1
|
Perales S, Sigamani V, Rajasingh S, Gurusamy N, Bittel D, Czirok A, Radic M, Rajasingh J. scaRNA20 promotes pseudouridylatory modification of small nuclear snRNA U12 and improves cardiomyogenesis. Exp Cell Res 2024; 436:113961. [PMID: 38341080 PMCID: PMC10964393 DOI: 10.1016/j.yexcr.2024.113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Non-coding RNAs, particularly small Cajal-body associated RNAs (scaRNAs), play a significant role in spliceosomal RNA modifications. While their involvement in ischemic myocardium regeneration is known, their role in cardiac development is unexplored. We investigated scaRNA20's role in iPSC differentiation into cardiomyocytes (iCMCs) via overexpression and knockdown assays. We measured scaRNA20-OE-iCMCs and scaRNA20-KD-iCMCs contractility using Particle Image Velocimetry (PIV), comparing them to control iCMCs. We explored scaRNA20's impact on alternative splicing via pseudouridylation (Ψ) of snRNA U12, analyzing its functional consequences in cardiac differentiation. scaRNA20-OE-iPSC differentiation increased beating colonies, upregulated cardiac-specific genes, activated TP53 and STAT3, and preserved contractility under hypoxia. Conversely, scaRNA20-KD-iCMCs exhibited poor differentiation and contractility. STAT3 inhibition in scaRNA20-OE-iPSCs hindered cardiac differentiation. RNA immunoprecipitation revealed increased Ψ at the 28th uridine of U12 RNA in scaRNA20-OE iCMCs. U12-KD iCMCs had reduced cardiac differentiation, which improved upon U12 RNA introduction. In summary, scaRNA20-OE in iPSCs enhances cardiomyogenesis, preserves iCMC function under hypoxia, and may have implications for ischemic myocardium regeneration.
Collapse
Affiliation(s)
- Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Douglas Bittel
- Department of Biosciences, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marko Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Splicing inactivation generates hybrid mRNA-snoRNA transcripts targeted by cytoplasmic RNA decay. Proc Natl Acad Sci U S A 2022; 119:e2202473119. [PMID: 35878033 PMCID: PMC9351541 DOI: 10.1073/pnas.2202473119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many small nucleolar RNAs (snoRNA)s are processed from introns of host genes, but the importance of splicing for proper biogenesis and the fate of the snoRNAs is not well understood. Here, we show that inactivation of splicing factors or mutation of splicing signals leads to the accumulation of partially processed hybrid messenger RNA-snoRNA (hmsnoRNA) transcripts. hmsnoRNAs are processed to the mature 3' ends of the snoRNAs by the nuclear exosome and bound by small nucleolar ribonucleoproteins. hmsnoRNAs are unaffected by translation-coupled RNA quality-control pathways, but they are degraded by the major cytoplasmic exonuclease Xrn1p, due to their messenger RNA (mRNA)-like 5' extensions. These results show that completion of splicing is required to promote complete and accurate processing of intron-encoded snoRNAs and that splicing defects lead to degradation of hybrid mRNA-snoRNA species by cytoplasmic decay, underscoring the importance of splicing for the biogenesis of intron-encoded snoRNAs.
Collapse
|
3
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
4
|
Telomere and Telomerase-Associated Proteins in Endometrial Carcinogenesis and Cancer-Associated Survival. Int J Mol Sci 2022; 23:ijms23020626. [PMID: 35054812 PMCID: PMC8775816 DOI: 10.3390/ijms23020626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
Risk of relapse of endometrial cancer (EC) after surgical treatment is 13% and recurrent disease carries a poor prognosis. Research into prognostic indicators is essential to improve EC management and outcome. "Immortality" of most cancer cells is dependent on telomerase, but the role of associated proteins in the endometrium is poorly understood. The Cancer Genome Atlas data highlighted telomere/telomerase associated genes (TTAGs) with prognostic relevance in the endometrium, and a recent in silico study identified a group of TTAGs and proteins as key regulators within a network of dysregulated genes in EC. We characterise relevant telomere/telomerase associated proteins (TTAPs) NOP10, NHP2, NOP56, TERF1, TERF2 and TERF2IP in the endometrium using quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). qPCR data demonstrated altered expression of multiple TTAPs; specifically, increased NOP10 (p = 0.03) and reduced NHP2 (p = 0.01), TERF2 (p = 0.01) and TERF2IP (p < 0.003) in EC relative to post-menopausal endometrium. Notably, we report reduced NHP2 in EC compared to post-menopausal endometrium in qPCR and IHC (p = 0.0001) data; with survival analysis indicating high immunoscore is favourable in EC (p = 0.0006). Our findings indicate a potential prognostic role for TTAPs in EC, particularly NHP2. Further evaluation of the prognostic and functional role of the examined TTAPs is warranted to develop novel treatment strategies.
Collapse
|
5
|
Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 2018; 10:17-39. [PMID: 11868985 PMCID: PMC5977530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.
Collapse
MESH Headings
- Animals
- Base Pairing
- Biological Transport
- Cell Nucleolus/metabolism
- Cell Nucleus/metabolism
- Eukaryotic Cells/metabolism
- Evolution, Molecular
- Methylation
- Prokaryotic Cells/metabolism
- Pseudouridine/metabolism
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/physiology
- RNA, Catalytic/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/classification
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Small Nucleolar/physiology
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribosomes/metabolism
- Species Specificity
- Structure-Activity Relationship
- Telomerase/metabolism
Collapse
Affiliation(s)
- Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA.
| | | |
Collapse
|
6
|
Choque E, Schneider C, Gadal O, Dez C. Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway. Nucleic Acids Res 2018; 46:4699-4714. [PMID: 29481617 PMCID: PMC5961177 DOI: 10.1093/nar/gky116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis requires more than 200 trans-acting factors to achieve the correct production of the two mature ribosomal subunits. Here, we have identified Efg1 as a novel, nucleolar ribosome biogenesis factor in Saccharomyces cerevisiae that is directly linked to the surveillance of pre-40S particles. Depletion of Efg1 impairs early pre-rRNA processing, leading to a strong decrease in 18S rRNA and 40S subunit levels and an accumulation of the aberrant 23S rRNA. Using Efg1 as bait, we revealed a novel degradation pathway of the 23S rRNA. Co-immunoprecipitation experiments showed that Efg1 is a component of 90S pre-ribosomes, as it is associated with the 35S pre-rRNA and U3 snoRNA, but has stronger affinity for 23S pre-rRNA and its novel degradation intermediate 11S rRNA. 23S is cleaved at a new site, Q1, within the 18S sequence by the endonuclease Utp24, generating 11S and 17S' rRNA. Both of these cleavage products are targeted for degradation by the TRAMP/exosome complexes. Therefore, the Q1 site defines a novel endonucleolytic cleavage site of ribosomal RNA exclusively dedicated to surveillance of pre-ribosomal particles.
