1
|
Tao Y, Wang L, Chen E, Zhang S, Yang D, Chen W, He Y, Gu Y, Mao Y, Hu H. NAT10 promotes hepatocellular carcinoma progression by modulating the ac4C-DDIAS-PI3K-Akt axis. Sci Rep 2025; 15:17286. [PMID: 40389420 PMCID: PMC12089488 DOI: 10.1038/s41598-025-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Primary liver cancer (PLC) is a prevalent tumor globally, ranking third in cancer-related mortality. The role of N4-acetylcysteine (ac4C) and N-acetyltransferase 10 (NAT10) in hepatocellular carcinoma (HCC) progression, migration, and invasion requires further elucidation. High NAT10 expression correlated with poor prognosis in HCC patients. Knockdown of NAT10 hindered HCC cell proliferation. AcRIP-seq screening revealed DDIAS as a significant downstream target of NAT10. Decreased NAT10 levels reduced DDIAS mRNA stability, leading to decreased proliferation, migration, and invasion of HCC cells upon DDIAS knockdown. Ectopic expression of DDIAS counteracted the effects of NAT10 knockdown by modulating the PI3K/AKT pathway. NAT10 was found to be elevated in HCC tissues compared to normal tissues, promoting HCC progression and correlating with shorter overall survival in patients. Mechanistically, NAT10 regulated HCC progression through the ac4C-DDIAS-PI3K-AKT axis.
Collapse
Affiliation(s)
- Yue Tao
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
- Wuxi Ninth People's Hospital Affiliated to Soochow University, No.999 Liangxi Road, Binhu District, Wuxi, China
| | - Leisheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Enhong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuo Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Dongjie Yang
- Department of pathology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Wuqiang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Youzhao He
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Yuanlong Gu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China.
| | - Yong Mao
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
- Department of cancer diagnosis and treatment center, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China.
| | - Hao Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Rd,Binhu District, Wuxi, 214122, Jiangsu Province, China.
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
2
|
Sun L, He M, Liu D, Shan M, Chen L, Yang M, Dai X, Yao J, Li T, Zhang Y, Zhang Y, Xiang L, Chen A, Hao Y, He F, Xiong H, Lian J. Deacetylation of ANXA2 by SIRT2 desensitizes hepatocellular carcinoma cells to donafenib via promoting protective autophagy. Cell Death Differ 2025:10.1038/s41418-025-01499-3. [PMID: 40319178 DOI: 10.1038/s41418-025-01499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal forms of cancer globally. HCC cells frequently undergo macroautophagy, also known as autophagy, which can lead to tumor progression and chemotherapy resistance. Annexin A2 (ANXA2) has been identified as a potential therapeutic target in HCC and is involved in the regulation of autophagic process. Here, we for the first time showed that ANXA2 deacetylation plays a crucial role in donafenib-induced autophagy. Mechanistically, donafenib increased SIRT2 activity via triggering both SIRT2 dephosphorylation and deacetylation by respectively downregulating cyclin E/CDK and p300. Moreover, elevation of SIRT2 activity by donafenib caused ANXA2 deacetylation at K81/K206 sites, leading to a reduction of the binding between ANXA2 and mTOR, which resulted in a decrease of mTOR phosphorylation and activity, and ultimately promoted protective autophagy and donafenib insensitivity in HCC cells. Additionally, ANXA2 deacetylation at K81/K206 sites was positively correlated with poor prognosis in HCC patients. Meanwhile, we found that selective inhibition of SIRT2 increased the sensitivity of donafenib in HCC cells by strengthening ANXA2 acetylation. In summary, this study reveals that donafenib induces protective autophagy and decreases its sensitivity in HCC cells through enhancing SIRT2-mediated ANXA2 deacetylation, which suggest that targeting ANXA2 acetylation/deacetylation may be a promising strategy for improving the sensitivity of donafenib in HCC treatment.
Collapse
Affiliation(s)
- Liangbo Sun
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Meihua Shan
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Xufang Dai
- Department of Educational College, Chongqing Normal University, Chongqing, 400047, China
| | - Jie Yao
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Li Xiang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - An Chen
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jiqin Lian
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Xi Y, Tao K, Wen X, Feng D, Mai Z, Ding H, Mao H, Wang M, Yang Q, Xiang J, Zhang J, Wu S. SIRT3-Mediated Deacetylation of DRP1 K711 Prevents Mitochondrial Dysfunction in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411235. [PMID: 39976201 PMCID: PMC12061286 DOI: 10.1002/advs.202411235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Dysregulation of mitochondrial dynamics is a key contributor to the pathogenesis of Parkinson's disease (PD). Aberrant mitochondrial fission induced by dynamin-related protein 1 (DRP1) causes mitochondrial dysfunction in dopaminergic (DA) neurons. However, the mechanism of DRP1 activation and its role in PD progression remain unclear. In this study, Mass spectrometry analysis is performed and identified a significant increased DRP1 acetylation at lysine residue 711 (K711) in the mitochondria under oxidative stress. Enhanced DRP1K711 acetylation facilitated DRP1 oligomerization, thereby exacerbating mitochondrial fragmentation and compromising the mitochondrial function. DRP1K711 acetylation also affects mitochondrial DRP1 recruitment and fission independent of canonical S616 phosphorylation. Further analysis reveals the critical role of sirtuin (SIRT)-3 in deacetylating DRP1K711, thereby regulating mitochondrial dynamics and function. SIRT3 agonists significantly inhibit DRP1K711 acetylation, rescue DA neuronal loss, and improve motor function in a PD mouse model. Conversely, selective knockout of SIRT3 in DA neurons exacerbates DRP1K711 acetylation, leading to increased DA neuronal damage, neuronal death, and worsened motor dysfunction. Notably, this study identifies a novel mechanism involving aberrant SIRT3-mediated DRP1 acetylation at K711 as a key driver of mitochondrial dysfunction and DA neuronal death in PD, revealing a potential target for PD treatment.
Collapse
Affiliation(s)
- Ye Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Tao
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Xiaomin Wen
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Zifan Mai
- Department of BiophysicsInstitute of NeuroscienceNHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhou310058China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Honghui Mao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Mingming Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Qian Yang
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jie Xiang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jie Zhang
- Institute of NeuroscienceCollege of MedicineXiamen University XiamenFujian361105China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
4
|
Zhou X, Liu W, Liang Z, Liang J, Zhang T, Gao W, Yang Z. Key epigenetic enzymes modulated by natural compounds contributes to tumorigenicity. Int J Biol Macromol 2025; 301:140391. [PMID: 39880237 DOI: 10.1016/j.ijbiomac.2025.140391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Dysregulation of epigenetic regulation is observed in numerous tumor cells. The therapeutic effects of natural products on tumors were investigated through a comprehensive analysis of active ingredients derived from various structured natural products. The analysis focuses on regulating key enzymes involved in epigenetic control. To study the modulation of these enzymes for tumor treatment, the structural characteristics of natural products that impact tumorigenesis were identified. The presence of specific patterns suggests that compounds sharing structural similarities can potentially induce therapeutic effects on identical tumors through modulation of distinct modifying enzymes. Structurally analogous natural products can likewise achieve therapeutic effects across diverse tumor types via their interaction with a common epigenetic enzyme. There exist numerous flavonoids with the capability to modulate METTL3, thereby influencing the development of various tumors. The normalization process was implemented to account for a common phenomenon, wherein structurally distinct compounds effectively target the same tumor by modulating a shared key enzyme. By summarizing, valuable insights into the role of compound-epigenetic enzymes in tumor development have been obtained. This discovery establishes a crucial scientific foundation for the prevention and treatment of tumor development through the utilization of structurally similar natural active ingredients.
Collapse
Affiliation(s)
- Xiaoyue Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiali Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenyi Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai 200137, China.
| |
Collapse
|
5
|
Su X, Luo Y, Wang Y, Qu P, Liu J, Han S, Ma C, Deng S, Liang Q, Qi X, Cheng P, Hou L. A select inhibitor of MORC2 encapsulated by chimeric membranecoated DNA nanocage target alleviation TNBC progression. Mater Today Bio 2025; 31:101497. [PMID: 39906202 PMCID: PMC11791359 DOI: 10.1016/j.mtbio.2025.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant type of breast cancer and lacks effective targeted therapeutic drugs, resulting in a high recurrence rate and worse outcome. In this study, bioinformatic analysis and a series of experiments demonstrated that MOCR2 was highly expressed in TNBC and closely associated with poor prognosis, indicating that MOCR2 may be a potential therapeutic target for TNBC. Subsequently, Angoline was identified as an inhibitor of MORC2 protein by high-throughput screening and can significantly kill the TNBC cells by blocking cell cycle and inducing apoptosis. Furthermore, the biomimetic nanodrug delivery system (PMD) was designed by encapsulating tetrahedral DNA nanostructures with biomimetic cell membrane, and it can efficiently evade the phagocytosis of immune system and target TNBC tissue. Additionally, PMD can markedly enhance the killing effect of Angoline on TNBC tumors. Therefore, PMD-enveloped Angoline provide a highly effective targeted therapeutic regimen for TNBC and may improve the outcome for patients with TNBC.
