1
|
Wada KI, Hosokawa K, Ito Y, Mizuo M, Harada Y, Yonemitsu Y. Generation of transmitochondrial cybrids using a microfluidic device. Exp Cell Res 2022; 418:113233. [PMID: 35659971 DOI: 10.1016/j.yexcr.2022.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/04/2022]
Abstract
Mitochondrial cloning is a promising approach to achieve homoplasmic mitochondrial DNA (mtDNA) mutations. We previously developed a microfluidic device that performs single mitochondrion transfer from a mtDNA-intact cell to a mtDNA-less (ρ0) cell by promoting cytoplasmic connection through a microtunnel between them. In the present study, we described a method for generating transmitochondrial cybrids using the microfluidic device. After achieving mitochondrial transfer between HeLa cells and thymidine kinase-deficient ρ0143B cells using the microfluidic device, selective culture was carried out using a pyruvate and uridine (PU)-absent and 5-bromo-2'-deoxyuridine-supplemented culture medium. The resulting cells contained HeLa mtDNA and 143B nuclei, but both 143B mtDNA and HeLa nuclei were absent in these cells. Additionally, these cells showed lower lactate production than parent ρ0143B cells and disappearance of PU auxotrophy for cell growth. These results suggest successful generation of transmitochondrial cybrids using the microfluidic device. Furthermore, we succeeded in selective harvest of generated transmitochondrial cybrids under a PU-supplemented condition by removing unfused ρ0 cells with puromycin-based selection in the microfluidic device.
Collapse
Affiliation(s)
- Ken-Ichi Wada
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan; Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kazuo Hosokawa
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maeda Mizuo
- Bioengineering Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yui Harada
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu Univ., 3-1-1 Maidasi, Higashi, Fukuoka, 8112-8582, Japan
| |
Collapse
|
2
|
Wada KI, Hosokawa K, Ito Y, Maeda M. Quantitatively Controlled Intercellular Mitochondrial Transfer by Cell Fusion-Based Method Using a Microfluidic Device. Methods Mol Biol 2021; 2277:39-47. [PMID: 34080143 DOI: 10.1007/978-1-0716-1270-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantitative control of mitochondrial transfer is a promising approach for genetic manipulation of mitochondrial DNA (mtDNA) because it enables precise modulation of heteroplasmy. Furthermore, single mitochondrion transfer from a mtDNA mutation-accumulated cell to a mtDNA-less (ρ0) cell potentially achieves homoplasmy of mutated mtDNA. Here we describe the method for quantitative control of mitochondrial transfer including achieving single mitochondrion transfer between live single cells using a microfluidic device.
Collapse
Affiliation(s)
- Ken-Ichi Wada
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan.
| | - Kazuo Hosokawa
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
3
|
Herrera-Cogco E, López-Bayghen B, Hernández-Melchor D, López-Luna A, Palafox-Gómez C, Ramírez-Martínez L, López-Bello E, Albores A, López-Bayghen E. Paraben concentrations found in human body fluids do not exert steroidogenic effects in human granulosa primary cell cultures. Toxicol Mech Methods 2020; 30:336-349. [PMID: 32166990 DOI: 10.1080/15376516.2020.1741052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In cosmetics and food products, parabens are widely used as antimicrobial agents. Reports have suggested that parabens may be linked to infertility, owing to their effects on basal steroidogenesis properties or their capacity to inflict mitochondrial damage. Despite growing concerns about parabens as endocrine disruptors, it is unclear whether they affect any of these actions in humans, particularly at environmentally relevant concentrations. In this work, an in vitro primary culture of human granulosa cells was used to evaluate steroidogenesis, based on the assessment of progesterone production and regulation of critical steroidogenic genes: CYP11A1, HSD3B1, CYP19A1, and HSD17B1. The effects of two commercially relevant parabens, methylparaben (MPB) and butylparaben (BPB), were screened. Cells were exposed to multiple concentrations ranging from relatively low (typical environmental exposure) to relatively high. The effect was assessed by the parabens' ability to modify steroidogenic genes, progesterone or estradiol production, and on mitochondrial health, by evaluating mitochondrial activity as well as mtDNA content. Neither MPB nor BPB showed any effect over progesterone production or the expression of genes controlling steroid production. Only BPB affected the mitochondria, decreasing mtDNA content at supraphysiological concentrations (1000 nM). Prolonged exposure to these compounds produced no effects in neither of these parameters. In conclusion, neither MPB nor BPB significantly affected basal steroidogenesis in granulosa cells. Although evidence supporting paraben toxicity is prevalent, here we put forth evidence that suggests that parabens do not affect basal steroidogenesis in human granulosa cells.
