1
|
Yang Y, Liu S, Egloff S, Eichhorn CD, Hadjian T, Zhen J, Kiss T, Zhou ZH, Feigon J. Structural basis of RNA conformational switching in the transcriptional regulator 7SK RNP. Mol Cell 2022; 82:1724-1736.e7. [PMID: 35320752 PMCID: PMC9081187 DOI: 10.1016/j.molcel.2022.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 01/05/2023]
Abstract
7SK non-coding RNA (7SK) negatively regulates RNA polymerase II (RNA Pol II) elongation by inhibiting positive transcription elongation factor b (P-TEFb), and its ribonucleoprotein complex (RNP) is hijacked by HIV-1 for viral transcription and replication. Methylphosphate capping enzyme (MePCE) and La-related protein 7 (Larp7) constitutively associate with 7SK to form a core RNP, while P-TEFb and other proteins dynamically assemble to form different complexes. Here, we present the cryo-EM structures of 7SK core RNP formed with two 7SK conformations, circular and linear, and uncover a common RNA-dependent MePCE-Larp7 complex. Together with NMR, biochemical, and cellular data, these structures reveal the mechanism of MePCE catalytic inactivation in the core RNP, unexpected interactions between Larp7 and RNA that facilitate a role as an RNP chaperone, and that MePCE-7SK-Larp7 core RNP serves as a scaffold for switching between different 7SK conformations essential for RNP assembly and regulation of P-TEFb sequestration and release.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvain Egloff
- Molecular, Cellular, and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tanya Hadjian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James Zhen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamás Kiss
- Molecular, Cellular, and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; Biological Research Centre, Szeged, Temesvári krt. 62, 6726, Hungary
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Effects of Cardiac Sympathetic Neurodegeneration and PPAR γ Activation on Rhesus Macaque Whole Blood miRNA and mRNA Expression Profiles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9426204. [PMID: 32462037 PMCID: PMC7212295 DOI: 10.1155/2020/9426204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 02/02/2023]
Abstract
Degeneration of sympathetic innervation of the heart occurs in numerous diseases, including diabetes, idiopathic REM sleep disorder, and Parkinson's disease (PD). In PD, cardiac sympathetic denervation occurs in 80-90% of patients and can begin before the onset of motor symptoms. Today, there are no disease-modifying therapies for cardiac sympathetic neurodegeneration, and biomarkers are limited to radioimaging techniques. Analysis of expression levels of coding mRNA and noncoding RNAs, such as microRNAs (miRNAs), can uncover pathways involved in disease, leading to the discovery of biomarkers, pathological mechanisms, and potential drug targets. Whole blood in particular is a clinically relevant source of biomarkers, as blood sampling is inexpensive and simple to perform. Our research group has previously developed a nonhuman primate model of cardiac sympathetic denervation by intravenous administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). In this rhesus macaque (Macaca mulatta) model, imaging with positron emission tomography showed that oral administration of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone (n = 5; 5 mg/kg daily) significantly decreased cardiac inflammation and oxidative stress compared to placebo (n = 5). Here, we report our analysis of miRNA and mRNA expression levels over time in the whole blood of these monkeys. Differential expression of three miRNAs was induced by 6-OHDA (mml-miR-16-2-3p, mml-miR-133d-3p, and mml-miR-1262-5p) and two miRNAs by pioglitazone (mml-miR-204-5p and mml-miR-146b-5p) at 12 weeks posttoxin, while expression of mRNAs involved in inflammatory cytokines and receptors was not significantly affected. Overall, this study contributes to the characterization of rhesus coding and noncoding RNA profiles in normal and disease-like conditions, which may facilitate the identification and clinical translation of biomarkers of cardiac neurodegeneration and neuroprotection.
Collapse
|
3
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
4
|
Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A 2016; 113:E1625-34. [PMID: 26957605 DOI: 10.1073/pnas.1519292113] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2'-O-methylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex,SNORD27 regulates the alternative splicing of the transcription factor E2F7p re-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP). Furthermore, knockdown of SNORD27 activates previously "silent" exons in several other genes through base complementarity across the entire SNORD27 sequence, not just the antisense boxes. Thus, some SNORDs likely function in both rRNA and pre-mRNA processing, which increases the repertoire of splicing regulators and links both processes.