Collapse
Affiliation(s)
- Xiaohan Su
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Breast Surgery, Mianyang 404 hospital, Mianyang, China
| | - Yunbo Luo
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Wang
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng Qu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Liu
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Han
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing, China
| | - Shishan Deng
- Department of Breast and Thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qi Liang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaowei Qi
- Department of Breast Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, China
| | - Lingmi Hou
- Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Chen Y, Wang J, Xu J, Kou R, Lan B, Qin Z. NAT10 promotes gastric cancer progression by enhancing the N4-acetylcytidine modification of TNC mRNA. Infect Agent Cancer 2025; 20:20. [PMID: 40158090 PMCID: PMC11955120 DOI: 10.1186/s13027-025-00650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a very aggressive malignant tumor of the digestive system. Previous studies have shown that N-acetyltransferase 10 (NAT10) can regulate the N4-acetylcytidine (ac4C) modification of downstream mRNAs through certain pathways to promote the progression of various tumors. However, reports on the regulatory effects of NAT10 on GC are rare. This study aimed to explore the potential mechanism by which NAT10 regulated GC progression. METHODS Clinical samples were used to study the correlation between NAT10 expression and poor prognosis in patients with GC by univariate analysis and multivariate analysis. In vitro and in vivo assays were performed to assess the effects of NAT10 and Tenascin C (TNC) on the malignant biological behaviors of GC cells. Acetylated RNA immunoprecipitation sequencing was conducted to explore the role of NAT10 in ac4C modification in GC. mRNA stability and translation efficiency assays were performed to investigate the effect of changes in NAT10 expression on its target TNC. RESULTS Analysis of clinical samples revealed that NAT10 expression was abnormally elevated and positively correlated with TNC expression in GC, and increased NAT10 expression led to poor overall survival. In vitro and in vivo experiments revealed that high NAT10 expression promoted the invasive and proliferative capacity of GC cells. Rescue experiments suggested that TNC played an important role in the above process. Mechanistically, the acetylation-based RNA immunoprecipitation sequencing and acetylated RNA immunoprecipitation qPCR results indicated that NAT10 regulated the level of ac4C modification by binding to specific regions in TNC mRNA, increasing mRNA stability and translation, upregulating TNC expression, further activating the TNC/Akt/TGF-β1 positive feedback loop. CONCLUSIONS In summary, our results reveal that NAT10 plays a critical role in GC development by affecting TNC mRNA stability and translation efficiency, which ultimately activates the TNC/Akt/TGF-β1 positive feedback loop. This study is expected to provide a novel target and theoretical basis for improving the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jinzhou Wang
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jiuhua Xu
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ruilong Kou
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Bin Lan
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Zhiwei Qin
- Department of Gastrointestinal Surgery 2 Section, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Gastrointestinal Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
7
|
Xu Z, Zhu M, Geng L, Zhang J, Xia J, Wang Q, An H, Xia A, Yu Y, Liu S, Tong J, Zhu WG, Jiang Y, Sun B. Targeting NAT10 attenuates homologous recombination via destabilizing DNA:RNA hybrids and overcomes PARP inhibitor resistance in cancers. Drug Resist Updat 2025; 81:101241. [PMID: 40132530 DOI: 10.1016/j.drup.2025.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
AIMS RNA metabolism has been extensively studied in DNA double-strand break (DSB) repair. The RNA acetyltransferase N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification in DSB repair remains largely elusive. In this study, we aim to decipher the role for ac4C modification by NAT10 in DSB repair in hepatocellular carcinoma (HCC). METHODS Laser micro-irradiation and chromatin immunoprecipitation (ChIP) were used to assess the accumulation of ac4C modification and NAT10 at DSB sites. Cryo-electron microscopy (cryo-EM) was used to determine the structures of NAT10 in complex with its inhibitor, remodelin. Hepatocyte-specific deletion of NAT10 mouse models were adopted to detect the effects of NAT10 on HCC progression. Subcutaneous xenograft, human HCC organoid and patient-derived xenograft (PDX) model were exploited to determine the therapy efficiency of the combination of a poly (ADP-ribose) polymerase 1 (PARP1) inhibitor (PARPi) and remodelin. RESULTS NAT10 promptly accumulates at DSB sites, where it executes ac4C modification on RNAs at DNA:RNA hybrids dependent on PARP1. This in turn enhances the stability of DNA:RNA hybrids and promotes homologous recombination (HR) repair. The ablation of NAT10 curtails HCC progression. Furthermore, the cryo-EM yields a remarkable 2.9 angstroms resolution structure of NAT10-remodelin, showcasing a C2 symmetric architecture. Remodelin treatment significantly enhanced the sensitivity of HCC cells to a PARPi and targeting NAT10 also restored sensitivity to a PARPi in ovarian and breast cancer cells that had developed resistance. CONCLUSION Our study elucidated the mechanism of NAT10-mediated ac4C modification in DSB repair, revealing that targeting NAT10 confers synthetic lethality to PARP inhibition in HCC. Our findings suggest that co-inhibition of NAT10 and PARP1 is an effective novel therapeutic strategy for patients with HCC and have the potential to overcome PARPi resistance.
Collapse
Affiliation(s)
- Zhu Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China; Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Longpo Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Jing Xia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Hongda An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Yuanyuan Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Shihan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Junjie Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China; Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yiyang Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China; Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; MOE Innovation Center for Basic Research in Tumor Immunotherapy, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
8
|
Hu M, Lv L, Lei Y, Chen M, Zhou S, Liu Z. NAT10 mediates TLR2 to promote podocyte senescence in adriamycin-induced nephropathy. Cell Death Dis 2025; 16:185. [PMID: 40108127 PMCID: PMC11923244 DOI: 10.1038/s41419-025-07515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
N-acetyltransferase 10 (NAT10) is involved in regulating senescence. However, its role in glomerular diseases remains unclear. Therefore, this study aims to investigate the mechanisms by which NAT10 influences senescence and damage in an adriamycin (ADR)-induced nephropathy model. Senescence (p16 and p21) and DNA damage markers (γ-H2AX (ser139)) were assessed in ADR-induced nephropathy. NAT10 function was demonstrated using Remodelin or small interfering RNA (siRNA) interventions. Transcriptome sequencing was conducted to identify key downstream genes and pathways, while coimmunoprecipitation was performed to evaluate the relationship between NAT10 and toll-like receptor 2 (TLR2) expression. TLR2 overexpression or knockdown further validated its regulatory role in senescence. In ADR-treated mice, the expression levels of P53, P21, P16, γ-H2AX(S139) proteins were elevated, while those of WT-1 and nephrin were reduced. This effect was mitigated by Remodelin and siNAT10 administration. Transcriptome sequencing identified TLR2 as a key downstream gene, and coimmunoprecipitation, along with molecular docking models, confirmed its interaction with NAT10. TLR2 overexpression plasmid or siRNA was employed for recovery experiments. Together, the study findings suggest that NAT10 contributes to podocyte senescence and injury via interaction with TLR2. Further, it demonstrates that NAT10 alleviates ADR-induced podocyte senescence by interacting with TLR2, potentially through a P53-P21-dependent mechanism. Thus NAT10 could serve as a novel therapeutic target for treating podocyte senescence and proteinuric glomerulopathies.