Collapse
Affiliation(s)
- Elodie Choque
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| |
Collapse
|
7
|
Thorenoor N, Slaby O. Small nucleolar RNAs functioning and potential roles in cancer. Tumour Biol 2014; 36:41-53. [DOI: 10.1007/s13277-014-2818-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022] Open
|
8
|
Coy S, Volanakis A, Shah S, Vasiljeva L. The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 2013; 8:e65606. [PMID: 23755256 PMCID: PMC3675052 DOI: 10.1371/journal.pone.0065606] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 12/25/2022] Open
Abstract
A key question in the field of RNA regulation is how some exosome substrates, such as spliceosomal snRNAs and telomerase RNA, evade degradation and are processed into stable, functional RNA molecules. Typical feature of these non-coding RNAs is presence of the Sm complex at the 3′end of the mature RNA molecule. Here, we report that in Saccharomyces cerevisiae presence of intact Sm binding site is required for the exosome-mediated processing of telomerase RNA from a polyadenylated precursor into its mature form and is essential for its function in elongating telomeres. Additionally, we demonstrate that the same pathway is involved in the maturation of snRNAs. Furthermore, the insertion of an Sm binding site into an unstable RNA that is normally completely destroyed by the exosome, leads to its partial stabilization. We also show that telomerase RNA accumulates in Schizosaccharomyces pombe exosome mutants, suggesting a conserved role for the exosome in processing and degradation of telomerase RNA. In summary, our data provide important mechanistic insight into the regulation of exosome dependent RNA processing as well as telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Brault ME, Lauzon C, Autexier C. Dyskeratosis congenita mutations in dyskerin SUMOylation consensus sites lead to impaired telomerase RNA accumulation and telomere defects. Hum Mol Genet 2013; 22:3498-507. [PMID: 23660516 DOI: 10.1093/hmg/ddt204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mutations in the dyskerin gene (DKC1) cause X-linked dyskeratosis congenita (DC), a rare and fatal premature aging syndrome characterized by defective telomere maintenance. Dyskerin is a highly conserved nucleolar protein, and a component of the human telomerase complex that is essential for human telomerase RNA (hTR) stability. However, its regulation remains poorly understood. Here, we report that dyskerin can be modified by small ubiquitin-like modifiers (SUMOs). We find that human DC-causing mutations in highly conserved dyskerin SUMOylation consensus sites lead to impaired hTR accumulation, telomerase activity and telomere maintenance. Finally, we show that modification of dyskerin by SUMOylation is required for its stability. Our findings provide the first evidence that dyskerin stability is regulated by SUMOylation and that mutations altering dyskerin SUMOylation can lead to defects in telomere maintenance that are characteristics of DC.
Collapse
Affiliation(s)
- Marie Eve Brault
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3775 Côte Ste Catherine Road, Montréal, QC H3T 1E2, Canada
| | | | | |
Collapse
|
10
|
Smekalova EM, Shubernetskaya OS, Zvereva MI, Gromenko EV, Rubtsova MP, Dontsova OA. Telomerase RNA biosynthesis and processing. BIOCHEMISTRY (MOSCOW) 2013; 77:1120-8. [PMID: 23157292 DOI: 10.1134/s0006297912100045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Telomerase synthesizes repetitive G-rich sequences (telomeric repeats) at the ends of eukaryotic chromosomes. This mechanism maintains the integrity of the genome, as telomere shortening leads to degradation and fusion of chromosomes. The core components of telomerase are the telomerase catalytic subunit and telomerase RNA, which possesses a small template region serving for the synthesis of a telomeric repeat. Mutations in the telomerase RNA are associated with some cases of aplastic anemia and also cause dyskeratosis congenita, myelodysplasia, and pulmonary fibrosis. Telomerase is active in 85% of cancers, and telomerase activation is one of the first steps in cell transformation. The study of telomerase and pathways where this enzyme is involved will help to understand the mechanism of the mentioned diseases and to develop new approaches for their treatment. In this review we describe the modern conception of telomerase RNA biosynthesis, processing, and functioning in the three most studied systems - yeast, vertebrates, and ciliates.
Collapse
Affiliation(s)
- E M Smekalova
- Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
11
|
The human telomerase catalytic subunit and viral telomerase RNA reconstitute a functional telomerase complex in a cell-free system, but not in human cells. Cell Mol Biol Lett 2012; 17:598-615. [PMID: 22941205 PMCID: PMC6275662 DOI: 10.2478/s11658-012-0031-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 08/28/2012] [Indexed: 01/20/2023] Open
Abstract
The minimal vertebrate telomerase enzyme is composed of a protein component (telomerase reverse transcriptase, TERT) and an RNA component (telomerase RNA, TR). Expression of these two subunits is sufficient to reconstitute telomerase activity in vitro, while the formation of a holoenzyme comprising telomerase-associated proteins is necessary for proper telomere length maintenance. Previous reports demonstrated the high processivity of the human telomerase complex and the interspecies compatibility of human TERT (hTERT). In this study, we tested the function of the only known viral telomerase RNA subunit (vTR) in association with human telomerase, both in a cell-free system and in human cells. When vTR is assembled with hTERT in a cell-free environment, it is able to interact with hTERT and to reconstitute telomerase activity. However, in human cells, vTR does not reconstitute telomerase activity and could not be detected in the human telomerase complex, suggesting that vTR is not able to interact properly with the proteins constituting the human telomerase holoenzyme.
Collapse
|
12
|
Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:121-8. [PMID: 22498252 PMCID: PMC3842010 DOI: 10.1016/j.bbcan.2012.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and cellular processes. Alterations of ncRNAs, particularly microRNAs, play crucial roles in tumorigenesis. Accumulating evidence indicates that small nucleolar RNAs (snoRNAs), another large class of small ncRNAs, are gaining prominence and more actively involved in carcinogenesis than previously thought. Some snoRNAs exhibit differential expression patterns in a variety of human cancers and demonstrate capability to affect cell transformation, tumorigenesis, and metastasis. We are beginning to comprehend the functional repercussions of snoRNAs in the development and progression of malignancy. In this review, we will describe current studies that have shed new light on the functions of snoRNAs in carcinogenesis and the potential applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Kaiissar Mannoor
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| | - Jipei Liao
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, 10 S, Pine St, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Rubtsova M, Vasilkova D, Malyavko A, Naraikina Y, Zvereva M, Dontsova O. Telomere lengthening and other functions of telomerase. Acta Naturae 2012; 4:44-61. [PMID: 22872811 PMCID: PMC3408703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.
