1
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Nkosi D, Glickman J, Delgado-Gonzalez A, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat Commun 2025; 16:1230. [PMID: 39890778 PMCID: PMC11785740 DOI: 10.1038/s41467-025-56237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Biological and Medical Informatics Program, UCSF, San Francisco, CA, USA
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dingani Nkosi
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | - Jonathan Glickman
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | | | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Pappe E, Hübner RH, Saccomanno J, Ebrahimi HDN, Witzenrath M, Wiessner A, Sarbandi K, Xiong Z, Kursawe L, Moter A, Kikhney J. Biofilm infections of endobronchial valves in COPD patients after endoscopic lung volume reduction: a pilot study with FISHseq. Sci Rep 2024; 14:23078. [PMID: 39366990 PMCID: PMC11452729 DOI: 10.1038/s41598-024-73950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Endoscopic lung volume reduction (ELVR) using endobronchial valves (EBV) is a treatment option for a subset of patients with severe chronic obstructive pulmonary disease (COPD), suffering from emphysema and hyperinflation. In this pilot study, we aimed to determine the presence of bacterial biofilm infections on EBV and investigate their involvement in lack of clinical benefits, worsening symptomatology, and increased exacerbations that lead to the decision to remove EBVs. We analyzed ten COPD patients with ELVR who underwent EBV removal. Clinical data were compared to the microbiological findings from conventional EBV culture. In addition, EBV were analyzed by FISHseq, a combination of Fluorescence in situ hybridization (FISH) with PCR and sequencing, for visualization and identification of microorganisms and biofilms. All ten patients presented with clinical symptoms, including pneumonia and recurrent exacerbations. Microbiological cultures from EBV detected several microorganisms in all ten patients. FISHseq showed either mixed or monospecies colonization on the EBV, including oropharyngeal bacterial flora, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus spp., and Fusobacterium sp. On 5/10 EBV, FISHseq visualized biofilms, on 1/10 microbial microcolonies, on 3/10 single microorganisms, and on 1/10 no microorganisms. The results of the study demonstrate the presence of biofilms on EBV for the first time and its potential involvement in increased exacerbations and clinical worsening in patients with ELVR. However, further prospective studies are needed to evaluate the clinical relevance of biofilm formation on EBV and appropriate treatment options to avoid infections in patients with ELVR.
Collapse
Affiliation(s)
- Eva Pappe
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Ralf-Harto Hübner
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jacopo Saccomanno
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Hadis Darvishi Nakhl Ebrahimi
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Capnetz Foundation, Hannover, Germany
| | - Alexandra Wiessner
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| | - Kurosh Sarbandi
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Zhile Xiong
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| | - Laura Kursawe
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Annette Moter
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Moter Diagnostics, Berlin, Germany
| | - Judith Kikhney
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| |
Collapse
|
3
|
Zhang Z, Ren J, Ren L, Zhang L, Ai Q, Long H, Ren Y, Yang K, Feng H, Li S, Li X. MiPRIME: an integrated and intelligent platform for mining primer and probe sequences of microbial species. Bioinformatics 2024; 40:btae429. [PMID: 38954836 PMCID: PMC11246166 DOI: 10.1093/bioinformatics/btae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
MOTIVATION Accurately detecting pathogenic microorganisms requires effective primers and probe designs. Literature-derived primers are a valuable resource as they have been tested and proven effective in previous research. However, manually mining primers from published texts is time-consuming and limited in species scop. RESULTS To address these challenges, we have developed MiPRIME, a real-time Microbial Primer Mining platform for primer/probe sequences extraction of pathogenic microorganisms with three highlights: (i) comprehensive integration. Covering >40 million articles and 548 942 organisms, the platform enables high-frequency microbial gene discovery from a global perspective, facilitating user-defined primer design and advancing microbial research. (ii) Using a BioBERT-based text mining model with 98.02% accuracy, greatly reducing information processing time. (iii) Using a primer ranking score, PRscore, for intelligent recommendation of species-specific primers. Overall, MiPRIME is a practical tool for primer mining in the pan-microbial field, saving time and cost of trial-and-error experiments. AVAILABILITY AND IMPLEMENTATION The web is available at {{https://www.ai-bt.com}}.