Collapse
Affiliation(s)
- Mingyang Hu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Diseases, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Linxiao Lv
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Diseases, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yuqi Lei
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Diseases, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Min Chen
- Institute of Nephrology, Peking University, Beijing, PR China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Diseases, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Diseases, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
9
|
Zhu D, Lu M, Cheng H. NAT10 promotes radiotherapy resistance in non-small cell lung cancer by regulating KPNB1-mediated PD-L1 nuclear translocation. Open Life Sci 2025; 20:20251065. [PMID: 40109769 PMCID: PMC11920766 DOI: 10.1515/biol-2025-1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/22/2025] Open
Abstract
Radiotherapy (RT) resistance in non-small cell lung cancer (NSCLC) is a significant contributor to tumor recurrence. NAT10, an enzyme that catalyzes ac4C RNA modification, has an unclear role in RT resistance. This study aimed to explore the function of NAT10 in RT resistance in NSCLC. RT-resistant NSCLC cell lines (PC9R and A549R) were established through repeated irradiation. The impact of NAT10 on cellular immunity was evaluated by measuring immune cell populations, cytotoxicity levels, and markers of cell dysfunction. Results demonstrated elevated levels of ac4C and NAT10 in RT-resistant cells. Knockdown of NAT10 suppressed cell proliferation and enhanced immune function in PC9R and A549R cells by upregulating TNF-α and IFN-γ while downregulating PD-1 and TIM-3. Mechanistically, RT resistance in NSCLC was mediated by NAT10-dependent ac4C modification of KPNB1. Furthermore, KPNB1 facilitated PD-L1 nuclear translocation, promoting immune escape in RT-resistant NSCLC cells. Overexpression of KPNB1 enhanced cell proliferation but impaired immune function in RT-resistant NSCLC cells. In conclusion, this study demonstrates that NAT10 upregulates KPNB1 expression through ac4C modification, thereby promoting RT resistance in NSCLC via PD-L1 nuclear translocation. These findings reveal a novel mechanism underlying RT resistance in NSCLC.
Collapse
Affiliation(s)
- Dagao Zhu
- Department of Radiation Oncology, The Affiliated Tongling Hospital of Bengbu Medical University, No. 468 Bijiashan Road, Tongguan District, Tongling, 244000, China
- Department of Radiation Oncology, The People's Hospital of Tongling City, No. 468 Bijiashan Road, Tongguan District, Tongling, 244000, China
| | - Mingliang Lu
- Department of Radiation Oncology, The Affiliated Tongling Hospital of Bengbu Medical University, No. 468 Bijiashan Road, Tongguan District, Tongling, 244000, China
| | - Hongmin Cheng
- Department of Radiation Oncology, The People's Hospital of Tongling City, No. 468 Bijiashan Road, Tongguan District, Tongling, 244000, China
| |
Collapse
|
10
|
Deng C, Zhu J, Duan F, Zhang W, Zhou H, Li S, Zhang J, Cheng J, Fu W, He J, Niu H, Hua RX. Association between NAT10 gene rs8187 G > A polymorphism and Wilms tumor susceptibility in Chinese Han children: a five-center case-control study. BMC Cancer 2025; 25:494. [PMID: 40098076 PMCID: PMC11917036 DOI: 10.1186/s12885-025-13922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Wilms tumor, a prevalent pediatric kidney cancer, has been extensively studied to elucidate its genetic mechanisms. NAT10 (N-acetyltransferase 10) is a gene encoding acetyltransferase, which is involved in various cellular processes, including RNA modification, DNA repair, and protein acetylation. The oncogenic role of NAT10 in cancer has garnered significant attention. However, research on NAT10 genetic variants and their associations with cancer is nascent. METHODS This study investigated the link between NAT10 genetic variants and Wilms tumor risk via a case‒control design with genomic DNA from 414 patients and 1199 controls. Genotyping was performed via the TaqMan method, and logistic regression statistical analysis was conducted to identify significant associations, followed by extra analysis to minimize false positive significant results. RESULTS Our findings revealed that the rs8187 G > A polymorphism in the NAT10 gene is significantly correlated with a decreased risk of developing Wilms tumor (GA vs. GG, adjusted odds ratio (AOR) = 0.60, 95% confidence interval (CI) = 0.46-0.77, P < 0.0001; GA/AA vs. GG, AOR = 0.74, 95% CI = 0.59-0.93, P = 0.011). Stratified analyses further revealed a significant association in children aged 18 months or under and in subgroups with stage II, stage IV, or combined stage I + II tumors. CONCLUSION These results highlight the potential of NAT10 rs8187 G > A polymorphism as genetic markers for Wilms tumor susceptibility. This study clarifies the genetic basis of Wilms tumor susceptibility and highlights the role of NAT10 rs8187 G > A polymorphism in early detection and risk assessment.
Collapse
Affiliation(s)
- Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang, China
| | - Fei Duan
- Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, No. 133 of Jianhua South Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Wenli Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, 030013, Shannxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huizhong Niu
- Department of Pediatric General Surgery, Hebei Children's Hospital of Hebei Medical University, No. 133 of Jianhua South Street, Yuhua District, Shijiazhuang, 050031, Hebei, China.
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
11
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
12
|
Huang T, Zhang Y, Niu Y, Xiao Y, Ge Y, Gao J. The Cytidine N-Acetyltransferase NAT10 Promotes Thalamus Hemorrhage-Induced Central Poststroke Pain by Stabilizing Fn14 Expression in Thalamic Neurons. Mol Neurobiol 2025; 62:3276-3292. [PMID: 39271624 PMCID: PMC11790786 DOI: 10.1007/s12035-024-04454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
The recognition of RNA N4-acetylcytidine (ac4C) modification as a significant type of gene regulation is growing; nevertheless, whether ac4C modification or the N-acetyltransferase 10 protein (NAT10, the only ac4C "writer" that is presently known) participates in thalamus hemorrhage (TH)-induced central poststroke pain (CPSP) is unknown. Here, we observed NAT10 was primarily located in the neuronal nuclei of the thalamus of mice, with Fn14 and p65. An increase of NAT10 mRNA and protein expression levels in the ipsilateral thalamus was observed from days 1 to 14 after TH. Inhibition of NAT10 by several different approaches attenuated Fn14 and p65 upregulation of TH mice, as well as tissue injury in the thalamus on the ipsilateral side, and the development and maintenance of contralateral nociceptive hypersensitivities. NAT10 overexpression increased Fn14 and p65 expression and elicited nociceptive hypersensitivities in naïve mice. Our findings suggest that ac4C modification and NAT10 participate in TH-induced CPSP by activating the NF-κB pathway through upregulating Fn14 in thalamic neurons. NAT10 could serve as a promising new target for CPSP treatment.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yang Zhang
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yan Niu
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China.
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, 98 Nan Tong Western Road, Yangzhou, Jiangsu, 225001, P. R. China.
| |
Collapse
|
13
|
Chen Y, Yang J, Du Y, Yan Z, Gao J, Zhang H, Wu Q, Nian B, Huang X, Da M. Acetyltransferase NAT10 promotes gastric cancer progression by regulating the Wnt/β-catenin signaling pathway and enhances chemotherapy resistance. Discov Oncol 2025; 16:173. [PMID: 39945932 PMCID: PMC11825422 DOI: 10.1007/s12672-025-01917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) is involved in several cellular processes. NAT10 expression is essential for the promotion of mRNA translation and stability. In some situations, deregulation of NAT10 has been attributed to the development of multiple types of cancer. NAT10 is significantly upregulated in various gastrointestinal tumors, including esophageal, colorectal, pancreatic, and liver cancers, and is correlated with poor prognosis. Additionally, NAT10 expression contributes to chemotherapy resistance in both esophageal and colorectal cancers. Nevertheless, the role of NAT10 in gastric cancer (GC), a type of gastrointestinal tumor, is not fully understood. METHODS Throughout this investigation, our team evaluated NAT10 expression levels in GC patient samples and databases available to the general public. Based on the knockdown and overexpression of NAT10, in vitro experiments were conducted to examine the effects of NAT10 on GC progression and resistance to chemotherapy. RESULTS Our study demonstrated that GC tissues exhibit increased levels of NAT10. Downregulation of NAT10 decreased GC cell proliferation, migration, and invasiveness. Conversely, upregulation of NAT10 resulted in the opposite effect. Furthermore, NAT10 fosters the progression of GC cells by activating the Wnt/β-catenin signaling pathway. NAT10 also promotes resistance to cisplatin chemotherapy. CONCLUSIONS Our findings indicated that expression of NAT10 promoted GC progression through activation of the Wnt/β-catenin signaling pathway. We investigated the effect of NAT10 on the viability of GC cells treated with different doses of cisplatin. The results showed that NAT10 expression could impact the effectiveness of chemotherapy resistance in GC. This implies that using NAT10 as a target may be a potential therapeutic strategy for treating GC.
Collapse
Affiliation(s)
- Yawen Chen
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jian Yang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Yadan Du
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Zaihua Yan
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jieyun Gao
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Haoyang Zhang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qiong Wu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Bowen Nian
- Department of General Surgery, The First People's Hospital of Huating, Huating, 744100, China
| | - Xiujuan Huang
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Department of Hematology, Shanxi Provincial People's Hospital, Xian, 710068, China
| | - Mingxu Da
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China.
