1
|
Suter T, Friedman MJ, Tazearslan C, Merkurjev D, Ohgi K, Meluzzi D, Rosenfeld MG, Suh Y. Ligand-specific regulation of a binary enhancer code dictating cellular senescence. Proc Natl Acad Sci U S A 2025; 122:e2506321122. [PMID: 40493192 DOI: 10.1073/pnas.2506321122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 06/12/2025] Open
Abstract
Cellular senescence, a major contributor to aging and age-related pathologies, is characterized by irreversible proliferative arrest and a disease-linked, proinflammatory profile known as the Senescence Associated Secretory Phenotype (SASP). A critical unanswered question is whether these properties are regulated by specific enhancer subsets, potentially licensing strategies that selectively block deleterious SASP components. Here, we identify two functionally distinct and independently regulated enhancer programs underlying senescence that are controlled by different TGF-β family ligands. Whereas Activin A stimulates recruitment of nuclear factor IA/C (NFIA/C) and SMAD2/3 transcription factors to an enhancer network that induces proliferation arrest, TGF-β2 promotes SMAD2/3-mediated suppression of a p65-dependent enhancer cohort driving the SASP. We have also uncovered reciprocal SMAD2/3-super-enhancer-regulated feedback loops that govern expression of the TGF-β2 (TGFB2) and Activin A (INHBA) transcription units, both of which are significantly up-regulated in replicative senescence. The characteristic enhancer usage and transcriptional landscape of high-passage senescent cells are sensitive to rapamycin treatment, discontinuation of which results in robust but selective senescent enhancer activation and exacerbation of the SASP. Collectively, this study uncovers separable enhancer programs and their key constituent transcription factors that contribute to the canonical features of cellular senescence, potentially informing the development of SASP-targeted therapies.
Collapse
Affiliation(s)
- Thomas Suter
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Meyer J Friedman
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Daria Merkurjev
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kenny Ohgi
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dario Meluzzi
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Michael G Rosenfeld
- Cellular and Molecular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
2
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
3
|
Jin M, Li C, Wu Z, Tang Z, Xie J, Wei G, Yang Z, Huang S, Chen Y, Li X, Chen Y, Liao W, Liao Y, Chen G, Zheng H, Bin J. Inhibiting the Histone Demethylase Kdm4a Restrains Cardiac Fibrosis After Myocardial Infarction by Promoting Autophagy in Premature Senescent Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414830. [PMID: 40231733 DOI: 10.1002/advs.202414830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/26/2025] [Indexed: 04/16/2025]
Abstract
Premature senescent fibroblasts (PSFs) play an important role in regulating the fibrotic process after myocardial infarction (MI), but their effect on cardiac fibrosis remains unknown. Here, the investigation is aimed to determine whether PSFs contribute to cardiac fibrosis and the underlying mechanisms involved. It is observed that premature senescence of fibroblasts is strongly activated in the injured myocardium at 7 days after MI and identified that Kdm4a is located in PSFs by the analysis of scRNA-seq data and immunostaining staining. Moreover, fibroblast specific gain- and loss-of-function assays showed that Kdm4a promoted the premature senescence of fibroblasts and cardiac interstitial fibrosis, contributing to cardiac remodeling in the advanced stage after MI, without influencing early cardiac rupture. ChIP-seq and ChIP-PCR revealed that Kdm4a deficiency promoted autophagy in PSFs by reducing Trim44 expression through increased levels of the H3K9me3 modification in the Trim44 promoter region. Furthermore, a coculture system revealed that Kdm4a overexpression increased the accumulation of PSFs and the secretion of senescence-associated secretory phenotype (SASP) factors, subsequently inducing cardiac fibrosis, which could be reversed by Trim44 interference. Kdm4a induces the premature senescence of fibroblasts through Trim44-mediated autophagy and then facilitates interstitial fibrosis after MI, ultimately resulting in cardiac remodeling, but not affecting ventricular rupture.
Collapse
Affiliation(s)
- Ming Jin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Chuling Li
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Zhaoyi Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Jingfang Xie
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Zhiwen Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510515, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| |
Collapse
|
4
|
Ferreira FJ, Galhardo M, Nogueira JM, Teixeira J, Logarinho E, Bessa J. FOXM1 expression reverts aging chromatin profiles through repression of the senescence-associated pioneer factor AP-1. Nat Commun 2025; 16:2931. [PMID: 40133272 PMCID: PMC11937471 DOI: 10.1038/s41467-025-57503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Aging is characterized by changes in gene expression, some of which can drive deleterious cellular phenotypes and senescence. The transcriptional activation of senescence genes has been mainly attributed to epigenetic shifts, but the changes in chromatin accessibility and its underlying mechanisms remain largely elusive in natural aging. Here, we profiled chromatin accessibility in human dermal fibroblasts (HDFs) from individuals with ages ranging from neonatal to octogenarian. We found that AP-1 binding motifs are prevalent in elderly-specific accessible chromatin regions while neonatal-specific regions are highly enriched for TEAD binding motifs. We further show that TEAD4 and FOXM1 share a conserved transcriptional regulatory landscape controlled by a not previously described and age-dependent enhancer that loses accessibility with aging and whose deletion drives senescence. Finally, we demonstrate that FOXM1 ectopic expression in elderly cells partially resets chromatin accessibility to a youthful state due to FOXM1's repressive function on several members of the AP-1 complex, which is known to trigger the senescence transcriptional program. These results place FOXM1 at a top hierarchical level in chromatin remodeling required to prevent senescence.
Collapse
Affiliation(s)
- Fábio J Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Mafalda Galhardo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - João M Nogueira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Doctoral program in Molecular and Cell Biology (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Joana Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Doctoral program in Molecular and Cell Biology (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Elsa Logarinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
| | - José Bessa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
5
|
Wang L, Tang D. Immunosenescence promotes cancer development: from mechanisms to treatment strategies. Cell Commun Signal 2025; 23:128. [PMID: 40065335 PMCID: PMC11892258 DOI: 10.1186/s12964-025-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The body's innate immune system plays a pivotal role in identifying and eliminating cancer cells. However, as the immune system ages, its functionality can deteriorate, becoming dysfunctional, inefficient, or even inactive-a condition referred to as immunosenescence. This decline significantly increases the risk of malignancies. While the pro-cancer effects of T-cell aging have been widely explored, there remains a notable gap in the literature regarding the impact of aging on innate immune cells, such as macrophages and neutrophils. This review seeks to address this gap, with emphasis on these cell types. Furthermore, although certain cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have demonstrated efficacy across a broad spectrum of cancers, elderly patients are less likely to derive clinical benefit from these treatments. In some cases, they may even experience immune-related adverse events (irAEs). While senolytic strategies have shown promise in exerting anti-cancer effects, their adverse reactions and potential off-target effects present significant challenges. This review aims to elucidate the pro-cancer effects of immunosenescence, its implications for the efficacy and safety of ICIs, and potential anti-aging treatment strategies. In addition, optimizing anti-aging therapies to minimize adverse reactions and enhance therapeutic outcomes remains a critical focus for future research endeavors.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University; Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
6
|
Schmieder H, Leischner C, Piotrowsky A, Marongiu L, Venturelli S, Burkard M. Exploring the link between fat-soluble vitamins and aging-associated immune system status: a literature review. Immun Ageing 2025; 22:8. [PMID: 39962579 PMCID: PMC11831837 DOI: 10.1186/s12979-025-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
The importance of vitamin D for a well-functioning immune system is becoming increasingly evident. Nevertheless, the other fat-soluble vitamins A, E and K also seem to play a central role regarding the adequate function of immune cells and to counteract excessive immune reactions and inflammatory processes. However, recognizing hidden hunger, particularly micronutrient deficiencies in vulnerable groups like the elderly, is crucial because older adults often lack sufficient micronutrients for various reasons. This review summarizes the latest findings on the immune modulating functions of fat-soluble vitamins in a physiological and pathophysiological context, provides a graphical comparison of the Recommended Daily Allowances between Deutschland, Austria, Confoederatio Helvetica (D-A-CH; eng. GSA, Germany, Switzerland, Austria), Deutsche Gesellschaft für Ernährung (DGE; eng. German Nutrition Society) and National Institutes of Health (NIH) across all age groups and, in particular, addresses the question regarding the benefits of supplementation of the respective micronutrients for the aging population of industrialized nations to strengthen the immune system. The following review highlights the importance of fat-soluble vitamins A, D, E and K which play critical roles in maintaining immune system function and, in some cases, in preventing excessive immune activation. Therefore, a better understanding of the relevance of adequate blood levels and consequently potential supplementation strategies may contribute to the prevention and management of infectious diseases as well as better overall health of the elderly.
