1
|
Mehta V, Moshiri H, Srikanth A, Kala S, Lukeš J, Salavati R. Sulfonated inhibitors of the RNA editing ligases validate the essential role of the MRP1/2 proteins in kinetoplastid RNA editing. RNA (NEW YORK, N.Y.) 2020; 26:827-835. [PMID: 32276989 PMCID: PMC7297121 DOI: 10.1261/rna.075598.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 05/21/2023]
Abstract
The RNA editing core complex (RECC) catalyzes mitochondrial U-insertion/deletion mRNA editing in trypanosomatid flagellates. Some naphthalene-based sulfonated compounds, such as C35 and MrB, competitively inhibit the auto-adenylylation activity of an essential RECC enzyme, kinetoplastid RNA editing ligase 1 (KREL1), required for the final step in editing. Previous studies revealed the ability of these compounds to interfere with the interaction between the editosome and its RNA substrates, consequently affecting all catalytic activities that comprise RNA editing. This observation implicates a critical function for the affected RNA binding proteins in RNA editing. In this study, using the inhibitory compounds, we analyzed the composition and editing activities of functional editosomes and identified the mitochondrial RNA binding proteins 1 and 2 (MRP1/2) as their preferred targets. While the MRP1/2 heterotetramer complex is known to bind guide RNA and promote annealing to its cognate pre-edited mRNA, its role in RNA editing remained enigmatic. We show that the compounds affect the association between the RECC and MRP1/2 heterotetramer. Furthermore, RECC purified post-treatment with these compounds exhibit compromised in vitro RNA editing activity that, remarkably, recovers upon the addition of recombinant MRP1/2 proteins. This work provides experimental evidence that the MRP1/2 heterotetramer is required for in vitro RNA editing activity and substantiates the hypothesized role of these proteins in presenting the RNA duplex to the catalytic complex in the initial steps of RNA editing.
Collapse
Affiliation(s)
- Vaibhav Mehta
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Akshaya Srikanth
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Reza Salavati
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| |
Collapse
|
2
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
3
|
Gupta SK, Chikne V, Eliaz D, Tkacz ID, Naboishchikov I, Carmi S, Waldman Ben-Asher H, Michaeli S. Two splicing factors carrying serine-arginine motifs, TSR1 and TSR1IP, regulate splicing, mRNA stability, and rRNA processing in Trypanosoma brucei. RNA Biol 2014; 11:715-31. [PMID: 24922194 DOI: 10.4161/rna.29143] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In trypanosomes, mRNAs are processed by trans-splicing; in this process, a common exon, the spliced leader, is added to all mRNAs from a small RNA donor, the spliced leader RNA (SL RNA). However, little is known regarding how this process is regulated. In this study we investigated the function of two serine-arginine-rich proteins, TSR1 and TSR1IP, implicated in trans-splicing in Trypanosoma brucei. Depletion of these factors by RNAi suggested their role in both cis- and trans-splicing. Microarray was used to examine the transcriptome of the silenced cells. The level of hundreds of mRNAs was changed, suggesting that these proteins have a role in regulating only a subset of T. brucei mRNAs. Mass-spectrometry analyses of complexes associated with these proteins suggest that these factors function in mRNA stability, translation, and rRNA processing. We further demonstrate changes in the stability of mRNA as a result of depletion of the two TSR proteins. In addition, rRNA defects were observed under the depletion of U2AF35, TSR1, and TSR1IP, but not SF1, suggesting involvement of SR proteins in rRNA processing.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Dror Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Itai Dov Tkacz
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Ilana Naboishchikov
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Shai Carmi
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute; Bar-Ilan University; Ramat-Gan, Israel
| |
Collapse
|
4
|
Aphasizhev R, Aphasizheva I. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie 2014; 100:125-31. [PMID: 24440637 PMCID: PMC4737708 DOI: 10.1016/j.biochi.2014.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Mitochondrial mRNA editing in trypanosomes is a posttranscriptional processing pathway thereby uridine residues (Us) are inserted into, or deleted from, messenger RNA precursors. By correcting frameshifts, introducing start and stop codons, and often adding most of the coding sequence, editing restores open reading frames for mitochondrially-encoded mRNAs. There can be hundreds of editing events in a single pre-mRNA, typically spaced by few nucleotides, with U-insertions outnumbering U-deletions by approximately 10-fold. The mitochondrial genome is composed of ∼50 maxicircles and thousands of minicircles. Catenated maxi- and minicircles are packed into a dense structure called the kinetoplast; maxicircles yield rRNA and mRNA precursors while guide RNAs (gRNAs) are produced predominantly from minicircles, although varying numbers of maxicircle-encoded gRNAs have been identified in kinetoplastids species. Guide RNAs specify positions and the numbers of inserted or deleted Us by hybridizing to pre-mRNA and forming series of mismatches. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Editing reactions of mRNA cleavage, U-insertion or deletion, and ligation are catalyzed by the RNA editing core complex (RECC). To function in mitochondrial translation, pre-mRNAs must further undergo post-editing 3' modification by polyadenylation/uridylation. Recent studies revealed a highly compound nature of mRNA editing and polyadenylation complexes and their interactions with the translational machinery. Here we focus on mechanisms of RNA editing and its functional coupling with pre- and post-editing 3' mRNA modification and gRNA maturation pathways.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, 72 East Concord Street, Evans 4th Floor, E426, Boston, MA 02118, USA.
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, 72 East Concord Street, Evans 4th Floor, E426, Boston, MA 02118, USA
| |
Collapse
|
5
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
6
|
Böhm C, Katari VS, Brecht M, Göringer HU. Trypanosoma brucei 20 S editosomes have one RNA substrate-binding site and execute RNA unwinding activity. J Biol Chem 2012; 287:26268-77. [PMID: 22661715 PMCID: PMC3406711 DOI: 10.1074/jbc.m112.365916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/10/2012] [Indexed: 12/30/2022] Open
Abstract
Editing of mitochondrial pre-mRNAs in African trypanosomes generates full-length transcripts by the site-specific insertion and deletion of uridylate nucleotides. The reaction is catalyzed by a 0.8 MDa multienzyme complex, the editosome. Although the binding of substrate pre-edited mRNAs and cognate guide RNAs (gRNAs) represents the first step in the reaction cycle, the biochemical and biophysical details of the editosome/RNA interaction are not understood. Here we show that editosomes bind full-length substrate mRNAs with nanomolar affinity in a nonselective fashion. The complexes do not discriminate-neither kinetically nor thermodynamically-between different mitochondrial pre-mRNAs or between edited and unedited versions of the same transcript. They also bind gRNAs and gRNA/pre-mRNA hybrid RNAs with similar affinities and association rate constants. Gold labeling of editosome-bound RNA in combination with transmission electron microscopy identified a single RNA-binding site per editosome. However, atomic force microscopy of individual pre-mRNA-editosome complexes revealed that multiple editosomes can interact with one pre-mRNA. Lastly, we demonstrate a so far unknown activity of the editing machinery: editosome-bound RNA becomes unfolded by a chaperone-type RNA unwinding activity.
