only two loci were detected in the (NOD x NZW)F(2) cross, on chr.1 in females and on chr.7 in males, probably because of the latent autoimmune predisposition of the NZW strain. Altogether these findings reflect the complexity and heterogeneity of human SS.
Collapse
Affiliation(s)
- Olivier Boulard
- Institut National de la Santé et de la Recherche Médicale, Unité 25, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Fielden MR, Matthews JB, Fertuck KC, Halgren RG, Zacharewski TR. In silico approaches to mechanistic and predictive toxicology: an introduction to bioinformatics for toxicologists. Crit Rev Toxicol 2002; 32:67-112. [PMID: 11951993 DOI: 10.1080/20024091064183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bioinformatics, or in silico biology, is a rapidly growing field that encompasses the theory and application of computational approaches to model, predict, and explain biological function at the molecular level. This information rich field requires new skills and new understanding of genome-scale studies in order to take advantage of the rapidly increasing amount of sequence, expression, and structure information in public and private databases. Toxicologists are poised to take advantage of the large public databases in an effort to decipher the molecular basis of toxicity. With the advent of high-throughput sequencing and computational methodologies, expressed sequences can be rapidly detected and quantitated in target tissues by database searching. Novel genes can also be isolated in silico, while their function can be predicted and characterized by virtue of sequence homology to other known proteins. Genomic DNA sequence data can be exploited to predict target genes and their modes of regulation, as well as identify susceptible genotypes based on single nucleotide polymorphism data. In addition, highly parallel gene expression profiling technologies will allow toxicologists to mine large databases of gene expression data to discover molecular biomarkers and other diagnostic and prognostic genes or expression profiles. This review serves to introduce to toxicologists the concepts of in silico biology most relevant to mechanistic and predictive toxicology, while highlighting the applicability of in silico methods using select examples.
Collapse
Affiliation(s)
- Mark R Fielden
- Department of Biochemistry and Molecular Biology, National Food Safety and Toxicology Center, Michigan State University, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
34
|
Jirholt J, Lindqvist AK, Karlsson J, Andersson A, Holmdahl R. Identification of susceptibility genes for experimental autoimmune encephalomyelitis that overcome the effect of protective alleles at the eae2 locus. Int Immunol 2002; 14:79-85. [PMID: 11751755 DOI: 10.1093/intimm/14.1.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously identified a locus on mouse chromosome 15 (eae2) that regulates susceptibility to experimental autoimmune encephalomyelitis in a cross between the susceptible strain B10.RIII and the resistant strain RIIIS/J. In an effort to verify the protective effect from having two RIIIS/J alleles at eae2, the resistant locus was bred into the susceptible strain in homozygous form. However, the expected effect was not as clear as in the original study. This might be due to an epistatic effect conferred by several unidentified genes in the genome of the resistant strain or due to the environment by genotype interactions, possibly overcoming the effect of protective alleles at eae2. To further the genetic understanding in this disease, a genome-wide linkage screening approach was employed on an F(2) intercross that carried the protective allele at eae2in homozygous form while the rest of the genome segregated between the B10.RIII and RIIIS/J strains as in the original investigation. In the present study we find one region on chromosome 7, not previously identified in this strain combination, that affects the disease at significant logarithm of the odds score and six regions showing suggestive evidence for linkage to disease phenotypes.
Collapse
Affiliation(s)
- Johan Jirholt
- Section of Medical Inflammation Research, CMB, Lund University, I11 BMC, 221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
35
|
Praz V, Périer R, Bonnard C, Bucher P. The Eukaryotic Promoter Database, EPD: new entry types and links to gene expression data. Nucleic Acids Res 2002; 30:322-4. [PMID: 11752326 PMCID: PMC99099 DOI: 10.1093/nar/30.1.322] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Eukaryotic Promoter Database (EPD) is an annotated, non-redundant collection of eukaryotic Pol II promoters, for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. World Wide Web-based interfaces have been developed which enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch.