Collapse
Affiliation(s)
- Zhiming Zhang
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Jing Ren
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Lili Ren
- Equipment technology research institute, Science and Technology Research Center of China Customs, Tianshuiyuan street No. 6, Chaoyang District, Beijing, 100026, China
| | - Lanying Zhang
- Research and Development Department, Coyote Diagnostics Lab (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 100095, China
| | - Qubo Ai
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Haixin Long
- Research and Development Department, Coyote Diagnostics Lab (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 100095, China
| | - Yi Ren
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Kun Yang
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Huiying Feng
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Sabrina Li
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| | - Xu Li
- Research and Development Department, Coyote Bioscience (Beijing) Co., Ltd., Building 22, Zone 3, Gaolizhang Road, Haidian District, Beijing, 10095, China
| |
Collapse
|
4
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A Spatial Multi-Modal Dissection of Host-Microbiome Interactions within the Colitis Tissue Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583400. [PMID: 38496402 PMCID: PMC10942342 DOI: 10.1101/2024.03.04.583400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The intricate and dynamic interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host features and its microbiome across multiple spatial modalities. We demonstrate MicroCart by comprehensively investigating the alterations in both gut host and microbiome components in a murine model of colitis by coupling MicroCart with spatial proteomics, transcriptomics, and glycomics platforms. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, and bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multiomics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, United States
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Biological and Medical Informatics program, UCSF, San Francisco, CA, United States
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Huang Z, Wang D, Zhou J, He H, Wei C. The Improvement of Fluorescence In Situ Hybridization Technique Based on Explorations of Symbionts in Cicadas. Int J Mol Sci 2023; 24:15838. [PMID: 37958818 PMCID: PMC10650757 DOI: 10.3390/ijms242115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is widely used for the identification of microbes in complex samples, but it suffers from some limitations resulting in the weak or even absence of fluorescence signals of microbe(s), which may lead to the underestimation or misunderstanding of a microbial community. Herein, we explored symbionts in the bacteriomes and fat bodies of cicadas using modified FISH, aiming to improve this technique. We initially revealed that the probes of Candidatus Sulcia muelleri (Sulcia) and the yeast-like fungal symbiont (YLS) are suitable for detection of these symbionts in all cicadas and some other species of Auchenorrhyncha, whereas the probe of Candidatus Hodgkinia cicadicola (Hodgkinia) is only suitable for detection of Hodgkinia in a few cicada species. The fluorescence signal of Sulcia, Hodgkinia and YLS exhibited weak intensity without the addition of unlabeled oligonucleotides (helpers) and heat shock in some cicadas; however, it can be significantly improved by the addition of both helpers and heat shock. Results of this study suggest that heat shock denaturing rRNA and proteins of related microbe(s) together with helpers binding to the adjacent region of the probe's target sites prevent the re-establishment of the native secondary structure of rRNA; therefore, suitable probe(s) can more easily access to the probe's target sites of rRNA. Our results provide new information for the significant improvement of hybridization signal intensities of microbes in the FISH experiment, making it possible to achieve a more precise understanding of the microbial distribution, community and density in complex samples.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| | - Jinrui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| | - Hong He
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| |
Collapse
|
6
|
Garrido-Amador P, Stortenbeker N, Wessels HJCT, Speth DR, Garcia-Heredia I, Kartal B. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat Microbiol 2023; 8:1574-1586. [PMID: 37429908 PMCID: PMC10390337 DOI: 10.1038/s41564-023-01425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
Collapse
Affiliation(s)
| | | | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
7
|
Safi AUR, Bendixen E, Rahman H, Khattak B, Wu W, Ullah W, Khan N, Ali F, Yasin N, Qasim M. Molecular identification and differential proteomics of drug resistant Salmonella Typhi. Diagn Microbiol Infect Dis 2023; 105:115883. [PMID: 36731197 DOI: 10.1016/j.diagmicrobio.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to elucidate differentially expressed proteins in drug resistant Salmonella Typhi. Among 100 samples, S. typhi were identified in 43 samples. In drug susceptibility profile, 95.3% (41/43), 80% (35/43) and 70% (30/43) resistances were observed against Nalidixic acid, Ampicillin, and Chloramphenicol respectively. No resistance was observed against Imipenum and Azithromycin while only 11% (5/43) isolates were found resistant to Ceftriaxone. Mass spectrometric differential analysis resulted in 23 up-regulated proteins in drug resistant isolates. Proteins found up-regulated are involved in virulence (vipB, galU, tufA, and lpp1), translation (rpsF, rpsG, rplJ, and rplR), antibiotic resistance (zwf, phoP, and ompX), cell metabolism (metK, ftsZ, pepD, and secB), stress response (ridA, rbfA, and dps), housekeeping (gapA and eno) and hypothetical proteins including ydfZ, t1802, and yajQ. These proteins are of diverse nature and functions but highly interconnected. Further characterization may be helpful for elucidation of new biomarker proteins and therapeutic drug targets.