Collapse
Affiliation(s)
- Elena Herrera-Cogco
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México
| | - Bruno López-Bayghen
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México.,Laboratorio de Investigación y Diagnóstico Molecular, Instituto de Infertilidad y Genética, México City, México
| | - Dinorah Hernández-Melchor
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México.,Laboratorio de Investigación y Diagnóstico Molecular, Instituto de Infertilidad y Genética, México City, México
| | - Almena López-Luna
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México.,Laboratorio de Investigación y Diagnóstico Molecular, Instituto de Infertilidad y Genética, México City, México
| | - Cecilia Palafox-Gómez
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México
| | - Leticia Ramírez-Martínez
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México
| | - Estheisy López-Bello
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México
| | - Arnulfo Albores
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación de Estudios Avanzados del IPN, México City, México
| |
Collapse
|
4
|
Cybrid Models of Pathological Cell Processes in Different Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4647214. [PMID: 29983856 PMCID: PMC6015674 DOI: 10.1155/2018/4647214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 05/02/2018] [Indexed: 11/22/2022]
Abstract
Modelling of pathological processes in cells is one of the most sought-after technologies of the 21st century. Using models of such processes may help to study the pathogenetic mechanisms of various diseases. The aim of the present study was to analyse the literature, dedicated to obtaining and investigating cybrid models. Besides, the possibility of modeling pathological processes in cells and treatment of different diseases using the models was evaluated. Methods of obtaining Rho0 cell cultures showed that, during their creation, mainly a standard technique, based on the use of mtDNA replication inhibitors (ethidium bromide), was applied. Cybrid lines were usually obtained by PEG fusion. Most frequently, platelets acted as donors of mitochondria. According to the analysis of the literature data, cybrid cell cultures can be modeled to study the dysfunction of the mitochondrial genome and molecular cellular pathological processes. Such models can be very promising for the development of therapeutic approaches to the treatment of various human diseases.
Collapse
|
5
|
Wada KI, Hosokawa K, Ito Y, Maeda M. Quantitative control of mitochondria transfer between live single cells using a microfluidic device. Biol Open 2017; 6:1960-1965. [PMID: 29092814 PMCID: PMC5769642 DOI: 10.1242/bio.024869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Quantitative control of mitochondria transfer between live cells is a promising approach for genetic manipulation of mitochondrial DNA (mtDNA) because single mitochondrion transfer to a mtDNA-less (ρ0) cell potentially leads to homoplasmy of mtDNA. In this paper, we describe a method for quantitative control of mitochondria transfer between live single cells. For this purpose, we fabricated novel microfluidic devices having cell paring structures with a 4.1, 5.6 or 10.0 μm-length microtunnel. When cells were fused through a microtunnel using the Sendai virus envelope-based method, a strictured cytoplasmic connection was achieved with a length corresponding to that of the microtunnel. Elongation of the cytoplasmic connection led to a decrease in mitochondria transfer to the fusion partner. Moreover, some cell pairs that fused through a 10.0 μm-length microtunnel showed single mitochondrion transfer. Fused cells were spontaneously disconnected from each other when they were recovered in a normal culture medium. These results suggest that our cell fusion method can perform quantitative control of mitochondria transfer that includes a single mitochondrion transfer. Summary: We developed a novel mitochondria transfer platform using a microfluidic device, and succeeded in single mitochondrion transfer between live single cells.
Collapse
Affiliation(s)
- Ken-Ichi Wada
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Hosokawa
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
7
|
McKenzie M, Chiotis M, Hroudová J, Lopez Sanchez MIG, Lim SC, Cook MJ, McKelvie P, Cotton RGH, Murphy M, St John JC, Trounce IA. Capture of somatic mtDNA point mutations with severe effects on oxidative phosphorylation in synaptosome cybrid clones from human brain. Hum Mutat 2015; 35:1476-84. [PMID: 25219341 DOI: 10.1002/humu.22694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 09/03/2014] [Indexed: 01/13/2023]
Abstract
Mitochondrial DNA (mtDNA) is replicated throughout life in postmitotic cells, resulting in higher levels of somatic mutation than in nuclear genes. However, controversy remains as to the importance of low-level mtDNA somatic mutants in cancerous and normal human tissues. To capture somatic mtDNA mutations for functional analysis, we generated synaptosome cybrids from synaptic endings isolated from fresh hippocampus and cortex brain biopsies. We analyzed the whole mtDNA genome from 120 cybrid clones derived from four individual donors by chemical cleavage of mismatch and Sanger sequencing, scanning around two million base pairs. Seventeen different somatic point mutations were identified, including eight coding region mutations, four of which result in frameshifts. Examination of one cybrid clone with a novel m.2949_2953delCTATT mutation in MT-RNR2 (which encodes mitochondrial 16S rRNA) revealed a severe disruption of mtDNA-encoded protein translation. We also performed functional studies on a homoplasmic nonsense mutation in MT-ND1, previously reported in oncocytomas, and show that both ATP generation and the stability of oxidative phosphorylation complex I are disrupted. As the mtDNA remains locked against direct genetic manipulation, we demonstrate that the synaptosome cybrid approach can capture biologically relevant mtDNA mutants in vitro to study effects on mitochondrial respiratory chain function.
Collapse
Affiliation(s)
- Matthew McKenzie
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia; Monash University, Clayton, Victoria, 3168, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Neuronal and astrocyte dysfunction diverges from embryonic fibroblasts in the Ndufs4fky/fky mouse. Biosci Rep 2014; 34:e00151. [PMID: 25312000 PMCID: PMC4240023 DOI: 10.1042/bsr20140151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells.
Collapse
|
9
|
Sligh J, Janda J, Jandova J. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes. Mutat Res 2014; 769:49-58. [PMID: 25177208 PMCID: PMC4144272 DOI: 10.1016/j.mrfmmm.2014.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF-κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.