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Fendler NL, Ly J, Welp L, Lu D, Schulte F, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. Nucleic Acids Res 2025; 53:gkae1273. [PMID: 39739841 PMCID: PMC11879086 DOI: 10.1093/nar/gkae1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region can be phosphorylated in cells. DNA binding by MORC2 reduces its ATPase activity and MORC2 can entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02139, USA
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Dan Lu
- Department of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, MA 02115, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Quantitative Proteomics Core, 455 Main St, Cambridge, MA 02139, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| |
Collapse
|
15
|
Han Y, Zhang X, Miao L, Lin H, Zhuo Z, He J, Fu W. Biological function and mechanism of NAT10 in cancer. CANCER INNOVATION 2025; 4:e154. [PMID: 39817252 PMCID: PMC11732740 DOI: 10.1002/cai2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 01/18/2025]
Abstract
N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4-acetylcytidine (ac4C) "writer" enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10-related molecular mechanisms in various cancers are not fully understood. In this review, we first describe the cellular localization of NAT10 and then summarize its numerous biological functions. NAT10 is involved in various biological processes by mediating the acetylation of different proteins and RNAs. These biological functions are also associated with cancer progression and patient prognosis. We also review the mechanisms by which NAT10 plays roles in various cancer types. NAT10 can affect tumor cell proliferation, metastasis, and stress tolerance through its acetyltransferase properties. Further research into NAT10 functions and expression regulation in tumors will help explore its future potential in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yufeng Han
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Lei Miao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Huiran Lin
- Faculty of MedicineMacau University of Science and TechnologyMacauChina
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
- State Key Laboratory of Chemical OncogenomicsPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen Fu
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
16
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
17
|
Zhao X, Miao J. Biological functions and molecular mechanisms of MORC2 in human diseases. Mol Cells 2025; 48:100166. [PMID: 39637946 PMCID: PMC11731582 DOI: 10.1016/j.mocell.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Microrchidia family CW-type zinc finger 2 (MORC2) is a nuclear protein that has been highly conserved throughout evolution. MORC2 consists of an ATPase domain at the N-terminus, a CW-type zinc finger domain in the middle, and coiled-coil domains at the C-terminus. MORC2 is involved in various important biological processes such as transcriptional regulation, chromatin remodeling, DNA damage repair, and metabolism. Recent studies suggest that MORC2 may serve as a potential biomarker and therapeutic target for hereditary neurological diseases and cancers. However, the exact molecular functions and pathogenic mechanisms of MORC2 in human diseases remain to be explored. In this review, we provide an overview of recent advancements in understanding the molecular functions of MORC2, as well as the characteristics and mechanisms of MORC2-related diseases, which will be valuable for future studies.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Xiao B, Wu S, Tian Y, Huang W, Chen G, Luo D, Cai Y, Chen M, Zhang Y, Liu C, Zhao J, Li L. Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase. Cell Biol Toxicol 2024; 41:17. [PMID: 39725720 PMCID: PMC11671434 DOI: 10.1007/s10565-024-09962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation. NAT10 stands out as the sole identified modification enzyme responsible for RNA acetylation. There remains some ambiguity regarding the similarities and differences in NAT10's actions on protein and RNA substrates. While NAT10 involves acetylation modification in both cases, which is a crucial molecular mechanism in epigenetic regulation, there are significant disparities in the catalytic mechanisms, regulatory pathways, and biological processes involved. Therefore, this review aims to offer a comprehensive overview of NAT10 as a protein and RNA acetyltransferase, covering its basic catalytic features, biological functions, and roles in related diseases.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
- Department of Laboratory Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, Guangdong, China.
| | - Shunhong Wu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yan Tian
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weikai Huang
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Guangzhan Chen
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Dongxin Luo
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yishen Cai
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Ming Chen
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yuqian Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chuyan Liu
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Junxiu Zhao
- College of Public Health, Dali University, Dali, 671003, Yunnan, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
19
|
Zhang Y, Tang X, Wang C, Wang M, Li M, Li X, Yao L, Xu Y. Zinc finger protein 593 promotes breast cancer development by ensuring DNA damage repair and cell-cycle progression. iScience 2024; 27:111513. [PMID: 39758980 PMCID: PMC11699609 DOI: 10.1016/j.isci.2024.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer, a common malignancy and top cause of female cancer deaths globally, urgently requires new biomarkers and insights into its progression and chemoresistance. In this study, we identify ZNF593, a member of the zinc finger protein family, as an understudied oncogene in breast cancer. ZNF593 is significantly upregulated in breast cancer tissues compared to adjacent normal tissues, which is linked to poor prognosis and advanced clinicopathological features. In vitro experiments demonstrate that ZNF593 enhances the proliferation and migration capabilities of breast cancer cells. Comprehensive analyses reveal that ZNF593 is associated with DNA damage repair, cell-cycle regulation, and immunity-related pathways. Mechanistically, ZNF593 protects DNA repair and influences sensitivity to the associated chemotherapy. Furthermore, ZNF593 modulates CCND1, CCNE1, and CCNA2, genes encoding cyclins that facilitate the G1/S transition, resulting in cell-cycle progression. Collectively, our findings identify ZNF593 as a potential therapeutic target for breast cancer, affecting progression and chemoresistance.
Collapse
Affiliation(s)
- Yingfan Zhang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowen Tang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chenxin Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meng Li
- General Surgery Department, Dandong Central Hospital, China Medical University, Dandong, Liaoning, China
| | - Xiang Li
- Department of Ultrasound, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Litong Yao
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingying Xu
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Gu Z, Zou L, Pan X, Yu Y, Liu Y, Zhang Z, Liu J, Mao S, Zhang J, Guo C, Li W, Geng J, Zhang W, Yao X, Shen B. The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression. MedComm (Beijing) 2024; 5:e70026. [PMID: 39640362 PMCID: PMC11617596 DOI: 10.1002/mco2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuoran Gu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Libin Zou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xinjian Pan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yang Yu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yongqiang Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Zhijin Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Ji Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Shiyu Mao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Junfeng Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wei Li
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Jiang Geng
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wentao Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Bing Shen
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongi UniversityShanahaiChina
| |
Collapse
|
21
|
Su K, Zhao Z, Wang Y, Sun S, Liu X, Zhang C, Jiang Y, Du X. NAT10 resolves harmful nucleolar R-loops depending on its helicase domain and acetylation of DDX21. Cell Commun Signal 2024; 22:490. [PMID: 39394182 PMCID: PMC11468200 DOI: 10.1186/s12964-024-01869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Aberrant accumulation of R-loops leads to DNA damage, genome instability and even cell death. Therefore, the timely removal of harmful R-loops is essential for the maintenance of genome integrity. Nucleolar R-loops occupy up to 50% of cellular R-loops due to the frequent activation of Pol I transcription. However, the mechanisms involved in the nucleolar R-loop resolution remain elusive. The nucleolar acetyltransferase NAT10 harbors a putative RecD helicase domain (RHD), however, if NAT10 acts in the R-loop resolution is still unknown. METHODS NAT10 knockdown cell lines were constructed using CRISPR/Cas9 technology and short hairpin RNA targeting NAT10 mRNA, respectively. The level of R-loops was detected by immunofluorescent staining combined with RNase H treatment. The helicase activity of NAT10 or DDX21 was determined by in vitro helicase experiment. The interaction between NAT10 and DDX21 was verified by co-immunoprecipitation, immunofluorescent staining and GST pull-down experiments. Acetylation sites of DDX21 by NAT10 were analyzed by mass spectrometry. NAT10 knockdown-induced DNA damage was evaluated by immunofluorescent staining and Western blot detecting γH2AX. RESULTS Depletion of NAT10 led to the accumulation of nucleolar R-loops. NAT10 resolves R-loops through an RHD in vitro and in cells. However, Flag-NAT10 ∆RHD mutant still partially reduced R-loop levels in the NAT10-depleted cells, suggesting that NAT10 might resolve R-loops through additional pathways. Further, the acetyltransferase activity of NAT10 is required for the nucleolar R-loop resolution. NAT10 acetylates DDX21 at K236 and K573 to enhance the helicase activity of DDX21 to unwind nucleolar R-loops. The helicase activity of DDX21 significantly decreased by Flag-DDX21 2KR and increased by Flag-DDX21 2KQ in cells and in vitro. Consequently, NAT10 depletion-induced nucleolar R-loop accumulation led to DNA damage, which was rescued by co-expression of Flag-DDX21 2KQ and Flag-NAT10 G641E, demonstrating that NAT10 resolves nucleolar R-loops through bipartite pathways. CONCLUSION We demonstrate that NAT10 is a novel R-loop resolvase and it resolves nucleolar R-loops depending on its helicase activity and acetylation of DDX21. The cooperation of NAT10 and DDX21 provides comprehensive insights into the nucleolar R-loop resolution for maintaining genome stability.