Collapse
MESH Headings
- Binding Sites
- Macromolecular Substances/chemistry
- Macromolecular Substances/ultrastructure
- Microscopy, Atomic Force
- Microscopy, Electron, Transmission
- Nucleic Acid Conformation
- Protein Binding
- Protozoan Proteins/chemistry
- Protozoan Proteins/ultrastructure
- RNA Processing, Post-Transcriptional
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/ultrastructure
- RNA, Mitochondrial
- RNA, Protozoan/chemistry
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/ultrastructure
- Surface Plasmon Resonance
- Trypanosoma brucei brucei/enzymology
Collapse
Affiliation(s)
- Cordula Böhm
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Venkata Subbaraju Katari
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Michael Brecht
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - H. Ulrich Göringer
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Seidman D, Johnson D, Gerbasi V, Golden D, Orlando R, Hajduk S. Mitochondrial membrane complex that contains proteins necessary for tRNA import in Trypanosoma brucei. J Biol Chem 2012; 287:8892-903. [PMID: 22267727 DOI: 10.1074/jbc.m111.300186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genome of Trypanosoma brucei does not contain genes encoding tRNAs; instead this protozoan parasite must import nuclear-encoded tRNAs from the cytosol for mitochondrial translation. Previously, it has been shown that mitochondrial tRNA import requires ATP hydrolysis and a proteinaceous mitochondrial membrane component. However, little is known about the mitochondrial membrane proteins involved in tRNA binding and translocation into the mitochondrion. Here we report the purification of a mitochondrial membrane complex using tRNA affinity purification and have identified several protein components of the putative tRNA translocon by mass spectrometry. Using an in vivo tRNA import assay in combination with RNA interference, we have verified that two of these proteins, Tb11.01.4590 and Tb09.v1.0420, are involved in mitochondrial tRNA import. Using Protein C Epitope -Tobacco Etch Virus-Protein A Epitope (PTP)-tagged Tb11.01.4590, additional associated proteins were identified including Tim17 and other mitochondrial proteins necessary for mitochondrial protein import. Results presented here identify and validate two novel protein components of the putative tRNA translocon and provide additional evidence that mitochondrial tRNA and protein import have shared components in trypanosomes.
Collapse
Affiliation(s)
- David Seidman
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Aphasizhev R, Aphasizheva I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:669-85. [PMID: 21823228 PMCID: PMC3154072 DOI: 10.1002/wrna.82] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Models, Biological
- Models, Molecular
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing/genetics
- RNA Editing/physiology
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Trypanosoma/genetics
- Trypanosoma/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
10
|
Göringer HU, Katari VS, Böhm C. The structural landscape of native editosomes in African trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:395-407. [PMID: 21957025 DOI: 10.1002/wrna.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of mitochondrial pre-messenger RNAs in African trypanosomes are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction. The process converts nonfunctional pre-mRNAs into translation-competent molecules and can generate protein diversity by alternative editing. High molecular mass protein complexes termed editosomes catalyze the processing reaction. They stably interact with pre-edited mRNAs and small noncoding RNAs, known as guide RNAs (gRNAs), which act as templates in the reaction. Editosomes provide a molecular surface for the individual steps of the catalytic reaction cycle and although the protein inventory of the complexes has been studied in detail, a structural analysis of the processing machinery has only recently been accomplished. Electron microscopy in combination with single particle reconstruction techniques has shown that steady state isolates of editosomes contain ensembles of two classes of stable complexes with calculated apparent hydrodynamic sizes of 20S and 35-40S. 20S editosomes are free of substrate RNAs, whereas 35-40S editosomes are associated with endogenous mRNA and gRNA molecules. Both complexes are characterized by a diverse structural landscape, which include complexes that lack or possess defined subdomains. Here, we summarize the consensus models and structural landmarks of both complexes. We correlate structural features with functional characteristics and provide an outlook into dynamic aspects of the editing reaction cycle.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
11
|
Aphasizhev R, Aphasizheva I. Mitochondrial RNA processing in trypanosomes. Res Microbiol 2011; 162:655-63. [PMID: 21596134 DOI: 10.1016/j.resmic.2011.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/04/2011] [Indexed: 01/20/2023]
Abstract
The mitochondrial genome of trypanosomes is composed of ∼50 maxicircles and thousands of minicircles. Maxi-(∼25 kb) and mini-(∼1 kb)circles are catenated and packed into a dense structure called a kinetoplast. Both types of circular DNA are transcribed by a phage-like RNA polymerase: maxicircles yield multicistronic rRNA and mRNA precursors, while guide RNA (gRNA) precursors are produced from minicircles. To function in mitochondrial translation, pre-mRNAs must undergo a nucleolytic processing and 3' modifications, and often uridine insertion/deletion editing. gRNAs, which represent short (50-60 nt) RNAs directing editing reactions, are produced by 3' nucleolytic processing of a much longer precursor followed by 3' uridylation. Ribosomal RNAs are excised from precursors and their 3' ends are also trimmed and uridylated. All tRNAs are imported from the cytoplasm and some are further modified and edited in the mitochondrial matrix. Historically, the fascinating phenomenon of RNA editing has been extensively studied as an isolated pathway in which nuclear-encoded proteins mediate interactions of maxi- and minicircle transcripts to create open reading frames. However, recent studies unraveled a highly integrated network of mitochondrial genome expression including critical pre- and post-editing 3' mRNA processing, and gRNA and rRNA maturation steps. Here we focus on RNA 3' adenylation and uridylation as processes essential for biogenesis, stability and functioning of mitochondrial RNAs.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, B240 Medical Sciences I, Irvine, CA 92697, USA.