Collapse
Affiliation(s)
- Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, Tuebingen, 72074, Germany.
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, Stuttgart, 70599, Germany.
| |
Collapse
|
7
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Turano PS, Akbulut E, Dewald HK, Vasilopoulos T, Fitzgerald-Bocarsly P, Herbig U, Martínez-Zamudio RI. Epigenetic mechanisms regulating CD8+ T cell senescence in aging humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633634. [PMID: 39896543 PMCID: PMC11785101 DOI: 10.1101/2025.01.17.633634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aging leads to the decline of immunity, rendering the elderly susceptible to infection and disease. In the CD8+ T cell compartment, aging leads to a substantial increase of cells with high levels of senescence-associated ß-galactosidase activity (SA-ßGal) and other senescence characteristics, including a pro-inflammatory transcriptome and impaired proliferative potential. Using senescent cell isolation coupled with multiomic profiling, here we characterized the epigenetic mechanisms regulating CD8+ T cell senescence in a cohort of younger and older donors. High levels of SA-ßGal activity defined changes to global transcriptomes and chromatin accessibility landscapes, with a minor effect of age. Widespread enhancer remodeling was required for the repression of functional CD8+ T cell genes and upregulation of inflammatory and secretory pathway genes. Mechanistically, the senescence program in CD8+ T cells was controlled by chromatin state-specific transcription factor (TF) networks whose composition was largely insensitive to donor age. Pharmacological inhibition of TF network nodes AP1, KLF5, and RUNX2 modulated the transcriptional output, demonstrating the feasibility of TF network perturbation as an approach to modulate CD8+ T cell senescence. Further, CD8+ T cell senescence gene signatures faithfully predicted refractoriness to chimeric antigen receptor (CAR) T-cell therapy in a cohort of diffuse large B cell lymphomas and were highly enriched in the transcriptomes of peripheral CD8+ T cells of individuals with active systemic lupus erythematosus. Collectively, our findings demonstrate the potential of multiomic profiling in identifying key regulators of senescence across cell types and suggest a critical role of senescent CD8+ T cells in disease progression.
Collapse
Affiliation(s)
- Paolo S Turano
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
| | - Elizabeth Akbulut
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Hannah K Dewald
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Themistoklis Vasilopoulos
- Rutgers Robert Wood Johnson Medical School, Department of Pharmacology, 675 Hoes Lane West, Piscataway, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Utz Herbig
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
| | - Ricardo Iván Martínez-Zamudio
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
- Rutgers Robert Wood Johnson Medical School, Department of Pharmacology, 675 Hoes Lane West, Piscataway, NJ, United States
| |
Collapse
|
9
|
He Y, Qiu Y, Yang X, Lu G, Zhao SS. Remodeling of tumor microenvironment by cellular senescence and immunosenescence in cervical cancer. Semin Cancer Biol 2025; 108:17-32. [PMID: 39586414 DOI: 10.1016/j.semcancer.2024.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Cellular senescence is a response to various stress signals, which is characterized by stable cell cycle arrest, alterations in cellular morphology, metabolic reprogramming and production of senescence-associated secretory phenotype (SASP). When it occurs in the immune system, it is called immunosenescence. Cervical cancer is a common gynecological malignancy, and cervical cancer screening is generally recommended before the age of 65. Elderly women (≥65 years) are more often diagnosed with advanced disease and have poorer prognosis compared to younger patients. Despite extensive research, the tumor microenvironment requires more in-depth exploration, particularly in elderly patients. In cervical cancer, senescent cells have a double-edged sword effect on tumor progression. Induction of preneoplastic cell senescence prevents tumor initiation, and several treatment approaches of cervical cancer act in part by inducing cancer cell senescence. However, senescent immune cell populations within the tumor microenvironment facilitate tumor development, recurrence, treatment resistance, etc. Amplification of beneficial effects and inhibition of aging-related pro-tumorigenic pathways contribute to improving antitumor effects. This review discusses senescent cancer and immune cells present in the tumor microenvironment of cervical cancer and how these senescent cells and their SASP remodel the tumor microenvironment, influence antitumor immunity and tumor initiation and development. Moreover, we discuss the significance of senotherapeutics that enable to eliminate senescent cells and prevent tumor progression and development through improving antitumor immunity and affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Yijiang He
- Abdominal Radiation Oncology Ward II, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Xiansong Yang
- Department of Day Chemotherapy Ward, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong 266042, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Shan-Shan Zhao
- Department of Gynecology Surgery 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
10
|
Wang Y, Zhong P, Wang C, Huang W, Yang H. Genetic overlap between breast cancer and sarcopenia: exploring the prognostic implications of SLC38A1 gene expression. BMC Cancer 2024; 24:1533. [PMID: 39695419 DOI: 10.1186/s12885-024-13326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sarcopenia, an age-related syndrome characterized by a decline in muscle mass, not only affects patients' quality of life but may also increase the risk of breast cancer recurrence and reduce survival rates. Therefore, investigating the genetic mechanisms shared between breast cancer and sarcopenia is significant for the prevention, diagnosis, and treatment of breast cancer. METHODS This study downloaded gene expression datasets and clinical data related to breast cancer and skeletal muscle aging from the GEO database. Data preprocessing, integration, differential gene identification, functional enrichment analysis, and construction of protein-protein interaction networks were performed using R language. Subsequently, COX proportional hazards model analysis and survival analysis were conducted, and survival curves and nomograms were generated. The expression levels of genes in tissues were detected using qRT-PCR, and the Radiant DICOM viewer software was used to delineate the pectoralis major muscle area in CT images. RESULTS We identified 152 differentially expressed genes (P < .05) and 226 sarcopenia-related genes (r > .4) associated with skeletal muscle aging. The TCGA-BRCA dataset revealed 106 genes associated with breast cancer (P < .05, logFC = 1). Functional enrichment analysis indicated significant enrichment in cell proliferation and growth pathways. The PPI network identified critical molecules involved in muscle aging and tumor progression. After dimensionality reduction, a strong correlation was observed between the expression of the muscle aging-related gene set and the prognosis of breast cancer patients (P < .01). The expression of SLC38A1 identified through multivariate COX analysis was significantly associated with poor prognosis in breast cancer patients (P = .03). Incorporating SLC38A1 expression, the prognostic model precisely forecasted breast cancer survival (P < .01). External validation confirmed the higher expression of the SLC38A1 gene in breast cancer tissues compared to adjacent non-cancerous tissues (P < .01). The SLC38A1 index, calculated in combination with the patient's age and BMI, can optimize the prognostic prediction model, providing a powerful tool for personalized treatment of breast cancer. CONCLUSION High SLC38A1 gene expression was significantly associated with poor prognosis in breast cancer patients. The combination of SLC38A1 expression and the pectoralis major muscle area provided an optimized prognostic prediction model, offering a potential tool for personalized breast cancer treatment.
