1
|
Wu K, Zhou J, Tang Y, Zhang Q, Xiong L, Li X, Zhuo Z, Luo M, Yuan Y, Liu X, Zhong Z, Guo X, Yu Z, Sheng X, Luo G, Chen H. Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila. PLoS Biol 2025; 23:e3003121. [PMID: 40261911 PMCID: PMC12013949 DOI: 10.1371/journal.pbio.3003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Human Werner syndrome (adult progeria, a well-established model of human aging) is caused by mutations in the Werner syndrome (WRN) gene. However, the expression patterns and functions of WRN in natural aging remain poorly understood. Despite the link between WRN deficiencies and progeria, our analyses of human colon tissues, mouse crypts, and Drosophila midguts revealed that WRN expression does not decrease but rather increases in intestinal stem cells (ISCs) with aging. Mechanistically, we found that the Drosophila WRN homologue (WRNexo) binds to Heat shock 70-kDa protein cognate 3 (Hsc70-3/Bip) to regulate the unfolded protein response of the endoplasmic reticulum (UPRER). Activation of the WRNexo-mediated UPRER in ISCs is required for ISC proliferation during injury repair. However, persistent DNA damage during aging leads to chronic upregulation of WRNexo in ISCs, where excessive WRNexo-induced ER stress drives age-associated gut hyperplasia in Drosophila. This study reveals how elevated WRNexo contributes to stem cell aging, providing new insights into organ aging and the pathogenesis of age-related diseases, such as colon cancer.
Collapse
Affiliation(s)
- Kun Wu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yiming Tang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoqiao Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - XiaoXin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Sheng
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Metabolism and Aging, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Lee J, Kim D, Cha SJ, Lee JW, Lee EY, Kim HJ, Kim K. Tau reduction impairs nephrocyte function in Drosophila. BMB Rep 2025; 58:169-174. [PMID: 39757203 PMCID: PMC12041923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 01/07/2025] Open
Abstract
Tau, a microtubule-associated protein, is known for its significant involvement in neurodegenerative diseases. While various molecular and immunohistochemical techniques have confirmed the presence of Tau in podocytes, its precise function within these cells remains elusive. In this study, we investigate the role of Tau in kidney podocytes using Drosophila pericardial nephrocytes as a model. We found that knockdown of Drosophila Tau in nephrocytes resulted in apoptotic cell death and the disruption of nephrocyte structure. Furthermore, we observed that decreased Tau levels induced genomic damage and abnormal distribution of γ-H2Av, altering nuclei architecture in nephrocytes, and affecting the nuclear membrane structure by interfering with lamin with aging. Additionally, Tau knockdown led to a reduction in lipid droplets in Drosophila fat body tissues, suggesting a potential role of Tau in inter-organ communication. These findings underscore the importance of Tau in the nephrocytes of Drosophila, and advocate further research to broaden our understanding of podocyte biology in kidney diseases. [BMB Reports 2025; 58(4): 169-174].
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Dayoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Sun Joo Cha
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Jang-Won Lee
- Department of Integrated Bio-Industry, Sejong University, Seoul 05006, Korea
| | - Eun-Young Lee
- Division of Nephrology, Department of Internal Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
3
|
Molano-Fernández M, Hickson ID, Herranz H. Replication stress promotes cellular transformation in Drosophila epithelium. Cell Death Discov 2025; 11:96. [PMID: 40075075 PMCID: PMC11904189 DOI: 10.1038/s41420-025-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The accurate control of DNA replication is crucial for the maintenance of genomic stability and cell viability. In this study, we explore the consequences of depleting the replicative DNA Polymerase α (POLA) in the wing disc of Drosophila melanogaster. Our findings reveal that reduced POLA activity induces DNA replication stress and activates the replication checkpoint in vivo. Consistent with this, we demonstrate that dATR, a key component in DNA replication checkpoint signaling, is essential for the maintenance of tissue integrity under conditions of compromised POLA activity. We show that cells within the wing disc exhibiting reduced POLA activity arrest in the G2 phase and undergo p53-dependent apoptosis. We also reveal a critical role for DNA Ligase 4 in sustaining cell viability when POLA function is impaired. Most notably, we report the appearance of oncogenic traits in wing disc cells with diminished POLA activity when apoptosis is suppressed. In this context, the overexpression of the oncogene cdc25/string enhances the oncogenic phenotype. These results indicate that a combination of oncogenic activation, replication stress, and suppression of apoptosis is sufficient to promote the emergence of hallmarks of tumorigenesis, highlighting major implications for cancer development in humans.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Gong P, Guo Z, Wang S, Gao S, Cao Q. Histone Phosphorylation in DNA Damage Response. Int J Mol Sci 2025; 26:2405. [PMID: 40141048 PMCID: PMC11941871 DOI: 10.3390/ijms26062405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The DNA damage response (DDR) is crucial for maintaining genomic stability and preventing the accumulation of mutations that can lead to various diseases, including cancer. The DDR is a complex cellular regulatory network that involves DNA damage sensing, signal transduction, repair, and cell cycle arrest. Modifications in histone phosphorylation play important roles in these processes, facilitating DNA repair factor recruitment, damage signal transduction, chromatin remodeling, and cell cycle regulation. The precise regulation of histone phosphorylation is critical for the effective repair of DNA damage, genomic integrity maintenance, and the prevention of diseases such as cancer, where DNA repair mechanisms are often compromised. Thus, understanding histone phosphorylation in the DDR provides insights into DDR mechanisms and offers potential therapeutic targets for diseases associated with genomic instability, including cancers.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Shufeng Gao
- Hunan Institute of Microbiology, Changsha 410009, China; (Z.G.); (S.W.); (S.G.)
| | - Qinhong Cao
- College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| |
Collapse
|
5
|
Davis BEM, Snedeker J, Ranjan R, Wooten M, Barton SS, Blundon J, Chen X. Increased levels of lagging strand polymerase α in an adult stem cell lineage affect replication-coupled histone incorporation. SCIENCE ADVANCES 2025; 11:eadu6799. [PMID: 40020063 PMCID: PMC11870066 DOI: 10.1126/sciadv.adu6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Stem cells display asymmetric histone inheritance, while nonstem progenitor cells exhibit symmetric patterns in the Drosophila male germ line. Here, we report that components involved in lagging strand synthesis, DNA polymerases α and δ, have substantially reduced levels in stem cells compared to progenitor cells, and this promotes local asymmetry of parental histone incorporation at the replication fork. Compromising Polα genetically induces the local replication-coupled histone incorporation pattern in progenitor cells to resemble that in stem cells, seen by both nuclear localization patterns and chromatin fibers. This is recapitulated using a Polα inhibitor in a concentration-dependent manner. The local old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S phase and M phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in nonstem cells to resemble those in stem cells.
Collapse
Affiliation(s)
- Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Savannah Sáde Barton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Selmi I, Texier M, Aguirrenbegoa M, Merce C, Fraisse-Lepourry L, Mugat B, Mohamed M, Chambeyron S, Cribbs D, Di Stefano L. The histone demethylase dLsd1 regulates organ size by silencing transposable elements. Commun Biol 2025; 8:272. [PMID: 39979483 PMCID: PMC11842725 DOI: 10.1038/s42003-025-07724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
The specific role of chromatin modifying factors in the timely execution of transcriptional changes in gene expression to regulate organ size remains largely unknown. Here, we report that in Drosophila melanogaster depletion of the histone demethylase dLsd1 results in the reduction of wing size. dLsd1 depletion affects cell proliferation and causes an increase in DNA damage and cell death. Mechanistically, we have identified Transposable Elements (TEs) as critical dLsd1 targets for organ size determination. We found that upon dLsd1 loss many TE families are upregulated, and new TE insertions appear. By blocking this new TE activity, we could rescue the wing size phenotype. Collectively, our results reveal that the histone demethylase dLsd1 and maintenance of TE homeostasis are required to ensure proper wing size.