Collapse
Affiliation(s)
- Viviane Praz
- Swiss Institute of Bioinformatics and Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, 1066-Epalinges s/Lausanne, Switzerland
| | | | | | | |
Collapse
|
36
|
Vigneau S, Levillayer F, Crespeau H, Cattolico L, Caudron B, Bihl F, Robert C, Brahic M, Weissenbach J, Bureau JF. Homology between a 173-kb region from mouse chromosome 10, telomeric to the Ifng locus, and human chromosome 12q15. Genomics 2001; 78:206-13. [PMID: 11735227 DOI: 10.1006/geno.2001.6656] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sequenced a 173-kb region of mouse chromosome 10, telomeric to the Ifng locus, and compared it with the human homologous sequence located on chromosome 12q15 using various sequence analysis programs. This region has a low density of genes: one gene was detected in the mouse and the human sequences and a second gene was detected only in the human sequence. The mouse gene and its human orthologue, which are expressed in the immune system at a low level, produce a noncoding mRNA. Nonexpressed sequences show a higher degree of conservation than exons in this genomic region. At least three of these conserved sequences are also conserved in a third mammalian species (sheep or cow).
Collapse
Affiliation(s)
- S Vigneau
- Unité des Virus Lents (CNRS URA 1930), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schalkwyk LC, Cusack B, Dunkel I, Hopp M, Kramer M, Palczewski S, Piefke J, Scheel S, Weiher M, Wenske G, Lehrach H, Himmelbauer H. Advanced integrated mouse YAC map including BAC framework. Genome Res 2001; 11:2142-50. [PMID: 11731506 PMCID: PMC311217 DOI: 10.1101/gr.176201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional characterization of the mouse genome requires the availability of a comprehensive physical map to obtain molecular access to chromosomal regions of interest. Positional cloning remains a crucial way of linking phenotype with particular genes. A key step and frequent stumbling block in positional cloning is making a contig of a genetically defined candidate region. The most efficient first step is isolating YAC (Yeast Artificial Chromosome) clones. A robust, detailed YAC contig map is thus an important tool. Employing Interspersed Repetitive Sequence (IRS)-PCR genomics, we have generated an advanced second-generation YAC contig map of the mouse genome that doubles both the depth of clones and the density of markers available. In addition to the primarily YAC-based map, we located 1942 BAC (Bacterial Artificial Chromosome) clones. This allows us to present for the first time a dense framework of BACs spanning the genome of the mouse, which, for instance, can serve as a nucleus for genomic sequencing. Four large-insert mouse YAC libraries from three different strains are included in our data, and our analysis incorporates the data of Hunter et al. and Nusbaum et al. There is a total of 20,205 markers on the final map, 12,033 from our own data, and a total of 56,093 YACs, of which 44,401 are positive for more than one marker.
Collapse
Affiliation(s)
- L C Schalkwyk
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lamhamedi-Cherradi SE, Boulard O, Gonzalez C, Kassis N, Damotte D, Eloy L, Fluteau G, Lévi-Strauss M, Garchon HJ. Further mapping of the Idd5.1 locus for autoimmune diabetes in NOD mice. Diabetes 2001; 50:2874-8. [PMID: 11723074 DOI: 10.2337/diabetes.50.12.2874] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Idd5 locus for autoimmune diabetes in nonobese diabetic (NOD) mice has been mapped to the proximal half of chromosome 1 and appears to include two loci, Idd5.1 and Idd5.2, Idd5.1 being a candidate homolog of the human IDDM12 locus. Using new recombinant congenic lines, we have reduced the Idd5.1 interval to 5 cM at most, between D1Mit279 and D1Mit19 (not included). This interval now excludes the Casp8 and Cflar (Flip) candidate genes. It still retains Cd28 and Ctla4 and also includes Icos (inducible costimulator). The previously reported differential expression of Ctla4, which is induced at a lower level in NOD than in B6-activated T-cells, was found independent of Idd5.1 itself because Ctla4 expression was induced at a low level in T-cells from Idd5.1-congenic mice. The Idd5.1 locus protected against both spontaneous and cyclophosphamide-induced diabetes, but it did not prevent inflammatory infiltration of the islets of Langerhans. Furthermore, diabetogenic precursor spleen cells from prediabetic NOD and Idd5.1-congenic mice were equally capable of transferring diabetes to immunodeficient NOD.scid/scid recipient mice. The Idd5.1 locus might affect a late event of disease development, subsequent to the onset of insulitis and possibly taking place in the islets of Langerhans.