| | | |
Collapse
|
12
|
Kala S, Salavati R. OB-fold domain of KREPA4 mediates high-affinity interaction with guide RNA and possesses annealing activity. RNA (NEW YORK, N.Y.) 2010; 16:1951-67. [PMID: 20713467 PMCID: PMC2941104 DOI: 10.1261/rna.2124610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/19/2010] [Indexed: 05/29/2023]
Abstract
KREPA4, also called MP24, is an essential mitochondrial guide RNA (gRNA)-binding protein with a preference for the 3' oligo(U) tail in trypanosomes. Structural prediction and compositional analysis of KREPA4 have identified a conserved OB (oligonucleotide/oligosaccharide-binding)-fold at the C-terminal end and two low compositional complexity regions (LCRs) at its N terminus. Concurrent with these predictions, one or both of these regions in KREPA4 protein may be involved in gRNA binding. To test this possibility, deletion mutants of KREPA4 were made and the effects on the gRNA-binding affinities were measured by quantitative electrophoretic mobility shift assays. The gRNA-binding specificities of these mutants were evaluated by competition experiments using gRNAs with U-tail deletions or stem-loop modifications and uridylated nonguide RNAs or heterologous RNA. Our results identified the predicted OB-fold as the functional domain of KREPA4 that mediates a high-affinity interaction with the gRNA oligo(U) tail. An additional contribution toward RNA-binding function was localized to LCRs that further stabilize the binding through sequence-specific interactions with the guide secondary structure. In this study we also found that the predicted OB-fold has an RNA annealing activity, representing the first report of such activity for a core component of the RNA editing complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding, Competitive
- Kinetics
- Models, Biological
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Folding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
13
|
Niemann M, Kaibel H, Schlüter E, Weitzel K, Brecht M, Göringer HU. Kinetoplastid RNA editing involves a 3' nucleotidyl phosphatase activity. Nucleic Acids Res 2009; 37:1897-906. [PMID: 19190092 PMCID: PMC2665232 DOI: 10.1093/nar/gkp049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial pre-messenger RNAs (pre-mRNAs) in African trypanosomes require RNA editing in order to mature into functional transcripts. The process involves the addition and/or removal of U nucleotides and is mediated by a high-molecular-mass complex, the editosome. Editosomes catalyze the reaction through an enzyme-driven pathway that includes endo/exoribonuclease, terminal uridylate transferase and RNA ligase activities. Here we show that editing involves an additional reaction step, a 3′ nucleotidyl phosphatase activity. The activity is associated with the editing complex and we demonstrate that the editosomal proteins TbMP99 and TbMP100 contribute to the activity. Both polypeptides contain endo-exonuclease-phosphatase domains and we show that gene ablation of either one of the two polypeptides is compensated by the other protein. However, simultaneous knockdown of both genes results in trypanosome cells with reduced 3′ nucleotidyl phosphatase and reduced editing activity. The data provide a rationale for the exoUase activity of the editosomal protein TbMP42, which generates nonligatable 3′ phosphate termini. Opposing phosphates at the two pre-mRNA cleavage fragments likely function as a roadblock to prevent premature ligation.
Collapse
Affiliation(s)
- Moritz Niemann
- Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Weng J, Aphasizheva I, Etheridge RD, Huang L, Wang X, Falick AM, Aphasizhev R. Guide RNA-binding complex from mitochondria of trypanosomatids. Mol Cell 2008; 32:198-209. [PMID: 18951088 PMCID: PMC2645705 DOI: 10.1016/j.molcel.2008.08.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/14/2008] [Accepted: 08/18/2008] [Indexed: 12/16/2022]
Abstract
In the mitochondria of trypanosomatids, the majority of mRNAs undergo massive uracil-insertion/deletion editing. Throughout the processes of pre-mRNA polyadenylation, guide RNA (gRNA) uridylylation and annealing to mRNA, and editing reactions, several multiprotein complexes must engage in transient interactions to produce a template for protein synthesis. Here, we report the identification of a protein complex essential for gRNA stability. The gRNA-binding complex (GRBC) interacts with gRNA processing, editing, and polyadenylation machineries and with the mitochondrial edited mRNA stability (MERS1) factor. RNAi knockdown of the core subunits, GRBC1 and GRBC2, led to the elimination of gRNAs, thus inhibiting mRNA editing. Inhibition of MERS1 expression selectively abrogated edited mRNAs. Homologous proteins unique to the order of Kinetoplastida, GRBC1 and GRBC2, form a stable 200 kDa particle that directly binds gRNAs. Systematic analysis of RNA-mediated and RNA-independent interactions involving the GRBC and MERS1 suggests a unified model for RNA processing in the kinetoplast mitochondria.
Collapse
Affiliation(s)
- James Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Inna Aphasizheva
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Ronald D. Etheridge
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Arnold M. Falick
- Howard Hughes Medical Institute Mass Spectrometry Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Reifur L, Koslowsky DJ. Trypanosoma brucei ATPase subunit 6 mRNA bound to gA6-14 forms a conserved three-helical structure. RNA (NEW YORK, N.Y.) 2008; 14:2195-211. [PMID: 18772247 PMCID: PMC2553734 DOI: 10.1261/rna.1144508] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/17/2008] [Indexed: 05/26/2023]
Abstract
T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistent with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.
Collapse
Affiliation(s)
- Larissa Reifur
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
16
|
Niemann M, Brecht M, Schlüter E, Weitzel K, Zacharias M, Göringer HU. TbMP42 is a structure-sensitive ribonuclease that likely follows a metal ion catalysis mechanism. Nucleic Acids Res 2008; 36:4465-73. [PMID: 18603593 PMCID: PMC2490751 DOI: 10.1093/nar/gkn410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 12/22/2022] Open
Abstract
RNA editing in African trypanosomes is characterized by a uridylate-specific insertion and/or deletion reaction that generates functional mitochondrial transcripts. The process is catalyzed by a multi-enzyme complex, the editosome, which consists of approximately 20 proteins. While for some of the polypeptides a contribution to the editing reaction can be deduced from their domain structure, the involvement of other proteins remains elusive. TbMP42, is a component of the editosome that is characterized by two C(2)H(2)-type zinc-finger domains and a putative oligosaccharide/oligonucleotide-binding fold. Recombinant TbMP42 has been shown to possess endo/exoribonuclease activity in vitro; however, the protein lacks canonical nuclease motifs. Using a set of synthetic gRNA/pre-mRNA substrate RNAs, we demonstrate that TbMP42 acts as a topology-dependent ribonuclease that is sensitive to base stacking. We further show that the chelation of Zn(2+) cations is inhibitory to the enzyme activity and that the chemical modification of amino acids known to coordinate Zn(2+) inactivates rTbMP42. Together, the data are suggestive of a Zn(2+)-dependent metal ion catalysis mechanism for the ribonucleolytic activity of rTbMP42.