Collapse
Affiliation(s)
- James Sligh
- Department of Medicine – Dermatology Division, University of Arizona, Tucson, AZ, 857 24, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jaroslav Janda
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| | - Jana Jandova
- Department of Medicine – Dermatology Division, University of Arizona, Tucson, AZ, 857 24, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
| |
Collapse
|
10
|
Yu G, Tian J, Yin J, Li Q, Zhao X. Incompatibility of nucleus and mitochondria causes xenomitochondrial cybrid unviable across human, mouse, and pig cells. Anim Biotechnol 2014; 25:139-49. [PMID: 24555799 DOI: 10.1080/10495398.2013.841709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nucleus and mitochondria are on correlative dependence; they interact in the process of protein transportation and energy metabolism. The compatibility of nucleus and mitochondria is essential for interspecies somatic cell nuclear transfer (iSCNT) and xenomitochondrial cybrid. In order to test the compatibility of nucleus and mitochondria among human, mouse, and pig cells, we compared the performances of cybrids that fused inter- and intra-species. The ρ0 cells from human and pig cell lines were created as nucleus donors which were transfected with GFP-neo for cell selective system in advance, and mitochondria donor cells were labeled by Mitochondria-RFP. Human and mouse platelets were also used as a mitochondrial donor. Results indicated that all interspecies cybrids declined to die in 2-4 d after the cell fusion in the selection medium, while intraspecies cybrid cells survived and formed stable clones. As a conclusion, the incompatibility between nucleus and mitochondria is the critical factor for the formation of interspecies cybrids.
Collapse
Affiliation(s)
- Guanghui Yu
- a National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | | | | | | | | |
Collapse
|
11
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
12
|
Bird MJ, Thorburn DR, Frazier AE. Modelling biochemical features of mitochondrial neuropathology. Biochim Biophys Acta Gen Subj 2013; 1840:1380-92. [PMID: 24161927 DOI: 10.1016/j.bbagen.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/29/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The neuropathology of mitochondrial disease is well characterised. However, pathophysiological mechanisms at the level of biochemistry and cell biology are less clear. Progress in this area has been hampered by the limited accessibility of neurologically relevant material for analysis. SCOPE OF REVIEW Here we discuss the recent development of a variety of model systems that have greatly extended our capacity to understand the biochemical features associated with mitochondrial neuropathology. These include animal and cell based models, with mutations in both nuclear and mitochondrial DNA encoded genes, which aim to recapitulate the neuropathology and cellular biochemistry of mitochondrial diseases. MAJOR CONCLUSIONS Analysis of neurological tissue and cells from these models suggests that although there is no unifying mode of pathogenesis, dysfunction of the oxidative phosphorylation (OXPHOS) system is often central. This can be associated with altered reactive oxygen species (ROS) generation, disruption of the mitochondrial membrane potential (ΔΨm) and inadequate ATP synthesis. Thus, other cellular processes such as calcium (Ca(2+)) homeostasis, cellular signaling and mitochondrial morphology could be altered, ultimately compromising viability of neuronal cells. GENERAL SIGNIFICANCE Mechanisms of neuronal dysfunction in mitochondrial disease are only just beginning to be characterised, are system dependent and complex, and not merely driven by energy deficiency. The diversity of pathogenic mechanisms emphasises the need for characterisation in a wide range of models, as different therapeutic strategies are likely to be needed for different diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Matthew J Bird
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Australia
| | - Ann E Frazier
- The Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
13
|
Trounce IA, Crouch PJ, Carey KT, McKenzie M. Modulation of ceramide-induced cell death and superoxide production by mitochondrial DNA-encoded respiratory chain defects in Rattus xenocybrid mouse cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:817-25. [DOI: 10.1016/j.bbabio.2013.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
|
14
|
An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copperII. Proc Natl Acad Sci U S A 2011; 109:47-52. [PMID: 22173633 DOI: 10.1073/pnas.1116227108] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson's disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from Cu(II)(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from Cu(II)(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with Cu(II)(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a Cu(II)(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from Cu(II)(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O(2) as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of Cu(II)(atsm) that increases cellular retention of the Cu.
Collapse
|
15
|
Jandova J, Shi M, Norman KG, Stricklin GP, Sligh JE. Somatic alterations in mitochondrial DNA produce changes in cell growth and metabolism supporting a tumorigenic phenotype. Biochim Biophys Acta Mol Basis Dis 2011; 1822:293-300. [PMID: 22119597 DOI: 10.1016/j.bbadis.2011.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/31/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
Abstract
There have been many reports of mitochondrial DNA (mtDNA) mutations associated with human malignancies. We have observed allelic instability in UV-induced cutaneous tumors at the mt-Tr locus encoding the mitochondrial tRNA for arginine. We examined the effects of somatic alterations at this locus by modeling the change in a uniform nuclear background by generating cybrids harboring allelic variation at mt-Tr. We utilized the naturally occurring mtDNA variation at mt-Tr within the BALB/cJ (BALB) and C57BL/6J (B6) strains of Mus musculus to transfer their mitochondria into a mouse ρ(0) cell line that lacked its own mtDNA. The BALB haplotype containing the mt-Tr 9821insA allele produced significant changes in cellular respiration (resulting in lowered ATP production), but increased rates of cellular proliferation in cybrid cells. Furthermore, the mtDNA genotype associated with UV-induced tumors endowed the cybrid cells with a phenotype of resistance to UV-induced apoptosis and enhanced migration and invasion capabilities. These studies support a role for mtDNA changes in cancer.