Collapse
Affiliation(s)
- S E Lamhamedi-Cherradi
- Institut National de Santé et de Recherche Médicale (INSERM) U25, Hôpital Necker-Enfants malades, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tulin EE, Onoda N, Nakata Y, Maeda M, Hasegawa M, Nomura H, Kitamura T. SF20/IL-25, a novel bone marrow stroma-derived growth factor that binds to mouse thymic shared antigen-1 and supports lymphoid cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6338-47. [PMID: 11714798 DOI: 10.4049/jimmunol.167.11.6338] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using a forward genetic approach and phenotype-based complementation screening to search for factors that stimulate cell proliferation, we have isolated a novel secreted bone marrow stroma-derived growth factor, which we termed SF20/IL-25. This protein signals cells to proliferate via its receptor, which we have identified as mouse thymic shared Ag-1 (TSA-1). Enforced expression of TSA-1 in IL-3-dependent Ba/F3 cells that do not express endogenous TSA-1 rendered cells to proliferate in a dose-dependent manner when stimulated with SF20/IL-25. FDCP2, a factor-dependent hemopoietic cell line that expresses endogenous TSA-1, could also be stimulated to proliferate with SF20/IL-25. Binding of SF20 to TSA-1 was blocked by anti-TSA-1 Ab and SF20-induced proliferation of TSA-1-expressing cells was inhibited by anti-TSA-1. In vitro assay revealed that SF20/IL-25 has no detectable myelopoietic activity but supports proliferation of cells in the lymphoid lineage.
Collapse
Affiliation(s)
- E E Tulin
- Chugai Research Institute for Molecular Medicine, Niihari, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kwitek AE, Tonellato PJ, Chen D, Gullings-Handley J, Cheng YS, Twigger S, Scheetz TE, Casavant TL, Stoll M, Nobrega MA, Shiozawa M, Soares MB, Sheffield VC, Jacob HJ. Automated construction of high-density comparative maps between rat, human, and mouse. Genome Res 2001; 11:1935-43. [PMID: 11691858 PMCID: PMC311144 DOI: 10.1101/gr.173701] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animal models have been used primarily as surrogates for humans, having similar disease-based phenotypes. Genomic organization also tends to be conserved between species, leading to the generation of comparative genome maps. The emergence of radiation hybrid (RH) maps, coupled with the large numbers of available Expressed Sequence Tags (ESTs), has revolutionized the way comparative maps can be built. We used publicly available rat, mouse, and human data to identify genes and ESTs with interspecies sequence identity (homology), identified their UniGene relationships, and incorporated their RH map positions to build integrated comparative maps with >2100 homologous UniGenes mapped in more than one species (approximately 6% of all mammalian genes). The generation of these maps is iterative and labor intensive; therefore, we developed a series of computer tools (not described here) based on our algorithm that identifies anchors between species and produces printable and on-line clickable comparative maps that link to a wide variety of useful tools and databases. The maps were constructed using sequence-based comparisons, thus creating "hooks" for further sequence-based annotation of human, mouse, and rat sequences. Currently, this map enables investigators to link the physiology of the rat with the genetics of the mouse and the clinical significance of the human.
Collapse
Affiliation(s)
- A E Kwitek
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takash W, Cañizares J, Bonneaud N, Poulat F, Mattéi MG, Jay P, Berta P. SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling. Nucleic Acids Res 2001; 29:4274-83. [PMID: 11691915 PMCID: PMC60197 DOI: 10.1093/nar/29.21.4274] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Sox gene family consists of several genes related by encoding a 79 amino acid DNA-binding domain known as the HMG box. This box shares strong sequence similarity to that of the testis determining protein SRY. SOX proteins are transcription factors having critical roles in the regulation of diverse developmental processes in the animal kingdom. We have characterised the human SOX7 gene and compared it to its mouse orthologue. Chromosomal mapping analyses localised mouse Sox7 on band D of mouse chromosome 14, and assigned human SOX7 in a region of shared synteny on human chromosome 8 (8p22). A detailed expression analysis was performed in both species. Sox7 mRNA was detected during embryonic development in many tissues, most abundantly in brain, heart, lung, kidney, prostate, colon and spleen, suggesting a role in their respective differentiation and development. In addition, mouse Sox7 expression was shown to parallel mouse Sox18 mRNA localisation in diverse situations. Our studies also demonstrate the presence of a functional transactivation domain in SOX7 protein C-terminus, as well as the ability of SOX7 protein to significantly reduce Wnt/beta-catenin-stimulated transcription. In view of these and other findings, we suggest different modes of action for SOX7 inside the cell including repression of Wnt signalling.