Collapse
Affiliation(s)
- Moritz Niemann
- Genetics, Darmstadt University of Technology, Schnittspahnstraße 10, 64287 Darmstadt and Computational Biology, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Michael Brecht
- Genetics, Darmstadt University of Technology, Schnittspahnstraße 10, 64287 Darmstadt and Computational Biology, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Schlüter
- Genetics, Darmstadt University of Technology, Schnittspahnstraße 10, 64287 Darmstadt and Computational Biology, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Kerstin Weitzel
- Genetics, Darmstadt University of Technology, Schnittspahnstraße 10, 64287 Darmstadt and Computational Biology, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Martin Zacharias
- Genetics, Darmstadt University of Technology, Schnittspahnstraße 10, 64287 Darmstadt and Computational Biology, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - H. Ulrich Göringer
- Genetics, Darmstadt University of Technology, Schnittspahnstraße 10, 64287 Darmstadt and Computational Biology, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
17
|
Zíková A, Kopečná J, Schumacher MA, Stuart K, Trantírek L, Lukeš J. Structure and function of the native and recombinant mitochondrial MRP1/MRP2 complex from Trypanosoma brucei. Int J Parasitol 2008; 38:901-12. [PMID: 18295767 PMCID: PMC2492832 DOI: 10.1016/j.ijpara.2007.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/19/2007] [Accepted: 12/31/2007] [Indexed: 10/22/2022]
Abstract
The mitochondrial RNA-binding proteins (MRP) 1 and 2 play a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Here, we report the purification of a high molecular weight protein complex consisting solely of the MRP1 and MRP2 proteins from the mitochondrion of T. brucei. The MRP1/MRP2 complex natively purified from T. brucei and the one reconstituted in Escherichia coli in vivo bind guide (g) RNAs and pre-mRNAs with dissociation constants in the nanomolar range, and efficiently promote annealing of pre-mRNAs with their cognate gRNAs. In addition, the MRP1/MRP2 complex stimulates annealing between two non-cognate RNA molecules suggesting that along with the cognate duplexes, spuriously mismatched RNA hybrids may be formed at some rate in vivo. A mechanism of catalysed annealing of gRNA/pre-mRNA by the MRP1/MRP2 complex is proposed.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
- Seattle Biomedical Research Institute, Seattle, USA
| | - Jana Kopečná
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Maria A. Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, USA
| | | | - Lukáš Trantírek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
18
|
Ammerman ML, Fisk JC, Read LK. gRNA/pre-mRNA annealing and RNA chaperone activities of RBP16. RNA (NEW YORK, N.Y.) 2008; 14:1069-80. [PMID: 18441045 PMCID: PMC2390797 DOI: 10.1261/rna.982908] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/29/2008] [Indexed: 05/08/2023]
Abstract
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.
Collapse
Affiliation(s)
- Michelle L Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
19
|
Homann M. Editing Reactions from the Perspective of RNA Structure. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
|
21
|
Göringer HU, Brecht M, Böhm C, Kruse E. RNA Editing Accessory Factors — the Example of mHel61p. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Abstract
Multisubunit RNA editing complexes recognize thousands of pre-mRNA sites in the single mitochondrion of trypanosomes. Specific determinants at each editing site must trigger the complexes to catalyze a complete cycle of either uridylate insertion or deletion. While a wealth of information on the protein composition and catalytic activities of these complexes is currently available, the precise mechanisms that govern substrate recognition and editing site specificity remain unknown. This chapter describes basic assays to visualize direct photocrosslinking interactions between purified editing complexes and targeted deletion and insertion sites in model substrates for full-round editing. It also illustrates how variations of these assays can be applied to examine the specificity of the editing enzyme/substrate association, and to dissect structural or biochemical requirements of both the substrates and enzyme complex.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
23
|
|
24
|
Cifuentes-Rojas C, Pavia P, Hernandez A, Osterwisch D, Puerta C, Cruz-Reyes J. Substrate determinants for RNA editing and editing complex interactions at a site for full-round U insertion. J Biol Chem 2007; 282:4265-4276. [PMID: 17158098 DOI: 10.1074/jbc.m605554200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multisubunit RNA editing complexes catalyze uridylate insertion/deletion RNA editing directed by complementary guide RNAs (gRNAs). Editing in trypanosome mitochondria is transcript-specific and developmentally controlled, but the molecular mechanisms of substrate specificity remain unknown. Here we used a minimal A6 pre-mRNA/gRNA substrate to define functional determinants for full-round insertion and editing complex interactions at the editing site 2 (ES2). Editing begins with pre-mRNA cleavage within an internal loop flanked by upstream and downstream duplexes with gRNA. We found that substrate recognition around the internal loop is sequence-independent and that completely artificial duplexes spanning a single helical turn are functional. Furthermore, after our report of cross-linking interactions at the deletion ES1 (35), we show for the first time editing complex contacts at an insertion ES. Our studies using site-specific ribose 2' substitutions defined 2'-hydroxyls within the (a) gRNA loop region and (b) flanking helixes that markedly stimulate both pre-mRNA cleavage and editing complex interactions at ES2. Modification of the downstream helix affected scissile bond specificity. Notably, a single 2'-hydroxyl at ES2 is essential for cleavage but dispensable for editing complex cross-linking. This study provides new insights on substrate recognition during full-round editing, including the relevance of secondary structure and the first functional association of specific (pre-mRNA and gRNA) riboses with both endonuclease cleavage and cross-linking activities of editing complexes at an ES. Importantly, most observed cross-linking interactions are both conserved and relatively stable at ES2 and ES1 in hybrid substrates. However, they were also detected as transient low-stability contacts in a non-edited transcript.
Collapse
Affiliation(s)
| | - Paula Pavia
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Alfredo Hernandez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Daniel Osterwisch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and
| | - Concepcion Puerta
- Laboratorio of Parasitologia Molecular, Pontificia Universidad Javeriana, Carrera 7a No. 43-82, Ed. 50, Lab 113, Bogota´, Colombia
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 and.