Collapse
Affiliation(s)
- Kunqi Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhuochen Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yuying Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
22
|
Li G, Ma X, Sui S, Chen Y, Li H, Liu L, Zhang X, Zhang L, Hao Y, Yang Z, Yang S, He X, Wang Q, Tao W, Xu S. NAT10/ac4C/JunB facilitates TNBC malignant progression and immunosuppression by driving glycolysis addiction. J Exp Clin Cancer Res 2024; 43:278. [PMID: 39363363 PMCID: PMC11451012 DOI: 10.1186/s13046-024-03200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional mechanism, plays a pivotal role in RNA modification and tumor progression. However, the molecular mechanism by which ac4C modification mediates tumor immunosuppression remains elusive in triple-negative breast cancer (TNBC). METHODS NAT10 expression was analyzed in TNBC samples in the level of mRNA and protein, and compared with the corresponding normal tissues. ac4C modification levels also measured in the TNBC samples. The effects of NAT10 on immune microenvironment and tumor metabolism were investigated. NAT10-mediated ac4C and its downstream regulatory mechanisms were determined in vitro and in vivo. The combination therapy of targeting NAT10 in TNBC was further explored. RESULTS The results revealed that the loss of NAT10 inhibited TNBC development and promoted T cell activation. Mechanistically, NAT10 upregulated JunB expression by increasing ac4C modification levels on its mRNA. Moreover, JunB further up-regulated LDHA expression and facilitated glycolysis. By deeply digging, remodelin, a NAT10 inhibitor, elevated the surface expression of CTLA-4 on T cells. The combination of remodelin and CTLA-4 mAb can further activate T cells and inhibite tumor progression. CONCLUSION Taken together, our study demonstrated that the NAT10-ac4C-JunB-LDHA pathway increases glycolysis levels and creates an immunosuppressive tumor microenvironment (TME). Consequently, targeting this pathway may assist in the identification of novel therapeutic strategies to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zihan Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xu He
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- Weihan Yu Academy, Harbin Medical University, Harbin, 150086, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
23
|
Xue Z, Xie H, Shan Y, Zhang L, Cheng L, Chen W, Zhu R, Zhang K, Ni H, Zhang Z, You Y, You B. NAT10 inhibition promotes ac4C-dependent ferroptosis to counteract sorafenib resistance in nasopharyngeal carcinoma. Cancer Sci 2024; 115:3256-3272. [PMID: 39038928 PMCID: PMC11447888 DOI: 10.1111/cas.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 07/24/2024] Open
Abstract
Sorafenib, an anticancer drug, has been shown to induce ferroptosis in cancer cells. However, resistance to sorafenib greatly limits its therapeutic efficacy, and the exact mechanism of resistance is not fully understood. This study investigated the role of N-Acetyltransferase 10 (NAT10) in influencing the anticancer activity of sorafenib in nasopharyngeal carcinoma (NPC) and its molecular mechanism. NAT10 expression was significantly upregulated in NPC. Mechanistically, NAT10 promotes proteins of solute carrier family 7 member 11 (SLC7A11) expression through ac4C acetylation, inhibiting sorafenib-induced ferroptosis in NPC cells. The combined application of sorafenib and the NAT10 inhibitor remodelin significantly inhibits SLC7A11 expression and promotes ferroptosis in NPC cells. In vivo knockout of NAT10 inhibited the growth of sorafenib-resistant NPC. Our findings suggest that NAT10 inhibition might be a promising therapeutic approach to enhance the anticancer activity of sorafenib.
Collapse
Affiliation(s)
- Ziyi Xue
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Haijing Xie
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Ying Shan
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Lin Zhang
- Haimen People's HospitalNantongJiangsu ProvinceChina
| | - Lin Cheng
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Wenyue Chen
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Rui Zhu
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Kaiwen Zhang
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Haosheng Ni
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Zhenxin Zhang
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
- Department of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Yiwen You
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| | - Bo You
- Nantong UniversityNantongJiangsu ProvinceChina
- Institute of Otolaryngology Head and Neck SurgeryAffiliated Hospital of Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
24
|
Cai T, Dai J, Lin Y, Bai Z, Li J, Meng W. N-acetyltransferase 10 affects the proliferation of intrahepatic cholangiocarcinoma and M2-type polarization of macrophages by regulating C-C motif chemokine ligand 2. J Transl Med 2024; 22:875. [PMID: 39350174 PMCID: PMC11440763 DOI: 10.1186/s12967-024-05664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10) plays a crucial role in the occurrence and development of various tumors. However, the current regulatory mechanism of NAT10 in tumors is limited to its presence in tumor cells. Here, we aimed to reveal the role of NAT10 in intrahepatic cholangiocarcinoma (ICC) and investigate its effect on macrophage polarization in the tumor microenvironment (TME). METHODS The correlation between NAT10 and ICC clinicopathology was analyzed using tissue microarray (TMA), while the effect of NAT10 on ICC proliferation was verified in vitro and in vivo. Additionally, the downstream target of NAT10, C-C motif chemokine ligand 2 (CCL2), was identified by Oxford Nanopore Technologies full-length transcriptome sequencing, RNA immunoprecipitation-quantitative polymerase chain reaction, and coimmunoprecipitation experiments. It was confirmed by co-culture that ICC cells could polarize macrophages towards M2 type through the influence of NAT10 on CCL2 protein expression level. Through RNA-sequencing, molecular docking, and surface plasmon resonance (SPR) assays, it was confirmed that berberine (BBR) can specifically bind CCL2 to inhibit ICC development. RESULTS High expression level of NAT10 was associated with poor clinicopathological manifestations of ICC. In vitro, the knockdown of NAT10 inhibited the proliferative activity of ICC cells and tumor growth in vivo, while its overexpression promoted ICC proliferation. Mechanically, by binding to CCL2 messenger RNA, NAT10 increased CCL2 protein expression level in ICC and their extracellular matrix, thereby promoting the proliferation of ICC cells and M2-type polarization of macrophages. BBR can target CCL2, inhibit ICC proliferation, and reduce M2-type polarization of macrophages. CONCLUSIONS NAT10 promotes ICC proliferation and M2-type polarization of macrophages by up-regulating CCL2, whereas BBR inhibits ICC proliferation and M2-type polarization of macrophages by inhibiting CCL2.
Collapse
Affiliation(s)
- Teng Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yanyan Lin
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhongtian Bai
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Wenbo Meng
- The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
26
|
He J, Liao XH, Zhong BD, Liu AW. Association of MORC2 expression with progression-free survival in cervical cancer patients treated with concurrent chemoradiotherapy. Medicine (Baltimore) 2024; 103:e39299. [PMID: 39312367 PMCID: PMC11419448 DOI: 10.1097/md.0000000000039299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling protein, and has been proposed as a prognostic biomarker associated with survival in some types of human cancer, but the role of MORC2 in cervical cancer remains unknown. Here, we investigated the role of MORC2 expression in predicting the survival outcomes of locally advanced cervical cancer patients treated with cisplatin-based concurrent chemoradiotherapy (CCRT). In this retrospectively study, we detected MORC2 immunohistochemical expression on 55 biopsies from patients who underwent CCRT. The association between the MORC2 expression and various clinicopathological characteristics were analyzed, as were association between MORC2 expression and locoregional failure and progression-free survival (PFS) of cervical cancer patients. MORC2 expression was positively associated with pelvic node metastasis and locoregional failure. Higher MORC2 expression was a significant indicator of worse PFS. Our results suggest that MORC2 expression may be a prognostic indicator in patients with locally advanced cervical cancer undergoing CCRT.