Collapse
Affiliation(s)
- Jana Jandova
- Southern Arizona VA Healthcare System and Department of Medicine, Dermatology Division, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
16
|
Jandova J, Eshaghian A, Shi M, Li M, King LE, Janda J, Sligh JE. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry. J Invest Dermatol 2011; 132:421-8. [PMID: 22011905 PMCID: PMC3258376 DOI: 10.1038/jid.2011.320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Medicine, Dermatology Division, Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.
Collapse
Affiliation(s)
- Douglas C Wallace
- Organizational Research Unit for Molecular and Mitochondrial Medicine and Genetics, University of California at Irvine, Irvine, California 92697, USA.
| | | |
Collapse
|
18
|
Khusnutdinova E, Gilyazova I, Ruiz-Pesini E, Derbeneva O, Khusainova R, Khidiyatova I, Magzhanov R, Wallace DC. A mitochondrial etiology of neurodegenerative diseases: evidence from Parkinson's disease. Ann N Y Acad Sci 2009; 1147:1-20. [PMID: 19076426 DOI: 10.1196/annals.1427.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evidence continues to accrue implicating mitochondrial dysfunction in the etiology of a number of neurodegenerative diseases. For example, Parkinson's disease (PD) can be induced by mitochondrial toxins, and nuclear DNA (nDNA) loci linked to PD have been associated with mitochondrial dysfunction. Although conclusions about the role of mitochondrial DNA (mtDNA) variants in PD vary, we argue here that this is attributable to the novel genetics of the mtDNA and the fact that clinically relevant mtDNA variation encompasses ancient adaptive polymorphisms, recent deleterious mutations, and somatic mutations. An mtDNA association with PD is supported by an analysis of the Russian Tatar population which revealed that polymorphisms associated with haplogroup H mtDNAs increased PD risk (odds ratio [OR]= 2.58, P= 0.0001), whereas those associated with haplogroup UK cluster mtDNAs were protective (OR = 0.38, P= 0.003). Moreover, mtDNA sequencing revealed that PD patients with either haplogroup H or UK cluster mtDNAs can harbor additional recent variants that might further modulate PD risk. Therefore, the complexity of PD genetics may reflect the complex mitochondrial genetics.
Collapse
Affiliation(s)
- Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Science Center, Russian Academy of Sciences, Ufa, Bashkortostan, Russia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
J. Majima H, P. Indo H, Tomita K, Iwashita Y, Suzuki H, Masuda D, Shimazu T, Tanigaki F, Umemura S, Yano S, Fukui K, Higashibata A, Q Yamazaki T, Kameyama M, Suenaga S, Sato T, Yen HC, Gusev O, Okuda T, Matsui H, Ozawa T, Ishioka N. Bio-Assessment of RISK in Long-Term Manned Space Exploration-Cell Death Factors in Space Radiation and/or Microgravity: A Review-. ACTA ACUST UNITED AC 2009. [DOI: 10.2187/bss.23.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Vempati UD, Torraco A, Moraes CT. Mouse models of oxidative phosphorylation dysfunction and disease. Methods 2008; 46:241-7. [PMID: 18848991 PMCID: PMC2652743 DOI: 10.1016/j.ymeth.2008.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/28/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) deficiency results in a number of human diseases, affecting at least one in 5000 of the general population. Altering the function of genes by mutations are central to our understanding their function. Prior to the development of gene targeting, this approach was limited to rare spontaneous mutations that resulted in a phenotype. Since its discovery, targeted mutagenesis of the mouse germline has proved to be a powerful approach to understand the in vivo function of genes. Gene targeting has yielded remarkable understanding of the role of several gene products in the OXPHOS system. We provide a "tool box" of mouse models with OXPHOS defects that could be used to answer diverse scientific questions.