Collapse
Affiliation(s)
- Ines Selmi
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manuela Texier
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marion Aguirrenbegoa
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Clémentine Merce
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Telethon Kids Institute, Nedlands, WA, Australia
| | | | - Bruno Mugat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Mourdas Mohamed
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Séverine Chambeyron
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - David Cribbs
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
7
|
Eldridge-Thomas BL, Bohere JG, Roubinet C, Barthelemy A, Samuels TJ, Teixeira FK, Kolahgar G. The transmembrane protein Syndecan is required for stem cell survival and maintenance of their nuclear properties. PLoS Genet 2025; 21:e1011586. [PMID: 39913561 DOI: 10.1371/journal.pgen.1011586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/12/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Tissue maintenance is underpinned by resident stem cells whose activity is modulated by microenvironmental cues. Using Drosophila as a simple model to identify regulators of stem cell behaviour and survival in vivo, we have identified novel connections between the conserved transmembrane proteoglycan Syndecan, nuclear properties and stem cell function. In the Drosophila midgut, Syndecan depletion in intestinal stem cells results in their loss from the tissue, impairing tissue renewal. At the cellular level, Syndecan depletion alters cell and nuclear shape, and causes nuclear lamina invaginations and DNA damage. In a second tissue, the developing Drosophila brain, live imaging revealed that Syndecan depletion in neural stem cells results in nuclear envelope remodelling defects which arise upon cell division. Our findings reveal a new role for Syndecan in the maintenance of nuclear properties in diverse stem cell types.
Collapse
Affiliation(s)
- Buffy L Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jerome G Bohere
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chantal Roubinet
- Université de Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Alexandre Barthelemy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin J Samuels
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Karam Teixeira
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Louka XP, Gumeni S, Trougakos IP. Studying Cellular Senescence Using the Model Organism Drosophila melanogaster. Methods Mol Biol 2025; 2906:281-299. [PMID: 40082363 DOI: 10.1007/978-1-0716-4426-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence, a complex biological process characterized by irreversible cell cycle arrest, contributes significantly to the development and progression of aging and of age-related diseases. Studying cellular senescence in vivo can be challenging due to the high heterogeneity and dynamic nature of senescent cells. Recently, Drosophila melanogaster has emerged as a powerful model organism for studying aging and cellular senescence due to its tractability and short lifespan, as well as due to the conservation of age-related genes and of key age-related pathways with mammals. Consequently, several research studies have utilized Drosophila to investigate the cellular mechanisms and pathways implicated in cellular senescence. Herein, we provide an overview of the assays that can be applied to study the different features of senescent cells in D. melanogaster tissues, highlighting the benefits of this model in aging research. We also emphasize the importance of selecting appropriate biomarkers for the identification of senescent cells, and the need for further understanding of the aging process including a more accurate identification and detection of senescent cells at the organismal level; a far more complex process as compared to single cells.
Collapse
Affiliation(s)
- Xanthippi P Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Klemm JW, Van Hazel C, Harris RE. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing effective methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob W Klemm
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Chloe Van Hazel
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| | - Robin E Harris
- Arizona State University, 427 E Tyler Mall LSE 229, Tempe, AZ 85287-4501
| |
Collapse
|
10
|
Kitaoka M, Yamashita YM. Running the gauntlet: challenges to genome integrity in spermiogenesis. Nucleus 2024; 15:2339220. [PMID: 38594652 PMCID: PMC11005813 DOI: 10.1080/19491034.2024.2339220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Species' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges. First, after two rounds of meiotic divisions, the genome lacks repair templates (no sister chromatids, no homologous chromosomes), making it incredibly vulnerable to any genomic insults over an extended time (typically days-weeks). Second, the sperm genome becomes transcriptionally silent, making it difficult to respond to new perturbations as spermiogenesis progresses. Third, the histone-to-protamine transition, which is essential to package the sperm genome, counterintuitively involves DNA break formation. How spermiogenesis handles these challenges remains poorly understood. In this review, we discuss each challenge and their intersection with the biology of protamines. Finally, we discuss the implication of protamines in the process of evolution.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Vallés AM, Rubin T, Macaisne N, Dal Toe L, Molla-Herman A, Antoniewski C, Huynh JR. Transcriptomic analysis of meiotic genes during the mitosis-to-meiosis transition in Drosophila females. Genetics 2024; 228:iyae130. [PMID: 39225982 DOI: 10.1093/genetics/iyae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.
Collapse
Affiliation(s)
- Ana Maria Vallés
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Thomas Rubin
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Nicolas Macaisne
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Laurine Dal Toe
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Anahi Molla-Herman
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005 Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
12
|
Jansen G, Gebert D, Kumar TR, Simmons E, Murphy S, Teixeira FK. Tolerance thresholds underlie responses to DNA damage during germline development. Genes Dev 2024; 38:631-654. [PMID: 39054057 PMCID: PMC11368186 DOI: 10.1101/gad.351701.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
Collapse
Affiliation(s)
- Gloria Jansen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | - Emily Simmons
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sarah Murphy
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom;
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
13
|
Byrns CN, Perlegos AE, Miller KN, Jin Z, Carranza FR, Manchandra P, Beveridge CH, Randolph CE, Chaluvadi VS, Zhang SL, Srinivasan AR, Bennett FC, Sehgal A, Adams PD, Chopra G, Bonini NM. Senescent glia link mitochondrial dysfunction and lipid accumulation. Nature 2024; 630:475-483. [PMID: 38839958 PMCID: PMC11168935 DOI: 10.1038/s41586-024-07516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.
Collapse
Affiliation(s)
- China N Byrns
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra E Perlegos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karl N Miller
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Zhecheng Jin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Faith R Carranza
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Palak Manchandra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | | | - V Sai Chaluvadi
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirley L Zhang
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - F C Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Bukhari H, Nithianandam V, Battaglia RA, Cicalo A, Sarkar S, Comjean A, Hu Y, Leventhal MJ, Dong X, Feany MB. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. Genome Res 2024; 34:590-605. [PMID: 38599684 PMCID: PMC11146598 DOI: 10.1101/gr.278576.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT) cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell type-specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Rachel A Battaglia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Anthony Cicalo
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthew J Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, Massachusetts 02139, USA
| | - Xianjun Dong
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
15
|
Wen D, Xie J, Yuan Y, Shen L, Yang Y, Chen W. The endogenous antioxidant ability of royal jelly in Drosophila is independent of Keap1/Nrf2 by activating oxidoreductase activity. INSECT SCIENCE 2024; 31:503-523. [PMID: 37632209 DOI: 10.1111/1744-7917.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 08/27/2023]
Abstract
Royal jelly (RJ) is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees. It is widely claimed that RJ reduces oxidative stress. However, the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress. Whether RJ can clear the endogenous production of reactive oxygen species (ROS) in cells remains largely unknown. Here, we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila. We found that RJ enhanced sleep quality of aging Drosophila, which is decreased due to an increase of oxidative damage with age. RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat. Moreover, RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress. Sleep deprivation leads to accumulation of ROS in the gut cells, and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan. Mechanistically, RJ prevented cell oxidative damage caused by heat stress or sleep deprivation, with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling. RJ supplementation activated oxidoreductase activity in the guts of flies, suggesting its ability to inhibit endogenous oxidative stress and maintain health, possibly in humans.