Collapse
Affiliation(s)
- M.P. Rubtsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | | | - A.N. Malyavko
- Lomonosov Moscow State University, Chemistry Department
| | - Yu.V. Naraikina
- Lomonosov Moscow State University, Faculty of Bioengineering and
Bioinformatics
| | - M.I. Zvereva
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| | - O.A. Dontsova
- Lomonosov Moscow State University, Chemistry Department
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University
| |
Collapse
|
14
|
Walbott H, Machado-Pinilla R, Liger D, Blaud M, Réty S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Genes Dev 2011; 25:2398-408. [PMID: 22085966 DOI: 10.1101/gad.176834.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
Collapse
Affiliation(s)
- Hélène Walbott
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Choque E, Marcellin M, Burlet-Schiltz O, Gadal O, Dez C. The nucleolar protein Nop19p interacts preferentially with Utp25p and Dhr2p and is essential for the production of the 40S ribosomal subunit in Saccharomyces cerevisiae. RNA Biol 2011; 8:1158-72. [PMID: 21941128 DOI: 10.4161/rna.8.6.17699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, ribosome biogenesis is a process of major interest that requires more than 200 factors acting coordinately in time and space. Using genetic and proteomic studies, most of the components have now been identified. Based on its nucleolar localization, we characterized the protein encoded by the open reading frame YGR251W, we renamed Nop19p as playing an essential role in ribosome biogenesis. Depletion of the Nop19p in yeast impairs pre-rRNA processing at sites A₀, A₁ and A₂, leading to a strong decrease in 18S rRNA and 40S subunit levels. Nop19p is a component of 90S preribosomes which assembly is believed to result from stepwise incorporation of UTP modules. We show that Nop19p depletion does not impair the incorporation of UTP subcomplexes on preribosomes and conversely that depletion of UTP subcomplexes does not affect Nop19p recruitment on 90S preribosomes. TAP experiments under stringent conditions revealed that Nop19p interacts preferentially with the DEAH-box RNA helicase Dhr2p and Utp25p, both required for A 0, A 1 and A 2 cleavages. Nop19p appeared essential for the incorporation of Utp25p in preribosomes. In addition, our results suggest that in absence of Nop19p, Dhr2p remains trapped within aberrant preribosomes.
Collapse
Affiliation(s)
- Elodie Choque
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Moléculaire Eukaryote, Toulouse, France
| | | | | | | | | |
Collapse
|
16
|
Gladych M, Wojtyla A, Rubis B. Human telomerase expression regulation. Biochem Cell Biol 2011; 89:359-76. [DOI: 10.1139/o11-037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.
Collapse
Affiliation(s)
- Marta Gladych
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Aneta Wojtyla
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
17
|
Trahan C, Martel C, Dragon F. Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs. Hum Mol Genet 2009; 19:825-36. [PMID: 20008900 DOI: 10.1093/hmg/ddp551] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic syndrome that gives rise to a variety of disorders in affected individuals. Remarkably, all causative gene mutations identified to date share a link to telomere/telomerase biology. We found that the most prevalent dyskerin mutation in DC (A353V) did not affect formation of the NAF1-dyskerin-NOP10-NHP2 tetramer that normally assembles with nascent H/ACA RNAs in vivo. However, the A353V mutation slightly reduced pre-RNP assembly with the H/ACA-like domain of human telomerase RNA (hTR). In contrast, NHP2 mutations V126M and Y139H impaired association with NOP10, leading to major pre-RNP assembly defects with all H/ACA RNAs tested, including the H/ACA domain of hTR. Mutation R34W in NOP10 caused no apparent defect in protein tetramer formation, but it severely affected pre-RNP assembly with the H/ACA domain of hTR and a subset of H/ACA RNAs. Surprisingly, H/ACA sno/scaRNAs that encode miRNAs were not affected by the mutation R34W, and they were able to form pre-RNPs with NOP10-R34W. This indicates structural differences between H/ACA RNPs that encode miRNAs and those that do not. Altogether, our results suggest that, in addition to major defects in the telomere/telomerase pathways, some of the disorders occurring in DC may be caused by alteration of most H/ACA RNPs, or by only a subset of them.
Collapse
Affiliation(s)
- Christian Trahan
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | | | |
Collapse
|
18
|
Godin KS, Walbott H, Leulliot N, van Tilbeurgh H, Varani G. The box H/ACA snoRNP assembly factor Shq1p is a chaperone protein homologous to Hsp90 cochaperones that binds to the Cbf5p enzyme. J Mol Biol 2009; 390:231-44. [PMID: 19426738 DOI: 10.1016/j.jmb.2009.04.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/15/2022]
Abstract
Box H/ACA small nucleolar (sno) ribonucleoproteins (RNPs) are responsible for the formation of pseudouridine in a variety of RNAs and are essential for ribosome biogenesis, modification of spliceosomal RNAs, and telomerase stability. A mature snoRNP has been reconstituted in vitro and is composed of a single RNA and four proteins. However, snoRNP biogenesis in vivo requires multiple factors to coordinate a complex and poorly understood assembly and maturation process. Among the factors required for snoRNP biogenesis in yeast is Shq1p, an essential protein necessary for stable expression of box H/ACA snoRNAs. We have found that Shq1p consists of two independent domains that contain casein kinase 1 phosphorylation sites. We also demonstrate that Shq1p binds the pseudourydilating enzyme Cbf5p through the C-terminal domain, in synergy with the N-terminal domain. The NMR solution structure of the N-terminal domain has striking homology to the 'Chord and Sgt1' domain of known Hsp90 cochaperones, yet Shq1p does not interact with the yeast Hsp90 homologue in vitro. Surprisingly, Shq1p has stand-alone chaperone activity in vitro. This activity is harbored by the C-terminal domain, but it is increased by the presence of the N-terminal domain. These results provide the first evidence of a specific biochemical activity for Shq1p and a direct link to the H/ACA snoRNP.
Collapse
Affiliation(s)
- Katherine S Godin
- Department of Chemistry, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Dyskeratosis congenita (DC) is a rare syndrome, characterized by cutaneous abnormalities and premature death caused by bone marrow failure. In this issue of Genes & Development, Hockemeyer and colleagues (pp. 1773-1785) report a new mouse model that reconstitutes key features of DC. Disease phenotypes are generated by a POT1b deletion in a telomerase-deficient background that accelerates the shortening of telomeres by degradation.
Collapse
Affiliation(s)
- Chantal Autexier
- Department of Anatomy and Cell Biology and Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada.
| |
Collapse
|
20
|
Lin J, Jin R, Zhang B, Chen H, Bai YX, Yang PX, Han SW, Xie YH, Huang PT, Huang C, Huang JJ. Nucleolar localization of TERT is unrelated to telomerase function in human cells. J Cell Sci 2008; 121:2169-76. [DOI: 10.1242/jcs.024091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Telomerase maintains telomere length and has been implicated in both aging and carcinogenesis of human cells. This enzyme is a specialized ribonucleoprotein (RNP) complex, minimally consisting of two essential components: the protein catalytic subunit TERT (telomerase reverse transcriptase) and the integral RNA moiety TR (telomerase RNA, TERC). Both TERT and TR have been found to localize to nucleoli within the nucleus, leading to the suggestion of nucleoli as the site for telomerase RNP biogenesis in human cells. However, whether this statement is true or not has not yet been convincingly demonstrated. Here, we identify that residues 965-981 of the human TERT polypeptide constitute an active nucleolar-targeting signal (NTS) essential for mediating human TERT nucleolar localization. Mutational inactivation of this NTS completely disrupted TERT nucleolar translocation in both normal and malignant human cells. Most interestingly, such a TERT mutant still retained the capacity to activate telomerase activity, maintain telomere length and extend the life-span of cellular proliferation, as does wild-type TERT, in BJ cells (normal fibroblasts). Therefore, our data suggest that TERT nucleolar localization is unrelated to telomerase function in human cells.