Collapse
Affiliation(s)
| | | | - Carlos T. Moraes
- Department of Neurology, University of Miami, USA
- Department of Cell Biology & Anatomy, University of Miami, USA
| |
Collapse
|
21
|
Swerdlow RH. Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res 2008; 85:3416-28. [PMID: 17243174 DOI: 10.1002/jnr.21167] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cytoplasmic hybrid (cybrid) technique allows investigators to express selected mitochondrial DNA (mtDNA) sequences against fixed nuclear DNA (nDNA) backgrounds. Cybrids have been used to study the effects of known mtDNA mutations on mitochondrial biochemistry, mtDNA-nDNA inter-species compatibility, and mtDNA integrity in persons without mtDNA mutations defined previously. This review discusses events leading up to creation of the cybrid technique, as well as data obtained via application of the cybrid strategies listed above. Although interpreting cybrid data requires awareness of technique limitations, valuable insights into mtDNA genotype-functional phenotype relationships are suggested.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
22
|
Pinkert CA, Trounce IA. Generation of Transmitochondrial Mice: Development of Xenomitochondrial Mice to Model Neurodegenerative Diseases. Methods Cell Biol 2007; 80:549-69. [PMID: 17445713 DOI: 10.1016/s0091-679x(06)80027-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
23
|
Abstract
Oxidative phosphorylation (OXPHOS) is the only mammalian biochemical pathway dependent on the coordinated assembly of protein subunits encoded by both nuclear and mitochondrial DNA (mtDNA) genes. Cytoplasmic hybrid cells, cybrids, are created by introducing mtDNAs of interest into cells depleted of endogenous mtDNAs, and have been a central tool in unraveling effects of disease-linked mtDNA mutations. In this way, the nuclear genetic complement is held constant so that observed effects on OXPHOS can be linked to the introduced mtDNA. Cybrid studies have confirmed such linkage for many defined, disease-associated mutations. In general, a threshold principle is evident where OXPHOS defects are expressed when the proportion of mutant mtDNA in a heteroplasmic cell is high. Cybrids have also been used where mtDNA mutations are not known, but are suspected, and have produced some support for mtDNA involvement in more common neurodegenerative diseases. Mouse modeling of mtDNA transmission and disease has recently taken advantage of cybrid approaches. By using cultured cells as intermediate carriers of mtDNAs, ES cell cybrids have been produced in several laboratories by pretreatment of the cells with rhodamine 6G before cytoplast fusion. Both homoplasmic and heteroplasmic mice have been produced, allowing modeling of mtDNA transmission through the mouse germ line. We also briefly review and compare other transgenic approaches to modeling mtDNA dynamics, including mitochondrial injection into oocytes or zygotes, and embryonic karyoplast transfer. When breakthrough technology for mtDNA transformation arrives, cybrids will remain valuable for allowing exchange of engineered mtDNAs between cells.
Collapse
Affiliation(s)
- Ian A Trounce
- Center for Neuroscience, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
24
|
Pye D, Kyriakouli DS, Taylor GA, Johnson R, Elstner M, Meunier B, Chrzanowska-Lightowlers ZMA, Taylor RW, Turnbull DM, Lightowlers RN. Production of transmitochondrial cybrids containing naturally occurring pathogenic mtDNA variants. Nucleic Acids Res 2006; 34:e95. [PMID: 16885236 PMCID: PMC1540737 DOI: 10.1093/nar/gkl516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes polypeptides that are critical for coupling oxidative phosphorylation. Our detailed understanding of the molecular processes that mediate mitochondrial gene expression and the structure–function relationships of the OXPHOS components could be greatly improved if we were able to transfect mitochondria and manipulate mtDNA in vivo. Increasing our knowledge of this process is not merely of fundamental importance, as mutations of the mitochondrial genome are known to cause a spectrum of clinical disorders and have been implicated in more common neurodegenerative disease and the ageing process. In organellar or in vitro reconstitution studies have identified many factors central to the mechanisms of mitochondrial gene expression, but being able to investigate the molecular aetiology of a limited number of cell lines from patients harbouring mutated mtDNA has been enormously beneficial. In the absence of a mechanism for manipulating mtDNA, a much larger pool of pathogenic mtDNA mutations would increase our knowledge of mitochondrial gene expression. Colonic crypts from ageing individuals harbour mutated mtDNA. Here we show that by generating cytoplasts from colonocytes, standard fusion techniques can be used to transfer mtDNA into rapidly dividing immortalized cells and, thereby, respiratory-deficient transmitochondrial cybrids can be isolated. A simple screen identified clones that carried putative pathogenic mutations in MTRNR1, MTRNR2, MTCOI and MTND2, MTND4 and MTND6. This method can therefore be exploited to produce a library of cell lines carrying pathogenic human mtDNA for further study.
Collapse
Affiliation(s)
| | | | | | | | | | - Brigitte Meunier
- Centre de Génétique Moléculaire, CNRSAvenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | - Robert N. Lightowlers
- To whom correspondence should be addressed. Tel: +44 191 222 8028; Fax: +44 191 222 8553;
| |
Collapse
|
25
|
Kiebish MA, Seyfried TN. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors. BMC Cancer 2005; 5:102. [PMID: 16105171 PMCID: PMC1199588 DOI: 10.1186/1471-2407-5-102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/16/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL) and the Arg tRNA. METHODS In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. RESULTS Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. CONCLUSION None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors.
Collapse
|
26
|
|
27
|
Coskun PE, Beal MF, Wallace DC. Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004; 101:10726-31. [PMID: 15247418 PMCID: PMC490002 DOI: 10.1073/pnas.0403649101] [Citation(s) in RCA: 433] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in mitochondrial oxidative phosphorylation have frequently been associated with Alzheimer's disease (AD), and both inherited and somatic mtDNA mutations have been reported in certain AD cases. To determine whether mtDNA mutations contribute more generally to the etiology of AD, we have investigated the sequence of the mtDNA control region (CR) from AD brains for possible disease-causing mutations. Sixty-five percent of the AD brains harbored the T414G mutation, whereas this mutation was absent from all controls. Moreover, cloning and sequencing of the mtDNA CR from patient and control brains revealed that all AD brains had an average 63% increase in heteroplasmic mtDNA CR mutations and that AD brains from patients 80 years and older had a 130% increase in heteroplasmic CR mutations. In addition, these mutations preferentially altered known mtDNA regulatory elements. Certain AD brains harbored the disease-specific CR mutations T414C and T477C, and several AD brains between 74 and 83 years of age harbored the CR mutations T477C, T146C, and T195C, at levels up to 70-80% heteroplasmy. AD patient brains also had an average 50% reduction in the mtDNA L-strand ND6 transcript and in the mtDNA/nuclear DNA ratio. Because reduced ND6 mRNA and mtDNA copy numbers would reduce brain oxidative phosphorylation, these CR mutations could account for some of the mitochondrial defects observed in AD.