Collapse
Affiliation(s)
- Dongjing Wen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiayu Xie
- School of Medicine, Chongqing University, Chongqing, China
| | - Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lirong Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufeng Yang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
16
|
Datta I, Bangi E. Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila. Dev Cell 2024; 59:566-578.e3. [PMID: 38309266 PMCID: PMC10939848 DOI: 10.1016/j.devcel.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Cellular senescence is a conserved biological process that plays a crucial and context-dependent role in cancer. The highly heterogeneous and dynamic nature of senescent cells and their small numbers in tissues make in vivo mechanistic studies of senescence challenging. As a result, how multiple senescence-inducing signals are integrated in vivo to drive senescence in only a small number of cells is unclear. Here, we identify cells that exhibit multiple features of senescence in a Drosophila model of intestinal transformation, which emerge in response to concurrent activation of AKT, JNK, and DNA damage signaling within transformed tissue. Eliminating senescent cells, genetically or by treatment with senolytic compounds, reduces overgrowth and improves survival. We find that senescent cells promote tumorigenesis by recruiting Drosophila macrophages to the transformed tissue, which results in non-autonomous activation of JNK signaling. These findings identify senescent cell-macrophage interactions as an important driver of epithelial transformation.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
17
|
Bukhari H, Nithianandam V, Battaglia RA, Cicalo A, Sarkar S, Comjean A, Hu Y, Leventhal MJ, Dong X, Feany MB. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578624. [PMID: 38352559 PMCID: PMC10862891 DOI: 10.1101/2024.02.02.578624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Rachel A. Battaglia
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Anthony Cicalo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Matthew J. Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA 02139
| | - Xianjun Dong
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
18
|
González-Marín B, Calderón-Segura ME, Sekelsky J. ATM/Chk2 and ATR/Chk1 Pathways Respond to DNA Damage Induced by Movento ® 240SC and Envidor ® 240SC Keto-Enol Insecticides in the Germarium of Drosophila melanogaster. TOXICS 2023; 11:754. [PMID: 37755764 PMCID: PMC10535977 DOI: 10.3390/toxics11090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
DNA damage response (DDR) pathways in keto-enol genotoxicity have not been characterized, and few studies have reported genotoxic effects in non-target organisms. The present study shows that concentrations of 11.2, 22.4, 37.3 mg/L of Movento® 240SC and 12.3, 24.6, 41.1 mg/L of Envidor® 240SC for 72 h oral exposure induced DSBs by significantly increasing the percentage of γH2AV expression in regions 2b and 3 from the germarium of wild type females of Drosophila melanogaster Oregon R, compared to the control group (0.0 mg/L of insecticides), via confocal immunofluorescence microscopy. The comparison between both insecticides' reveals that only the Envidor® 240SC induces concentration-dependent DNA damage, as well as structural changes in the germarium. We determined that the DDR induced by Movento® 240SC depends on the activation of the ATMtefu, Chk1grp and Chk2lok kinases by significantly increasing the percentage of expression of γH2AV in regions 2b and 3 of the germarium, and that ATRmei-29D and p53dp53 kinases only respond at the highest concentration of 37.3 mg/L of Movento® 240SC. With the Envidor® 240SC insecticide, we determined that the DDR depends on the activation of the ATRmei-29D/Chk1grp and ATMtefu/Chk2lok kinases, and p53dp53 by significantly increasing the percentage of expression of γH2AV in the germarium.
Collapse
Affiliation(s)
- Berenyce González-Marín
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| | - María Elena Calderón-Segura
- Laboratorio de Toxicología Ambiental, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, Ciudad de México 04510, Mexico
| | - Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
19
|
Datta I, Bangi E. Senescent cells and macrophages cooperate through a multi-kinase signaling network to promote intestinal transformation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540869. [PMID: 37292988 PMCID: PMC10245684 DOI: 10.1101/2023.05.15.540869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellular senescence is a conserved biological process essential for embryonic development, tissue remodeling, repair, and a key regulator of aging. Senescence also plays a crucial role in cancer, though this role can be tumor-suppressive or tumor-promoting, depending on the genetic context and the microenvironment. The highly heterogeneous, dynamic, and context-dependent nature of senescence-associated features and the relatively small numbers of senescent cells in tissues makes in vivo mechanistic studies of senescence challenging. As a result, which senescence-associated features are observed in which disease contexts and how they contribute to disease phenotypes remain largely unknown. Similarly, the specific mechanisms by which various senescence-inducing signals are integrated in vivo to induce senescence and why some cells become senescent while their immediate neighbors do not are unclear. Here, we identify a small number of cells that exhibit multiple features of senescence in a genetically complex model of intestinal transformation we recently established in the developing Drosophila larval hindgut epithelium. We demonstrate that these cells emerge in response to concurrent activation of AKT, JNK, and DNA damage response pathways within transformed tissue. Eliminating senescent cells, genetically or by treatment with senolytic compounds, reduces overgrowth and improves survival. We find that this tumor-promoting role is mediated by Drosophila macrophages recruited to the transformed tissue by senescent cells, which results in non-autonomous activation of JNK signaling within the transformed epithelium. These findings emphasize complex cell-cell interactions underlying epithelial transformation and identify senescent cell-macrophage interactions as a potential druggable node in cancer.
Collapse
Affiliation(s)
- Ishwaree Datta
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
20
|
Crucianelli C, Jaiswal J, Vijayakumar Maya A, Nogay L, Cosolo A, Grass I, Classen AK. Distinct signaling signatures drive compensatory proliferation via S-phase acceleration. PLoS Genet 2022; 18:e1010516. [PMID: 36520882 PMCID: PMC9799308 DOI: 10.1371/journal.pgen.1010516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Regeneration relies on cell proliferation to restore damaged tissues. Multiple signaling pathways activated by local or paracrine cues have been identified to promote regenerative proliferation. How different types of tissue damage may activate distinct signaling pathways and how these differences converge on regenerative proliferation is less well defined. To better understand how tissue damage and proliferative signals are integrated during regeneration, we investigate models of compensatory proliferation in Drosophila imaginal discs. We find that compensatory proliferation is associated with a unique cell cycle profile, which is characterized by short G1 and G2 phases and, surprisingly, by acceleration of the S-phase. S-phase acceleration can be induced by two distinct signaling signatures, aligning with inflammatory and non-inflammatory tissue damage. Specifically, non-autonomous activation of JAK/STAT and Myc in response to inflammatory damage, or local activation of Ras/ERK and Hippo/Yki in response to elevated cell death, promote accelerated nucleotide incorporation during S-phase. This previously unappreciated convergence of different damaging insults on the same regenerative cell cycle program reconciles previous conflicting observations on proliferative signaling in different tissue regeneration and tumor models.