Collapse
Affiliation(s)
- Ye Wang
- Internet Hospital Operation Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pei Zhong
- First clinical college of medicine, Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weijia Huang
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
11
|
Passos J, Martini H, Birch J, Marques F, Victorelli S, Lagnado A, Pirius N, Franco A, Lee G, Han Y, Rowsey J, Gaspar-Maia A, Havas A, Murad R, Lei X, Porritt R, Maddocks O, Jurk D, Khosla S, Adams P. Mitochondrial metabolism and epigenetic crosstalk drive the SASP. RESEARCH SQUARE 2024:rs.3.rs-5278203. [PMID: 39678326 PMCID: PMC11643321 DOI: 10.21203/rs.3.rs-5278203/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Senescent cells drive tissue dysfunction through the senescence-associated secretory phenotype (SASP). We uncovered a central role for mitochondria in the epigenetic regulation of the SASP, where mitochondrial-derived metabolites, specifically citrate and acetyl-CoA, fuel histone acetylation at SASP gene loci, promoting their expression. We identified the mitochondrial citrate carrier (SLC25A1) and ATP-citrate lyase (ACLY) as critical for this process. Inhibiting these pathways selectively suppresses SASP without affecting cell cycle arrest, highlighting their potential as therapeutic targets for age-related inflammation. Notably, SLC25A1 inhibition reduces systemic inflammation and extends healthspan in aged mice, establishing mitochondrial metabolism as pivotal to the epigenetic control of aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute
| | | | | | | | | | | | | | - Peter Adams
- Sanford Burnham Prebys Medical Discovery Institute
| |
Collapse
|
12
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
13
|
Zu H, Chen X. Epigenetics behind CD8 + T cell activation and exhaustion. Genes Immun 2024; 25:525-540. [PMID: 39543311 DOI: 10.1038/s41435-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.
Collapse
Affiliation(s)
- Hao Zu
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China
| | - Xiaoqin Chen
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China.
| |
Collapse
|
14
|
Jin W, Jiang S, Liu X, He Y, Li T, Ma J, Chen Z, Lu X, Liu X, Shou W, Jin G, Ding J, Zhou Z. Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A. Nat Commun 2024; 15:10046. [PMID: 39567511 PMCID: PMC11579472 DOI: 10.1038/s41467-024-54338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Studies of laminopathy-based progeria offer insights into aging-associated diseases and highlight the role of LMNA in chromatin organization. Mandibuloacral dysplasia type A (MAD) is a largely unexplored form of atypical progeria that lacks lamin A post-translational processing defects. Using iPSCs derived from a male MAD patient carrying homozygous LMNA p.R527C, premature aging phenotypes are recapitulated in multiple mesenchymal lineages, including mesenchymal stem cells (MSCs). Comparison with 26 human aging MSC expression datasets reveals that MAD-MSCs exhibit the highest similarity to senescent primary human MSCs. Lamina-chromatin interaction analysis reveals reorganization of lamina-associating domains (LADs) and repositioning of non-LAD binding peaks may contribute to the observed accelerated senescence. Additionally, 3D genome organization further supports hierarchical chromatin disorganization in MAD stem cells, alongside dysregulation of genes involved in epigenetic modification, stem cell fate maintenance, senescence, and geroprotection. Together, these findings suggest LMNA missense mutation is linked to chromatin alterations in an atypical progeroid syndrome.
Collapse
Affiliation(s)
- Wei Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Jingchun Ma
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zhihong Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Department of Andrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, China
| | - Weinian Shou
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Key Laboratory for Immune and Genetic Research of Chronic Nephropathy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
15
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Ke H, Zhang X, Liang S, Zhou C, Hu Y, Huang Q, Wu J. Study on the anti-skin aging effect and mechanism of Sijunzi Tang based on network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118421. [PMID: 38880400 DOI: 10.1016/j.jep.2024.118421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si Jun Zi Tang (SJZT) is a famous traditional Chinese medicine formula composing of 4 herbal medicines (Ginseng Radix et Rhizoma, Atractylodis macrocephalae Rhizoma, Poria, and Glycyrrhizae Radix et Rhizoma) with tonifying spleen and anti-aging effects. It is also known that SJZT can be used to tone, nourish the skin and accelerate wound healing. However, due to the complexity of the formulation, the anti-aging especially anti-skin aging mechanisms as well as the key components of SJZT have not been fully investigated. Therefore, further in vitro and in vivo experimental studies are particularly needed to investigate the anti-skin ageing efficacy of SJZT. AIM OF THE STUDY The purpose of this article was to explore the therapeutic effect and possible pharmacological mechanism of SJZT in the treatment of skin aging by topical application using network pharmacology and to validate the findings using in vitro and in vivo tests. MATERIALS AND METHODS Network pharmacology method was applied to predict the underlying biological function and mechanism involved in the anti-skin aging effect of SJZT. Molecular docking was used to preliminarily predict the active components of SJZT-Skin Aging. UPLC QTOF MS/MS was carried out to analyze the chemical compounds. Finally, to confirm the anti-skin aging effort of SJZT, a mouse skin-aging model and UVB-induced EpiSCs (epidermal stem cells) senescence model were established. RESULTS PPI network analysis and KEGG studies indicated that TP53, CDKN2A, TNF, IL6, and IL1B might be parts of the core targets associated with EpiSCs senescence. Furthermore, molecular docking suggested the top active components, glycyrrhizin, ginsenoside Rg5, ginsenoside Rh2, liquiritin, polyporenic acid C and atractylenolide II showed strong affinity to the key proteins involved in cellular senescence signaling. UPLC QTOF MS/MS analysis of SJZT confirmed the presence of these key components. In-vivo experiments revealed that SJZT could improve UVB-induced skin thickening, increase the number of collagen fibers, strengthen the structure of elastin fibers, and decrease the expression of MDA, as well as increase the expression of CAT and T-SOD in the skin tissue of mouse. And, in-vitro experiments indicated that SJZT could reduce ROS generation and oxidative stress, increase mitochondrial membrane potential, and upregulate the expression of stem cell markers. Moreover, SJZT could suppress the expression of p53, p-p53 and p21, downregulated p38 phosphorylation. Furthermore, the anti-cellular senescence effect of SJZT on EpiSCs disappeared after treatment with the p38 inhibitor adesmapimod. Taken all together, the regulation of senescence signaling in EpiSCs is an important mechanism of SJZT in combating skin aging. CONCLUSION The research results indicate that SJZT has anti-skin aging effects on UVB-induced skin-aging model, possibly by mediating p38/p53 signaling pathway. These findings strongly demonstrate the great potential of SJZT as an active composite for anti-skin aging and cosmeceutical applications.