Collapse
|
5
|
Abdelfattah AM, Park C, Choi MY. Update on non-canonical microRNAs. Biomol Concepts 2015; 5:275-87. [PMID: 25372759 DOI: 10.1515/bmc-2014-0012] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Non-canonical microRNAs are a recently-discovered subset of microRNAs. They structurally and functionally resemble canonical miRNAs, but were found to follow distinct maturation pathways, typically bypassing one or more steps of the classic canonical biogenesis pathway. Non-canonical miRNAs were found to have diverse origins, including introns, snoRNAs, endogenous shRNAs and tRNAs. Our knowledge about their functions remains relatively primitive; however, many interesting discoveries have taken place in the past few years. They have been found to take part in several cellular processes, such as immune response and stem cell proliferation. Adversely, their deregulation has pathologic effects on several different tissues, which strongly suggests an integral role for non-canonical miRNAs in disease pathogenesis. In this review, we discuss the recently-discovered functional characteristics of non-canonical miRNAs and illustrate their principal maturation pathways as well as debating their potential role in multiple cellular processes.
Collapse
|
6
|
Abstract
snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2'-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.
Collapse
|
7
|
Falaleeva M, Stamm S. Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs. Bioessays 2012. [PMID: 23180440 DOI: 10.1002/bies.201200117] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent experimental evidence suggests that most of the genome is transcribed into non-coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non-coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High-throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA-derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins and influence translation. Other sdRNAs are longer, form complexes with hnRNPs and influence gene expression. C/D box snoRNA fragmentation patterns are conserved across multiple cell types, suggesting a processing event, rather than degradation. The loss of expression from genetic loci that generate canonical snoRNAs and processed snoRNAs results in diseases, such as Prader-Willi Syndrome, indicating possible physiological roles for processed snoRNAs. We propose that processed snoRNAs acquire new roles in gene expression and represent a new class of regulatory RNAs distinct from canonical snoRNAs.
Collapse
Affiliation(s)
- Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY, USA
| | | |
Collapse
|
8
|
Ideue T, Hino K, Kitao S, Yokoi T, Hirose T. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA (NEW YORK, N.Y.) 2009; 15:1578-1587. [PMID: 19535462 PMCID: PMC2714749 DOI: 10.1261/rna.1657609] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 05/01/2009] [Indexed: 05/27/2023]
Abstract
Recent large-scale transcriptome analyses have revealed that large numbers of noncoding RNAs (ncRNAs) are transcribed from mammalian genomes. They include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and longer ncRNAs, many of which are localized to the nucleus, but which have remained functionally elusive. Since ncRNAs are only known to exist in mammalian species, established experimental systems, including the Xenopus oocyte system and yeast genetics, are not available for functional analysis. RNA interference (RNAi), commonly used for analysis of protein-coding genes, is effective in eliminating cytoplasmic mRNAs, but not nuclear RNAs. To circumvent this problem, we have refined the system for knockdown of nuclear ncRNAs with chemically modified chimeric antisense oligonucleotides (ASO) that were efficiently introduced into the nucleus by nucleofection. Under optimized conditions, our system appeared to degrade at least 20 different nuclear ncRNA species in multiple mammalian cell lines with high efficiency and specificity. We also confirmed that our method had greatly improved knockdown efficiency compared with that of the previously reported method in which ASOs are introduced with transfection reagents. Furthermore, we have confirmed the expected phenotypic alterations following knockdown of HBII295 snoRNA and U7 snRNA, which resulted in a loss of site-specific methylation of the artificial RNA and the appearance of abnormal polyadenylated histone mRNA species with a concomitant delay of the cell cycle S phase, respectively. In summary, we believe that our system is a powerful tool to explore the biological functions of the large number of nuclear ncRNAs with unknown function.