Collapse
Affiliation(s)
- Carlo Crucianelli
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Janhvi Jaiswal
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ananthakrishnan Vijayakumar Maya
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Liyne Nogay
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism, Freiburg, Germany
| | - Andrea Cosolo
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabelle Grass
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Simmons JR, An R, Amankwaa B, Zayac S, Kemp J, Labrador M. Phosphorylated histone variant γH2Av is associated with chromatin insulators in Drosophila. PLoS Genet 2022; 18:e1010396. [PMID: 36197938 PMCID: PMC9576066 DOI: 10.1371/journal.pgen.1010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/17/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Chromatin insulators are responsible for orchestrating long-range interactions between enhancers and promoters throughout the genome and align with the boundaries of Topologically Associating Domains (TADs). Here, we demonstrate an association between gypsy insulator proteins and the phosphorylated histone variant H2Av (γH2Av), normally a marker of DNA double strand breaks. Gypsy insulator components colocalize with γH2Av throughout the genome, in polytene chromosomes and in diploid cells in which Chromatin IP data shows it is enriched at TAD boundaries. Mutation of insulator components su(Hw) and Cp190 results in a significant reduction in γH2Av levels in chromatin and phosphatase inhibition strengthens the association between insulator components and γH2Av and rescues γH2Av localization in insulator mutants. We also show that γH2Av, but not H2Av, is a component of insulator bodies, which are protein condensates that form during osmotic stress. Phosphatase activity is required for insulator body dissolution after stress recovery. Together, our results implicate the H2A variant with a novel mechanism of insulator function and boundary formation.
Collapse
Affiliation(s)
- James R. Simmons
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ran An
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bright Amankwaa
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Shannon Zayac
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Justin Kemp
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
22
|
Porrazzo A, Cipressa F, De Gregorio A, De Pittà C, Sales G, Ciapponi L, Morciano P, Esposito G, Tabocchini MA, Cenci G. Low dose rate γ-irradiation protects fruit fly chromosomes from double strand breaks and telomere fusions by reducing the esi-RNA biogenesis factor Loquacious. Commun Biol 2022; 5:905. [PMID: 36057690 PMCID: PMC9440893 DOI: 10.1038/s42003-022-03885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
It is still continuously debated whether the low-dose/dose-rate (LDR) of ionizing radiation represents a hazard for humans. Model organisms, such as fruit flies, are considered valuable systems to reveal insights into this issue. We found that, in wild-type Drosophila melanogaster larval neuroblasts, the frequency of Chromosome Breaks (CBs), induced by acute γ-irradiation, is considerably reduced when flies are previously exposed to a protracted dose of 0.4 Gy delivered at a dose rate of 2.5 mGy/h. This indicates that this exposure, which is associated with an increased expression of DNA damage response proteins, induces a radioadaptive response (RAR) that protects Drosophila from extensive DNA damage. Interestingly, the same exposure reduces the frequency of telomere fusions (TFs) from Drosophila telomere capping mutants suggesting that the LDR can generally promote a protective response on chromatin sites that are recognized as DNA breaks. Deep RNA sequencing revealed that RAR is associated with a reduced expression of Loquacious D (Loqs-RD) gene that encodes a well-conserved dsRNA binding protein required for esiRNAs biogenesis. Remarkably, loss of Loqs mimics the LDR-mediated chromosome protection as it decreases the IR-induced CBs and TFs frequency. Thus, our molecular characterization of RAR identifies Loqs as a key factor in the cellular response to LDR and in the epigenetic routes involved in radioresistance. Chronic low y-radiation exposure to Drosophila cells decreases chromosome breaks induced by high-dose irradiation and telomere dysfunction by reducing the esiRNA biogenesis factor Loquacious D.
Collapse
Affiliation(s)
- A Porrazzo
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy.,Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy
| | - F Cipressa
- Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy.,Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - A De Gregorio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - C De Pittà
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | - G Sales
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | - L Ciapponi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - P Morciano
- INFN-Laboratori Nazionali del Gran Sasso, 67100, Assergi, Italy
| | - G Esposito
- Istituto Superiore di Sanita' ISS, Rome, Italy.,INFN-Roma 1, Rome, Italy
| | | | - G Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy. .,Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
23
|
Brand CL, Levine MT. Cross-species incompatibility between a DNA satellite and the Drosophila Spartan homolog poisons germline genome integrity. Curr Biol 2022; 32:2962-2971.e4. [PMID: 35643081 PMCID: PMC9283324 DOI: 10.1016/j.cub.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Satellite DNA spans megabases of eukaryotic sequence and evolves rapidly.1-6 Paradoxically, satellite-rich genomic regions mediate strictly conserved, essential processes such as chromosome segregation and nuclear structure.7-10 A leading resolution to this paradox posits that satellite DNA and satellite-associated chromosomal proteins coevolve to preserve these essential functions.11 We experimentally test this model of intragenomic coevolution by conducting the first evolution-guided manipulation of both chromosomal protein and DNA satellite. The 359bp satellite spans an 11 Mb array in Drosophila melanogaster that is absent from its sister species, Drosophila simulans.12-14 This species-specific DNA satellite colocalizes with the adaptively evolving, ovary-enriched protein, maternal haploid (MH), the Drosophila homolog of Spartan.15 To determine if MH and 359bp coevolve, we swapped the D. simulans version of MH ("MH[sim]") into D. melanogaster. MH[sim] triggers ovarian cell death, reduced ovary size, and loss of mature eggs. Surprisingly, the D. melanogaster mh-null mutant has no such ovary phenotypes,15 suggesting that MH[sim] is toxic in a D. melanogaster background. Using both cell biology and genetics, we discovered that MH[sim] poisons oogenesis through a DNA-damage pathway. Remarkably, deleting the D. melanogaster-specific 359bp satellite array completely restores mh[sim] germline genome integrity and fertility, consistent with a history of coevolution between these two fast-evolving loci. Germline genome integrity and fertility are also restored by overexpressing topoisomerase II (Top2), suggesting that MH[sim] interferes with Top2-mediated processing of 359bp. The observed 359bp-MH[sim] cross-species incompatibility supports a model under which seemingly inert repetitive DNA and essential chromosomal proteins must coevolve to preserve germline genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Sang R, Wu C, Xie S, Xu X, Lou Y, Ge W, Xi Y, Yang X. Mxc, a Drosophila homolog of mental retardation-associated gene NPAT, maintains neural stem cell fate. Cell Biosci 2022; 12:78. [PMID: 35642004 PMCID: PMC9153134 DOI: 10.1186/s13578-022-00820-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mental retardation is a complex neurodevelopmental disorder. NPAT, a component of the histone locus body (HLB), has been implicated as a candidate gene for mental retardation, with a mechanism yet to be elucidated. RESULTS We identified that mxc, the Drosophila ortholog of NPAT, is required for the development of nervous system. Knockdown of mxc resulted in a massive loss of neurons and locomotion dysfunction in adult flies. In the mxc mutant or RNAi knockdown larval brains, the neuroblast (NB, also known as neural stem cell) cell fate is prematurely terminated and its proliferation potential is impeded concurrent with the blocking of the differentiation process of ganglion mother cells (GMCs). A reduction of transcription levels of histone genes was shown in mxc knockdown larval brains, accompanied by DNA double-strand breaks (DSBs). The subsidence of histone transcription levels leads to prematurely termination of NB cell fate and blockage of the GMC differentiation process. Our data also show that the increase in autophagy induced by mxc knockdown in NBs could be a defense mechanism in response to abnormal HLB assembly and premature termination of NB cell fate. CONCLUSIONS Our study demonstrate that Mxc plays a critical role in maintaining neural stem cell fate and GMC differentiation in the Drosophila larval brain. This discovery may shed light on the understanding of the pathogenesis of NPAT-related mental retardation in humans.