Collapse
Affiliation(s)
- Hui Ke
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xingjiang Zhang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Shuang Liang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Chengyue Zhou
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yunwei Hu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Qing Huang
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Jianxin Wu
- Skin Health and Cosmetic Development & Evaluation Laboratory, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
17
|
Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. NPJ AGING 2024; 10:48. [PMID: 39448585 PMCID: PMC11502686 DOI: 10.1038/s41514-024-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Senescence and epigenetic alterations stand out as two well-characterized hallmarks of aging. When cells become senescent, they cease proliferation and release inflammatory molecules collectively termed the Senescence-Associated Secretory Phenotype (SASP). Senescence and SASP are implicated in numerous age-related diseases. Senescent cell nuclei undergo epigenetic reprogramming, which intricately regulates SASP expression. This review outlines the current understanding of how senescent cells undergo epigenetic changes and how these alterations govern SASP expression.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rouven Arnold
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anais Equey
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
18
|
Vera R, Lamberti MJ, Gonzalez AL, Fernandez-Zapico ME. Epigenetic regulation of the tumor microenvironment: A leading force driving pancreatic cancer. Pancreatology 2024; 24:878-886. [PMID: 39095296 PMCID: PMC11994899 DOI: 10.1016/j.pan.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Dysregulation of the epigenomic landscape of tumor cells has been implicated in the pathogenesis of pancreatic cancer. However, these alterations are not only restricted to neoplastic cells. The behavior of other cell populations in the tumor stroma such as cancer-associated fibroblasts, immune cells, and others are mostly regulated by epigenetic pathways. Here, we present an overview of the main cellular and acellular components of the pancreatic cancer tumor microenvironment and discuss how the epigenetic mechanisms operate at different levels in the stroma to establish a differential gene expression to regulate distinct cellular phenotypes contributing to pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Renzo Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN, 55901, USA.
| | - María Julia Lamberti
- INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, 5800, Argentina
| | - Alina L Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Santa Rosa, Argentina
| | | |
Collapse
|
19
|
Ma F, Cao Y, Du H, Braikia FZ, Zong L, Ollikainen N, Bayer M, Qiu X, Park B, Roy R, Nandi S, Sarantopoulou D, Ziman A, Bianchi AH, Beerman I, Zhao K, Grosschedl R, Sen R. Three-dimensional chromatin reorganization regulates B cell development during ageing. Nat Cell Biol 2024; 26:991-1002. [PMID: 38866970 PMCID: PMC11178499 DOI: 10.1038/s41556-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.
Collapse
Affiliation(s)
- Fei Ma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Fatima Zohra Braikia
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Le Zong
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Noah Ollikainen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Marc Bayer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Xiang Qiu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | | | - Aisha Haley Bianchi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
20
|
Bi S, Jiang X, Ji Q, Wang Z, Ren J, Wang S, Yu Y, Wang R, Liu Z, Liu J, Hu J, Sun G, Wu Z, Diao Z, Li J, Sun L, Izpisua Belmonte JC, Zhang W, Liu GH, Qu J. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev Cell 2024; 59:991-1009.e12. [PMID: 38484732 DOI: 10.1016/j.devcel.2024.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ruoqi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| |
Collapse
|
21
|
Ji Q, Jiang X, Wang M, Xin Z, Zhang W, Qu J, Liu GH. Multimodal Omics Approaches to Aging and Age-Related Diseases. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:56-71. [PMID: 38605908 PMCID: PMC11003952 DOI: 10.1007/s43657-023-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 04/13/2024]
Abstract
Aging is associated with a progressive decline in physiological capacities and an increased risk of aging-associated disorders. An increasing body of experimental evidence shows that aging is a complex biological process coordinately regulated by multiple factors at different molecular layers. Thus, it is difficult to delineate the overall systematic aging changes based on single-layer data. Instead, multimodal omics approaches, in which data are acquired and analyzed using complementary omics technologies, such as genomics, transcriptomics, and epigenomics, are needed for gaining insights into the precise molecular regulatory mechanisms that trigger aging. In recent years, multimodal omics sequencing technologies that can reveal complex regulatory networks and specific phenotypic changes have been developed and widely applied to decode aging and age-related diseases. This review summarizes the classification and progress of multimodal omics approaches, as well as the rapidly growing number of articles reporting on their application in the field of aging research, and outlines new developments in the clinical treatment of age-related diseases based on omics technologies.
Collapse
Affiliation(s)
- Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Minxian Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zijuan Xin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190 China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053 China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|
22
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
23
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|
24
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. Aging Cell 2023; 22:e14024. [PMID: 37961030 PMCID: PMC10726832 DOI: 10.1111/acel.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023] Open
Abstract
The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high-throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. For the purpose of identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Our analysis identified lymphoid enhancer binding factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with idiopathic pulmonary fibrosis, an age-related disease with strong ties to cellular senescence, revealed a stark dysregulation of LEF1. Collectively, our results suggest that LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Joint Carnegie Mellon University‐University of Pittsburgh Ph.D. Program in Computational BiologyPittsburghPennsylvaniaUSA
| | - Khaled Sayed
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Electrical & Computer Engineering and Computer ScienceUniversity of New HavenWest HavenConnecticutUSA
| | - Maria G. Kapetanaki
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| | - William Dion
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Saad Irfan
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Eleanor Valenzi
- Department of RheumatologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Robert A. Lafyatis
- Department of RheumatologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Bokai Zhu
- Aging Institute of UPMCUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Panayiotis V. Benos
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Joint Carnegie Mellon University‐University of Pittsburgh Ph.D. Program in Computational BiologyPittsburghPennsylvaniaUSA
- Department of EpidemiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
25
|
Tang L, Deng Y, Lai J, Guo X, Liu P, Li S, Liu X. Predictive Effect of System Inflammation Response Index for Progression of Chronic Kidney Disease in Non-Dialyzing Patient. J Inflamm Res 2023; 16:5273-5285. [PMID: 38026247 PMCID: PMC10659112 DOI: 10.2147/jir.s432699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Scant research has been conducted on the interplay between the systemic inflammation response index (SIRI) and chronic kidney disease (CKD). The present study endeavors to meticulously scrutinize the association between SIRI and renal function. Additionally, we aim to assess its efficacy in predicting the progression of CKD in non-dialysis patients. Patients and Methods Adult patients with CKD who were not undergoing dialysis were enrolled, and follow-up data were obtained. Data from distinct groups were extracted and meticulously compared. A comprehensive analytical approach was adopted, including logistic regression analysis, Kaplan-Meier analysis, Cox proportional hazards regression analysis, and subgroup analysis. Results Our study included 1420 patients, with a mean age of 61 ± 17 years, and 63% were male. 244 (17.2%) patients experienced the progression of CKD. As the level of ln(SIRI) increased, patients tended to be older, with a higher proportion of males, and increased prevalence rates of hypertension, stroke, heart failure, and progression of CKD. Additionally, the levels of baseline creatinine and C-reactive protein were elevated, while the levels of estimated glomerular filtration rate and hemoglobin decreased. Upon adjusting for demographic and biochemical variables, logistic regression analysis indicated that ln(SIRI) was independently associated with advanced CKD in pre-dialysis patients (OR=1.59, 95% CI: 1.29-1.95, P<0.001). Moreover, Cox proportional-hazard analysis revealed that ln(SIRI) independently predicted CKD progression (HR: 1.3, 95% CI: 1.07-1.59, P=0.009). Conducting a subgroup analysis, we observed significant interactions between ln(SIRI) levels and gender (p<0.001), age (p=0.046), and hypertension (p=0.028) in relation to the progression of CKD. Conclusion Our study's findings demonstrate a significant association between SIRI and fundamental renal function, and independently establish a correlation between SIRI and the progression of CKD in pre-dialysis patients. These observations suggest that SIRI holds promise as a potential predictor for CKD progression.