Collapse
Affiliation(s)
- W Takash
- Human Molecular Genetics Group, Institut de Génétique Humaine, UPR1142 CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Belting HG, Hauptmann G, Meyer D, Abdelilah-Seyfried S, Chitnis A, Eschbach C, Söll I, Thisse C, Thisse B, Artinger KB, Lunde K, Driever W. spiel ohne grenzen/pou2is required during establishment of the zebrafish midbrain-hindbrain boundary organizer. Development 2001; 128:4165-76. [PMID: 11684654 PMCID: PMC4027960 DOI: 10.1242/dev.128.21.4165] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate midbrain-hindbrain boundary (MHB) organizes patterning and neuronal differentiation in the midbrain and anterior hindbrain. Formation of this organizing center involves multiple steps, including positioning of the MHB within the neural plate, establishment of the organizer and maintenance of its regional identity and signaling activities. Juxtaposition of the Otx2 and Gbx2 expression domains positions the MHB. How the positional information is translated into activation of Pax2, Wnt1 and Fgf8 expression during MHB establishment remains unclear. In zebrafish spiel ohne grenzen (spg) mutants, the MHB is not established, neither isthmus nor cerebellum form, the midbrain is reduced in size and patterning abnormalities develop within the hindbrain. In spg mutants, despite apparently normal expression of otx2, gbx1 and fgf8 during late gastrula stages, the initial expression of pax2.1, wnt1 and eng2, as well as later expression of fgf8 in the MHB primordium are reduced. We show that spg mutants have lesions in pou2, which encodes a POU-domain transcription factor. Maternal pou2 transcripts are distributed evenly in the blastula, and zygotic expression domains include the midbrain and hindbrain primordia during late gastrulation. Microinjection of pou2 mRNA can rescue pax2.1 and wnt1 expression in the MHB of spg/pou2 mutants without inducing ectopic expression. This indicates an essential but permissive role for pou2 during MHB establishment. pou2 is expressed normally in noi/pax2.1 and ace/fgf8 zebrafish mutants, which also form no MHB. Thus, expression of pou2 does not depend on fgf8 and pax2.1. Our data suggest that pou2 is required for the establishment of the normal expression domains of wnt1 and pax2.1 in the MHB primordium.
Collapse
Affiliation(s)
- Heinz-Georg Belting
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Giselbert Hauptmann
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Dirk Meyer
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
| | | | - Ajay Chitnis
- Unit on Vertebrate Neural Development, NIH/NICHD Lab of Molecular Genetics, Building 6B, Room 3B-315, 9000 Rockville Pike, Bethesda MD 20892, USA
| | - Cathrin Eschbach
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Iris Söll
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Christine Thisse
- IGBMC, 1, rue Laurent Fries, BP163, 67404 Illkirch Cedex, France
| | - Bernard Thisse
- IGBMC, 1, rue Laurent Fries, BP163, 67404 Illkirch Cedex, France
| | - Kristin B. Artinger
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Karen Lunde
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Wolfgang Driever
- Albert-Ludwigs-Universität Freiburg, Institut für Biologie I, Hauptstrasse 1, D-79104 Freiburg, Germany
- Author for correspondence ()
| |
Collapse
|
43
|
Pouliot Y, Gao J, Su QJ, Liu GG, Ling XB. DIAN: a novel algorithm for genome ontological classification. Genome Res 2001; 11:1766-79. [PMID: 11591654 PMCID: PMC311153 DOI: 10.1101/gr.183301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 08/14/2001] [Indexed: 11/24/2022]
Abstract
Faced with the determination of many completely sequenced genomes, computational biology is now faced with the challenge of interpreting the significance of these data sets. A multiplicity of data-related problems impedes this goal: Biological annotations associated with raw data are often not normalized, and the data themselves are often poorly interrelated and their interpretation unclear. All of these problems make interpretation of genomic databases increasingly difficult. With the current explosion of sequences now available from the human genome as well as from model organisms, the importance of sorting this vast amount of conceptually unstructured source data into a limited universe of genes, proteins, functions, structures, and pathways has become a bottleneck for the field. To address this problem, we have developed a method of interrelating data sources by applying a novel method of associating biological objects to ontologies. We have developed an intelligent knowledge-based algorithm, to support biological knowledge mapping, and, in particular, to facilitate the interpretation of genomic data. In this respect, the method makes it possible to inventory genomes by collapsing multiple types of annotations and normalizing them to various ontologies. By relying on a conceptual view of the genome, researchers can now easily navigate the human genome in a biologically intuitive, scientifically accurate manner.