Collapse
Affiliation(s)
- Jian Lin
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Rui Jin
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Bin Zhang
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Hao Chen
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Yun Xiu Bai
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Ping Xun Yang
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Su Wen Han
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Yao Hua Xie
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Pei Tang Huang
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Cuifen Huang
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| | - Jun Jian Huang
- Laboratory of Tumor and Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, People's Republic of China
| |
Collapse
|
21
|
Abstract
Among eukaryotic organisms a vast majority of Box H/ACA ribonucleoproteins (RNPs) are responsible for the post-transcriptional introduction of pseudouridine (Psi) into ribosomal RNAs (rRNA) and spliceosomal small nuclear RNAs (snRNA), thus influencing protein translation and pre-mRNA splicing, respectively. Additionally, a few distinct Box H/ACA RNPs are involved in the processing of rRNA, and the stabilization of vertebrate telomerase RNA. Thus, whether directly or indirectly, Box H/ACA RNPs impact major steps of gene expression, as well as play a role in maintaining genome integrity. Box H/ACA RNPs each consist of a unique Box H/ACA RNA and a set of four common core proteins. While the RNA component is responsible for dictating site-specificity, the four core proteins impact numerous aspects of RNP function including both stability and catalytic potential. Interestingly, mutations have been identified in the core proteins of the Box H/ACA RNP, resulting in a rare inherited bone marrow failure syndrome referred to as dyskeratosis congenita. This review discusses our current understanding of the roles of the protein components of the Box H/ACA RNP, and provides a framework to understand how mutations in the Box H/ACA RNP contribute to disease pathology.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | | |
Collapse
|
22
|
Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci U S A 2008; 105:8073-8. [PMID: 18523010 DOI: 10.1073/pnas.0800042105] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dyskeratosis congenita is a premature aging syndrome characterized by muco-cutaneous features and a range of other abnormalities, including early greying, dental loss, osteoporosis, and malignancy. Dyskeratosis congenita cells age prematurely and have very short telomeres. Patients have mutations in genes that encode components of the telomerase complex (dyskerin, TERC, TERT, and NOP10), important in the maintenance of telomeres. Many dyskeratosis congenita patients remain uncharacterized. Here, we describe the analysis of two other proteins, NHP2 and GAR1, that together with dyskerin and NOP10 are key components of telomerase and small nucleolar ribonucleoprotein (snoRNP) complexes. We have identified previously uncharacterized NHP2 mutations that can cause autosomal recessive dyskeratosis congenita but have not found any GAR1 mutations. Patients with NHP2 mutations, in common with patients bearing dyskerin and NOP10 mutations had short telomeres and low TERC levels. SiRNA-mediated knockdown of NHP2 in human cells led to low TERC levels, but this reduction was not observed after GAR1 knockdown. These findings suggest that, in human cells, GAR1 has a different impact on the accumulation of TERC compared with dyskerin, NOP10, and NHP2. Most of the mutations so far identified in patients with classical dyskeratosis congenita impact either directly or indirectly on the stability of RNAs. In keeping with this effect, patients with dyskerin, NOP10, and now NHP2 mutations have all been shown to have low levels of telomerase RNA in their peripheral blood, providing direct evidence of their role in telomere maintenance in humans.
Collapse
|
23
|
Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. Mol Cell Biol 2008; 28:2332-41. [PMID: 18212040 DOI: 10.1128/mcb.01490-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dyskerin binds the H/ACA box of human telomerase RNA and is a core telomerase subunit required for RNP biogenesis and enzyme function in vivo. Missense mutations in dyskerin result in dyskeratosis congenita, a complex syndrome characterized by bone marrow failure, telomerase enzyme deficiency, and progressive telomere shortening. Here we demonstrate that dyskerin also contributes to telomere maintenance in Arabidopsis thaliana. We report that both AtNAP57, the Arabidopsis dyskerin homolog, and AtTERT, the telomerase catalytic subunit, accumulate in the plant nucleolus, and AtNAP57 associates with active telomerase RNP particles in an RNA-dependent manner. Furthermore, AtNAP57 interacts in vitro with AtPOT1a, a novel component of Arabidopsis telomerase. Although a null mutation in AtNAP57 is lethal, AtNAP57, like AtTERT, is not haploinsufficient for telomere maintenance in Arabidopsis. However, introduction of an AtNAP57 allele containing a T66A mutation decreased telomerase activity in vitro, disrupted telomere length regulation on individual chromosome ends in vivo, and established a new, shorter telomere length set point. These results imply that T66A NAP57 behaves as a dominant-negative inhibitor of telomerase. We conclude that dyskerin is a conserved component of the telomerase RNP complex in higher eukaryotes that is required for maximal enzyme activity in vivo.
Collapse
|
24
|
Abstract
Telomerase is a ribonucleoprotein enzyme that extends DNA at the chromosome ends in most eukaryotes. Since 1985, telomerase has been studied intensively and components of the telomerase complex have been identified from over 160 eukaryotic species. In the last two decades, there has been a growing interest in studying telomerase owing to its vital role in chromosome stability and cellular immortality. To keep up with the remarkable explosion of knowledge about telomerase, we compiled information related to telomerase in an exhaustive database called the Telomerase Database (http://telomerase.asu.edu/). The Telomerase Database provides comprehensive information about (i) sequences of the RNA and protein subunits of telomerase, (ii) sequence alignments based on the phylogenetic relationship and structure, (iii) secondary structures of the RNA component and tertiary structures of various subunits of telomerase, (iv) mutations of telomerase components found in human patients and (v) active researchers who contributed to the wealth of current knowledge on telomerase. The information is hierarchically organized by the components, i.e. the telomerase reverse transcriptase (TERT), telomerase RNA (TR) and other telomerase-associated proteins. The Telomerase Database is a useful resource especially for researchers who are interested in investigating the structure, function, evolution and medical relevance of the telomerase enzyme.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- School of Life Sciences and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
25
|
Theimer CA, Jády BE, Chim N, Richard P, Breece KE, Kiss T, Feigon J. Structural and functional characterization of human telomerase RNA processing and cajal body localization signals. Mol Cell 2007; 27:869-81. [PMID: 17889661 DOI: 10.1016/j.molcel.2007.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 12/11/2022]
Abstract
The RNA component of human telomerase (hTR) includes H/ACA and CR7 domains required for 3' end processing, localization, and accumulation. The terminal loop of the CR7 domain contains the CAB box (ugAG) required for targeting of scaRNAs to Cajal bodies (CB) and an uncharacterized sequence required for accumulation and processing. To dissect out the contributions of the CR7 stem loop to hTR processing and localization, we solved the solution structures of the 3' terminal stem loops of hTR CR7 and U64 H/ACA snoRNA, and the 5' terminal stem loop of U85 C/D-H/ACA scaRNA. These structures, together with analysis of localization, processing, and accumulation of hTRs containing nucleotide substitutions in the CR7 domain, identified the sequence and structural requirements of the hTR processing and CB localization signals and showed that these signals are functionally independent. Further, 3' end processing was found to be a prerequisite for translocation of hTR to CBs.