Collapse
Affiliation(s)
- Leile Tang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Ying Deng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiahui Lai
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinghua Guo
- Department of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Peijia Liu
- Department of Nephrology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Shaomin Li
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
26
|
Zhang D, Zhu Y, Ju Y, Zhang H, Zou X, She S, Zhu D, Guan Y. TEAD4 antagonizes cellular senescence by remodeling chromatin accessibility at enhancer regions. Cell Mol Life Sci 2023; 80:330. [PMID: 37856006 PMCID: PMC10587282 DOI: 10.1007/s00018-023-04980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/20/2023]
Abstract
Dramatic alterations in epigenetic landscapes are known to impact genome accessibility and transcription. Extensive evidence demonstrates that senescent cells undergo significant changes in chromatin structure; however, the mechanisms underlying the crosstalk between epigenetic parameters and gene expression profiles have not been fully elucidated. In the present study, we delineate the genome-wide redistribution of accessible chromatin regions that lead to broad transcriptome effects during senescence. We report that distinct senescence-activated accessibility regions (SAAs) are always distributed in H3K27ac-occupied enhancer regions, where they are responsible for elevated flanking senescence-associated secretory phenotype (SASP) expression and aberrant cellular signaling relevant to SASP secretion. Mechanistically, a single transcription factor, TEAD4, moves away from H3K27ac-labled SAAs to allow for prominent chromatin accessibility reconstruction during senescence. The enhanced SAAs signal driven by TEAD4 suppression subsequently induces a robust increase in the expression of adjacent SASP genes and the secretion of downstream factors, which contribute to the progression of senescence. Our findings illustrate a dynamic landscape of chromatin accessibility following senescence entry, and further reveal an insightful function for TEAD4 in regulating the broad chromatin state that modulates the overall transcriptional program of SASP genes.
Collapse
Affiliation(s)
- Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Yanmei Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Xiaopeng Zou
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China
| | - Shangrong She
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Danping Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, 524045, People's Republic of China.
| |
Collapse
|
27
|
Li R, Teng Y, Guo Y, Ren J, Li R, Luo H, Chen D, Feng Z, Fu Z, Zou X, Wang W, Zhou C. Aging-related decrease of histone methyltransferase SUV39H1 in adipose-derived stem cells enhanced SASP. Mech Ageing Dev 2023; 215:111868. [PMID: 37666472 DOI: 10.1016/j.mad.2023.111868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianhan Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhicai Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zheng Fu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
28
|
Chen Y, Xie K, Han Y, Xu Q, Zhao X. An Easy-to-Use Nomogram Based on SII and SIRI to Predict in-Hospital Mortality Risk in Elderly Patients with Acute Myocardial Infarction. J Inflamm Res 2023; 16:4061-4071. [PMID: 37724318 PMCID: PMC10505402 DOI: 10.2147/jir.s427149] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023] Open
Abstract
Aim Inflammatory response is closely associated with poor prognosis in elderly patients with acute myocardial infarction (AMI). The aim of this study was to develop an easy-to-use predictive model based on medical history data at admission, systemic immune inflammatory index (SII), and systemic inflammatory response index (SIRI) to predict the risk of in-hospital mortality in elderly patients with AMI. Methods We enrolled 1550 elderly AMI patients (aged ≥60 years) with complete medical history data and randomized them 5:5 to the training and validation cohorts. Univariate and multivariate logistic regression analyses were used to screen risk factors associated with outcome events (in-hospital death) and to establish a nomogram. The discrimination, calibration, and clinical application value of nomogram were evaluated based on receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA), respectively. Results The results of multivariate logistic regression showed that age, body mass index (BMI), previous stroke, diabetes, SII, and SIRI were associated with in-hospital death, and these indicators will be included in the final prediction model, which can be obtained by asking the patient's medical history and blood routine examination in the early stage of admission and can improve the utilization rate of the prediction model. The areas under the ROC curve for the training and validation cohorts nomogram were 0.824 (95% CI 0.796 to 0.851) and 0.809 (95% CI 0.780 to 0.836), respectively. Calibration curves and DCA showed that nomogram could better predict the risk of in-hospital mortality in elderly patients with AMI. Conclusion The nomogram constructed by combining SII, SIRI, and partial medical history data (age, BMI, previous stroke, and diabetes) at admission has a good predictive effect on the risk of in-hospital death in elderly patients with AMI.
Collapse
Affiliation(s)
- Yan Chen
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Kailing Xie
- Department of Second Clinical College, China Medical University, Shenyang, People’s Republic of China
| | - Yuanyuan Han
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Qing Xu
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Xin Zhao
- Department of Cardiology, the Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
29
|
Jia M, Sayed K, Kapetanaki MG, Dion W, Rosas L, Irfan S, Valenzi E, Mora AL, Lafyatis RA, Rojas M, Zhu B, Benos PV. LEF1 isoforms regulate cellular senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549883. [PMID: 37502913 PMCID: PMC10370160 DOI: 10.1101/2023.07.20.549883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. Methods With the focus on identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Results We identified Lymphoid Enhancer Binding Factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with Idiopathic Pulmonary Fibrosis (IPF), an age-related disease with strong ties to cellular senescence, we demonstrated a stark dysregulation of LEF1. Conclusions Collectively, our results suggest that the LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.