| |
Collapse
|
25
|
Pelletier M, Read LK, Aphasizhev R. Isolation of RNA binding proteins involved in insertion/deletion editing. Methods Enzymol 2007; 424:75-105. [PMID: 17662837 DOI: 10.1016/s0076-6879(07)24004-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA editing is a collective term referring to a plethora of reactions that ultimately lead to changes in RNA nucleotide sequences apart from splicing, 5' capping, or 3' end processing. In the mitochondria of trypanosomatids, insertion and deletion of uridines must occur, often on a massive scale, in order to generate functional messenger RNAs. The current state of knowledge perceives the editing machinery as a dynamic system, in which heterogeneous protein complexes undergo multiple transient RNA-protein interactions in the course of gRNA processing, gRNA-mRNA recognition, and the cascade of nucleolytic and phosphoryl transfer reactions that ultimately change the mRNA sequence. Identification of RNA binding proteins that interact with the mitochondrial RNAs, core editing complex, or contribute to mRNA stability is of critical importance to our understanding of the editing process. This chapter describes purification and characterization of three RNA binding proteins from kinetoplastid mitochondria that have been genetically demonstrated to affect RNA editing.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Immunology, SUNY Buffalo School of Medicine, Buffalo, New York, USA
| | | | | |
Collapse
|
26
|
Halbig K, Sacharidou A, De Nova-Ocampo M, Cruz-Reyes J. Preferential interaction of a 25kDa protein with an A6 pre-mRNA substrate for RNA editing in Trypanosoma brucei. Int J Parasitol 2006; 36:1295-304. [PMID: 16860325 DOI: 10.1016/j.ijpara.2006.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/14/2006] [Accepted: 05/15/2006] [Indexed: 11/23/2022]
Abstract
Mitochondrial gene expression in kinetoplastids is controlled after transcription, potentially at the levels of RNA maturation, stability and translation. Among these processes, RNA editing by U-insertion/deletion catalysed by multi-subunit editing complexes is best characterised at the molecular level. Nevertheless, mitochondrial RNA metabolism overall remains poorly understood, including the potential regulatory factors that may interact with the relevant catalytic molecular machines and/or RNA substrates. Here we report on a approximately 25kDa polypeptide in mitochondrial extracts that exhibits a preferential "zero-distance" photo-crosslinking interaction with an A6 pre-mRNA model substrate for RNA editing containing a single [(32)P] at the first editing site. The approximately 25kDa polypeptide purified away from editosomes upon ion-exchange chromatography and glycerol gradient sedimentation. Competition assays with homologous and heterologous transcripts suggest that the preferential recognition of the A6 substrate is based on relatively low-specificity RNA-protein contacts. Our mapping and substrate truncation analyses suggest that the crosslinking activity primarily targeted a predicted stem-loop region containing the first editing sites. Consistent with the notion that pre-mRNA folding may be required, pre-annealing with guide RNA abolished crosslinking. Interestingly, this preferential protein interaction with the A6 substrate seemed to require adenosine 5'-triphosphate but not hydrolysis. As in other biological systems, fine regulation in vivo may be brought about by transient networks of relatively low-specificity interactions in which multiple auxiliary factors bind to mRNAs and/or editing complexes in unique higher-order assemblies.
Collapse
Affiliation(s)
- Kari Halbig
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
27
|
Schumacher MA, Karamooz E, Zíková A, Trantírek L, Lukes J. Crystal structures of T. brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism. Cell 2006; 126:701-11. [PMID: 16923390 DOI: 10.1016/j.cell.2006.06.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/19/2006] [Accepted: 06/23/2006] [Indexed: 11/19/2022]
Abstract
The mitochondrial RNA binding proteins MRP1 and MRP2 form a heteromeric complex that functions in kinetoplastid RNA editing. In this process, MRP1/MRP2 serves as a matchmaker by binding to guide RNAs and facilitating their hybridization with cognate preedited mRNAs. To understand the mechanism by which this complex performs RNA matchmaking, we determined structures of Trypanosoma brucei apoMRP1/MRP2 and an MRP1/MRP2-gRNA complex. The structures show that MRP1/MRP2 is a heterotetramer and, despite little sequence homology, each MRP subunit exhibits the same "Whirly" transcription-factor fold. The gRNA molecule binds to the highly basic beta sheet surface of the MRP complex via nonspecific, electrostatic contacts. Strikingly, while the gRNA stem/loop II base is anchored to the basic surface, stem/loop I (the anchor sequence) is unfolded and its bases exposed to solvent. Thus, MRP1/MRP2 acts as an RNA matchmaker by stabilizing the RNA molecule in an unfolded conformation suitable for RNA-RNA hybridization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Crystallography, X-Ray
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Folding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Trypanosoma brucei brucei/chemistry
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, Houston, 77030, USA.
| | | | | | | | | |
Collapse
|
28
|
Sacharidou A, Cifuentes-Rojas C, Halbig K, Hernandez A, Dangott LJ, De Nova-Ocampo M, Cruz-Reyes J. RNA editing complex interactions with a site for full-round U deletion in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:1219-28. [PMID: 16690999 PMCID: PMC1484423 DOI: 10.1261/rna.2295706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Trypanosome U insertion and U deletion RNA editing of mitochondrial pre-mRNAs is catalyzed by multisubunit editing complexes as directed by partially complementary guide RNAs. The basic enzymatic activities and protein composition of these high-molecular mass complexes have been under intense study, but their specific protein interactions with functional pre-mRNA/gRNA substrates remains unknown. We show that editing complexes purified through extensive ion-exchange chromatography and immunoprecipitation make specific cross-linking interactions with A6 pre-mRNA containing a single 32P and photoreactive 4-thioU at the scissile bond of a functional site for full-round U deletion. At least four direct protein-RNA contacts are detected at this site by cross-linking. All four interactions are stimulated by unpaired residues just 5' of the pre-mRNA/gRNA anchor duplex, but strongly inhibited by pairing of the editing site region. Furthermore, competition analysis with homologous and heterologous transcripts suggests preferential contacts of the editing complex with the mRNA/gRNA duplex substrate. This apparent structural selectivity suggests that the RNA-protein interactions we observe may be involved in recognition of editing sites and/or catalysis in assembled complexes.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zíková A, Horáková E, Jirků M, Dunajcíková P, Lukes J. The effect of down-regulation of mitochondrial RNA-binding proteins MRP1 and MRP2 on respiratory complexes in procyclic Trypanosoma brucei. Mol Biochem Parasitol 2006; 149:65-73. [PMID: 16730807 DOI: 10.1016/j.molbiopara.2006.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/24/2022]
Abstract
MRP1 and MRP2 are multifunctional mitochondrial RNA-binding proteins with a regulatory role in RNA editing and putative role(s) in RNA processing in Trypanosoma brucei. Silencing of MRP1 and/or MRP2 by RNA interference affected the assembly and functionality of respiratory complexes. The absence of several subunits of complexes I, III and IV resulted in their disintegration and subsequent decrease of specific activities and also caused a significant decrease of membrane potential. The overall respiration in the interfered cells decreased by only about 20%, since the trypanosome alternative oxidase effectively replaced the missing cytochromes and became the principal terminal oxidase.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Czech Academy of Sciences, and Faculty of Biology, University of South Bohemia, Branisovská 31, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