Collapse
MESH Headings
- Base Sequence
- HeLa Cells
- Humans
- Methylation
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides, Antisense/chemistry
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/metabolism
- Phenotype
- RNA, Nuclear/antagonists & inhibitors
- RNA, Nuclear/genetics
- RNA, Nuclear/metabolism
- RNA, Small Nuclear/antagonists & inhibitors
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/antagonists & inhibitors
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Untranslated/antagonists & inhibitors
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transfection
Collapse
Affiliation(s)
- Takashi Ideue
- Functional RNomics Team, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koutou, Tokyo 135-0064, Japan
| | | | | | | | | |
Collapse
|
9
|
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet 2009; 54:15-39. [PMID: 19158813 DOI: 10.1038/jhg.2008.5] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human leukocyte antigen (HLA) super-locus is a genomic region in the chromosomal position 6p21 that encodes the six classical transplantation HLA genes and at least 132 protein coding genes that have important roles in the regulation of the immune system as well as some other fundamental molecular and cellular processes. This small segment of the human genome has been associated with more than 100 different diseases, including common diseases, such as diabetes, rheumatoid arthritis, psoriasis, asthma and various other autoimmune disorders. The first complete and continuous HLA 3.6 Mb genomic sequence was reported in 1999 with the annotation of 224 gene loci, including coding and non-coding genes that were reviewed extensively in 2004. In this review, we present (1) an updated list of all the HLA gene symbols, gene names, expression status, Online Mendelian Inheritance in Man (OMIM) numbers, including new genes, and latest changes to gene names and symbols, (2) a regional analysis of the extended class I, class I, class III, class II and extended class II subregions, (3) a summary of the interspersed repeats (retrotransposons and transposons), (4) examples of the sequence diversity between different HLA haplotypes, (5) intra- and extra-HLA gene interactions and (6) some of the HLA gene expression profiles and HLA genes associated with autoimmune and infectious diseases. Overall, the degrees and types of HLA super-locus coordinated gene expression profiles and gene variations have yet to be fully elucidated, integrated and defined for the processes involved with normal cellular and tissue physiology, inflammatory and immune responses, and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan.
| | | | | | | |
Collapse
|
10
|
Abstract
While the concept of a gene has been helpful in defining the relationship of a portion of a genome to a phenotype, this traditional term may not be as useful as it once was. Currently, "gene" has come to refer principally to a genomic region producing a polyadenylated mRNA that encodes a protein. However, the recent emergence of a large collection of unannotated transcripts with apparently little protein coding capacity, collectively called transcripts of unknown function (TUFs), has begun to blur the physical boundaries and genomic organization of genic regions with noncoding transcripts often overlapping protein-coding genes on the same (sense) and opposite strand (antisense). Moreover, they are often located in intergenic regions, making the genic portions of the human genome an interleaved network of both annotated polyadenylated and nonpolyadenylated transcripts, including splice variants with novel 5' ends extending hundreds of kilobases. This complex transcriptional organization and other recently observed features of genomes argue for the reconsideration of the term "gene" and suggests that transcripts may be used to define the operational unit of a genome.
Collapse
|
11
|
Bi YZ, Qu LH, Zhou H. Characterization and functional analysis of a novel double-guide C/D box snoRNA in the fission yeast. Biochem Biophys Res Commun 2007; 354:302-8. [PMID: 17222800 DOI: 10.1016/j.bbrc.2006.12.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 12/31/2006] [Indexed: 10/23/2022]
Abstract
Ribose methylation of eukaryotic rRNA is directed by box C/D small nucleolar RNAs (snoRNAs), which pinpoint the nucleotide to be methylated in specific position within the rRNA sequence. Here, we report the identification of a novel double-guide C/D box snoRNA termed snR88 that directs methylation of two previously undetermined sites in 25S rRNA from the fission yeast. Knockout of the predicted TATA box of the snR88 gene resulted in the complete blocking of its expression, showing that snR88 is an independently transcribed gene and dispensable for yeast viability. The depletion of snR88 abolished 25S rRNA methylation at U2304 and U2497 simultaneously. Interestingly, an unusual pause of reverse transcription at U2495 was observed, which implies an unknown structure of 25S rRNA related to ribose methylation at U2497 in the fission yeast.