Collapse
Affiliation(s)
- Carla A Theimer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Marrone A, Walne A, Tamary H, Masunari Y, Kirwan M, Beswick R, Vulliamy T, Dokal I. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 2007; 110:4198-205. [PMID: 17785587 PMCID: PMC2882230 DOI: 10.1182/blood-2006-12-062851] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dyskeratosis congenita (DC) is a multisystem bone marrow failure syndrome characterized by a triad of mucocutaneous abnormalities and an increased predisposition to malignancy. X-linked DC is due to mutations in DKC1, while heterozygous mutations in TERC (telomerase RNA component) and TERT (telomerase reverse transcriptase) have been found in autosomal dominant DC. Many patients with DC remain uncharacterized, particularly families displaying autosomal recessive (AR) inheritance. We have now identified novel homozygous TERT mutations in 2 unrelated consanguineous families, where the index cases presented with classical DC or the more severe variant, Hoyeraal-Hreidarsson (HH) syndrome. These TERT mutations resulted in reduced telomerase activity and extremely short telomeres. As these mutations are homozygous, these patients are predicted to have significantly reduced telomerase activity in vivo. Interestingly, in contrast to patients with heterozygous TERT mutations or hemizygous DKC1 mutations, these 2 homozygous TERT patients were observed to have higher-than-expected TERC levels compared with controls. Collectively, the findings from this study demonstrate that homozygous TERT mutations, resulting in a pure but severe telomerase deficiency, produce a phenotype of classical AR-DC and its severe variant, the HH syndrome.
Collapse
Affiliation(s)
- Anna Marrone
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Amanda Walne
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Hannah Tamary
- Department of Paediatric Haematology, Schneider Children’s Medical Center of Israel, Sackler School of Medicine, Tel Aviv University, Petah-Tikva, Israel
| | - Yuka Masunari
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Michael Kirwan
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Richard Beswick
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Tom Vulliamy
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| | - Inderjeet Dokal
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
27
|
Abstract
The pseudouridine synthase and archaeosine transglycosylase (PUA) domain is a compact and highly conserved RNA-binding motif that is widespread among diverse types of proteins from the three kingdoms of life. Its three-dimensional architecture is well established, and the structures of several PUA-RNA complexes reveal a common RNA recognition surface, but also some versatility in the way in which the motif binds to RNA. The PUA domain is often part of RNA modification enzymes and ribonucleoproteins, but it has also been unexpectedly found fused to enzymes involved in proline biosynthesis, where it plays an unknown role. The functional impact of the domain varies with the protein studied, ranging from minor to essential effects. PUA motifs are involved in dyskeratosis congenita and cancer, pointing to links between RNA metabolism and human diseases.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Molecular Recognition Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
28
|
Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, Al-Qurashi FH, Aljurf M, Dokal I. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet 2007; 16:1619-29. [PMID: 17507419 PMCID: PMC2882227 DOI: 10.1093/hmg/ddm111] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dyskeratosis congenita (DC) is characterized by multiple features including mucocutaneous abnormalities, bone marrow failure and an increased predisposition to cancer. It exhibits marked clinical and genetic heterogeneity. DKC1 encoding dyskerin, a component of H/ACA small nucleolar ribonucleoprotein (snoRNP) particles is mutated in X-linked recessive DC. Telomerase RNA component (TERC), the RNA component and TERT the enzymatic component of telomerase, are mutated in autosomal dominant DC, suggesting that DC is primarily a disease of defective telomere maintenance. The gene(s) involved in autosomal recessive DC remains elusive. This paper describes studies aimed at defining the genetic basis of AR-DC. Homozygosity mapping in 16 consanguineous families with 25 affected individuals demonstrates that there is no single genetic locus for AR-DC. However, we show that NOP10, a component of H/ACA snoRNP complexes including telomerase is mutated in a large consanguineous family with classical DC. Affected homozygous individuals have significant telomere shortening and reduced TERC levels. While a reduction of TERC levels is not a universal feature of DC, it can be brought about through a reduction of NOP10 transcripts, as demonstrated by siRNA interference studies. A similar reduction in TERC levels is also seen when the mutant NOP10 is expressed in HeLa cells. These findings identify the genetic basis of one subtype of AR-DC being due to the first documented mutations in NOP10. This further strengthens the model that defective telomere maintenance is the primary pathology in DC and substantiates the evidence in humans for the involvement of NOP10 in the telomerase complex and telomere maintenance.
Collapse
Affiliation(s)
- Amanda J Walne
- Academic Unit of Paediatrics, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, The Blizard Building, 4 Newark Street, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reichow SL, Hamma T, Ferré-D'Amaré AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35:1452-64. [PMID: 17284456 PMCID: PMC1865073 DOI: 10.1093/nar/gkl1172] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes and archaea use two sets of specialized ribonucleoproteins (RNPs) to carry out sequence-specific methylation and pseudouridylation of RNA, the two most abundant types of modifications of cellular RNAs. In eukaryotes, these protein–RNA complexes localize to the nucleolus and are called small nucleolar RNPs (snoRNPs), while in archaea they are known as small RNPs (sRNP). The C/D class of sno(s)RNPs carries out ribose-2′-O-methylation, while the H/ACA class is responsible for pseudouridylation of their RNA targets. Here, we review the recent advances in the structure, assembly and function of the conserved C/D and H/ACA sno(s)RNPs. Structures of each of the core archaeal sRNP proteins have been determined and their assembly pathways delineated. Furthermore, the recent structure of an H/ACA complex has revealed the organization of a complete sRNP. Combined with current biochemical data, these structures offer insight into the highly homologous eukaryotic snoRNPs.
Collapse
Affiliation(s)
- Steve L. Reichow
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Tomoko Hamma
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Adrian R. Ferré-D'Amaré
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
- *To whom correspondence should be addressed. +(206) 543 1610+(206) 685 8665
| |
Collapse
|
30
|
Mabruk MJEMF, O'Flatharta C. Telomerase: is it the future diagnostic and prognostic tool in human cancer? Expert Rev Mol Diagn 2007; 5:907-16. [PMID: 16255632 DOI: 10.1586/14737159.5.6.907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A number of methods exist to detect levels of telomerase activity and the presence of telomerase subunits in a variety of tissues. As telomerase activation seems to be an important step in tumorigenesis, accurate detection of the presence and activity of the enzyme and its subunits is vital. The original method of detecting telomerase activity was developed by Kim and coworkers in 1994, and was termed the telomeric repeat amplification protocol. This assay led to a staggering increase in the number of telomerase-associated publications in scientific journals (85 publications from 1974-1994, 5063 publications from 1994-2004). A number of methods have been described to detect telomeres and to measure their length, with the standard measurement of telomere length performed using a modification of the Southern blot protocol. RNA in situ hybridization can be performed to detect levels of the RNA component of telomerase, and standard in situ hybridization and immunohistochemistry can be applied to examine expression levels and localization of the catalytic subunit of the enzyme. Reverse transcriptase PCR has also been applied to assess expression levels of the telomerase components in various tissues. This review provides a synopsis of telomeres, telomerase, telomerase and cancer, and finally, methods for the detection of telomerase in cancer.