Collapse
Affiliation(s)
- Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697-3940, USA
| | | | | |
Collapse
|
28
|
McKenzie M, Trounce IA, Cassar CA, Pinkert CA. Production of homoplasmic xenomitochondrial mice. Proc Natl Acad Sci U S A 2004; 101:1685-90. [PMID: 14745024 PMCID: PMC341818 DOI: 10.1073/pnas.0303184101] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 12/09/2003] [Indexed: 11/18/2022] Open
Abstract
The unique features of mtDNA, together with the lack of a wide range of mouse cell mtDNA mutants, have hampered the creation of mtDNA mutant mice. To overcome these barriers mitochondrial defects were created by introducing mitochondria from different mouse species into Mus musculus domesticus (Mm) mtDNA-less (rho(0)) L cells. Introduction of the closely related Mus spretus (Ms) or the more divergent Mus dunni (Md) mitochondria resulted in xenocybrids exhibiting grossly normal respiratory function, but mild metabolic deficiencies, with 2- and 2.5-fold increases in lactate production compared with controls. The transfer of this model from in vitro to in vivo studies was achieved by introducing Ms and Md mitochondria into rhodamine-6G-treated Mm mouse embryonic stem (ES) cells. The resultant xenocybrid ES cells remained pluripotent, and live-born chimerae were produced from both Ms and Md xenocybrid ES cells. Founder chimeric females (G(0)) were mated with successful germ-line transmission of Ms or Md mtDNA to homoplasmic G(1) offspring. These xenocybrid models represent the first viable transmitochondrial mice with homoplasmic replacement of endogenous mtDNA and confirm the feasibility of producing mitochondrial defects in mice by using a xenomitochondrial approach.
Collapse
Affiliation(s)
- Matthew McKenzie
- Genomic Disorders Research Centre, Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria 3065, Australia
| | | | | | | |
Collapse
|
29
|
Yen HC, Nien CY, Majima HJ, Lee CP, Chen SY, Wei JS, See LC. Increase of lipid peroxidation by cisplatin in WI38 cells but not in SV40-transformed WI38 cells. J Biochem Mol Toxicol 2003; 17:39-46. [PMID: 12616645 DOI: 10.1002/jbt.10059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cisplatin (CPT) is an effective anticancer drug that causes cumulative toxicity to normal tissues. It has been suggested that CPT damages normal cells by causing oxidative stress, but it is not known whether it can induce similar oxidative damage to tumor cells. In this study, by using normal human lung fibroblast (W138) cells and SV40-transformed WI38 (VA13) cells as a model, we compared the effect of CPT on cytotoxicity, apoptosis, lipid peroxidation, and mitochondrial gene expression, which could be regulated by oxidative stress, between normal and tumor cells. CPT induced greater growth inhibition and percentage of apoptotic cells in VA13 cells. However, levels of esterified F(2)-isoprostanes and 4-hydroxy-2-nonenal, two specific products of lipid peroxidation, were increased by CPT in WI38 cells, but not in VA13 cells. Furthermore, the transcript level of mitochondrial 12S rRNA was augmented by CPT in both cells, but to a higher degree in WI38 cells. The data suggest a correlation between lipid peroxidation and cytotoxicity or increased mitochondrial transcript levels in WI38 cells but not in VA13 cells. The results also indicate an altered response of oxidative damage and mitochondrial gene regulation to CPT in the transformed phenotype of WI38 cells.
Collapse
Affiliation(s)
- Hsiu-Chuan Yen
- School of Medical Technology, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Bayona-Bafaluy MP, Acín-Pérez R, Mullikin JC, Park JS, Moreno-Loshuertos R, Hu P, Pérez-Martos A, Fernández-Silva P, Bai Y, Enríquez JA. Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Res 2003; 31:5349-55. [PMID: 12954771 PMCID: PMC203322 DOI: 10.1093/nar/gkg739] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 07/29/2003] [Accepted: 07/29/2003] [Indexed: 11/15/2022] Open
Abstract
The existence of reliable mtDNA reference sequences for each species is of great relevance in a variety of fields, from phylogenetic and population genetics studies to pathogenetic determination of mtDNA variants in humans or in animal models of mtDNA-linked diseases. We present compelling evidence for the existence of sequencing errors on the current mouse mtDNA reference sequence. This includes the deletion of a full codon in two genes, the substitution of one amino acid on five occasions and also the involvement of tRNA and rRNA genes. The conclusions are supported by: (i) the re-sequencing of the original cell line used by Bibb and Clayton, the LA9 cell line, (ii) the sequencing of a second L-derivative clone (L929), and (iii) the comparison with 12 other mtDNA sequences from live mice, 10 of them maternally related with the mouse from which the L cells were generated. Two of the latest sequences are reported for the first time in this study (Balb/cJ and C57BL/6J). In addition, we found that both the LA9 and L929 mtDNAs also contain private clone polymorphic variants that, at least in the case of L929, promote functional impairment of the oxidative phosphorylation system. Consequently, the mtDNA of the strain used for the mouse genome project (C57BL/6J) is proposed as the new standard for the mouse mtDNA sequence.