Collapse
Affiliation(s)
- Yan-Zhen Bi
- Key Laboratory of Gene Engineering of the Ministry of Education, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, PR China
| | | | | |
Collapse
|
12
|
Deakin JE, Papenfuss AT, Belov K, Cross JGR, Coggill P, Palmer S, Sims S, Speed TP, Beck S, Graves JAM. Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genomics 2006; 7:281. [PMID: 17081307 PMCID: PMC1654159 DOI: 10.1186/1471-2164-7-281] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 11/02/2006] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative analysis of a tammar wallaby BAC containing the inflammatory region. We also discuss the extent of sequence conservation across the entire region and identify elements conserved in evolution. RESULTS Fourteen Class III genes from the tammar wallaby inflammatory region were characterised and compared to their orthologues in other vertebrates. The organisation and sequence of genes in the inflammatory region of both the wallaby and South American opossum are highly conserved compared to known genes from eutherian ("placental") mammals. Some minor differences separate the two marsupial species. Eight genes within the inflammatory region have remained tightly clustered for at least 360 million years, predating the divergence of the amphibian lineage. Analysis of sequence conservation identified 354 elements that are conserved. These range in size from 7 to 431 bases and cover 15.6% of the inflammatory region, representing approximately a 4-fold increase compared to the average for vertebrate genomes. About 5.5% of this conserved sequence is marsupial-specific, including three cases of marsupial-specific repeats. Highly Conserved Elements were also characterised. CONCLUSION Using comparative analysis, we show that a cluster of MHC genes involved in inflammation, including TNF, LTA (or its putative teleost homolog TNF-N), APOM, and BAT3 have remained together for over 450 million years, predating the divergence of mammals from fish. The observed enrichment in conserved sequences within the inflammatory region suggests conservation at the transcriptional regulatory level, in addition to the functional level.
Collapse
Affiliation(s)
- Janine E Deakin
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Katherine Belov
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Joseph GR Cross
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | - Penny Coggill
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sophie Palmer
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Sims
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Terence P Speed
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Stephan Beck
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer A Marshall Graves
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
13
|
|
14
|
Renard C, Hart E, Sehra H, Beasley H, Coggill P, Howe K, Harrow J, Gilbert J, Sims S, Rogers J, Ando A, Shigenari A, Shiina T, Inoko H, Chardon P, Beck S. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics 2006; 88:96-110. [PMID: 16515853 DOI: 10.1016/j.ygeno.2006.01.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/18/2006] [Accepted: 01/18/2006] [Indexed: 10/25/2022]
Abstract
We describe the generation and analysis of an integrated sequence map of a 2.4-Mb region of pig chromosome 7, comprising the classical class I region, the extended and classical class II regions, and the class III region of the major histocompatibility complex (MHC), also known as swine leukocyte antigen (SLA) complex. We have identified and manually annotated 151 loci, of which 121 are known genes (predicted to be functional), 18 are pseudogenes, 8 are novel CDS loci, 3 are novel transcripts, and 1 is a putative gene. Nearly all of these loci have homologues in other mammalian genomes but orthologues could be identified with confidence for only 123 genes. The 28 genes (including all the SLA class I genes) for which unambiguous orthology to genes within the human reference MHC could not be established are of particular interest with respect to porcine-specific MHC function and evolution. We have compared the porcine MHC to other mammalian MHC regions and identified the differences between them. In comparison to the human MHC, the main differences include the absence of HLA-A and other class I-like loci, the absence of HLA-DP-like loci, and the separation of the extended and classical class II regions from the rest of the MHC by insertion of the centromere. We show that the centromere insertion has occurred within a cluster of BTNL genes located at the boundary of the class II and III regions, which might have resulted in the loss of an orthologue to human C6orf10 from this region.