Collapse
Affiliation(s)
- Jing He
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Oncology, Ganzhou People’s Hospital (The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University), Ganzhou, Jiangxi Province, China
| | - Xiao-Hong Liao
- Department of Oncology, Ganzhou People’s Hospital (The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University), Ganzhou, Jiangxi Province, China
| | - Bing-Di Zhong
- Department of Oncology, Ganzhou People’s Hospital (The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University), Ganzhou, Jiangxi Province, China
| | - An-Wen Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
27
|
Liu X, Wang J, Xiang Y, Wang K, Yan D, Tong Y. The roles of OGT and its mechanisms in cancer. Cell Biosci 2024; 14:121. [PMID: 39285476 PMCID: PMC11406787 DOI: 10.1186/s13578-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a common and important post-translational modification (PTM) linking O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues in proteins. Extensive research indicates its impact on target protein stability, activity, and interactions. O-linked N-acetylglucosamine transferase (OGT) is a critical enzyme that catalyzes O-GlcNAc modification, responsible for adding O-GlcNAc to proteins. OGT and O-GlcNAcylation are overexpressed in many tumors and closely associated with tumor growth, invasion, metabolism, drug resistance, and immune evasion. This review delineates the biochemical functions of OGT and summarizes its effects and mechanisms in tumors. Targeting OGT presents a promising novel approach for treating human malignancies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Kangjie Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
28
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
29
|
Liu D, Kuang Y, Chen S, Li R, Su F, Zhang S, Qiu Q, Lin S, Shen C, Liu Y, Liang L, Wang J, Xu H, Xiao Y. NAT10 promotes synovial aggression by increasing the stability and translation of N4-acetylated PTX3 mRNA in rheumatoid arthritis. Ann Rheum Dis 2024; 83:1118-1131. [PMID: 38724075 DOI: 10.1136/ard-2023-225343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Simin Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Su
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuoyang Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuyu Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingli Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Wang L, Zeng Y, Zhang Y, Zhu Y, Xu S, Liang Z. Acetylcytidine modification of DDX41 and ZNF746 by N-acetyltransferase 10 contributes to chemoresistance of melanoma. Front Oncol 2024; 14:1448890. [PMID: 39246323 PMCID: PMC11377236 DOI: 10.3389/fonc.2024.1448890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Background Rapidly developed chemoresistance to dacarbazine (DTIC) is a major obstacle in the clinical management of melanoma; however, the roles and mechanisms of epi-transcriptomic RNA modification in this process have not been investigated. Method DTIC-resistant (DR) melanoma cells were established for bulk RNA sequencing. The expressions of mRNAs were detected using qRT-PCR, and protein levels were determined using Western blotting and immunohistochemistry. Acetylated RNAs were detected by dot blotting and immunoprecipitation sequencing (acRIP-seq). A lung metastasis mouse model of melanoma was established to evaluate the anti-melanoma effects in vivo. Results We identified that the expression of N-acetyltransferase 10 (NAT10), a catalytic enzyme for the N 4-acetylcytidine (ac4C) modification of RNA, was significantly upregulated in the DR cells. Clinically, NAT10 expression was elevated in disease progression samples and predicted a poor outcome. Using ac4C RNA immunoprecipitation (ac4C-RIP), we found that the mRNAs of two C2H2 zinc finger transcriptional factors, DDX41 and ZNF746, were targets of NAT10-mediated ac4C modification. Gain- and loss-of-function experiments in NAT10, or in DDX41 and ZNF746, altered the chemosensitivity of melanoma accordingly, and the two target genes also negatively correlated with clinical outcomes. Finally, pharmacological inhibition of NAT10 with Remodelin sensitized melanoma cells to DTIC treatment in vitro and in a mouse xenograft model. Conclusion Our study elucidates the previously unrecognized role of NAT10-mediated ac4C modification in the chemoresistance of melanoma and provides a rationale for developing new strategies to overcome chemoresistance in melanoma patients.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yuefen Zeng
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Ying Zhang
- Department of Acupuncture and Tuina, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Yun Zhu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Shuangyan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| | - Zuohui Liang
- Department of Dermatology, The People's Hospital of Yuxi City, Kunming Medical University, Yuxi, Yunan, China
| |
Collapse
|
31
|
Zhang T, Mi J, Qin X, Ouyang Z, Wang Y, Li Z, He S, Hu K, Wang R, Huang W. Rosmarinic Acid Alleviates Radiation-Induced Pulmonary Fibrosis by Downregulating the tRNA N7-Methylguanosine Modification-Regulated Fibroblast-to-Myofibroblast Transition Through the Exosome Pathway. J Inflamm Res 2024; 17:5567-5586. [PMID: 39188632 PMCID: PMC11346487 DOI: 10.2147/jir.s458794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Radiation-induced pulmonary fibrosis (RIPF) is a common complication after radiotherapy in thoracic cancer patients, and effective treatment methods are lacking. The purpose of this study was to investigate the protective effect of rosmarinic acid (RA) on RIPF in mice as well as the mechanism involved. Methods m7G-tRNA-seq and tRNA-seq analyses were conducted to identify m7G-modified tRNAs. Western blotting, immunohistochemistry, northwestern blotting, northern blotting, immunofluorescence, wound-healing assays and EdU experiments were performed to explore the molecular mechanism by which RA regulates fibroblast-to-myofibroblast transformation (FMT) by affecting the exosomes of lung epithelial cells. Ribo-seq and mRNA-seq analyses were used to explore the underlying target mRNAs. Seahorse assays and immunoprecipitation were carried out to elucidate the effects of RA on glycolysis and FMT processes via the regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) acetylation. Results We found that RA had an antifibrotic effect on the lung tissues of RIPF model mice and inhibited the progression of FMT through exosomes derived from lung epithelial cells. Mechanistically, RA reduced the transcription and translation efficiency of sphingosine kinase 1 in lung fibroblasts by decreasing N7-methylguanosine modification of tRNA, downregulating the expression of tRNAs in irradiated lung epithelial cell-derived exosomes, and inhibiting the interaction between sphingosine kinase 1 and the N-acetyltransferase 10 protein in fibroblasts. Furthermore, the acetylation and cytoplasmic translocation of PFKFB3 were reduced by exosomes derived from irradiated lung epithelial cells, which following RA intervention. This suppression of the FMT process, which is triggered by glycolysis, and ultimately decelerating the progression of RIPF. Conclusion These findings suggest that RA is a potential therapeutic agent for RIPF.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Jinglin Mi
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Xinling Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Zhechen Ouyang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Yiru Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Zhixun Li
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Siyi He
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Kai Hu
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| | - Weimei Huang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
32
|
Wei B, Yang F, Yu L, Qiu C. Crosstalk between SUMOylation and other post-translational modifications in breast cancer. Cell Mol Biol Lett 2024; 29:107. [PMID: 39127633 DOI: 10.1186/s11658-024-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer represents the most prevalent tumor type and a foremost cause of mortality among women globally. The complex pathophysiological processes of breast cancer tumorigenesis and progression are regulated by protein post-translational modifications (PTMs), which are triggered by different carcinogenic factors and signaling pathways, with small ubiquitin-like modifier (SUMOylation) emerging as a particularly pivotal player in this context. Recent studies have demonstrated that SUMOylation does not act alone, but interacts with other PTMs, such as phosphorylation, ubiquitination, acetylation, and methylation, thereby leading to the regulation of various pathological activities in breast cancer. This review explores novel and existing mechanisms of crosstalk between SUMOylation and other PTMs. Typically, SUMOylation is regulated by phosphorylation to exert feedback control, while also modulates subsequent ubiquitination, acetylation, or methylation. The crosstalk pairs in promoting or inhibiting breast cancer are protein-specific and site-specific. In mechanism, alterations in amino acid side chain charges, protein conformations, or the occupation of specific sites at specific domains or sites underlie the complex crosstalk. In summary, this review centers on elucidating the crosstalk between SUMOylation and other PTMs in breast cancer oncogenesis and progression and discuss the molecular mechanisms contributing to these interactions, offering insights into their potential applications in facilitating novel treatments for breast cancer.
Collapse
Affiliation(s)
- Bajin Wei
- The Department of Breast Surgery, Key Laboratory of Organ Transplantation, Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Cong Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zijingang Campus, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Mohapatra B, Pakala SB. Emerging roles of the chromatin remodeler MORC2 in cancer metabolism. Med Oncol 2024; 41:221. [PMID: 39117768 DOI: 10.1007/s12032-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Cancer is characterized by metabolic reprogramming in cancer cells, which is crucial for tumorigenesis. The highly deregulated chromatin remodeler MORC2 contributes to cell proliferation, invasion, migration, DNA repair, and chemoresistance. MORC2 also plays a key role in metabolic reprogramming, including lipogenesis, glucose, and glutamine metabolism. A recent study showed that MORC2-regulated glucose metabolism affects the expression of E-cadherin, a crucial protein in the epithelial-to-mesenchymal transition. This review discusses recent developments in MORC2 regulated cancer cell metabolism and its role in cancer progression.