Collapse
Affiliation(s)
- María Pilar Bayona-Bafaluy
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Swerdlow RH. Mitochondrial DNA--related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med 2002; 126:271-80. [PMID: 11860299 DOI: 10.5858/2002-126-0271-mdrmdi] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial dysfunction occurs in several late-onset neurodegenerative diseases. Determining its origin and significance may provide insight into the pathogeneses of these disorders. Regarding origin, one hypothesis proposes mitochondrial dysfunction is driven by mitochondrial DNA (mtDNA) aberration. This hypothesis is primarily supported by data from studies of cytoplasmic hybrid (cybrid) cell lines, which facilitate the study of mitochondrial genotype-phenotype relationships. In cybrid cell lines in which mtDNA from persons with certain neurodegenerative diseases is assessed, mitochondrial physiology is altered in ways that are potentially relevant to programmed cell death pathways. Connecting mtDNA-related mitochondrial dysfunction with programmed cell death underscores the crucial if not central role for these organelles in neurodegenerative pathophysiology. This review discusses the cybrid technique and summarizes cybrid data implicating mtDNA-related mitochondrial dysfunction in certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Center for the Study of Neurodegenerative Diseases and the Department of Neurology, University of Virginia Health System, Charlottesville 22908, USA.
| |
Collapse
|
32
|
Abstract
Mutations in mitochondrial genes encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes have been implicated in a wide range of neuromuscular diseases. MtDNA base substitution and rearrangement mutations generally inactivate one or more tRNA or rRNA genes and can cause myopathy, cardiomyopathy, cataracts, growth retardation, diabetes, etc. nDNA mutations can cause Leigh syndrome, cardiomyopathy, and nephropathy, due to defects in oxidative phosphorylation (OXPHOS) enzyme complexes; cartilage-hair hypoplasia (CHH) and mtDNA depletion syndrome, through defects in mitochondrial nucleic acid metabolism; and ophthalmoplegia with multiple mtDNA deletions, caused by adenine nucleotide translocator-1 (ANT1) mutations. Mouse models have been prepared that recapitulate a number of these diseases. The mtDNA 16S rRNA chloramphenicol (CAP) resistance mutation was introduced into the mouse female germline and caused cataracts and rod and cone abnormalities in chimeras and neonatal lethal myopathy and cardiomyopathy in mutant animals. A mtDNA deletion was introduced into the mouse germline and caused myopathy, cardiomyopathy, and nephropathy. Conditional inactivation of the nDNA mitochondrial transcription factor (Tfam) gene in the heart resulted in neonatal lethal cardiomyopathy, while its inactivation in the pancreatic beta-cells caused diabetes. The ATP/ADP ratio was implicated in mitochondrial diabetes through transgenic modification of the beta-cell ATP-sensitive K(+) channel (K(ATP)). Mutational inactivation of the mouse Ant1 gene resulted in myopathy, cardiomyopathy, and multiple mtDNA deletions in association with elevated reactive oxygen species (ROS) production. Inactivation of uncoupler proteins (Ucp) 1-3 revealed that mitochondrial Delta Psi regulated ROS production. The role of mitochondrial ROS toxicity in disease and aging was confirmed by inactivating glutathione peroxidase (GPx1), resulting in growth retardation, and by total and partial inactivation of Mn superoxide dismutase (MnSOD; Sod2), resulting in neonatal lethal dilated cardiomyopathy and accelerated apoptosis in aging, respectively. The importance of mitochondrial ROS in degenerative diseases and aging was confirmed by treating Sod2 -/- mice and C. elegans with catalytic antioxidant drugs.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
33
|
Wallace DC. Mitochondrial defects in neurodegenerative disease. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:158-66. [PMID: 11553931 DOI: 10.1002/mrdd.1023] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past 12 years, a wide variety of neurodegenerative diseases has been linked to mutations in mitochondrial genes located in either the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). These disorders encompass an array of unorthodox inheritance patterns and a plethora of symptoms ranging from lethal neonatal multi-symptom disorders to later onset myopathies, cardiomyopathies, movement disorders, and dementias. The bases for the genetic and phenotypic variability of mitochondrial diseases lie in the multiplicity of the mitochondria genes dispersed across the human genome and the variety of cellular pathways and functions in which the mitochondria play a central role.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Sligh JE, Levy SE, Waymire KG, Allard P, Dillehay DL, Nusinowitz S, Heckenlively JR, MacGregor GR, Wallace DC. Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A 2000; 97:14461-6. [PMID: 11106380 PMCID: PMC18941 DOI: 10.1073/pnas.250491597] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a method for introducing mtDNA mutations into the mouse female germ line by means of embryonic stem (ES) cell cybrids. Mitochondria were recovered from the brain of a NZB mouse by fusion of synaptosomes to a mtDNA-deficient (rho degrees ) cell line. These cybrids were enucleated and the cytoplasts were electrofused to rhodamine-6G (R-6G)-treated female ES cells. The resulting ES cell cybrids permitted transmission of the NZB mtDNAs through the mouse maternal lineage for three generations. Similarly, mtDNAs from a partially respiratory-deficient chloramphenicol-resistant (CAP(R)) cell line also were introduced into female chimeric mice and were transmitted to the progeny. CAP(R) chimeric mice developed a variety of ocular abnormalities, including congenital cataracts, decreased retinal function, and hamaratomas of the optic nerve. The germ-line transmission of the CAP(R) mutation resulted in animals with growth retardation, myopathy, dilated cardiomyopathy, and perinatal or in utero lethality. Skeletal and heart muscle mitochondria of the CAP(R) mice were enlarged and atypical with inclusions. This mouse ES cell-cybrid approach now provides the means to generate a wide variety of mouse models of mitochondrial disease.