Collapse
Affiliation(s)
- C Renard
- LREG INRA CEA, Jouy en Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ziesche SM, Omer AD, Dennis PP. RNA-guided nucleotide modification of ribosomal and non-ribosomal RNAs in Archaea. Mol Microbiol 2005; 54:980-93. [PMID: 15522081 DOI: 10.1111/j.1365-2958.2004.04319.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Archaea use ribonucleoprotein (RNP) machines similar to those found in the eukaryotic nucleolus to methylate ribose residues in nascent ribosomal RNA. The archaeal complex required for this 2'-O-ribose-methylation consists of the C/D box sRNA guide and three proteins, the core RNA-binding aL7a protein, the aNop56 protein and the methyltransferase aFib protein. These RNP machines were reconstituted in vitro from purified recombinant components, and shown to have methylation activity when provided with a simple target oligonucleotide, complementary to the sRNA guide sequence. To obtain a better understanding of the versatility and specificity of this reaction, the activity of reconstituted particles on more complex target substrates, including 5S RNA, tRNA(Gln) and 'double target' oligonucleotides that exhibit either direct or reverse complementarity to both the D' and D box guides, has been examined. The natural 5S and tRNA(Gln) substrates were efficiently methylated in vitro, as long as the complementarity between guide and target was about 10 base pairs in length, and lacked mismatches. Maximal activity of double guide sRNAs required that both methylation sites be present in cis on the target RNA.
Collapse
Affiliation(s)
- Sonia M Ziesche
- Department of Biochemistry and Molecular Biology University of British Columbia 2146 Health Sciences Mall Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
16
|
Vitali P, Royo H, Seitz H, Bachellerie JP, Hüttenhofer A, Cavaillé J. Identification of 13 novel human modification guide RNAs. Nucleic Acids Res 2004; 31:6543-51. [PMID: 14602913 PMCID: PMC275545 DOI: 10.1093/nar/gkg849] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the two expanding RNA subclasses termed C/D and H/ACA RNAs guide the 2'-O-methylations and pseudouridylations, respectively, of rRNA and spliceosomal RNAs (snRNAs). Here, we report on the identification of 13 novel human intron-encoded small RNAs (U94-U106) belonging to the two subclasses of modification guides. Seven of them are predicted to direct 2'-O-methylations in rRNA or snRNAs, while the remainder represent novel orphan RNA modification guides. From these, U100, which is exclusively detected in Cajal bodies (CBs), is predicted to direct modification of a U6 snRNA uridine, U(9), which to date has not been found to be pseudouridylated. Hence, within CBs, U100 might function in the folding pathway or other aspects of U6 snRNA metabolism rather than acting as a pseudouridylation guide. U106 C/D snoRNA might also possess an RNA chaperone activity only since its two conserved antisense elements match two rRNA sequences devoid of methylated nucleotides and located remarkably close to each other within the 18S rRNA secondary structure. Finally, we have identified a retrogene for U99 snoRNA located within an intron of the Siat5 gene, supporting the notion that retro-transposition events might have played a substantial role in the mobility and diversification of snoRNA genes during evolution.
Collapse
Affiliation(s)
- Patrice Vitali
- Institute for Molecular Biology, Department of Functional Genomics, University of Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Gerbi SA, Borovjagin AV, Ezrokhi M, Lange TS. Ribosome biogenesis: role of small nucleolar RNA in maturation of eukaryotic rRNA. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:575-90. [PMID: 12762059 DOI: 10.1101/sqb.2001.66.575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S A Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
18
|
Gallagher RC, Pils B, Albalwi M, Francke U. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet 2002; 71:669-78. [PMID: 12154412 PMCID: PMC379204 DOI: 10.1086/342408] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Accepted: 06/17/2002] [Indexed: 11/03/2022] Open
Abstract
Prior work has suggested that loss of expression of one or more of the many C/D box small nucleolar RNAs (snoRNAs) encoded within the complex, paternally expressed SNRPN (small nuclear ribonuclear protein N) locus may result in the phenotype of Prader-Willi syndrome (PWS). We suggest that the minimal critical region for PWS is approximately 121 kb within the >460-kb SNRPN locus, bordered by a breakpoint cluster region identified in three individuals with PWS who have balanced reciprocal translocations and by the proximal deletion breakpoint of a familial deletion found in an unaffected mother, her three children with Angelman syndrome, and her father. The subset of SNRPN-encoded snoRNAs within this region comprises the PWCR1/HBII-85 cluster of snoRNAs and the single HBII-438A snoRNA. These are the only known genes within this region, which suggests that loss of their expression may be responsible for much or all of the phenotype of PWS. This hypothesis is challenged by findings in two individuals with PWS who have balanced translocations with breakpoints upstream of the proposed minimal critical region but whose cells were reported to express transcripts within it, adjacent to these snoRNAs. By use of real-time quantitative reverse-transcriptase polymerase chain reaction, we reassessed expression of these transcripts and of the snoRNAs themselves in fibroblasts of one of these patients. We find that the transcripts reported to be expressed in lymphoblast-somatic cell hybrids are not expressed in fibroblasts, and we suggest that the original results were misinterpreted. Most important, we show that the PWCR1/HBII-85 snoRNAs are not expressed in fibroblasts of this individual. These results are consistent with the hypothesis that loss of expression of the snoRNAs in the proposed minimal critical region confers much or all of the phenotype of PWS.