Collapse
Affiliation(s)
- Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
| | - Khaled Sayed
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| | - Maria G. Kapetanaki
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eleanor Valenzi
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Robert A. Lafyatis
- Department of Rheumatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Han JDJ. LncRNAs: the missing link to senescence nuclear architecture. Trends Biochem Sci 2023; 48:618-628. [PMID: 37069045 DOI: 10.1016/j.tibs.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
31
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
32
|
Martínez-Zamudio RI, Stefa A, Nabuco Leva Ferreira Freitas JA, Vasilopoulos T, Simpson M, Doré G, Roux PF, Galan MA, Chokshi RJ, Bischof O, Herbig U. Escape from oncogene-induced senescence is controlled by POU2F2 and memorized by chromatin scars. CELL GENOMICS 2023; 3:100293. [PMID: 37082139 PMCID: PMC10112333 DOI: 10.1016/j.xgen.2023.100293] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/22/2023]
Abstract
Although oncogene-induced senescence (OIS) is a potent tumor-suppressor mechanism, recent studies revealed that cells could escape from OIS with features of transformed cells. However, the mechanisms that promote OIS escape remain unclear, and evidence of post-senescent cells in human cancers is missing. Here, we unravel the regulatory mechanisms underlying OIS escape using dynamic multidimensional profiling. We demonstrate a critical role for AP1 and POU2F2 transcription factors in escape from OIS and identify senescence-associated chromatin scars (SACSs) as an epigenetic memory of OIS detectable during colorectal cancer progression. POU2F2 levels are already elevated in precancerous lesions and as cells escape from OIS, and its expression and binding activity to cis-regulatory elements are associated with decreased patient survival. Our results support a model in which POU2F2 exploits a precoded enhancer landscape necessary for senescence escape and reveal POU2F2 and SACS gene signatures as valuable biomarkers with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Ricardo Iván Martínez-Zamudio
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Alketa Stefa
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - José Américo Nabuco Leva Ferreira Freitas
- Sorbonne Université, UMR 8256, Biological Adaptation and Ageing – IBPS, 75005 Paris, France
- INSERM U1164, 75005 Paris, France
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Themistoklis Vasilopoulos
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Graduate School of Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103 USA
| | - Mark Simpson
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Gregory Doré
- Institut Pasteur, Plasmodium RNA Biology Unit, 25 Rue du Docteur Roux, 75724 Cedex 15 Paris, France
| | - Pierre-François Roux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Mark A. Galan
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ravi J. Chokshi
- Department of Surgery, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 – Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil 8, rue du Général Sarrail, 94010 Créteil, France
| | - Utz Herbig
- Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
33
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
34
|
Tan Y, Zhang C, Li D, Huang J, Liu Z, Chen T, Zou X, Qin B. Bibliometric and visualization analysis of global research trends on immunosenescence (1970-2021). Exp Gerontol 2023; 173:112089. [PMID: 36646295 DOI: 10.1016/j.exger.2023.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. METHODS Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. RESULTS In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on "inflammaging", "gut microbiota", "cellular senescence", and "COVID-19". CONCLUSIONS Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chuanhe Zhang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Tianyu Chen
- Medical Department, Wuxi Second People's Hospital, Wuxi, China
| | - Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| |
Collapse
|
35
|
Xia Y, Xia C, Wu L, Li Z, Li H, Zhang J. Systemic Immune Inflammation Index (SII), System Inflammation Response Index (SIRI) and Risk of All-Cause Mortality and Cardiovascular Mortality: A 20-Year Follow-Up Cohort Study of 42,875 US Adults. J Clin Med 2023; 12:jcm12031128. [PMID: 36769776 PMCID: PMC9918056 DOI: 10.3390/jcm12031128] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND AIM Chronic low-grade inflammation is associated with various health outcomes, including cardiovascular diseases (CVDs) and cancers. Systemic immune inflammation index (SII) and system inflammation response index (SIRI) have lately been explored as novel prognostic markers for all-cause mortality and cardiovascular mortality. However, studies on prediction value in nationwide representative population are scarce, which limit their generalization. To bridge the knowledge gap, this study aims to prospectively assess the association of SII, SIRI with all-cause mortality and cardiovascular mortality in the National Health and Nutrition Examination Survey (NHANES). METHODS From 1999 to 2018, 42,875 adults who were free of pregnancy, CVDs (stroke, acute coronary syndrome), cancers, and had follow-up records and participated in the NHANES were included in this study. SII and SIRI were quantified by calculating the composite inflammation indicators from the blood routine. To explore the characteristics of the population in different SII or SIRI levels, we divided them according to the quartile of SII or SIRI. The associations between SII, SIRI, and all-cause mortality and cardiovascular mortality events were examined using a Cox regression model. To investigate whether there was a reliable relationship between these two indices and mortalities, we performed subgroup analysis based on sex and age. RESULTS A total of 42,875 eligible individuals were enrolled, with a mean age of 44 ± 18 years old. During the follow-up period of up to 20 years, 4250 deaths occurred, including 998 deaths from CVDs. Cox proportional hazards modeling showed that adults with SII levels of >655.56 had higher all-cause mortality (hazard ratio [HR], 1.29; 95% confidence interval [CI], 1.18-1.41) and cardiovascular mortality (HR, 1.33; 95% CI, 1.11-1.59) than those with SII levels of <335.36. Adults with SIRI levels of >1.43 had higher risk of all-cause (HR, 1.39; 95% CI, 1.26-1.52) and cardiovascular death (HR, 1.39; 95% CI, 1.14-1.68) than those with SIRI levels of <0.68. In general population older than 60 years, the elevation of SII or SIRI was associated with the risk of all-cause death. CONCLUSION Two novel inflammatory composite indices, SII and SIRI, were closely associated with cardiovascular death and all-cause death, and more attention should be paid to systemic inflammation to provide better preventive strategies.
Collapse
Affiliation(s)
- Yiyuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chunlei Xia
- Department of Intensive Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Lida Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zheng Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Junxia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Correspondence: ; Tel.: +86-153-6615-5682
| |
Collapse
|
36
|
Su Z, Su H, Xu J, Wei G, Qu L, Ni T, Yang D, Zhu Y. Histone methyltransferase Smyd2 drives vascular aging by its enhancer-dependent activity. Aging (Albany NY) 2022; 15:70-91. [PMID: 36585926 PMCID: PMC9876634 DOI: 10.18632/aging.204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Vascular aging is one of the important factors contributing to the pathogenesis of cardiovascular diseases. However, the systematic epigenetic regulatory mechanisms during vascular aging are still unclear. Histone methyltransferase SET and MYND domain-containing protein 2 (Smyd2) is associated with multiple diseases including cancer and inflammatory diseases, but whether it is involved in endothelial cell senescence and aging-related cardiovascular diseases has not been directly proved. Thus, we aim to address the effects of Smyd2 on regulating angiotensin II (Ang II)-induced vascular endothelial cells (VECs) senescence and its epigenetic mechanism. METHODS AND RESULTS The regulatory role of Smyd2 in Ang II-induced VECs senescence was confirmed by performing loss and gain function assays. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis was used to systematically screen the potential enhancer during VECs senescence. Here, we found that Smyd2 was significantly upregulated in Ang II-triggered VECs, and deficiency of Smyd2 attenuated senescence-associated phenotypes both in vitro and in vivo. Mechanically, Ang II-induced upregulation of Smyd2 could increase the mono-methylation level of histone 3 lysine 4 (H3K4me1), resulting in a hyper-methylated chromatin state, then further activating enhancers adjacent to key aging-related genes, such as Cdkn1a and Cdkn2a, finally driving the development of vascular aging. CONCLUSIONS Collectively, our study uncovered that Smyd2 drives a hyper-methylated chromatin state via H3K4me1 and actives the enhancer elements adjacent to key senescence genes such as Cdkn1a and Cdkn2a, and further induces the senescence-related phenotypes. Targeting Smyd2 possibly unveiled a novel therapeutic candidate for vascular aging-related diseases.