Collapse
Affiliation(s)
- Rong Sang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Wu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Xie
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Xu
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Lou
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wanzhong Ge
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongmei Xi
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohang Yang
- The Women's Hospital, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Joint Institute of Genetics and Genomic Medicine, Between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Identification of replication fork-associated proteins in Drosophila embryos and cultured cells using iPOND coupled to quantitative mass spectrometry. Sci Rep 2022; 12:6903. [PMID: 35484306 PMCID: PMC9050644 DOI: 10.1038/s41598-022-10821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Replication of the eukaryotic genome requires the formation of thousands of replication forks that must work in concert to accurately replicate the genetic and epigenetic information. Defining replication fork-associated proteins is a key step in understanding how genomes are replicated and repaired in the context of chromatin to maintain genome stability. To identify replication fork-associated proteins, we performed iPOND (Isolation of Proteins on Nascent DNA) coupled to quantitative mass spectrometry in Drosophila embryos and cultured cells. We identified 76 and 278 fork-associated proteins in post-MZT embryos and Drosophila cultured S2 cells, respectively. By performing a targeted screen of a subset of these proteins, we demonstrate that BRWD3, a targeting specificity factor for the DDB1/Cul4 ubiquitin ligase complex (CRL4), functions at or in close proximity to replication forks to promote fork progression and maintain genome stability. Altogether, our work provides a valuable resource for those interested in DNA replication, repair and chromatin assembly during development.
Collapse
|
26
|
Zheng Y, Han X, Wang T. Role of H2A.Z.1 in epithelial-mesenchymal transition and radiation resistance of lung adenocarcinoma in vitro. Biochem Biophys Res Commun 2022; 611:118-125. [PMID: 35525100 DOI: 10.1016/j.bbrc.2022.03.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
Abstract
Radiation resistance reduces patient survival and is an important challenge in treating lung adenocarcinoma (LUAD). Previous studies have shown that histone H2A variants can affect the radiosensitivity of tumors; however, the main role of histone H2A variants in LUAD remains unclear. Using the TCGA database, we found that histone H2A variant H2A.Z.1 is positively associated with the progression and poor prognosis of LUAD. Colony formation, scratch wound-healing, and transwell assays as well as Western blot were performed to assess the role of H2A.Z.1 in vitro. Results suggested that H2A.Z.1 promoted cell migration and invasion, epithelial-mesenchymal transition, stemness, and radiation resistance in LUAD cells. Targeting H2A.Z.1 in combination with radiation therapy could be a potential therapeutic approach for radiation resistant LUAD.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Respiratory and Critical Care, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangming Han
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ting Wang
- Department of Respiratory and Critical Care, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
27
|
Coordination between cell proliferation and apoptosis after DNA damage in Drosophila. Cell Death Differ 2022; 29:832-845. [PMID: 34824391 PMCID: PMC8989919 DOI: 10.1038/s41418-021-00898-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
Exposure to genotoxic stress promotes cell cycle arrest and DNA repair or apoptosis. These "life" or "death" cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, the precise regulation of p53 is essential to maintain tissue homeostasis and to prevent cancer development. However, how cell cycle progression has an impact on p53 cell fate decision-making is mostly unknown. In this work, we demonstrate that Drosophila p53 proapoptotic activity can be impacted by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation-induced apoptosis. We show that p53 binding to the regulatory elements of the proapoptotic genes and its ability to activate their expression is compromised in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 proapoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 proapoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.
Collapse
|
28
|
Phillips EO, Gunjan A. Histone Variants: The Unsung Guardians of the Genome. DNA Repair (Amst) 2022; 112:103301. [DOI: 10.1016/j.dnarep.2022.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022]
|
29
|
Chakravarti A, Thirimanne HN, Brown S, Calvi BR. Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. eLife 2022; 11:61389. [PMID: 35023826 PMCID: PMC8758136 DOI: 10.7554/elife.61389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.
Collapse
Affiliation(s)
| | | | - Savanna Brown
- Department of Biology, Indiana University, Bloomington, United States
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, United States
| |
Collapse
|
30
|
Tsuji J, Thomson T, Brown C, Ghosh S, Theurkauf WE, Weng Z, Schwartz LM. Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Front Genet 2022; 12:775369. [PMID: 35003216 PMCID: PMC8730325 DOI: 10.3389/fgene.2021.775369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5’ uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Travis Thomson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| | - Subhanita Ghosh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
31
|
X Chromosome Inactivation during Grasshopper Spermatogenesis. Genes (Basel) 2021; 12:genes12121844. [PMID: 34946793 PMCID: PMC8700825 DOI: 10.3390/genes12121844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Regulation of transcriptional activity during meiosis depends on the interrelated processes of recombination and synapsis. In eutherian mammal spermatocytes, transcription levels change during prophase-I, being low at the onset of meiosis but highly increased from pachytene up to the end of diplotene. However, X and Y chromosomes, which usually present unsynapsed regions throughout prophase-I in male meiosis, undergo a specific pattern of transcriptional inactivation. The interdependence of synapsis and transcription has mainly been studied in mammals, basically in mouse, but our knowledge in other unrelated phylogenetically species is more limited. To gain new insights on this issue, here we analyzed the relationship between synapsis and transcription in spermatocytes of the grasshopper Eyprepocnemis plorans. Autosomal chromosomes of this species achieve complete synapsis; however, the single X sex chromosome remains always unsynapsed and behaves as a univalent. We studied transcription in meiosis by immunolabeling with RNA polymerase II phosphorylated at serine 2 and found that whereas autosomes are active from leptotene up to diakinesis, the X chromosome is inactive throughout meiosis. This inactivation is accompanied by the accumulation of, at least, two repressive epigenetic modifications: H3 methylated at lysine 9 and H2AX phosphorylated at serine 139. Furthermore, we identified that X chromosome inactivation occurs in premeiotic spermatogonia. Overall, our results indicate: (i) transcription regulation in E. plorans spermatogenesis differs from the canonical pattern found in mammals and (ii) X chromosome inactivation is likely preceded by a process of heterochromatinization before the initiation of meiosis.
Collapse
|
32
|
Tumorigenesis and cell competition in Drosophila in the absence of polyhomeotic function. Proc Natl Acad Sci U S A 2021; 118:2110062118. [PMID: 34702735 DOI: 10.1073/pnas.2110062118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cell competition is a homeostatic process that eliminates by apoptosis unfit or undesirable cells from animal tissues, including tumor cells that appear during the life of the organism. In Drosophila there is evidence that many types of oncogenic cells are eliminated by cell competition. One exception is cells mutant for polyhomeotic (ph), a member of the Polycomb family of genes; most of the isolated mutant ph clones survive and develop tumorous overgrowths in imaginal discs. To characterize the tumorigenic effect of the lack of ph, we first studied the growth of different regions of the wing disc deficient in ph activity and found that the effect is restricted to the proximal appendage. Moreover, we found that ph-deficient tissue is partially refractory to apoptosis. Second, we analyzed the behavior of clones lacking ph function and found that many suffer cell competition but are not completely eliminated. Unexpectedly, we found that nonmutant cells also undergo cell competition when surrounded by ph-deficient cells, indicating that within the same tissue cell competition may operate in opposite directions. We suggest two reasons for the incompleteness of cell competition in ph mutant cells: 1) These cells are partially refractory to apoptosis, and 2) the loss of ph function alters the identity of imaginal cells and subsequently their cell affinities. It compromises the winner/loser interaction, a prerequisite for cell competition.