Collapse
Affiliation(s)
- Aziz Ur Rehman Safi
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Emoke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C Denmark
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan Pakistan
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Wei Wu
- College of Animal Sciences and Technology, Southwest University, Chongqing China
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Nasar Khan
- Department of Microbiology, Kohsar University Murree, Kashmir Point, Punjab, Pakistan
| | - Farhad Ali
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan.
| |
Collapse
|
8
|
Toja Ortega S, van den Berg L, Pronk M, de Kreuk MK. Hydrolysis capacity of different sized granules in a full-scale aerobic granular sludge (AGS) reactor. WATER RESEARCH X 2022; 16:100151. [PMID: 35965888 PMCID: PMC9364025 DOI: 10.1016/j.wroa.2022.100151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In aerobic granular sludge (AGS) reactors, granules of different sizes coexist in a single reactor. Their differences in settling behaviour cause stratification in the settled granule bed. In combination with substrate concentration gradients over the reactor height during the anaerobic plug-flow feeding regime, this can result in functional differences between granule sizes. In this study, we compared the hydrolytic activity in granules of 4 size ranges (between 0.5 and 4.8 mm diameter) collected from a full-scale AGS installation. Protease and amylase activities were quantified through fluorescent activity assays. To visualise where the hydrolytic active zones were located within the granules, the hydrolysis sites were visualized microscopically after incubating intact and sliced granules with fluorescent casein and starch. The microbial community was studied using fluorescent in situ hybridization (FISH) and sequencing. The results of these assays indicated that hydrolytic capacity was present throughout the granules, but the hydrolysis of bulk substrates was restricted to the outer 100 µm, approximately. Many of the microorganisms studied by FISH, such as polyphosphate and glycogen accumulating organisms (PAO and GAO), were abundant in the vicinity of the hydrolytically active sites. The biomass-specific hydrolysis rate depended mainly on the available granule surface area, suggesting that different sized granules are not differentiated in terms of hydrolytic capacity. Thus, the substrate concentration gradients that are present during the anaerobic feeding in AGS reactors do not seem to affect hydrolytic activity at the granule surfaces. In this paper, we discuss the possible reasons for this and reflect about the implications for AGS technology.
Collapse
Key Words
- AGS, aerobic granular sludge
- AS, activated sludge
- Activity staining
- Aerobic granular sludge
- Biomass segregation
- COD, chemical oxygen demand
- EBPR, enhanced biological phosphorus removal
- EPS, extracellular polymeric substances
- FISH, fluorescence in situ hybridization
- GAO, glycogen-accumulating organism
- Hydrolysis
- PAO, polyphosphate-accumulating organism
- Polymeric substrates
- SBR, sequencing batch reactor
- SND, simultaneous nitrification-denitrification
- SRT, solids retention time
- TSS, total suspended solids
- VFA, volatile fatty acid
- VSS, volatile suspended solids
- WWTP, wastewater treatment plant
- Wastewater treatment
Collapse
Affiliation(s)
- Sara Toja Ortega
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Lenno van den Berg
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, AL 3800, the Netherlands
| | - Merle K. de Kreuk
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| |
Collapse
|
9
|
Active Microbial Airborne Dispersal and Biomorphs as Confounding Factors for Life Detection in the Cell-Degrading Brines of the Polyextreme Dallol Geothermal Field. mBio 2022; 13:e0030722. [PMID: 35384698 PMCID: PMC9040726 DOI: 10.1128/mbio.00307-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Determining the precise limits of life in polyextreme environments is challenging. Studies along gradients of polyextreme conditions in the Dallol proto-volcano area (Danakil salt desert, Ethiopia) showed the occurrence of archaea-dominated communities (up to 99%) in several hypersaline systems but strongly suggested that life did not thrive in the hyperacidic (pH ∼0), hypersaline (∼35% [wt/vol],) and sometimes hot (up to 108°C) ponds of the Dallol dome. However, it was recently claimed that archaea flourish in these brines based on the detection of one Nanohaloarchaeotas 16S rRNA gene and fluorescent in situ hybridization (FISH) experiments with archaea-specific probes. Here, we characterized the diversity of microorganisms in aerosols over Dallol, and we show that, in addition to typical bacteria from soil/dust, they transport halophilic archaea likely originating from neighboring hypersaline ecosystems. We also show that cells and DNA from cultures and natural local halophilic communities are rapidly destroyed upon contact with Dallol brine. Furthermore, we confirm the widespread occurrence of mineral particles, including silica-based biomorphs, in Dallol brines. FISH experiments using appropriate controls show that DNA fluorescent probes and dyes unspecifically bind to mineral precipitates in Dallol brines; cellular morphologies were unambiguously observed only in nearby hypersaline ecosystems. Our results show that airborne cell dispersal and unspecific binding of fluorescent probes are confounding factors likely affecting previous inferences of archaea thriving in Dallol. They highlight the need for controls and the consideration of alternative abiotic explanations before safely drawing conclusions about the presence of life in polyextreme terrestrial or extraterrestrial systems.