Collapse
Affiliation(s)
- Bibhukalyan Mohapatra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
34
|
Li K, Hong Y, Yu Y, Xie Z, Lv D, Wang C, Xie T, Chen H, Chen Z, Zeng J, Zhao S. NAT10 Promotes Prostate Cancer Growth and Metastasis by Acetylating mRNAs of HMGA1 and KRT8. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310131. [PMID: 38922788 PMCID: PMC11348116 DOI: 10.1002/advs.202310131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.
Collapse
Affiliation(s)
- Kang‐Jing Li
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Yaying Hong
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yu‐Zhong Yu
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyue Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dao‐Jun Lv
- Department of UrologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Chong Wang
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Tao Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenan471934P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Jianwen Zeng
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Shan‐Chao Zhao
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhou510900China
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510500China
| |
Collapse
|
35
|
Achour C, Oberdoerffer S. NAT10 and cytidine acetylation in mRNA: intersecting paths in development and disease. Curr Opin Genet Dev 2024; 87:102207. [PMID: 38820741 DOI: 10.1016/j.gde.2024.102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
N4-acetylcytidine (ac4C) is an RNA modification that is catalyzed by the enzyme NAT10. Constitutively found in tRNA and rRNA, ac4C displays a dynamic presence in mRNA that is shaped by developmental and induced shifts in NAT10 levels. However, deciphering ac4C functions in mRNA has been hampered by its context-dependent influences in translation and the complexity of isolating effects on specific mRNAs from other NAT10 activities. Recent advances have begun to overcome these obstacles by leveraging natural variations in mRNA acetylation in cancer, developmental transitions, and immune responses. Here, we synthesize the current literature with a focus on nuances that may fuel the perception of cellular discrepancies toward the development of a cohesive model of ac4C function in mRNA.
Collapse
Affiliation(s)
- Cyrinne Achour
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA.
| |
Collapse
|
36
|
Tang J, Chen Y, Wang C, Xia Y, Yu T, Tang M, Meng K, Yin L, Yang Y, Shen L, Xing H, Mao X. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm (Beijing) 2024; 5:e663. [PMID: 39070181 PMCID: PMC11283587 DOI: 10.1002/mco2.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.
Collapse
Affiliation(s)
- Jian Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yu Chen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Medical Affairs, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunhua Wang
- Department of Clinical LaboratoryXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangHubei ProvinceChina
| | - Ying Xia
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tingyu Yu
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Mengjun Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kun Meng
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial MicrobiologyMinistry of EducationTianjin Key Laboratory of Industry MicrobiologyNational and Local United Engineering Lab of Metabolic Control Fermentation TechnologyChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal ChemistryCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and ImmunityNational Clinical Research Center for Infectious DiseaseState Key Discipline of Infectious DiseaseShenzhen Third People's HospitalSecond Hospital Affiliated to Southern University of Science and TechnologyShenzhenChina
| | - Liang Shen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| | - Xiaogang Mao
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| |
Collapse
|
37
|
Wang Y, Su K, Wang C, Deng T, Liu X, Sun S, Jiang Y, Zhang C, Xing B, Du X. Chemotherapy-induced acetylation of ACLY by NAT10 promotes its nuclear accumulation and acetyl-CoA production to drive chemoresistance in hepatocellular carcinoma. Cell Death Dis 2024; 15:545. [PMID: 39085201 PMCID: PMC11291975 DOI: 10.1038/s41419-024-06951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Chemotherapeutic efficacy is seriously impeded by chemoresistance in more than half of hepatocellular carcinoma (HCC) patients. However, the mechanisms involved in chemotherapy-induced upregulation of chemoresistant genes are not fully understood. Here, this study unravels a novel mechanism controlling nuclear acetyl-CoA production to activate the transcription of chemoresistant genes in HCC. NAT10 is upregulated in HCC tissues and its upregulation is correlated with poor prognosis of HCC patients. NAT10 is also upregulated in chemoresistant HCC cells. Targeting NAT10 increases the cytotoxicity of chemotherapy in HCC cells and mouse xenografts. Upon chemotherapy, NAT10 translocates from the nucleolus to the nucleus to activate the transcription of CYP2C9 and PIK3R1. Additionally, nuclear acetyl-CoA is specifically upregulated by NAT10. Mechanistically, NAT10 binds with ACLY in the nucleus and acetylates ACLY at K468 to counteract the SQSTM1-mediated degradation upon chemotherapy. ACLY K468-Ac specifically accumulates in the nucleus and increases nuclear acetyl-CoA production to activate the transcription of CYP2C9 and PIK3R1 through enhancing H3K27ac. Importantly, K468 is required for nuclear localization of ACLY. Significantly, ACLY K468-Ac is upregulated in HCC tissues, and ablation of ACLY K468-Ac sensitizes HCC cells and mouse xenografts to chemotherapy. Collectively, these findings identify NAT10 as a novel chemoresistant driver and the blockage of NAT10-mediated ACLY K468-Ac possesses the potential to attenuate HCC chemoresistance.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Acetyl Coenzyme A/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Animals
- Acetylation
- Mice
- Cell Nucleus/metabolism
- Cell Line, Tumor
- Mice, Nude
- Coenzyme A Ligases/metabolism
- Coenzyme A Ligases/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- N-Terminal Acetyltransferases/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Mice, Inbred BALB C
- Male
Collapse
Affiliation(s)
- Yuying Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Kunqi Su
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yang Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
38
|
Wang F, Fu X, Chang M, Wei T, Lin R, Tong H, Zhang X, Yuan R, Zhou Z, Huang X, Zhang W, Su W, Lu Y, Liang Z, Zhang J. The Interaction of Calcium-Sensing Receptor with KIF11 Enhances Cisplatin Resistance in Lung Adenocarcinoma via BRCA1/cyclin B1 pathway. Int J Biol Sci 2024; 20:3892-3910. [PMID: 39113697 PMCID: PMC11302892 DOI: 10.7150/ijbs.92046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Cisplatin (DDP) is commonly used in the treatment of non-small cell lung cancer (NSCLC), including lung adenocarcinoma (LUAD), and the primary cause for its clinical inefficacy is chemoresistance. Here, we aimed to investigate a novel mechanism of chemoresistance in LUAD cells, focusing on the calcium-sensing receptor (CaSR). In this study, high CaSR expression was detected in DDP-resistant LUAD cells, and elevated CaSR expression is strongly correlated with poor prognosis in LUAD patients receiving chemotherapy. LUAD cells with high CaSR expression exhibited decreased sensitivity to cisplatin, and the growth of DDP-resistant LUAD cells was inhibited by cisplatin treatment in combination with CaSR suppression, accompanied by changes in BRCA1 and cyclin B1 protein expression both in vitro and in vivo. Additionally, an interaction between CaSR and KIF11 was identified. Importantly, suppressing KIF11 resulted in decreased protein levels of BRCA1 and cyclin B1, enhancing the sensitivity of DDP-resistant LUAD cells to cisplatin with no obvious decrease in CaSR. Here, our findings established the critical role of CaSR in promoting cisplatin resistance in LUAD cells by modulating cyclin B1 and BRCA1 and identified KIF11 as a mediator, highlighting the potential therapeutic value of targeting CaSR to overcome chemoresistance in LUAD.
Collapse
Affiliation(s)
- Fuhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ming Chang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tianzi Wei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Risheng Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiao Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Runzhu Yuan
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Liang
- The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
39
|
Ding M, Yu Z, Lu T, Hu S, Zhou X, Wang X. N-acetyltransferase 10 facilitates tumorigenesis of diffuse large B-cell lymphoma by regulating AMPK/mTOR signalling through N4-acetylcytidine modification of SLC30A9. Clin Transl Med 2024; 14:e1747. [PMID: 38961519 PMCID: PMC11222071 DOI: 10.1002/ctm2.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Accumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B-cell lymphoma (DLBCL). N4-acetylcytidine (ac4C) modification, catalyzed by the N-acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability. METHODS GEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9-mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP-seq), LC-MS/MS, RNA immunoprecipitation (RIP)-qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression. RESULTS Here, we demonstrated that NAT10-mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N-acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP-seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C-dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP-activated protein kinase (AMPK) pathway. CONCLUSION Collectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic-based therapeutic strategies.