Collapse
|
33
|
Yang Y, Kong R, Goh FG, Somers WG, Hime GR, Li Z, Cai Y. dRTEL1 is essential for the maintenance of Drosophila male germline stem cells. PLoS Genet 2021; 17:e1009834. [PMID: 34644293 PMCID: PMC8513875 DOI: 10.1371/journal.pgen.1009834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Stem cells have the potential to maintain undifferentiated state and differentiate into specialized cell types. Despite numerous progress has been achieved in understanding stem cell self-renewal and differentiation, many fundamental questions remain unanswered. In this study, we identify dRTEL1, the Drosophila homolog of Regulator of Telomere Elongation Helicase 1, as a novel regulator of male germline stem cells (GSCs). Our genome-wide transcriptome analysis and ChIP-Seq results suggest that dRTEL1 affects a set of candidate genes required for GSC maintenance, likely independent of its role in DNA repair. Furthermore, dRTEL1 prevents DNA damage-induced checkpoint activation in GSCs. Finally, dRTEL1 functions to sustain Stat92E protein levels, the key player in GSC maintenance. Together, our findings reveal an intrinsic role of the DNA helicase dRTEL1 in maintaining male GSC and provide insight into the function of dRTEL1.
Collapse
Affiliation(s)
- Ying Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - W. Gregory Somers
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Pitchakarn P, Inthachat W, Karinchai J, Temviriyanukul P. Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing-A Review. Int J Mol Sci 2021; 22:9932. [PMID: 34576092 PMCID: PMC8472225 DOI: 10.3390/ijms22189932] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Genomic instability, one of cancer's hallmarks, is induced by genotoxins from endogenous and exogenous sources, including reactive oxygen species (ROS), diet, and environmental pollutants. A sensitive in vivo genotoxicity test is required for the identification of human hazards to reduce the potential health risk. The somatic mutation and recombination test (SMART) or wing spot test is a genotoxicity assay involving Drosophila melanogaster (fruit fly) as a classical, alternative human model. This review describes the principle of the SMART assay in conjunction with its advantages and disadvantages and discusses applications of the assay covering all segments of health-related industries, including food, dietary supplements, drug industries, pesticides, and herbicides, as well as nanoparticles. Chemopreventive strategies are outlined as a global health trend for the anti-genotoxicity of interesting herbal extract compounds determined by SMART assay. The successful application of Drosophila for high-throughput screening of mutagens is also discussed as a future perspective.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
35
|
Modeling Notch-Induced Tumor Cell Survival in the Drosophila Ovary Identifies Cellular and Transcriptional Response to Nuclear NICD Accumulation. Cells 2021; 10:cells10092222. [PMID: 34571871 PMCID: PMC8465586 DOI: 10.3390/cells10092222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Notch is a conserved developmental signaling pathway that is dysregulated in many cancer types, most often through constitutive activation. Tumor cells with nuclear accumulation of the active Notch receptor, NICD, generally exhibit enhanced survival while patients experience poorer outcomes. To understand the impact of NICD accumulation during tumorigenesis, we developed a tumor model using the Drosophila ovarian follicular epithelium. Using this system we demonstrated that NICD accumulation contributed to larger tumor growth, reduced apoptosis, increased nuclear size, and fewer incidents of DNA damage without altering ploidy. Using bulk RNA sequencing we identified key genes involved in both a pre- and post- tumor response to NICD accumulation. Among these are genes involved in regulating double-strand break repair, chromosome organization, metabolism, like raptor, which we experimentally validated contributes to early Notch-induced tumor growth. Finally, using single-cell RNA sequencing we identified follicle cell-specific targets in NICD-overexpressing cells which contribute to DNA repair and negative regulation of apoptosis. This valuable tumor model for nuclear NICD accumulation in adult Drosophila follicle cells has allowed us to better understand the specific contribution of nuclear NICD accumulation to cell survival in tumorigenesis and tumor progression.
Collapse
|
36
|
Su(Hw) primes 66D and 7F Drosophila chorion genes loci for amplification through chromatin decondensation. Sci Rep 2021; 11:16963. [PMID: 34417521 PMCID: PMC8379230 DOI: 10.1038/s41598-021-96488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/11/2021] [Indexed: 11/11/2022] Open
Abstract
Suppressor of Hairy wing [Su(Hw)] is an insulator protein that participates in regulating chromatin architecture and gene repression in Drosophila. In previous studies we have shown that Su(Hw) is also required for pre-replication complex (pre-RC) recruitment on Su(Hw)-bound sites (SBSs) in Drosophila S2 cells and pupa. Here, we describe the effect of Su(Hw) on developmentally regulated amplification of 66D and 7F Drosophila amplicons in follicle cells (DAFCs), widely used as models in replication studies. We show Su(Hw) binding co-localizes with all known DAFCs in Drosophila ovaries, whereas disruption of Su(Hw) binding to 66D and 7F DAFCs causes a two-fold decrease in the amplification of these loci. The complete loss of Su(Hw) binding to chromatin impairs pre-RC recruitment to all amplification regulatory regions of 66D and 7F loci at early oogenesis (prior to DAFCs amplification). These changes coincide with a considerable Su(Hw)-dependent condensation of chromatin at 66D and 7F loci. Although we observed the Brm, ISWI, Mi-2, and CHD1 chromatin remodelers at SBSs genome wide, their remodeler activity does not appear to be responsible for chromatin decondensation at the 66D and 7F amplification regulatory regions. We have discovered that, in addition to the CBP/Nejire and Chameau histone acetyltransferases, the Gcn5 acetyltransferase binds to 66D and 7F DAFCs at SBSs and this binding is dependent on Su(Hw). We propose that the main function of Su(Hw) in developmental amplification of 66D and 7F DAFCs is to establish a chromatin structure that is permissive to pre-RC recruitment.
Collapse
|
37
|
DNase II mediates a parthanatos-like developmental cell death pathway in Drosophila primordial germ cells. Nat Commun 2021; 12:2285. [PMID: 33863891 PMCID: PMC8052343 DOI: 10.1038/s41467-021-22622-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
During Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.
Collapse
|
38
|
Dong YL, Vadla GP, Lu JYJ, Ahmad V, Klein TJ, Liu LF, Glazer PM, Xu T, Chabu CY. Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Commun Biol 2021; 4:374. [PMID: 33742110 PMCID: PMC7979758 DOI: 10.1038/s42003-021-01898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
Oncogenic RAS mutations are associated with tumor resistance to radiation therapy. Cell-cell interactions in the tumor microenvironment (TME) profoundly influence therapy outcomes. However, the nature of these interactions and their role in Ras tumor radioresistance remain unclear. Here we use Drosophila oncogenic Ras tissues and human Ras cancer cell radiation models to address these questions. We discover that cellular response to genotoxic stress cooperates with oncogenic Ras to activate JAK/STAT non-cell autonomously in the TME. Specifically, p53 is heterogeneously activated in Ras tumor tissues in response to irradiation. This mosaicism allows high p53-expressing Ras clones to stimulate JAK/STAT cytokines, which activate JAK/STAT in the nearby low p53-expressing surviving Ras clones, leading to robust tumor re-establishment. Blocking any part of this cell-cell communication loop re-sensitizes Ras tumor cells to irradiation. These findings suggest that coupling STAT inhibitors to radiotherapy might improve clinical outcomes for Ras cancer patients.