Collapse
Affiliation(s)
- Mohamed J E M F Mabruk
- Advanced Medical & Dental institute, University Sains Malaysia, Komplex Eureka, 11800 USM, Penang, Malaysia.
| | | |
Collapse
|
31
|
Charpentier B, Fourmann JB, Branlant C. Reconstitution of archaeal H/ACA sRNPs and test of their activity. Methods Enzymol 2007; 425:389-405. [PMID: 17673092 DOI: 10.1016/s0076-6879(07)25016-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conditions for the reconstitution of archaeal sRNPs active in RNA-guided posttranscriptional modification of RNAs (2'-O-methylation or pseudouridylation) were recently developed. This has opened a vast field of research on structure-function relationships of the sRNP components. We present here an efficient method for in vitro reconstitution of H/ACA sRNPs with an active RNA-guided pseudouridylation activity. They are assembled from an in vitro transcribed H/ACA sRNA with recombinant L7Ae, aCBF5, aNOP10, and aGAR1 proteins. The protocol to test the activity of the assembled particles by the method of the nearest neighbor is also described. The combination of in vitro assembly of H/ACA sRNPs together with time course analysis of pseudouridine formation in the target RNA is useful for structure-function analysis of H/ACA sRNPs and also to identify the target sites of H/ACA sRNAs discovered by computer analysis of archaeal genomes. Furthermore, this efficient in vitro pseudouridylation system can be used for generation of pseudouridine residues at defined positions in RNAs.
Collapse
Affiliation(s)
- Bruno Charpentier
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Nancy Université, Faculté des Sciences et Techniques, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
32
|
Kittur N, Darzacq X, Roy S, Singer RH, Meier UT. Dynamic association and localization of human H/ACA RNP proteins. RNA (NEW YORK, N.Y.) 2006; 12:2057-62. [PMID: 17135485 PMCID: PMC1664726 DOI: 10.1261/rna.249306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mammalian H/ACA RNPs are essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. To form mature RNA-protein complexes, one H/ACA RNA associates with four core proteins. In the cell, this process is assisted by at least one nuclear assembly factor, NAF1. Here we report several unanticipated dynamic aspects of H/ACA RNP proteins. First, when overexpressed, NAF1 delocalizes to the cytoplasm. However, its nucleocytoplasmic shuttling properties remain unaffected. These observations demonstrate a subtle equilibrium between NAF1 expression levels and the availability of NAF1 nuclear binding sites. Second, although NAF1 is excluded from mature RNPs in nucleoli and Cajal bodies, NAF1 associates with mature H/ACA RNA in cell lysates. This association occurs post-lysis because it is observed even when NAF1 and the H/ACA RNA are expressed in separate cells. This documents a protein-RNP association in cell lysates that is absent from intact cells. Third, in similar experiments, all H/ACA core proteins, except NAP57, exchange with their exogenous counterparts, portraying an unexpected dynamic picture of H/ACA RNPs. Finally, the irreversible association of only NAP57 with H/ACA RNA and the conundrum that only NAP57 is mutated in X-linked dyskeratosis congenita (even though most core proteins are required for maintaining H/ACA RNAs) may be more than a coincidence.
Collapse
Affiliation(s)
- Nupur Kittur
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
33
|
Normand C, Capeyrou R, Quevillon-Cheruel S, Mougin A, Henry Y, Caizergues-Ferrer M. Analysis of the binding of the N-terminal conserved domain of yeast Cbf5p to a box H/ACA snoRNA. RNA (NEW YORK, N.Y.) 2006; 12:1868-82. [PMID: 16931875 PMCID: PMC1581976 DOI: 10.1261/rna.141206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During ribosome biogenesis, the RNA precursor to mature rRNAs undergoes numerous post-transcriptional chemical modifications of bases, including conversions of uridines to pseudouridines. In archaea and eukaryotes, these conversions are performed by box H/ACA small ribonucleoprotein particles (box H/ACA RNPs), which contain a small guide RNA responsible for the selection of substrate uridines and four proteins, including the pseudouridine synthase, Cbf5p. So far, no in vitro reconstitution of eukaryotic box H/ACA RNPs from purified components has been achieved, principally due to difficulties in purifying recombinant eukaryotic Cbf5p. In this study, we present the purification of a truncated derivative of yeast Cbf5p (Cbf5(Delta)p) that retains the highly conserved TRUB and PUA domains. We have used band retardation assays to show that Cbf5(Delta)p on its own binds to box H/ACA small nucleolar (sno)RNAs. We demonstrate that the conserved H and ACA boxes enhance the affinity of the protein for the snoRNA. Furthermore, like its archaeal homologs, Cbf5(Delta)p can bind to a single stem-loop-box ACA RNA. Finally, we report the first enzymatic footprinting analysis of a Cbf5-RNA complex. Our results are compatible with the view that two molecules of Cbf5p interact with a binding platform constituted by the 5' end of the RNA, the single-stranded hinge domain containing the conserved H box, and the 3' end of the molecule, including the conserved ACA box.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites/genetics
- Conserved Sequence
- Hydro-Lyases/chemistry
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Footprinting
- Protein Structure, Tertiary
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleases
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christophe Normand
- Equipe Labellisée Ligue Nationale contre le Cancer, Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, IFR 109, Toulouse, France, European Union
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Dyskeratosis congenita (DC) is a rare inherited multi-system disorder. Although DC is classically characterized by mucocutaneous features, the vast majority of patients develop hematologic abnormalities, and in its occult form the disease can present as aplastic anemia. The gene responsible for the X-linked form of the disease encodes a protein involved in ribosome biogenesis and in stabilizing the telomerase complex, while the autosomal dominant form is caused by mutations in the core RNA component of telomerase. It has been suggested that DC is primarily a disease of defective telomere maintenance. Premature shortening of telomeres resulting in a limited proliferative potential of stem cells would explain the pathology observed in DC, as the affected tissues are those that require constant renewal.
Collapse
Affiliation(s)
- Tom Vulliamy
- Department of Haematology, Division of Investigative Science, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
35
|
Shin JS, Hong A, Solomon MJ, Lee CS. The role of telomeres and telomerase in the pathology of human cancer and aging. Pathology 2006; 38:103-13. [PMID: 16581649 DOI: 10.1080/00313020600580468] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cellular senescence, the state of permanent growth arrest, is the inevitable fate of replicating normal somatic cells. Postulated to underlie this finite replicative span is the physiology of telomeres, which constitute the ends of chromosomes. The repetitive sequences of these DNA-protein complexes progressively shorten with each mitosis. When the critical length is bridged, telomeres trigger DNA repair and cell cycle checkpoint mechanisms that result in chromosomal fusions, cell cycle arrest, senescence and/or apoptosis. Should senescence be bypassed at such time, continued cell divisions in the face of dysfunctional telomeres and activated DNA repair machinery can result in the genomic instability favourable for oncogenesis. The longevity and malignant progression of the thus transformed cell requires coincident telomerase expression or other means to negate the constitutional telomeric loss. Practically then, telomeres and telomerase may represent plausible prognostic and screening cancer markers. Furthermore, if the argument is extended, with assumptions that telomeric attrition is indeed the basis of cellular senescence and that accumulation of the latter equates to aging at the organismal level, then telomeres may well explain the increased incidence of cancer with human aging.