Collapse
Affiliation(s)
- Mengfei Ding
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Tiange Lu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Wang
- Department of Hematology, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital, Affiliated to Shandong First Medical UniversityJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Taishan Scholars Program of Shandong ProvinceJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
| |
Collapse
|
40
|
Fendler NL, Ly J, Welp L, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597643. [PMID: 38895295 PMCID: PMC11185635 DOI: 10.1101/2024.06.05.597643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region is heavily phosphorylated in cells. Phosphorylation of MORC2 reduces its affinity for DNA and appears to exclude the protein from the nucleus. We observe that DNA binding by MORC2 reduces its ATPase activity and that MORC2 can topologically entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L. Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Howard Hughes Medical Institute
| |
Collapse
|
41
|
Liu JC, Pan ZN, Ju JQ, Zou YJ, Pan MH, Wang Y, Wu X, Sun SC. Kinesin KIF3A regulates meiotic progression and spindle assembly in oocyte meiosis. Cell Mol Life Sci 2024; 81:168. [PMID: 38587639 PMCID: PMC11001723 DOI: 10.1007/s00018-024-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
42
|
Dalhat MH, Narayan S, Serio H, Arango D. Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10. Oncogene 2024; 43:1077-1086. [PMID: 38409550 PMCID: PMC11092965 DOI: 10.1038/s41388-024-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Chemical modifications of ribonucleotides significantly alter the physicochemical properties and functions of RNA. Initially perceived as static and essential marks in ribosomal RNA (rRNA) and transfer RNA (tRNA), recent discoveries unveiled a dynamic landscape of RNA modifications in messenger RNA (mRNA) and other regulatory RNAs. These findings spurred extensive efforts to map the distribution and function of RNA modifications, aiming to elucidate their distribution and functional significance in normal cellular homeostasis and pathological states. Significant dysregulation of RNA modifications is extensively documented in cancers, accentuating the potential of RNA-modifying enzymes as therapeutic targets. However, the essential role of several RNA-modifying enzymes in normal physiological functions raises concerns about potential side effects. A notable example is N-acetyltransferase 10 (NAT10), which is responsible for acetylating cytidines in RNA. While emerging evidence positions NAT10 as an oncogenic factor and a potential target in various cancer types, its essential role in normal cellular processes complicates the development of targeted therapies. This review aims to comprehensively analyze the essential and oncogenic properties of NAT10. We discuss its crucial role in normal cell biology and aging alongside its contribution to cancer development and progression. We advocate for agnostic approaches to disentangling the intertwined essential and oncogenic functions of RNA-modifying enzymes. Such approaches are crucial for understanding the full spectrum of RNA-modifying enzymes and imperative for designing effective and safe therapeutic strategies.
Collapse
Affiliation(s)
- Mahmood H Dalhat
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Sharath Narayan
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Hannah Serio
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
43
|
Tao L, Lu Y, Chen Z, Ge L, He J, Peng J, Wang H. RNA ac 4C modification in cancer biology: from regulatory mechanisms to clinical applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:832-835. [PMID: 38324129 DOI: 10.1007/s11427-023-2496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Affiliation(s)
- Lijun Tao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yunqing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuojia Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lichen Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junming He
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China.
| | - Hongsheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Miao D, Shi J, Lv Q, Tan D, Zhao C, Xiong Z, Zhang X. NAT10-mediated ac 4C-modified ANKZF1 promotes tumor progression and lymphangiogenesis in clear-cell renal cell carcinoma by attenuating YWHAE-driven cytoplasmic retention of YAP1. Cancer Commun (Lond) 2024; 44:361-383. [PMID: 38407929 PMCID: PMC10962679 DOI: 10.1002/cac2.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.
Collapse
Affiliation(s)
- Daojia Miao
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Jian Shi
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qingyang Lv
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Diaoyi Tan
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Chuanyi Zhao
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Zhiyong Xiong
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoping Zhang
- Department of UrologyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiP. R. China
- Institute of UrologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
45
|
Zhang S, Guo A, Wang H, Liu J, Dong C, Ren J, Wang G. Oncogenic MORC2 in cancer development and beyond. Genes Dis 2024; 11:861-873. [PMID: 37692502 PMCID: PMC10491978 DOI: 10.1016/j.gendis.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ayao Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huan Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jia Liu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Junyi Ren
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
46
|
Zhang H, Lu R, Huang J, Li L, Cao Y, Huang C, Chen R, Wang Y, Huang J, Zhao X, Yu J. N4-acetylcytidine modifies primary microRNAs for processing in cancer cells. Cell Mol Life Sci 2024; 81:73. [PMID: 38308713 PMCID: PMC10838262 DOI: 10.1007/s00018-023-05107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.
Collapse
Affiliation(s)
- Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Translational Medicine, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
47
|
Kołacz K, Robaszkiewicz A. PARP1 at the crossroad of cellular senescence and nucleolar processes. Ageing Res Rev 2024; 94:102206. [PMID: 38278370 DOI: 10.1016/j.arr.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Senescent cells that occur in response to telomere shortening, oncogenes, extracellular and intracellular stress factors are characterized by permanent cell cycle arrest, the morphological and structural changes of the cell that include the senescence-associated secretory phenotype (SASP) and nucleoli rearrangement. The associated DNA lesions induce DNA damage response (DDR), which activates the DNA repair protein - poly-ADP-ribose polymerase 1 (PARP1). This protein consumes NAD+ to synthesize ADP-ribose polymer (PAR) on its own protein chain and on other interacting proteins. The involvement of PARP1 in nucleoli processes, such as rRNA transcription and ribosome biogenesis, the maintenance of heterochromatin and nucleoli structure, as well as controlling the crucial DDR protein release from the nucleoli to nucleus, links PARP1 with cellular senescence and nucleoli functioning. In this review we describe and discuss the impact of PARP1-mediated ADP-ribosylation on early cell commitment to senescence with the possible role of senescence-induced PARP1 transcriptional repression and protein degradation on nucleoli structure and function. The cause-effect interplay between PARP1 activation/decline and nucleoli functioning during senescence needs to be studied in detail.
Collapse
Affiliation(s)
- Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research (IFBR), 600 5th Street South, St. Petersburgh, FL 33701, USA.
| |
Collapse
|
48
|
Amin R, Ha NH, Qiu T, Holewinski R, Lam KC, Lopès A, Liu H, Tran AD, Lee MP, Gamage ST, Andresson T, Goldszmid RS, Meier JL, Hunter KW. Loss of NAT10 disrupts enhancer organization via p300 mislocalization and suppresses transcription of genes necessary for metastasis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577116. [PMID: 38410432 PMCID: PMC10896336 DOI: 10.1101/2024.01.24.577116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.
Collapse
|
49
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
50
|
Qin G, Bai F, Hu H, Zhang J, Zhan W, Wu Z, Li J, Fu Y, Deng Y. Targeting the NAT10/NPM1 axis abrogates PD-L1 expression and improves the response to immune checkpoint blockade therapy. Mol Med 2024; 30:13. [PMID: 38243170 PMCID: PMC10799409 DOI: 10.1186/s10020-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 play a crucial role as immune checkpoint inhibitors in various types of cancer. Although our previous study revealed that NPM1 was a novel transcriptional regulator of PD-L1 and stimulated the transcription of PD-L1, the underlying regulatory mechanism remains incompletely characterized. METHODS Various human cancer cell lines were used to validate the role of NPM1 in regulating the transcription of PD-L1. The acetyltransferase NAT10 was identified as a facilitator of NPM1 acetylation by coimmunoprecipitation and mass spectrometry. The potential application of combined NAT10 inhibitor and anti-CTLA4 treatment was evaluated by an animal model. RESULTS We demonstrated that NPM1 enhanced the transcription of PD-L1 in various types of cancer, and the acetylation of NPM1 played a vital role in this process. In particular, NAT10 facilitated the acetylation of NPM1, leading to enhanced transcription and increased expression of PD-L1. Moreover, our findings demonstrated that Remodelin, a compound that inhibits NAT10, effectively reduced NPM1 acetylation, leading to a subsequent decrease in PD-L1 expression. In vivo experiments indicated that Remodelin combined with anti-CTLA-4 therapy had a superior therapeutic effect compared with either treatment alone. Ultimately, we verified that the expression of NAT10 exhibited a positive correlation with the expression of PD-L1 in various types of tumors, serving as an indicator of unfavorable prognosis. CONCLUSION This study suggests that the NAT10/NPM1 axis is a promising therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Ge Qin
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Fan Bai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Huabin Hu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianwei Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Weixiang Zhan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Zehua Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianxia Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yang Fu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yanhong Deng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
| |
Collapse
|