Collapse
Affiliation(s)
- Renata C Gallagher
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | |
Collapse
|
19
|
Abstract
In eukaryotes, the site-specific formation of the two prevalent types of rRNA modified nucleotides, 2'-O-methylated nucleotides and pseudouridines, is directed by two large families of snoRNAs. These are termed box C/D and H/ACA snoRNAs, respectively, and exert their function through the formation of a canonical guide RNA duplex at the modification site. In each family, one snoRNA acts as a guide for one, or at most two modifications, through a single, or a pair of appropriate antisense elements. The two guide families now appear much larger than anticipated and their role not restricted to ribosome synthesis only. This is reflected by the recent detection of guides that can target other cellular RNAs, including snRNAs, tRNAs and possibly even mRNAs, and by the identification of scores of tissue-specific specimens in mammals. Recent characterization of homologs of eukaryotic modification guide snoRNAs in Archaea reveals the ancient origin of these non-coding RNA families and offers new perspectives as to their range of function.
Collapse
Affiliation(s)
- Jean Pierre Bachellerie
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 4,France.
| | | | | |
Collapse
|
20
|
Tang TH, Rozhdestvensky TS, d'Orval BC, Bortolin ML, Huber H, Charpentier B, Branlant C, Bachellerie JP, Brosius J, Hüttenhofer A. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 2002; 30:921-30. [PMID: 11842103 PMCID: PMC100335 DOI: 10.1093/nar/30.4.921] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bulge-helix-bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularization of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5' external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Archaeoglobus fulgidus/metabolism
- Base Sequence
- Electrophoretic Mobility Shift Assay
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomal Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Sulfolobus/genetics
- Sulfolobus/metabolism
Collapse
Affiliation(s)
- Thean Hock Tang
- Institut für Experimentelle Pathologie/Molekulare Neurobiologie (ZMBE), Universität Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Non-coding RNA (ncRNA) genes produce functional RNA molecules rather than encoding proteins. However, almost all means of gene identification assume that genes encode proteins, so even in the era of complete genome sequences, ncRNA genes have been effectively invisible. Recently, several different systematic screens have identified a surprisingly large number of new ncRNA genes. Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic acid recognition without complex catalysis, such as in directing post-transcriptional regulation of gene expression or in guiding RNA modifications.
Collapse
Affiliation(s)
- S R Eddy
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
22
|
Clouet d'Orval B, Bortolin ML, Gaspin C, Bachellerie JP. Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. Nucleic Acids Res 2001; 29:4518-29. [PMID: 11713301 PMCID: PMC92551 DOI: 10.1093/nar/29.22.4518] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a search of the Pyrococcus genomes for homologs of eukaryotic methylation guide small nucleolar RNAs, we have experimentally identified in Pyrococcus abyssi four novel box C/D small RNAs predicted to direct 2'-O-ribose methylations onto the first position of the anticodon in tRNALeu(CAA), tRNALeu(UAA), elongator tRNAMet and tRNATrp, respectively. Remarkably, one of them corresponds to the intron of its presumptive target, pre-tRNATrp. This intron is predicted to direct in cis two distinct ribose methylations within the unspliced tRNA precursor, not only onto the first position of the anticodon in the 5' exon but also onto position 39 (universal tRNA numbering) in the 3' exon. The two intramolecular RNA duplexes expected to direct methylation, which both span an exon-intron junction in pre-tRNATrp, are phylogenetically conserved in euryarchaeotes. We have experimentally confirmed the predicted guide function of the box C/D intron in halophile Haloferax volcanii by mutagenesis analysis, using an in vitro splicing/RNA modification assay in which the two cognate ribose methylations of pre-tRNATrp are faithfully reproduced. Euryarchaeal pre-tRNATrp should provide a unique system to further investigate the molecular mechanisms of RNA-guided ribose methylation and gain new insights into the origin and evolution of the complex family of archaeal and eukaryotic box C/D small RNAs.