30
|
Cifuentes-Rojas C, Halbig K, Sacharidou A, De Nova-Ocampo M, Cruz-Reyes J. Minimal pre-mRNA substrates with natural and converted sites for full-round U insertion and U deletion RNA editing in trypanosomes. Nucleic Acids Res 2005; 33:6610-20. [PMID: 16306234 PMCID: PMC1298919 DOI: 10.1093/nar/gki943] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Trypanosome RNA editing by uridylate insertion or deletion cycles is a mitochondrial mRNA maturation process catalyzed by multisubunit complexes. A full-round of editing entails three consecutive steps directed by partially complementary guide RNAs: pre-mRNA cleavage, U addition or removal, and ligation. The structural and functional composition of editing complexes is intensively studied, but their molecular interactions in and around editing sites are not completely understood. In this study, we performed a systematic analysis of distal RNA requirements for full-round insertion and deletion by purified editosomes. We define minimal substrates for efficient editing of A6 and CYb model transcripts, and established a new substrate, RPS12. Important differences were observed in the composition of substrates for insertion and deletion. Furthermore, we also showed for the first time that natural sites can be artificially converted in both directions: from deletion to insertion or from insertion to deletion. Our site conversions enabled a direct comparison of the two editing kinds at common sites during substrate minimization and demonstrate that all basic determinants directing the editosome to carry out full-round insertion or deletion reside within each editing site. Surprisingly, we were able to engineer a deletion site into CYb, which exclusively undergoes insertion in nature.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Cruz-Reyes
- To whom correspondence should be addressed. Tel: +1 979 458 3375; Fax: +1 979 862 4718;
| |
Collapse
|
31
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
32
|
Brecht M, Niemann M, Schlüter E, Müller UF, Stuart K, Göringer HU. TbMP42, a protein component of the RNA editing complex in African trypanosomes, has endo-exoribonuclease activity. Mol Cell 2005; 17:621-30. [PMID: 15749013 DOI: 10.1016/j.molcel.2005.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 12/03/2004] [Accepted: 01/21/2005] [Indexed: 01/06/2023]
Abstract
RNA editing in trypanosomatids is catalyzed by a high molecular mass RNP complex, which is only partially characterized. TbMP42 is a 42 kDa protein of unknown function that copurifies with the editing complex. The polypeptide is characterized by two Zn fingers and a potential barrel structure/OB-fold at its C terminus. Using recombinant TbMP42, we show that the protein can bind to dsRNA and dsDNA but fails to recognize DNA/RNA hybrids. rTbMP42 degrades ssRNA by a 3' to 5' exoribonuclease activity. In addition, rTbMP42 has endoribonuclease activity, which preferentially hydrolyzes non-base-paired uridylate-containing sequences. Gene silencing of TbMP42 inhibits cell growth and is ultimately lethal to the parasite. Mitochondrial extracts from TbMP42-minus trypanosomes have only residual RNA editing activity and strongly reduced endo-exoribonuclease activity. However, all three activities can be restored by the addition of rTbMP42. Together, the data suggest that TbMP42 contributes both endo- and exoribonuclease activity to the editing reaction cycle.
Collapse
Affiliation(s)
- Michael Brecht
- Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Gao G, Simpson AM, Kang X, Rogers K, Nebohacova M, Li F, Simpson L. Functional complementation of Trypanosoma brucei RNA in vitro editing with recombinant RNA ligase. Proc Natl Acad Sci U S A 2005; 102:4712-7. [PMID: 15781861 PMCID: PMC555718 DOI: 10.1073/pnas.0500553102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The approximately 20S RNA ligase-containing complex (L-complex) in trypanosomatid mitochondria interacts by means of RNA linkers with at least two other multiprotein complexes to mediate the editing of mitochondrial cryptogene transcripts. The L-complex contains approximately 16 proteins, including the two RNA-editing ligases (RELs), REL1 and REL2. Leishmania tarentolae REL1 and REL2 and Trypanosoma brucei REL1 were expressed as enzymatically active tandem affinity purification-tagged proteins in a Baculovirus system. When these proteins were added to mitochondrial lysates from T. brucei procyclic cells that were depleted of the cognate endogenous ligase by RNA interference down-regulation of expression, the added proteins were integrated into the L-complex, and, in the case of REL1, there was a complementation of in vitro-precleaved U-insertion and U-deletion editing activities of the 20S L-complex. Integration of the recombinant proteins did not occur or occurred at a very low level with noncognate ligase-depleted L-complex or with wild-type L-complex. A C-terminal region of the T. brucei recombinant REL1 downstream of the catalytic domain was identified as being involved in integration into the L-complex. The ability to perform functional complementation in vitro provides a powerful tool for molecular dissection of the editing reaction.
Collapse
Affiliation(s)
- Guanghan Gao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Penschow JL, Sleve DA, Ryan CM, Read LK. TbDSS-1, an essential Trypanosoma brucei exoribonuclease homolog that has pleiotropic effects on mitochondrial RNA metabolism. EUKARYOTIC CELL 2005; 3:1206-16. [PMID: 15470249 PMCID: PMC522597 DOI: 10.1128/ec.3.5.1206-1216.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.
Collapse
Affiliation(s)
- Jonelle L Penschow
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Most mitochondrial mRNAs in kinetoplastids require editing, that is, the posttranscriptional insertion and deletion of uridine nucleotides that are specified by guide RNAs and catalyzed by multiprotein complexes. Recent studies have identified many of the proteins in these complexes, in addition to some of their functions and interactions. Although much remains unknown, a picture of highly organized complexes is emerging that shows that the complex that catalyzes the central steps of editing is partitioned into distinct insertion and deletion editing subcomplexes. These subcomplexes coordinate hundreds of ordered catalytic steps that function to produce a single mature mRNA. The dynamic processes, which might entail interactions among multiprotein complexes and changes in their composition and conformation, remain to be elucidated.
Collapse
Affiliation(s)
- Kenneth D Stuart
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
36
|
Vondrusková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukes J. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem 2004; 280:2429-38. [PMID: 15504736 DOI: 10.1074/jbc.m405933200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth inhibition. It also resulted in the loss of both proteins, even when only one of the MRP mRNAs was reduced, indicating a mutual dependence for stability. Elimination of the MRPs gave rise to substantially reduced levels of edited CyB and RPS12 mRNAs but little or no reduction of the level of edited Cox2, Cox3, and A6 mRNAs as measured by poisoned primer extension analyses. In contrast, edited NADH-dehydrogenase (ND) subunit 7 mRNA was increased 5-fold in MRP1+2 double knock-down cells. Furthermore, MRP elimination resulted in reduced levels of Cox1, ND4, and ND5 mRNAs, which are never edited, whereas mitoribosomal 12 S rRNA levels were not affected. These data indicate that MRP1 and MRP2 are not essential for RNA editing per se but, rather, play a regulatory role in the editing of specific transcripts and other RNA processing activities.