Collapse
Affiliation(s)
- Joo-Shik Shin
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, Australia.
| | | | | | | |
Collapse
|
36
|
Darzacq X, Kittur N, Roy S, Shav-Tal Y, Singer RH, Meier UT. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. ACTA ACUST UNITED AC 2006; 173:207-18. [PMID: 16618814 PMCID: PMC2063812 DOI: 10.1083/jcb.200601105] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian H/ACA RNPs are essential for ribosome biogenesis, premessenger RNA splicing, and telomere maintenance. These RNPs consist of four core proteins and one RNA, but it is not known how they assemble. By interrogating the site of H/ACA RNA transcription, we dissected their biogenesis in single cells and delineated the role of the non-core protein NAF1 in the process. NAF1 and all of the core proteins except GAR1 are recruited to the site of transcription. NAF1 binds one of the core proteins, NAP57, and shuttles between nucleus and cytoplasm. Both proteins are essential for stable H/ACA RNA accumulation. NAF1 and GAR1 bind NAP57 competitively, suggesting a sequential interaction. Our analyses indicate that NAF1 binds NAP57 and escorts it to the nascent H/ACA RNA and that GAR1 then replaces NAF1 to yield mature H/ACA RNPs in Cajal bodies and nucleoli.
Collapse
Affiliation(s)
- Xavier Darzacq
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
37
|
Manival X, Charron C, Fourmann JB, Godard F, Charpentier B, Branlant C. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5-aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Res 2006; 34:826-39. [PMID: 16456033 PMCID: PMC1361308 DOI: 10.1093/nar/gkj482] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/14/2006] [Accepted: 01/14/2006] [Indexed: 11/29/2022] Open
Abstract
In archaeal rRNAs, the isomerization of uridine into pseudouridine (Psi) is achieved by the H/ACA sRNPs and the minimal set of proteins required for RNA:Psi-synthase activity is the aCBF5-aNOP10 protein pair. The crystal structure of the aCBF5-aNOP10 heterodimer from Pyrococcus abyssi was solved at 2.1 A resolution. In this structure, protein aNOP10 has an extended shape, with a zinc-binding motif at the N-terminus and an alpha-helix at the C-terminus. Both motifs contact the aCBF5 catalytic domain. Although less efficiently as does the full-length aNOP10, the aNOP10 C-terminal domain binds aCBF5 and stimulates the RNA-guided activity. We show that the C-terminal domain of aCBF5 (the PUA domain), which is wrapped by an N-terminal extension of aCBF5, plays a crucial role for aCBF5 binding to the guide sRNA. Addition of this domain in trans partially complement particles assembled with an aCBF5DeltaPUA truncated protein. In the crystal structure, the aCBF5-aNOP10 complex forms two kinds of heterotetramers with parallel and perpendicular orientations of the aNOP10 terminal alpha-helices, respectively. By gel filtration assay, we showed that aNOP10 can dimerize in solution. As both residues Y41 and L48 were needed for dimerization, the dimerization likely takes place by interaction of parallel alpha-helices.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Binding Sites
- Catalytic Domain
- Crystallography, X-Ray
- Dimerization
- Intramolecular Transferases/chemistry
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Leucine/chemistry
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Pseudouridine/metabolism
- Pyrococcus abyssi/enzymology
- Pyrococcus abyssi/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Tyrosine/chemistry
- Uridine/metabolism
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Xavier Manival
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université des Sciences et Techniques Henri Poincaré Nancy I54506 Vandoeuvre-Lès-Nancy cedex, France
| | - Christophe Charron
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université des Sciences et Techniques Henri Poincaré Nancy I54506 Vandoeuvre-Lès-Nancy cedex, France
| | - Jean-Baptiste Fourmann
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université des Sciences et Techniques Henri Poincaré Nancy I54506 Vandoeuvre-Lès-Nancy cedex, France
| | - François Godard
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université des Sciences et Techniques Henri Poincaré Nancy I54506 Vandoeuvre-Lès-Nancy cedex, France
| | - Bruno Charpentier
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université des Sciences et Techniques Henri Poincaré Nancy I54506 Vandoeuvre-Lès-Nancy cedex, France
| | - Christiane Branlant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 UHP-CNRS, Université des Sciences et Techniques Henri Poincaré Nancy I54506 Vandoeuvre-Lès-Nancy cedex, France
| |
Collapse
|
38
|
Khanna M, Wu H, Johansson C, Caizergues-Ferrer M, Feigon J. Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA. RNA (NEW YORK, N.Y.) 2006; 12:40-52. [PMID: 16373493 PMCID: PMC1370884 DOI: 10.1261/rna.2221606] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.
Collapse
Affiliation(s)
- May Khanna
- Department of Chemistry and Biochemistry, 607 Charles Young Drive East, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
39
|
Lebaron S, Froment C, Fromont-Racine M, Rain JC, Monsarrat B, Caizergues-Ferrer M, Henry Y. The splicing ATPase prp43p is a component of multiple preribosomal particles. Mol Cell Biol 2005; 25:9269-82. [PMID: 16227579 PMCID: PMC1265834 DOI: 10.1128/mcb.25.21.9269-9282.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.
Collapse
Affiliation(s)
- Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, IFR109, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Hamma T, Reichow SL, Varani G, Ferré-D'Amaré AR. The Cbf5-Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nat Struct Mol Biol 2005; 12:1101-7. [PMID: 16286935 DOI: 10.1038/nsmb1036] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/08/2005] [Indexed: 11/09/2022]
Abstract
Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-A resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP components between archaea and eukarya. Thus, the Cbf5-Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the active site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.
Collapse
Affiliation(s)
- Tomoko Hamma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
41
|
Ballarino M, Morlando M, Pagano F, Fatica A, Bozzoni I. The cotranscriptional assembly of snoRNPs controls the biosynthesis of H/ACA snoRNAs in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:5396-403. [PMID: 15964797 PMCID: PMC1156983 DOI: 10.1128/mcb.25.13.5396-5403.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxy-terminal domain (CTD) of RNA polymerase II large subunit acts as a platform to assemble the RNA processing machinery in a controlled way throughout the transcription cycle. In yeast, recent findings revealed a physical connection between phospho-CTD, generated by the Ctk1p kinase, and protein factors having a function in small nucleolar RNA (snoRNA) biogenesis. The snoRNAs represent a large family of polymerase II noncoding transcripts that are associated with highly conserved polypeptides to form stable ribonucleoprotein particles (snoRNPs). In this work, we have studied the biogenesis of the snoRNPs belonging to the box H/ACA class. We report that the assembly factor Naf1p and the core components Cbf5p and Nhp2p are recruited on H/ACA snoRNA genes very early during transcription. We also show that the cotranscriptional recruitment of Naf1p and Cbf5p is Ctk1p dependent and that Ctk1p and Cbf5p are required for preventing the readthrough into the snoRNA downstream genes. All these data suggest that proper cotranscriptional snoRNP assembly controls 3'-end formation of snoRNAs and, consequently, the release of a functional particle.