Collapse
MESH Headings
- Base Sequence
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- Genome, Archaeal
- Introns/genetics
- Methylation
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Nucleosides/genetics
- Nucleosides/metabolism
- Nucleotides/genetics
- Nucleotides/metabolism
- Phylogeny
- Plasmids/genetics
- Pyrococcus/genetics
- Pyrococcus/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Trp/genetics
- RNA, Transfer, Trp/metabolism
- Ribose/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- B Clouet d'Orval
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- T Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
24
|
Cavaillé J, Vitali P, Basyuk E, Hüttenhofer A, Bachellerie JP. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem 2001; 276:26374-83. [PMID: 11346658 DOI: 10.1074/jbc.m103544200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antisense box C/D small nucleolar RNAs (snoRNAs) guide the 2'-O-ribose methylations of eukaryotic rRNAs and small nuclear RNAs (snRNAs) through formation of a specific base pairing at each RNA methylation site. By analysis of a box C/D snoRNA cDNA library constructed from rat brain RNAs, we have identified a novel box C/D snoRNA, RBII-36, which is devoid of complementarity to rRNA or an snRNA and exhibits a brain-specific expression pattern. It is uniformly expressed in all major areas of adult rat brain (except for choroid plexus) and throughout rat brain ontogeny but exclusively detected in neurons in which it exhibits a nucleolar localization. In vertebrates, known methylation guide snoRNAs are intron-encoded and processed from transcripts of housekeeping genes. In contrast, RBII-36 snoRNA is intron-encoded in a gene preferentially expressed in the rat central nervous system and not in proliferating cells. Remarkably, this host gene, which encodes a previously reported noncoding RNA, Bsr, spans tandemly repeated 0.9-kilobase units including the snoRNA-containing intron. The novel brain-specific snoRNA appears to result not only from processing of the debranched lariat but also from endonucleolytic cleavages of unspliced Bsr RNA (i.e. an alternative splicing-independent pathway unreported so far for mammalian intronic snoRNAs). Sequences homologous to RBII-36 snoRNA were exclusively detected in the Rattus genus of rodents, suggesting a very recent origin of this brain-specific snoRNA.
Collapse
Affiliation(s)
- J Cavaillé
- UMR5099, Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, 118 route de Narbonne, Toulouse 31062, France.
| | | | | | | | | |
Collapse
|
25
|
Hüttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie JP, Brosius J. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 2001; 20:2943-53. [PMID: 11387227 PMCID: PMC125495 DOI: 10.1093/emboj/20.11.2943] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAS: Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAS: Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAS: Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINES: The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAS:
Collapse
Affiliation(s)
- Alexander Hüttenhofer
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, 48149 Münster,
Max-Planck-Institute of Molecular Genetics, 14195 Berlin-Dahlem, Germany and Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 31062 Toulouse, France Present address: GPC Biotech AG, 82152 Plannegg-Martinsried, Germany Present address: Department of Clinical Pharmacology, RCSI, Dublin 2, Ireland Corresponding authors e-mail: , or
| | | | - Sebastian Meier-Ewert
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, 48149 Münster,
Max-Planck-Institute of Molecular Genetics, 14195 Berlin-Dahlem, Germany and Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 31062 Toulouse, France Present address: GPC Biotech AG, 82152 Plannegg-Martinsried, Germany Present address: Department of Clinical Pharmacology, RCSI, Dublin 2, Ireland Corresponding authors e-mail: , or
| | - John O’Brien
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, 48149 Münster,
Max-Planck-Institute of Molecular Genetics, 14195 Berlin-Dahlem, Germany and Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 31062 Toulouse, France Present address: GPC Biotech AG, 82152 Plannegg-Martinsried, Germany Present address: Department of Clinical Pharmacology, RCSI, Dublin 2, Ireland Corresponding authors e-mail: , or