Collapse
Affiliation(s)
- Zhenghua Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Haibi Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Jie Xu
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Gang Wei
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ting Ni
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Di Yang
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Yizhun Zhu
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 999078, P.R. China
| |
Collapse
|
37
|
Zhao X, Peng T, Cao X, Hou Y, Li R, Han T, Fan Z, Zhao M, Chang Y, Chen H, Li C, Huang X. In vivo G-CSF treatment activates the GR-SOCS1 axis to suppress IFN-γ secretion by natural killer cells. Cell Rep 2022; 40:111342. [PMID: 36103837 DOI: 10.1016/j.celrep.2022.111342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that are involved in controlling tumors or microbial infections through the production of interferon gamma (IFN-γ). Granulocyte colony-stimulating factor (G-CSF) inhibits IFN-γ secretion by NK cells, but the mechanism underlying this effect remains unclear. Here, by comparing the multi-omics profiles of human NK cells before and after in vivo G-CSF treatment, we identify a pathway that is activated in response to G-CSF treatment, which suppresses IFN-γ secretion in NK cells. Specifically, glucocorticoid receptors (GRs) activated by G-CSF inhibit secretion of IFN-γ by promoting interactions between SOCS1 promoters and enhancers, as well as increasing the expression of SOCS1. Experiments in mice confirm that G-CSF treatment significantly downregulates IFN-γ secretion and upregulates GR and SOCS1 expression in NK cells. In addition, GR blockade by the antagonist RU486 significantly reverses the effects of G-CSF, demonstrating that GRs upregulate SOCS1 and inhibit the production of IFN-γ by NK cells.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting Peng
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xunhong Cao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingping Hou
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Ruifeng Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zeying Fan
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hebin Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Xiaojun Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
38
|
Liang Z, Zhang T, Liu H, Li Z, Peng L, Wang C, Wang T. Inflammaging: The ground for sarcopenia? Exp Gerontol 2022; 168:111931. [PMID: 35985553 DOI: 10.1016/j.exger.2022.111931] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a progressive skeletal muscle disease that occurs most commonly in the elderly population, contributing to increased costs and hospitalization. Exercise and nutritional therapy have been proven to be effective for sarcopenia, and some drugs can also alleviate declines in muscle mass and function due to sarcopenia. However, there is no specific pharmacological treatment for sarcopenia at present. This review will mainly discuss the relationship between inflammaging and sarcopenia. The increased secretion of proinflammatory cytokines with aging may be because of cellular senescence, immunosenescence, alterations in adipose tissue, damage-associated molecular patterns (DAMPs), and gut microbes due to aging. These sources of inflammaging can impact the sarcopenia process through direct or indirect pathways. Conversely, sarcopenia can also aggravate the process of inflammaging, creating a vicious cycle. Targeting sources of inflammaging can influence muscle function, which could be considered a therapeutic target for sarcopenia. Moreover, not only proinflammatory cytokines but also anti-inflammatory cytokines can influence muscle and inflammation and participate in the progression of sarcopenia. This review focuses on the effects of TNF-α, IL-6, and IL-10, which can be detected in plasma. Therefore, clearing chronic inflammation by targeting proinflammatory cytokines (TNF-α, IL-1, IL-6) and the inflammatory pathway (JAK/STAT, autophagy, NF-κB) may be effective in treating sarcopenia.
Collapse
Affiliation(s)
- Zejun Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianxiao Zhang
- School of Healthcare Sciences, Cardiff University, Health Park, CF14 4XN Wales, UK
| | - Honghong Liu
- West China School of Nursing/West China Hospital, Sichuan University, NO.37 Alley, Chengdu 610041, Sichuan, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, PR China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
39
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
40
|
Di Giorgio E, Xodo LE. Endogenous Retroviruses (ERVs): Does RLR (RIG-I-Like Receptors)-MAVS Pathway Directly Control Senescence and Aging as a Consequence of ERV De-Repression? Front Immunol 2022; 13:917998. [PMID: 35757716 PMCID: PMC9218063 DOI: 10.3389/fimmu.2022.917998] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bi-directional transcription of Human Endogenous Retroviruses (hERVs) is a common feature of autoimmunity, neurodegeneration and cancer. Higher rates of cancer incidence, neurodegeneration and autoimmunity but a lower prevalence of autoimmune diseases characterize elderly people. Although the re-expression of hERVs is commonly observed in different cellular models of senescence as a result of the loss of their epigenetic transcriptional silencing, the hERVs modulation during aging is more complex, with a peak of activation in the sixties and a decline in the nineties. What is clearly accepted, instead, is the impact of the re-activation of dormant hERV on the maintenance of stemness and tissue self-renewing properties. An innate cellular immunity system, based on the RLR-MAVS circuit, controls the degradation of dsRNAs arising from the transcription of hERV elements, similarly to what happens for the accumulation of cytoplasmic DNA leading to the activation of cGAS/STING pathway. While agonists and inhibitors of the cGAS-STING pathway are considered promising immunomodulatory molecules, the effect of the RLR-MAVS pathway on innate immunity is still largely based on correlations and not on causality. Here we review the most recent evidence regarding the activation of MDA5-RIG1-MAVS pathway as a result of hERV de-repression during aging, immunosenescence, cancer and autoimmunity. We will also deal with the epigenetic mechanisms controlling hERV repression and with the strategies that can be adopted to modulate hERV expression in a therapeutic perspective. Finally, we will discuss if the RLR-MAVS signalling pathway actively modulates physiological and pathological conditions or if it is passively activated by them.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| | - Luigi E Xodo
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
41
|
Liu Z, Belmonte JCI, Zhang W, Qu J, Liu GH. Deciphering aging at three-dimensional genomic resolution. CELL INSIGHT 2022; 1:100034. [PMID: 37193050 PMCID: PMC10120299 DOI: 10.1016/j.cellin.2022.100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 05/18/2023]
Abstract
Aging is characterized by progressive functional declines at the organismal, organic, and cellular levels and increased susceptibility to aging-related diseases. Epigenetic alteration is a hallmark of aging, senescent cells show epigenomic changes at multiple scales, such as 3D genome reorganization, alterations of histone modifications and chromatin accessibility, and DNA hypomethylation. Chromosome conformation capture (3C)-based technologies have enabled the generation of key information on genomic reorganizations during senescence. A comprehensive understanding of epigenomic alterations during aging will yield important insights into the underlying epigenetic mechanism for aging regulation, the identification of aging-related biomarkers, and the development of potential aging intervention targets.