Collapse
Affiliation(s)
- Yong-Li Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Gangadhara P Vadla
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Jin-Yu Jim Lu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- Yale-Waterbury Internal Medicine Residency Program, Waterbury, CT, USA
| | - Vakil Ahmad
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Thomas J Klein
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
- South Florida Radiation Oncology, West Palm Beach, FL, USA
| | - Lu-Fang Liu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tian Xu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA.
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Chiswili-Yves Chabu
- Division of Biological Sciences, College of Veterinary Medicine, Department of Surgery, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
39
|
Abstract
Plasmodium falciparum is the deadliest human parasite that causes malaria when it reaches the bloodstream and begins proliferating inside red blood cells, where the parasites are particularly prone to DNA damage. The molecular mechanisms that allow these pathogens to maintain their genome integrity under such conditions are also the driving force for acquiring genome plasticity that enables them to create antigenic variation and become resistant to essentially all available drugs. Plasmodium falciparum parasites proliferate within circulating red blood cells and are responsible for the deadliest form of human malaria. These parasites are exposed to numerous intrinsic and external sources that could cause DNA damage; therefore, they have evolved efficient mechanisms to protect their genome integrity and allow them to proliferate under such conditions. In higher eukaryotes, double-strand breaks rapidly lead to phosphorylation of the core histone variant H2A.X, which marks the site of damaged DNA. We show that in P. falciparum that lacks the H2A.X variant, the canonical P. falciparum H2A (PfH2A) is phosphorylated on serine 121 upon exposure to sources of DNA damage. We further demonstrate that phosphorylated PfH2A is recruited to foci of damaged chromatin shortly after exposure to sources of damage, while the nonphosphorylated PfH2A remains spread throughout the nucleoplasm. In addition, we found that PfH2A phosphorylation is dynamic and that over time, as the parasite activates the repair machinery, this phosphorylation is removed. Finally, we demonstrate that these phosphorylation dynamics could be used to establish a novel and direct DNA repair assay in P. falciparum. IMPORTANCEPlasmodium falciparum is the deadliest human parasite that causes malaria when it reaches the bloodstream and begins proliferating inside red blood cells, where the parasites are particularly prone to DNA damage. The molecular mechanisms that allow these pathogens to maintain their genome integrity under such conditions are also the driving force for acquiring genome plasticity that enables them to create antigenic variation and become resistant to essentially all available drugs. However, mechanisms of DNA damage response and repair have not been extensively studied for these parasites. The paper addresses our recent discovery that P. falciparum that lacks the histone variant H2A.X phosphorylates its canonical core histone PfH2A in response to exposure to DNA damage. The process of DNA repair in Plasmodium was mostly studied indirectly. Our findings enabled us to establish a direct DNA repair assay for P. falciparum similar to assays that are widely used in model organisms.
Collapse
|
40
|
See C, Arya D, Lin E, Chiolo I. Live Cell Imaging of Nuclear Actin Filaments and Heterochromatic Repair foci in Drosophila and Mouse Cells. Methods Mol Biol 2021; 2153:459-482. [PMID: 32840799 DOI: 10.1007/978-1-0716-0644-5_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that 'safe' homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.
Collapse
Affiliation(s)
- Colby See
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | - Deepak Arya
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | - Emily Lin
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Khan C, Muliyil S, Ayyub C, Rao BJ. spn-A/rad51 mutant exhibits enhanced genomic damage, cell death and low temperature sensitivity in somatic tissues. Chromosoma 2020; 130:3-14. [PMID: 33222024 DOI: 10.1007/s00412-020-00746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
Homologous recombination (HR) is one of the key pathways to repair double-strand breaks (DSBs). Rad51 serves an important function of catalysing strand exchange between two homologous sequences in the HR pathway. In higher organisms, rad51 function is indispensable with its absence leading to early embryonic lethality, thus precluding any mechanistic probing of the system. In contrast, the absence of Drosophila rad51 (spn-A/rad51) has been associated with defects in the germline, without any reported detrimental consequences to Drosophila somatic tissues. In this study, we have performed a systematic analysis of developmental defects in somatic tissues of spn-A mutant flies by using genetic complementation between multiple spn-A alleles. Our current study, for the first time, uncovers a requirement for spn-A in somatic tissue maintenance during both larval and pupal stages. Also, we show that spn-A mutant exhibits patterning defects in abdominal cuticle in the stripes and bristles, while there appear to be only subtle defects in the adult wing and eye. Interestingly, spn-A mutant shows a discernible phenotype of low temperature sensitivity, suggesting a role of spn-A in temperature sensitive cellular processes. In summary, our study describes the important role played by spn-A/rad51 in Drosophila somatic tissues.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India. .,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Champakali Ayyub
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, 400005, India. .,Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus, Sree Rama Engineering College, Tirupati, India.
| |
Collapse
|
42
|
Dewey EB, Parra AS, Johnston CA. Loss of the spectraplakin gene Short stop induces a DNA damage response in Drosophila epithelia. Sci Rep 2020; 10:20165. [PMID: 33214581 PMCID: PMC7677407 DOI: 10.1038/s41598-020-77159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amalia S Parra
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
43
|
Sharma A, Akagi K, Pattavina B, Wilson KA, Nelson C, Watson M, Maksoud E, Harata A, Ortega M, Brem RB, Kapahi P. Musashi expression in intestinal stem cells attenuates radiation-induced decline in intestinal permeability and survival in Drosophila. Sci Rep 2020; 10:19080. [PMID: 33154387 PMCID: PMC7644626 DOI: 10.1038/s41598-020-75867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Exposure to genotoxic stress by environmental agents or treatments, such as radiation therapy, can diminish healthspan and accelerate aging. We have developed a Drosophila melanogaster model to study the molecular effects of radiation-induced damage and repair. Utilizing a quantitative intestinal permeability assay, we performed an unbiased GWAS screen (using 156 strains from the Drosophila Genetic Reference Panel) to search for natural genetic variants that regulate radiation-induced gut permeability in adult D. melanogaster. From this screen, we identified an RNA binding protein, Musashi (msi), as one of the possible genes associated with changes in intestinal permeability upon radiation. The overexpression of msi promoted intestinal stem cell proliferation, which increased survival after irradiation and rescued radiation-induced intestinal permeability. In summary, we have established D. melanogaster as an expedient model system to study the effects of radiation-induced damage to the intestine in adults and have identified msi as a potential therapeutic target.