| | - Hans Lehrach
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, 48149 Münster,
Max-Planck-Institute of Molecular Genetics, 14195 Berlin-Dahlem, Germany and Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 31062 Toulouse, France Present address: GPC Biotech AG, 82152 Plannegg-Martinsried, Germany Present address: Department of Clinical Pharmacology, RCSI, Dublin 2, Ireland Corresponding authors e-mail: , or
| | - Jean-Pierre Bachellerie
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, 48149 Münster,
Max-Planck-Institute of Molecular Genetics, 14195 Berlin-Dahlem, Germany and Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 31062 Toulouse, France Present address: GPC Biotech AG, 82152 Plannegg-Martinsried, Germany Present address: Department of Clinical Pharmacology, RCSI, Dublin 2, Ireland Corresponding authors e-mail: , or
| | - Jürgen Brosius
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, 48149 Münster,
Max-Planck-Institute of Molecular Genetics, 14195 Berlin-Dahlem, Germany and Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, 31062 Toulouse, France Present address: GPC Biotech AG, 82152 Plannegg-Martinsried, Germany Present address: Department of Clinical Pharmacology, RCSI, Dublin 2, Ireland Corresponding authors e-mail: , or
| |
Collapse
|
26
|
Qu LH, Meng Q, Zhou H, Chen YQ, Liang-Hu Q, Qing M, Hui Z, Yue-Qin C. Identification of 10 novel snoRNA gene clusters from Arabidopsis thaliana. Nucleic Acids Res 2001; 29:1623-30. [PMID: 11266566 PMCID: PMC31268 DOI: 10.1093/nar/29.7.1623] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Revised: 02/05/2001] [Accepted: 02/05/2001] [Indexed: 11/13/2022] Open
Abstract
Ten novel small nucleolar RNA (snoRNA) gene clusters, consisting of two or three snoRNA genes, respectively, were identified from Arabidopsis thaliana. Twelve of the 25 snoRNA genes in these clusters are homologous to those of yeast and mammals according to the conserved antisense sequences that guide 2'-O-ribose methylation of rRNA. The remaining 13 snoRNA genes, including two 5.8S rRNA methylation guides, are new genes identified from A.thaliana. Interestingly, seven methylated nucleotides, predicted by novel snoRNAs Z41a-Z46, are methylated neither in yeast nor in vertebrates. Using primer extension at low dNTP concentration the six methylation sites were determined as expected. These snoRNAs were recognized as specific guides for 2'-O:-ribose methylation of plant rRNAs. Z42, however, did not guide the expected methylation of 25S rRNA in our assay. Thus, its function remains to be elucidated. The intergenic spacers of the gene clusters are rich in uridine (up to 40%) and most of them range in size from 35 to 100 nt. Lack of a conserved promoter element in each spacer and the determination of polycistronic transcription from a cluster by RT-PCR assay suggest that the snoRNAs encoded in the clusters are transcribed as a polycistron under an upstream promoter, and individual snoRNAs are released after processing of the precursor. Numerous snoRNA gene clusters identified from A.thaliana and other organisms suggest that the snoRNA gene cluster is an ancient gene organization existing abundantly in plants.
Collapse
Affiliation(s)
- L H Qu
- Key Laboratory of Gene Engineering of Education Ministry, Biotechnology Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Filipowicz W. Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci U S A 2000; 97:14035-7. [PMID: 11121012 PMCID: PMC34092 DOI: 10.1073/pnas.97.26.14035] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- W Filipowicz
- Friedrich Miescher Institute, P.O. Box 2543, CH-4002 Basel, Switzerland.
| |
Collapse
|
28
|
Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Hüttenhofer A. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 2000; 97:14311-6. [PMID: 11106375 PMCID: PMC18915 DOI: 10.1073/pnas.250426397] [Citation(s) in RCA: 449] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11-q13, within a region implicated in the Prader-Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2'-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA.
Collapse
Affiliation(s)
- J Cavaillé
- Laboratoire de Biologie Moléculaire Eukaryote du Centre National de la Recherche Scientifique, Université Paul-Sabatier, Toulouse, 31062 France
| | | | | | | | | | | | | | | | | |
Collapse
|