Collapse
Affiliation(s)
- J E Sligh
- Center for Molecular Medicine, Departments of Dermatology and Pathology and Division of Animal Resources, Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murdock DG, Christacos NC, Wallace DC. The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res 2000; 28:4350-5. [PMID: 11058135 PMCID: PMC113143 DOI: 10.1093/nar/28.21.4350] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2000] [Revised: 09/13/2000] [Accepted: 09/13/2000] [Indexed: 11/14/2022] Open
Abstract
The peptide nucleic acid (PNA)-directed PCR clamping technique was modified and applied to the detection of mitochondrial DNA mutations with low heteroplasmy. This method is extremely specific, eliminating false positives in the absence of mutant molecules, and highly sensitive, being capable of detecting mutations at the level of 0.1% of total molecules. Moreover, the reaction can be multiplexed to identify more than one mutation per reaction. Using this technique, the levels of three point mutations, the tRNA(Leu(UUA)) 3243 mutation causing mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS); the tRNA(Lys) 8344 mutation causing myoclonic epilepsy and ragged red fibers (MERRF); and the nucleotide position 414 mutation adjacent to the control region promoters, were evaluated in human brain and muscle from individuals of various ages. While none of the mutations were detected in brain samples from individuals ranging in age from 23 to 93, the 414 mutation could be detected in muscle from individuals 30 years and older. These data demonstrate that the 3243 and 8344 mutations do not accumulate with age to levels greater than 0.1% in brain and muscle. By contrast, the 414 mutation accumulates with age in normal human muscle, though not in brain. The reason for the striking absence of the 414 mutation in aging brain is unknown.
Collapse
MESH Headings
- Acidosis, Lactic/genetics
- Adult
- Aged
- Aged, 80 and over
- Aging/genetics
- Aging/psychology
- Brain/growth & development
- Brain/metabolism
- DNA Mutational Analysis/methods
- DNA, Mitochondrial/genetics
- Epilepsies, Myoclonic/genetics
- Female
- Humans
- Male
- Middle Aged
- Muscle Development
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Peptide Nucleic Acids/genetics
- Plasmids/genetics
- Point Mutation/genetics
- Polymerase Chain Reaction/methods
- Promoter Regions, Genetic/genetics
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Lys/genetics
- Sensitivity and Specificity
- Stroke/genetics
- Templates, Genetic
Collapse
Affiliation(s)
- D G Murdock
- Center for Molecular Medicine, Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
36
|
McKenzie M, Trounce I. Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J Biol Chem 2000; 275:31514-9. [PMID: 10908563 DOI: 10.1074/jbc.m004070200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of in vitro and in vivo models of mitochondrial DNA (mtDNA) defects is currently limited by a lack of characterized mouse cell mtDNA mutants that may be expected to model human mitochondrial diseases. Here we describe the creation of transmitochondrial mouse (Mus musculus) cells repopulated with mtDNA from different murid species (xenomitochondrial cybrids). The closely related Mus spretus mtDNA is readily maintained when introduced into M. musculus mtDNA-less (rho(0)) cells, and the resulting cybrids have normal oxidative phosphorylation (OXPHOS). When the more distantly related Rattus norvegicus mtDNA is transferred to the mouse nuclear background the mtDNA is replicated, transcribed, and translated efficiently. However, function of several OXPHOS complexes that depend on the coordinated assembly of nuclear and mtDNA-encoded proteins is impaired. Complex I activity in the Rattus xenocybrid was 46% of the control mean; complex III was 37%, and complex IV was 78%. These defects combined to restrict maximal respiration to 12-31% of the control and M. spretus xenocybrids, as measured polarographically using isolated cybrid mitochondria. These defects are distinct to those previously reported for human/primate xenocybrids. It should be possible to produce other mouse xenocybrid constructs with less severe OXPHOS phenotypes, to model human mtDNA diseases.
Collapse
Affiliation(s)
- M McKenzie
- Mutation Research Centre and the University of Melbourne, Department of Medicine, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy 3065 Melbourne, Australia
| | | |
Collapse
|