Collapse
Affiliation(s)
- Eva Vondrusková
- Institute of Parasitology, Czech Academy of Sciences, and Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
37
|
Simpson L, Aphasizhev R, Gao G, Kang X. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA (NEW YORK, N.Y.) 2004; 10:159-70. [PMID: 14730014 PMCID: PMC1370527 DOI: 10.1261/rna.5170704] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A number of mitochondrial proteins have been identified in Leishmania sp. and Trypanosoma brucei that may be involved in U-insertion/deletion RNA editing. Only a few of these have yet been characterized sufficiently to be able to assign functional names for the proteins in both species, and most have been denoted by a variety of species-specific and laboratory-specific operational names, leading to a terminology confusion both within and outside of this field. In this review, we summarize the present status of our knowledge of the orthologous and unique putative editing proteins in both species and the functional motifs identified by sequence analysis and by experimentation. An online Supplemental sequence database (http://164.67.60.200/proteins/protsmini1.asp) is also provided as a research resource.
Collapse
Affiliation(s)
- Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
38
|
Schnaufer A, Ernst NL, Palazzo SS, O'Rear J, Salavati R, Stuart K. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 2003; 12:307-19. [PMID: 14536071 DOI: 10.1016/s1097-2765(03)00286-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
39
|
Panigrahi AK, Allen TE, Stuart K, Haynes PA, Gygi SP. Mass spectrometric analysis of the editosome and other multiprotein complexes in Trypanosoma brucei. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:728-735. [PMID: 12837594 DOI: 10.1016/s1044-0305(03)00126-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The composition of the editosome, a multi-protein complex that catalyzes uridine insertion and deletion RNA editing to produce mature mitochondrial mRNAs in trypanosomes, was analyzed by mass spectrometry. The editosomes were isolated by column chromatography, glycerol gradient sedimentation, and monoclonal antibody affinity purifications. At least 16 proteins form the catalytic core of the editosome, and additional associated proteins were identified. Analyses of mitochondrial fractions identified several non-editosome proteins and multi-protein complexes. These studies contribute to the functional annotation of T. brucei genome.
Collapse
Affiliation(s)
- Aswini K Panigrahi
- Department of Pathobiology, University of Washington, and Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
40
|
Wang B, Ernst NL, Palazzo SS, Panigrahi AK, Salavati R, Stuart K. TbMP44 is essential for RNA editing and structural integrity of the editosome in Trypanosoma brucei. EUKARYOTIC CELL 2003; 2:578-87. [PMID: 12796303 PMCID: PMC161458 DOI: 10.1128/ec.2.3.578-587.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.
Collapse
Affiliation(s)
- Bingbing Wang
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
41
|
Panigrahi AK, Schnaufer A, Ernst NL, Wang B, Carmean N, Salavati R, Stuart K. Identification of novel components of Trypanosoma brucei editosomes. RNA (NEW YORK, N.Y.) 2003; 9:484-92. [PMID: 12649499 PMCID: PMC1370414 DOI: 10.1261/rna.2194603] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 01/09/2003] [Indexed: 05/19/2023]
Abstract
The editosome is a multiprotein complex that catalyzes the insertion and deletion of uridylates that occurs during RNA editing in trypanosomatids. We report the identification of nine novel editosome proteins in Trypanosoma brucei. They were identified by mass spectrometric analysis of functional editosomes that were purified by serial ion exchange/gel permeation chromatography, immunoaffinity chromatography specific to the TbMP63 editosome protein, or tandem affinity purification based on a tagged RNA editing ligase. The newly identified proteins have ribonuclease and/or RNA binding motifs suggesting nuclease function for at least some of these. Five of the proteins are interrelated, as are two others, and one is related to four previously identified editosome proteins. The implications of these findings are discussed.
Collapse
|
42
|
Pelletier M, Read LK. RBP16 is a multifunctional gene regulatory protein involved in editing and stabilization of specific mitochondrial mRNAs in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2003; 9:457-68. [PMID: 12649497 PMCID: PMC1370412 DOI: 10.1261/rna.2160803] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 12/27/2002] [Indexed: 05/20/2023]
Abstract
RBP16 is a Trypanosoma brucei mitochondrial RNA-binding protein that associates with guide RNAs (gRNAs), mRNAs, and ribosomal RNAs. Based on its inclusion in the multifunctional Y-box protein family and its ability to bind multiple RNA classes, we hypothesized that RBP16 plays a role in diverse aspects of mitochondrial gene regulation. To gain insight into RBP16 function, we generated cells expressing less than 10% of wild-type RBP16 levels by tetracycline-regulated RNA interference (RNAi). Poisoned primer extension analyses revealed that edited, but not unedited, CYb mRNA is reduced by approximately 98% in tetracycline-induced RBP16 RNAi cells, suggesting that RBP16 is critical for CYb RNA editing. The down-regulation of CYb editing in RBP16 RNAi transfectants apparently entails a defect in gRNA utilization, as gCYb[560] abundance is similar in uninduced and induced cells. We observed a surprising degree of specificity regarding the ability of RBP16 to modulate editing, as editing of mRNAs other than CYb is not significantly affected upon RBP16 disruption. However, the abundance of the never edited mitochondrial RNAs COI and ND4 is reduced by 70%-80% in RBP16 RNAi transfectants, indicating an additional role for RBP16 in the stabilization of these mRNAs. Analysis of RNAs bound to RBP16 immunoprecipitated from wild-type cells reveals that RBP16 is associated with multiple gRNA sequence classes in vivo, including those whose abundance and usage appear unaffected by RBP16 disruption. Overall, our results indicate that RBP16 is an accessory factor that regulates the editing and stability of specific populations of mitochondrial mRNAs.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York-Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | |
Collapse
|
43
|
Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA (NEW YORK, N.Y.) 2003; 9:265-76. [PMID: 12591999 PMCID: PMC1370392 DOI: 10.1261/rna.2178403] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been definitely implicated in the uridine insertion/deletion RNA editing reaction and others of which have been circumstantially implicated. Several protein complexes have been isolated which exhibit some editing activities, and the macromolecular organization of these complexes is being analyzed. In addition, there have been several important technical advances in the in vitro analysis of editing. In this review we critically examine the various factors and complexes proposed to be involved in RNA editing.