Collapse
Affiliation(s)
- Y Pouliot
- DoubleTwist, Inc., Oakland, California 94612, USA
| | | | | | | | | |
Collapse
|
44
|
Seltzer Z, Wu T, Max MB, Diehl SR. Mapping a gene for neuropathic pain-related behavior following peripheral neurectomy in the mouse. Pain 2001; 93:101-106. [PMID: 11427320 DOI: 10.1016/s0304-3959(01)00295-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Total hindpaw denervation in rodents elicits an abnormal behavior of licking, scratching and self-injury of the anesthetic limb ("autotomy"). Since the same denervation produces phantom limb pain and anesthesia dolorosa in humans, autotomy has been used as a model of human neuropathic pain. Autotomy is an inherited trait in rodents, attributable to a few genes of major effect. Here we used recombinant inbred (RI) mouse lines of the AXB-BXA RI set to map a gene for autotomy. Autotomy levels following unilateral sciatic and saphenous nerve section were scored daily for 36 days, using a standardized scale, in all 23 RI lines available for this set. We used a genetic map of 395 marker loci and a permutation-based statistical method for categorical data to assess the statistical significance of mapping results. We identified a marker on chromosome 15 with statistical support (P=0.0003) in the range considered significant for genome-wide scans in the mouse. Several genes located in this chromosomal region encode for neural functions related to neuropathic pain and may indicate targets for development of novel analgesics.
Collapse
Affiliation(s)
- Ze'ev Seltzer
- Department of Physiology, Faculties of Medicine and Dental Medicine, Hebrew University, P.O. Box 11720, 91120 Jerusalem, Israel Craniofacial Epidemiology and Genetics Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA Pain and Neurosensory Mechanisms Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The exponential growth in the volume of accessible biological information has generated a confusion of voices surrounding the annotation of molecular information about genes and their products. The Gene Ontology (GO) project seeks to provide a set of structured vocabularies for specific biological domains that can be used to describe gene products in any organism. This work includes building three extensive ontologies to describe molecular function, biological process, and cellular component, and providing a community database resource that supports the use of these ontologies. The GO Consortium was initiated by scientists associated with three model organism databases: SGD, the Saccharomyces Genome database; FlyBase, the Drosophila genome database; and MGD/GXD, the Mouse Genome Informatics databases. Additional model organism database groups are joining the project. Each of these model organism information systems is annotating genes and gene products using GO vocabulary terms and incorporating these annotations into their respective model organism databases. Each database contributes its annotation files to a shared GO data resource accessible to the public at http://www.geneontology.org/. The GO site can be used by the community both to recover the GO vocabularies and to access the annotated gene product data sets from the model organism databases. The GO Consortium supports the development of the GO database resource and provides tools enabling curators and researchers to query and manipulate the vocabularies. We believe that the shared development of this molecular annotation resource will contribute to the unification of biological information.
Collapse
|
46
|
Hertzler S, Kallio P, Lipton HL. UDP-galactose transporter is required for Theiler's virus entry into mammalian cells. Virology 2001; 286:336-44. [PMID: 11485401 DOI: 10.1006/viro.2001.0981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Theiler's murine encephalomyelitis viruses (TMEV) are divided into two groups: high-neurovirulence strains, such as GDVII, cause fatal encephalitis, while low-neurovirulence strains, such as BeAn and DA, cause persistent infection and demyelination in mice. Cell surface sialic acid is bound by the low-neurovirulence DA and BeAn viruses, but not by the high-neurovirulence GDVII virus. We have identified a clone from a BHK-21 cell cDNA library that mediates TMEV entry and infection by viruses of both TMEV groups in a receptor-negative BHK-21 cell variant (R26). The sequence of this clone is 96.4% identical to the human UDP-galactose transporter (UGT), which belongs to a family of nucleotide-sugar transporter proteins involved in the biosynthesis of complex carbohydrate structures in the trans-Golgi network. UGT mRNA from R26 cells was found to have a 490-nucleotide deletion involving the C-terminal amino acids 255 to 392 and 81 nucleotides of the 3' noncoding region. These results suggest two possibilities by which UGT may mediate TMEV entry and infection. The most likely one relates to the transporter function of adding galactose to another receptor protein. This possibility suggests the requirement for a specific glycoprotein interaction for GDVII virus cell binding and entry, e.g., galactose for GDVII and sialic acid for BeAn. Alternatively, UGT might be a TMEV receptor itself, acting via UGT cycling to the cell surface.