Collapse
Affiliation(s)
- Zunpeng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
42
|
Liu Z, Ji Q, Ren J, Yan P, Wu Z, Wang S, Sun L, Wang Z, Li J, Sun G, Liang C, Sun R, Jiang X, Hu J, Ding Y, Wang Q, Bi S, Wei G, Cao G, Zhao G, Wang H, Zhou Q, Belmonte JCI, Qu J, Zhang W, Liu GH. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev Cell 2022; 57:1347-1368.e12. [PMID: 35613614 DOI: 10.1016/j.devcel.2022.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023]
Abstract
Nuclear deformation, a hallmark frequently observed in senescent cells, is presumed to be associated with the erosion of chromatin organization at the nuclear periphery. However, how such gradual changes in higher-order genome organization impinge on local epigenetic modifications to drive cellular mechanisms of aging has remained enigmatic. Here, through large-scale epigenomic analyses of isogenic young, senescent, and progeroid human mesenchymal progenitor cells (hMPCs), we delineate a hierarchy of integrated structural state changes that manifest as heterochromatin loss in repressive compartments, euchromatin weakening in active compartments, switching in interfacing topological compartments, and increasing epigenetic entropy. We found that the epigenetic de-repression unlocks the expression of pregnancy-specific beta-1 glycoprotein (PSG) genes that exacerbate hMPC aging and serve as potential aging biomarkers. Our analyses provide a rich resource for uncovering the principles of epigenomic landscape organization and its changes in cellular aging and for identifying aging drivers and intervention targets with a genome-topology-based mechanism.
Collapse
Affiliation(s)
- Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/ Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoguang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
43
|
Nojima I, Hosoda R, Toda Y, Saito Y, Ueda N, Horimoto K, Iwahara N, Horio Y, Kuno A. Downregulation of IGFBP5 contributes to replicative senescence via ERK2 activation in mouse embryonic fibroblasts. Aging (Albany NY) 2022; 14:2966-2988. [PMID: 35378512 PMCID: PMC9037271 DOI: 10.18632/aging.203999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) are secretory proteins that regulate IGF signaling. In this study, we investigated the role of IGFBP5 in replicative senescence in embryonic mouse fibroblasts (MEFs). During passages according to the 3T3 method, MEFs underwent senescence after the 5th passage (P5) based on cell growth arrest, an increase in the number of cells positive for senescence-associated β-galactosidase (SA-β-GAL) staining, and upregulation of p16 and p19. In P8 MEFs, IGFBP5 mRNA level was markedly reduced compared with that in P2 MEFs. Downregulation of IGFBP5 via siRNA in P2 MEFs increased the number of SA-β-GAL-positive cells, upregulated p16 and p19, and inhibited cell growth. Incubation of MEFs with IGFBP5 during serial passage increased the cumulative population doubling and decreased SA-β-GAL positivity compared with those in vehicle-treated cells. IGFBP5 knockdown in P2 MEFs increased phosphorylation levels of ERK1 and ERK2. Silencing of ERK2, but not that of ERK1, blocked the increase in the number of SA-β-GAL-positive cells in IGFBP5-knockdown cells. The reduction in the cell number and upregulation of p16 and p21 in IGFBP5-knockdown cells were attenuated by ERK2 knockdown. Our results suggest that downregulation of IGFBP5 during serial passage contributes to replicative senescence via ERK2 in MEFs.
Collapse
Affiliation(s)
- Iyori Nojima
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiki Saito
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naohiro Ueda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kouhei Horimoto
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
44
|
Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res 2022; 24:17. [PMID: 35248122 PMCID: PMC8898415 DOI: 10.1186/s13058-022-01510-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are now an established standard of care for patients with advanced hormone receptor-positive breast cancer. The canonical mechanism underlying CDK4/6 inhibitor activity is the suppression of phosphorylation of the retinoblastoma tumor suppressor protein, which serves to prevent cancer cell proliferation. Recent data suggest that these agents induce other diverse effects within both tumor and stromal compartments, which serve to explain aspects of their clinical activity. Here, we review these phenomena and discuss how they might be leveraged in the development of novel CDK4/6 inhibitor-containing combination treatments. We also briefly review the various known mechanisms of acquired resistance in the clinical setting.
Collapse
Affiliation(s)
- April C Watt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Shom Goel
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
45
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein Cell 2022; 13:742-759. [PMID: 35023014 PMCID: PMC9233726 DOI: 10.1007/s13238-021-00894-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/26/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knockdown of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.
Collapse
|
47
|
Liu Y, Chen Y, Wang Y, Jiang S, Lin W, Wu Y, Li Q, Guo Y, Liu W, Yuan Q. DNA demethylase ALKBH1 promotes adipogenic differentiation via regulation of HIF-1 signaling. J Biol Chem 2021; 298:101499. [PMID: 34922943 PMCID: PMC8760519 DOI: 10.1016/j.jbc.2021.101499] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
DNA 6-adenine methylation (6mA), as a novel adenine modification existing in eukaryotes, shows essential functions in embryogenesis and mitochondrial transcriptions. ALKBH1 is a demethylase of 6mA and plays critical roles in osteogenesis, tumorigenesis, and adaptation to stress. However, the integrated biological functions of ALKBH1 still require further exploration. Here, we demonstrate that knockdown of ALKBH1 inhibits adipogenic differentiation in both human mesenchymal stem cells (hMSCs) and 3T3-L1 preadipocytes, while overexpression of ALKBH1 leads to increased adipogenesis. Using a combination of RNA-seq and N6-mA-DNA-IP-seq analyses, we identify hypoxia-inducible factor-1 (HIF-1) signaling as a crucial downstream target of ALKBH1 activity. Depletion of ALKBH1 leads to hypermethylation of both HIF-1α and its downstream target GYS1. Simultaneous overexpression of HIF-1α and GYS1 restores the adipogenic commitment of ALKBH1-deficient cells. Taken together, our data indicate that ALKBH1 is indispensable for adipogenic differentiation, revealing a novel epigenetic mechanism that regulates adipogenesis.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China.
| |
Collapse
|
48
|
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Int J Mol Sci 2021; 22:12234. [PMID: 34830117 PMCID: PMC8618106 DOI: 10.3390/ijms222212234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Bart Cuypers
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Herald Berghmans
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Jelle Verdonck
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
| | - Kris Laukens
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| |
Collapse
|
49
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
50
|
Uddin MS, Yu WS, Lim LW. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Res Rev 2021; 70:101417. [PMID: 34339860 DOI: 10.1016/j.arr.2021.101417] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
One evident hallmark of Alzheimer's disease (AD) is the irregular accumulation of proteins due to changes in proteostasis involving endoplasmic reticulum (ER) stress. To alleviate ER stress and reinstate proteostasis, cells undergo an integrated signaling cascade called the unfolded protein response (UPR) that reduces the number of misfolded proteins and inhibits abnormal protein accumulation. Aging is associated with changes in the expression of ER chaperones and folding enzymes, leading to the impairment of proteostasis, and accumulation of misfolded proteins. The disrupted initiation of UPR prevents the elimination of unfolded proteins, leading to ER stress. In AD, the accumulation of misfolded proteins caused by sustained cellular stress leads to neurodegeneration and neuronal death. Current research has revealed that ER stress can trigger an inflammatory response through diverse transducers of UPR. Although the involvement of a neuroinflammatory component in AD has been documented for decades, whether it is a contributing factor or part of the neurodegenerative events is so far unknown. Besides, a feedback loop occurs between neuroinflammation and ER stress, which is strongly associated with neurodegenerative processes in AD. In this review, we focus on the current research on ER stress and UPR in cellular aging and neuroinflammatory processes, leading to memory impairment and synapse dysfunction in AD.
Collapse
|