Collapse
Affiliation(s)
- Amit Sharma
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, 94041, USA.
| | - Kazutaka Akagi
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| | - Blaine Pattavina
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Christopher Nelson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Mark Watson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Elie Maksoud
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ayano Harata
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Mauricio Ortega
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| |
Collapse
|
44
|
Wang LP, Chen TY, Kang CK, Huang HP, Chen SL. BCAS2, a protein enriched in advanced prostate cancer, interacts with NBS1 to enhance DNA double-strand break repair. Br J Cancer 2020; 123:1796-1807. [PMID: 32963349 PMCID: PMC7723048 DOI: 10.1038/s41416-020-01086-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer amplified sequence 2 (BCAS2) plays crucial roles in pre-mRNA splicing and androgen receptor transcription. Previous studies suggested that BCAS2 is involved in double-strand breaks (DSB); therefore, we aimed to characterise its mechanism and role in prostate cancer (PCa). Methods Western blotting and immunofluorescence microscopy were used to assay the roles of BCAS2 in the DSBs of PCa cells and apoptosis in Drosophila, respectively. The effect of BCAS2 dosage on non-homologous end joining (NHEJ) and homologous recombination (HR) were assayed by precise end-joining assay and flow cytometry, respectively. Glutathione-S-transferase pulldown and co-immunoprecipitation assays were used to determine whether and how BCAS2 interacts with NBS1. The expression of BCAS2 and other proteins in human PCa was determined by immunohistochemistry. Results BCAS2 helped repair radiation-induced DSBs efficiently in both human PCa cells and Drosophila. BCAS2 enhanced both NHEJ and HR, possibly by interacting with NBS1, which involved the BCAS2 N-terminus as well as both the NBS1 N- and C-termini. The overexpression of BCAS2 was significantly associated with higher Gleason and pathology grades and shorter survival in patients with PCa. Conclusion BCAS2 promotes two DSB repair pathways by interacting with NBS1, and it may affect PCa progression.
Collapse
Affiliation(s)
- Li-Po Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Kai Kang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Palladino J, Chavan A, Sposato A, Mason TD, Mellone BG. Targeted De Novo Centromere Formation in Drosophila Reveals Plasticity and Maintenance Potential of CENP-A Chromatin. Dev Cell 2020; 52:379-394.e7. [PMID: 32049040 DOI: 10.1016/j.devcel.2020.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 11/25/2022]
Abstract
Centromeres are essential for accurate chromosome segregation and are marked by centromere protein A (CENP-A) nucleosomes. Mis-targeted CENP-A chromatin has been shown to seed centromeres at non-centromeric DNA. However, the requirements for such de novo centromere formation and transmission in vivo remain unknown. Here, we employ Drosophila melanogaster and the LacI/lacO system to investigate the ability of targeted de novo centromeres to assemble and be inherited through development. De novo centromeres form efficiently at six distinct genomic locations, which include actively transcribed chromatin and heterochromatin, and cause widespread chromosomal instability. During tethering, de novo centromeres sometimes prevail, causing the loss of the endogenous centromere via DNA breaks and HP1-dependent epigenetic inactivation. Transient induction of de novo centromeres and chromosome healing in early embryogenesis show that, once established, these centromeres can be maintained through development. Our results underpin the ability of CENP-A chromatin to establish and sustain mitotic centromere function in Drosophila.
Collapse
Affiliation(s)
- Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Anthony Sposato
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Timothy D Mason
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
46
|
Lin KY, Wang WD, Lin CH, Rastegari E, Su YH, Chang YT, Liao YF, Chang YC, Pi H, Yu BY, Chen SH, Lin CY, Lu MY, Su TY, Tzou FY, Chan CC, Hsu HJ. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nat Commun 2020; 11:3147. [PMID: 32561720 PMCID: PMC7305233 DOI: 10.1038/s41467-020-16858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade β-catenin. Disruption of β-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and β-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Elham Rastegari
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Han Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Chieh Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Haiwei Pi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Bo-Yi Yu
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsu-Yi Su
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Fei-Yang Tzou
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
47
|
Vaccaro A, Kaplan Dor Y, Nambara K, Pollina EA, Lin C, Greenberg ME, Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020; 181:1307-1328.e15. [PMID: 32502393 DOI: 10.1016/j.cell.2020.04.049] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexandra Vaccaro
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yosef Kaplan Dor
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keishi Nambara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Jajoo A, Donlon C, Shnayder S, Levin M, McVey M. Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Sci Rep 2020; 10:4512. [PMID: 32161356 PMCID: PMC7066164 DOI: 10.1038/s41598-020-61362-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Sertraline hydrochloride is a commonly prescribed antidepressant medication that acts by amplifying serotonin signaling. Numerous studies have suggested that children of women taking sertraline during pregnancy have an increased risk of developmental defects. Resolving the degree of risk for human fetuses requires comprehensive knowledge of the pathways affected by this drug. We utilized a Drosophila melanogaster model system to assess the effects of sertraline throughout development. Ingestion of sertraline by females did not affect their fecundity or embryogenesis in their progeny. However, larvae that consumed sertraline experienced delayed developmental progression and reduced survival at all stages of development. Genetic experiments showed that these effects were mostly independent of aberrant extracellular serotonin levels. Using an ex vivo imaginal disc culture system, we showed that mitotically active sertraline-treated tissues accumulate DNA double-strand breaks and undergo apoptosis at increased frequencies. Remarkably, the sertraline-induced genotoxicity was partially rescued by co-incubation with ascorbic acid, suggesting that sertraline induces oxidative DNA damage. These findings may have implications for the biomedicine of sertraline-induced birth defects.
Collapse
Affiliation(s)
- Arpita Jajoo
- Department of Biology, Tufts University, Medford, MA, USA
| | | | - Sarah Shnayder
- Department of Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA.
| |
Collapse
|
49
|
Sokolova OA, Mikhaleva EA, Kharitonov SL, Abramov YA, Gvozdev VA, Klenov MS. Special vulnerability of somatic niche cells to transposable element activation in Drosophila larval ovaries. Sci Rep 2020; 10:1076. [PMID: 31974416 PMCID: PMC6978372 DOI: 10.1038/s41598-020-57901-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Sergey L Kharitonov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991, Moscow, Russian Federation
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation.
| |
Collapse
|
50
|
Mota MBS, Carvalho MA, Monteiro ANA, Mesquita RD. DNA damage response and repair in perspective: Aedes aegypti, Drosophila melanogaster and Homo sapiens. Parasit Vectors 2019; 12:533. [PMID: 31711518 PMCID: PMC6849265 DOI: 10.1186/s13071-019-3792-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023] Open
Abstract
Background The maintenance of genomic integrity is the responsibility of a complex network, denominated the DNA damage response (DDR), which controls the lesion detection and DNA repair. The main repair pathways are base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination repair (HR) and non-homologous end joining repair (NHEJ). They correct double-strand breaks (DSB), single-strand breaks, mismatches and others, or when the damage is quite extensive and repair insufficient, apoptosis is activated. Methods In this study we used the BLAST reciprocal best-hit methodology to search for DDR orthologs proteins in Aedes aegypti. We also provided a comparison between Ae. aegypti, D. melanogaster and human DDR network. Results Our analysis revealed the presence of ATR and ATM signaling, including the H2AX ortholog, in Ae. aegypti. Key DDR proteins (orthologs to RAD51, Ku and MRN complexes, XP-components, MutS and MutL) were also identified in this insect. Other proteins were not identified in both Ae. aegypti and D. melanogaster, including BRCA1 and its partners from BRCA1-A complex, TP53BP1, PALB2, POLk, CSA, CSB and POLβ. In humans, their absence affects DSB signaling, HR and sub-pathways of NER and BER. Seven orthologs not known in D. melanogaster were found in Ae. aegypti (RNF168, RIF1, WRN, RAD54B, RMI1, DNAPKcs, ARTEMIS). Conclusions The presence of key DDR proteins in Ae. aegypti suggests that the main DDR pathways are functional in this insect, and the identification of proteins not known in D. melanogaster can help fill gaps in the DDR network. The mapping of the DDR network in Ae. aegypti can support mosquito biology studies and inform genetic manipulation approaches applied to this vector.
Collapse
Affiliation(s)
- Maria Beatriz S Mota
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Alex Carvalho
- Instituto Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro, RJ, Brazil
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rafael D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|