Collapse
Affiliation(s)
- S Hertzler
- Integrated Graduate Program, Northwestern University Medical School, Chicago, Illinois, USA
| | | | | |
Collapse
|
47
|
Le Voyer T, Rouse J, Lu Z, Lifsted T, Williams M, Hunter KW. Three loci modify growth of a transgene-induced mammary tumor: suppression of proliferation associated with decreased microvessel density. Genomics 2001; 74:253-61. [PMID: 11414753 DOI: 10.1006/geno.2001.6562] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In earlier studies it was observed that the genetic background significantly affected the phenotype of a transgene-induced mammary tumor. Tumors arising in an (I/LnJ x PyMT) F1 hybrid background appeared earlier than in the FVB/N-TgN(MMTV-PyVT)(634Mul) parent, but accumulated less tumor mass, indicating a net decrease in tumor growth. Quantitative genetic mapping in a backcross identified three loci that were associated with the decreased proliferative capacity of the I/LnJ F1 tumors. Molecular analysis of the tumors suggests that these loci may act by restricting the tumor's ability to recruit microvessels. The three loci, designated Mmtg1-3, are unlinked to the angiogenic genes Fgf2, Flt1, Flk4, Flk1, Vegf, and Vegfc, as well as the precursors of the endogenous antiangiogenic molecules angiostatin and endostatin. The Mmtg loci may therefore provide novel targets for antiangiogenic therapeutic strategies.
Collapse
Affiliation(s)
- T Le Voyer
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
48
|
Skinner JA, Saltiel AR. Cloning and identification of MYPT3: a prenylatable myosin targetting subunit of protein phosphatase 1. Biochem J 2001; 356:257-67. [PMID: 11336659 PMCID: PMC1221835 DOI: 10.1042/0264-6021:3560257] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify novel protein phosphatase 1 (PP1)-interacting proteins, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the catalytic subunit of PP1 as bait. In the present work, the isolation, identification and initial biochemical characterization of a novel PP1-interacting protein, MYPT3, which is homologous with the myosin phosphatase targetting subunit (MYPT) family, is described. MYPT3 aligns >99% with a region of mouse genomic DNA clone RP23-156P23 and localizes to chromosome 15, between markers at 44.1-46.5 cM, as demonstrated by radiation hybrid mapping. The gene consists of ten exons that encode for a 524-amino acid sequence with a predicted molecular mass of 57529 Da. The N-terminal region of MYPT3 consists of a consensus PP1-binding site and multiple ankyrin repeats. MYPT3 is distinguished from related approximately 110-130 kDa MYPT subunits by its molecular mass of 58 kDa, and a unique C-terminal region that contains several potential signalling motifs and a CaaX prenylation site. We have shown that affinity-purified glutathione S-transferase (GST)-MYPT3 is prenylated by purified recombinant farnesyltransferase in vitro. Endogenous PP1 from 3T3-L1 lysates specifically interacts with MYPT3. Additionally, purified PP1 activity was inhibited by GST-MYPT3 toward phosphorylase a, myosin light chain and myosin substrate in vitro. Overall, our findings identify a novel prenylatable subunit of PP1 that defines a new subfamily of MYPT.
Collapse
Affiliation(s)
- J A Skinner
- Department of Cell Biology, Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
49
|
Hill DP, Davis AP, Richardson JE, Corradi JP, Ringwald M, Eppig JT, Blake JA. PROGRAM DESCRIPTION. Genomics 2001; 74:121-8. [PMID: 11374909 DOI: 10.1006/geno.2001.6513] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- D P Hill
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sainz E, Korley JN, Battey JF, Sullivan SL. Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 2001; 77:896-903. [PMID: 11331418 DOI: 10.1046/j.1471-4159.2001.00292.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the gustatory system, the recognition of sugars, amino acids and bitter-tasting compounds is the function of specialized G protein-coupled receptors. Recently, two members of novel subfamily of G protein-coupled receptors were proposed to function as taste receptors based on their specific expression in taste receptor cells. Here, we report the identification of a third member, T1R3, of this family of receptors. T1R3 maps near the telomere of mouse chromosome 4 rendering it a candidate for the Sac locus, a primary determinant of sweet preference in mice. Consistent with its candidacy for the Sac locus, T1R3 displays taste receptor cell-specific expression. In addition, taster and non-taster strains of mouse harbor different alleles of T1R3.
Collapse
Affiliation(s)
- E Sainz
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|