Collapse
Affiliation(s)
- Monica Ballarino
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
42
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
43
|
Hernandez-Verdun D, Louvet E. [The nucleolus: structure, functions, amd associated diseases]. Med Sci (Paris) 2004; 20:37-44. [PMID: 14770362 DOI: 10.1051/medsci/200420137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, the nucleolus is the ribosome factory. The nucleolus is a very active large nuclear domain resulting from the equilibrium between level of ribosomal gene transcription, efficiency of rRNA processing and transport of the ribosomal subunits (40S and 60S) towards the cytoplasm. The ribosome production is regulated and is linked with cell growth and cell proliferation. The ribosome production is stopped during mitosis but the nucleolar machineries are inherited in daughter cells and the nucleolar reassembly is a very early event at the exit of mitosis. The nucleolus is also a multifunctional domain involved in nuclear architecture and specific interaction with some nuclear bodies. Finally, several human diseases appear to result from mutations of nucleolar proteins.
Collapse
Affiliation(s)
- Danièle Hernandez-Verdun
- Institut Jacques Monod, Cnrs, Université Paris VI et Paris VII, 2, place Jussieu, 75251 Paris 05, France.
| | | |
Collapse
|
44
|
Dez C, Froment C, Noaillac-Depeyre J, Monsarrat B, Caizergues-Ferrer M, Henry Y. Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol Cell Biol 2004; 24:6324-37. [PMID: 15226434 PMCID: PMC434229 DOI: 10.1128/mcb.24.14.6324-6337.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/08/2004] [Accepted: 04/09/2004] [Indexed: 11/20/2022] Open
Abstract
We have identified a novel essential nucleolar factor required for the synthesis of 5.8S and 25S rRNAs termed Npa1p. In the absence of Npa1p, the pre-rRNA processing pathway leading to 5.8S and 25S rRNA production is perturbed such that the C2 cleavage within internal transcribed spacer 2 occurs prematurely. Npa1p accumulates in the immediate vicinity of the dense fibrillar component of the nucleolus and is predominantly associated with the 27SA2 pre-rRNA, the RNA component of the earliest pre-60S ribosomal particles. By mass spectrometry, we have identified the protein partners of Npa1p, which include eight putative helicases as well as the novel Npa2p factor. Strikingly, we also show that Npa1p can associate with a subset of H/ACA and C/D small nucleolar RNPs (snoRNPs) involved in the chemical modification of residues in the vicinity of the peptidyl transferase center. Our results suggest that 27SA2-containing pre-60S ribosomal particles are located at the interface between the dense fibrillar and the granular components of the nucleolus and that these particles can contain a subset of snoRNPs.
Collapse
Affiliation(s)
- Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, IFR 109, Toulouse, France
| | | | | | | | | | | |
Collapse
|
45
|
Chen JL, Greider CW. Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem Sci 2004; 29:183-92. [PMID: 15082312 DOI: 10.1016/j.tibs.2004.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jiunn-Liang Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Bah A, Bachand F, Clair E, Autexier C, Wellinger RJ. Humanized telomeres and an attempt to express a functional human telomerase in yeast. Nucleic Acids Res 2004; 32:1917-27. [PMID: 15047858 PMCID: PMC390362 DOI: 10.1093/nar/gkh511] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The maintenance of telomeric repeat DNA depends on an evolutionarily conserved reverse trans criptase called telomerase. In vitro, only the catalytic subunit and a telomerase-associated RNA are required for the synthesis of species-specific repeat DNA. In an attempt to establish a heterologous system for the study of the human telomerase enzyme, we expressed the two core components and predicted regulatory subunits in the yeast Saccharomyces cerevisiae. We show that adequate substrates for human telomerase can be generated; the expressed enzyme was localized in the nucleus and it had the capacity to synthesize human-specific repeats in vitro. However, there was no evidence for human telomerase activity at yeast telomeres in vivo. Therefore functional replacement of the yeast telomerase by the human enzyme may require additional human-specific components. We also replaced the template region of the yeast telomerase RNA with one that dictates the synthesis of vertebrate repeats and performed a detailed molecular analysis of the composition of the telomeres upon outgrowth of such strains. The results suggest that vertebrate repeats on yeast telomeres are subject to a very high degree of repeat turnover and show that an innermost tract of 50 bp of yeast repeats are resistant to replacement.
Collapse
Affiliation(s)
- Amadou Bah
- Department of Microbiology and Infectiology, ARN/RNA Group, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Canada
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Wang C, Meier UT. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 2004; 23:1857-67. [PMID: 15044956 PMCID: PMC394235 DOI: 10.1038/sj.emboj.7600181] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/03/2004] [Indexed: 11/08/2022] Open
Abstract
Mammalian H/ACA small nucleolar RNAs and telomerase RNA share common sequence and secondary structure motifs that form ribonucleoprotein particles (RNPs) with the same four core proteins, NAP57 (also dyskerin or in yeast Cbf5p), GAR1, NHP2, and NOP10. The assembly and molecular interactions of the components of H/ACA RNPs are unknown. Using in vitro transcription/translation in combination with immunoprecipitation of core proteins, UV-crosslinking, and electrophoretic mobility shift assays, we demonstrate the following. NOP10 associates with NAP57 as a prerequisite for NHP2 binding. Although NHP2 on its own binds RNA nonspecifically, this NAP57-NOP10-NHP2 core trimer specifically recognizes H/ACA RNAs. GAR1 associates independently with NAP57 near the pseudouridylase core of mature H/ACA RNPs. In contrast to other RNPs whose assembly is initiated by protein-RNA interactions, the four H/ACA core proteins form a protein-only particle that associates with H/ACA RNAs. Nonetheless, functional H/ACA snoRNPs assembled in cytosolic extracts are stable and do not exchange their RNA components, suggesting that new particle formation requires de novo synthesis.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Tel.: +1 718 430 3294; Fax: +1 718 430 8996; E-mail:
| |
Collapse
|
49
|
Vega LR, Mateyak MK, Zakian VA. Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 2004; 4:948-59. [PMID: 14685173 DOI: 10.1038/nrm1256] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leticia R Vega
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
50
|
Zhu Y, Tomlinson RL, Lukowiak AA, Terns RM, Terns MP. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol Biol Cell 2003; 15:81-90. [PMID: 14528011 PMCID: PMC307529 DOI: 10.1091/mbc.e03-07-0525] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Telomerase synthesizes telomeric DNA repeats at the ends of eukaryotic chromosomes. The RNA component of the enzyme (hTR) provides the template for telomere synthesis, which is catalyzed by telomerase reverse transcriptase (hTERT). Little is known regarding the subcellular localization of hTR and hTERT and the pathway by which telomerase is assembled. Here we report the first glimpse of the detailed subcellular localization of endogenous hTR in human cells, which we obtained by fluorescence in situ hybridization (FISH). Our studies have revealed a distinctive hTR localization pattern in cancer cells. We have found that hTR accumulates within intranuclear foci called Cajal bodies in all typical tumor-derived cell lines examined (in which telomerase is active), but not in primary or ALT cells (where little or no hTERT is present). Accumulation of hTR in the Cajal bodies of primary cells is induced when hTERT is ectopically expressed. Moreover, we report that hTERT is also found in Cajal bodies. Our data suggest that Cajal bodies are involved in the assembly and/or function of human telomerase.
Collapse
Affiliation(s)
- Yusheng Zhu
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|