Collapse
Affiliation(s)
- Larry Simpson
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
44
|
Aphasizhev R, Aphasizheva I, Nelson RE, Simpson L. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA (NEW YORK, N.Y.) 2003; 9:62-76. [PMID: 12554877 PMCID: PMC1370371 DOI: 10.1261/rna.2134303] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/07/2002] [Indexed: 05/22/2023]
Abstract
A stable 100-kD complex from mitochondria of Leishmania tarentolae containing two RNA-binding proteins, Ltp26 and Ltp28, was identified by cross-linking to unpaired 4-thiouridine nucleotides in a partially duplex RNA substrate. The genes were cloned and expressed and the complex was reconstituted from recombinant proteins in the absence of RNA or additional factors. The Ltp26 and Ltp28 proteins are homologs of gBP27 and gBP29 from Crithidia fasciculata and gBP25 and gBP21 from Trypanosoma brucei, respectively. The purified Ltp26/Ltp28 complex, the individual recombinant proteins, and the reconstituted complex are each capable of catalyzing the annealing of complementary RNAs, as was previously shown for gBP21 from T. brucei. A high-molecular-weight RNP complex consisting of the Ltp26/Ltp28 complex and several 55-60-kD proteins together with guide RNA could be purified from mitochondrial extract of L. tarentolae transfected with Ltp28-TAP. This complex also interacted in a less stable manner with the RNA ligase-containing L-complex and with the 3' TUTase. The Ltp26/Ltp28 RNP complex is a candidate for catalyzing the annealing of guide RNA and pre-edited mRNA in the initial step of RNA editing.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
45
|
Abstract
RNA editing in Trypanosomatids creates functional mitochondrial mRNAs by extensive uridylate (U) insertion and deletion as specified by small guide RNAs (gRNAs). Editing is catalysed by the multiprotein editosome. Over 20 of its protein components have been identified and additional proteins are likely to function in editing and its regulation. The functions of only a few editosome proteins have been determined. Surprisingly, there are related pairs or sets of editosome proteins, and insertion and deletion editing appear to be functionally and perhaps spatially separate. A model for the editosome is proposed, which has a catalysis domain with separate sectors for insertion and deletion editing. It also contains domains for anchor duplex and upstream RNA binding, which position the sequence to be edited in the catalysis domain.
Collapse
|
46
|
Abstract
Recent discoveries have revealed that there is a myriad of RNAs and associated RNA-binding proteins that spatially and temporally appear in the cells of all organisms. The structures of these RNA-protein complexes are providing valuable insights into the binding modes and functional implications of these interactions. Even the common RNA-binding domains (RBDs) and the double stranded RNA binding motifs (dsRBMs) have been shown to exhibit a plethora of binding modes.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
47
|
Huang CE, O'Hearn SF, Sollner-Webb B. Assembly and function of the RNA editing complex in Trypanosoma brucei requires band III protein. Mol Cell Biol 2002; 22:3194-203. [PMID: 11940676 PMCID: PMC133760 DOI: 10.1128/mcb.22.9.3194-3203.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/20/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
Trypanosome RNA editing, the posttranscriptional insertion and deletion of U residues in mitochondrial transcripts, is catalyzed by a protein complex containing seven distinct proteins. In this study, we cloned the gene for band III, a 555-amino-acid protein with two separate zinc finger motifs. We prepared antibodies that showed band III protein cofractionates with the previously characterized band IV protein throughout the purification of the editing complex and is not found free or in other protein associations; therefore, it is a true constituent of the editing complex. Double-stranded RNA interference efficiently depleted band III protein and demonstrated that band III expression is essential for growth of procyclic trypanosomes and for RNA editing. These depleted cell extracts were deficient specifically in guide RNA-directed endonuclease cleavage at both U deletion and U insertion sites and in the activity of the band IV ligase, but they retained the 3'-U-exonuclease and terminal-U-transferase activities as well as band V ligase of the editing complex. Loss of band III protein also resulted in almost complete loss of the band IV ligase protein and altered sedimentation of the band V ligase. These data indicate that band III is either the RNA editing endonuclease or a factor critical for cleavage activity in the editing complex. They also demonstrate that band III is required for proper assembly of the editing complex.
Collapse
Affiliation(s)
- Catherine E Huang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
48
|
Aphasizhev R, Sbicego S, Peris M, Jang SH, Aphasizheva I, Simpson AM, Rivlin A, Simpson L. Trypanosome mitochondrial 3' terminal uridylyl transferase (TUTase): the key enzyme in U-insertion/deletion RNA editing. Cell 2002; 108:637-48. [PMID: 11893335 DOI: 10.1016/s0092-8674(02)00647-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 3' terminal RNA uridylyltransferase was purified from mitochondria of Leishmania tarentolae and the gene cloned and expressed from this species and from Trypanosoma brucei. The enzyme is specific for 3' U-addition in the presence of Mg(2+). TUTase is present in vivo in at least two stable configurations: one contains a approximately 500 kDa TUTase oligomer and the other a approximately 700 kDa TUTase complex. Anti-TUTase antiserum specifically coprecipitates a small portion of the p45 and p50 RNA ligases and approximately 40% of the guide RNAs. Inhibition of TUTase expression in procyclic T. brucei by RNAi downregulates RNA editing and appears to affect parasite viability.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Müller UF, Göringer HU. Mechanism of the gBP21-mediated RNA/RNA annealing reaction: matchmaking and charge reduction. Nucleic Acids Res 2002; 30:447-55. [PMID: 11788706 PMCID: PMC99830 DOI: 10.1093/nar/30.2.447] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/16/2001] [Accepted: 11/16/2001] [Indexed: 01/17/2023] Open
Abstract
The guide RNA-binding protein gBP21 has been characterized as a mitochondrial RNA/RNA annealing factor. The protein co-immunoprecipitates with RNA editing ribonucleoprotein complexes, which suggests that gBP21 contributes its annealing activity to the RNA editing machinery. In support of this view, gBP21 was found to accelerate the hybridization of cognate guide (g)RNA/pre-edited mRNA pairs. Here we analyze the mechanism of the gBP21-mediated RNA annealing reaction. Three possible modes of action are considered: chaperone function, matchmaker function and product stabilization. We conclude that gBP21 works as a matchmaker by binding to gRNAs as one of the two RNA annealing reactants. Three lines of evidence substantiate this model. First, gBP21 and gRNAs form a thermodynamically and kinetically stable complex in a 1 + 1 stoichiometry. Secondly, gRNA-bound gBP21 stabilizes single-stranded RNA, which can be considered the transition state in the annealing reaction. Thirdly, gBP21 has a low affinity for double-stranded RNAs, suggesting the release of the annealed reaction product after the hybridization step. In the process, up to six ionic bonds are formed between gBP21 and a gRNA, which decreases the net negative charge of the RNA. As a consequence, the electrostatic repulsion between the two annealing reactants is reduced favoring the hybridization reaction.
Collapse
Affiliation(s)
- Ulrich F Müller
- Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | |
Collapse
|