Collapse
|
10
|
Cong S, Xu Y, Lu Y. Growth Coordination Between Butyrate-Oxidizing Syntrophs and Hydrogenotrophic Methanogens. Front Microbiol 2021; 12:742531. [PMID: 34603271 PMCID: PMC8481629 DOI: 10.3389/fmicb.2021.742531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Syntrophy is a thermodynamically required mutualistic cooperation between fatty acid-oxidizing bacteria and methanogens that plays the important role in organic decomposition and methanogenesis in anoxic environments. In this study, three experiments were conducted to evaluate the cell-to-cell interaction in a thermophilic coculture consisting of Syntrophothermus lipocalidus and Methanocella conradii and a mesophilic coculture consisting of Syntrophomonas wolfei and Methanococcus maripaludis. First, syntrophs and methanogens were inoculated at different initial cell ratios to evaluate the growth synchronization. The quantitative PCR analysis revealed that the organism with a lower relative abundance at the beginning always grew faster, and the cell ratio converged over time to relative constant values in both the thermophilic and mesophilic cocultures. Next, intermittent ultrasound and constant shaking treatments were used to evaluate the influence of physical disturbance on microbial aggregation in the mesophilic coculture. The fluorescence in situ hybridization and scanning electron microscopy revealed that the tendency of syntrophic aggregation was not affected by the physical disturbances, although the activity was slightly depressed. Syntrophomonas dominated in the initial microbial aggregates, which, however, did not grow until Methanococcus was attached and increased to a significant extent, indicating the local growth synchronization during the formation and maturation of syntrophic aggregates. Last, microfluidic experiments revealed that whether or not Syntrophomonas or Methanococcus was loaded first, the second organism preferred moving to the place where the first organism was located, suggesting the cell-to-cell attraction between Syntrophomonas and Methanococcus. Collectively, our study demonstrated the growth synchronization and cell-to-cell attraction between the butyrate-oxidizing bacteria and methanogens for optimizing the syntrophic cooperation.
Collapse
Affiliation(s)
- Shuqi Cong
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiqin Xu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Sequence-specific capture of oligonucleotide probes (SCOPE): A simple and rapid microbial rRNA quantification method using molecular weight cut-off membrane. Appl Environ Microbiol 2021; 87:e0116721. [PMID: 34319794 DOI: 10.1128/aem.01167-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A method named sequence-specific capture of oligonucleotide probes (SCOPE) was developed for quantification of microbial rRNA molecules in a multiplex manner. In this method, molecular weight cut-off membrane (MWCOM) was used for the separation of fluorescent-labeled oligonucleotide probes hybridized with rRNA from free unhybridized probes. To demonstrate proof-of-concept, probes targeting bacteria or archaea at different taxonomic levels were prepared and were hybridized with rRNAs. The hybridization stringency was controlled by adjusting reaction temperature and urea concentration in the mixture. Then, the mixture was filtered through the MWCOM. The rRNA and hybridized probes collected on the MWCOM were recovered and quantified using spectrophotometer and fluorospectrometer, respectively. The method showed high accuracy in detecting specific microbial rRNA in a defined nucleic acid mixture. Furthermore, the method was capable of simultaneous detection and quantification of multiple target rRNAs in a sample with sensitivity up to a single-base mismatch. The SCOPE method was tested and benchmarked against the reverse transcription-quantitative PCR (RT-qPCR) for the quantification of Bacteria, Archaea and some key methanogens in anaerobic sludge samples. It was observed that the SCOPE method produced comparatively more reliable and coherent results. In this way, the SCOPE method allows a simple and rapid detection and quantification of target microbial rRNAs for environmental microbial population analysis without any need for enzymatic reactions. Importance Microorganisms play integral roles in the earth's ecosystem. Microbial population and their activities significantly affect the global nutrient cycles. Quantification of key microorganisms provides important information that is required to understand their roles in the environment. Sequence-based analysis of microbial population is a powerful tool, but it only provides information on relative abundance of microorganisms. Hence, the development of a simpler and quick method for the quantification of microorganisms is necessary. To address the shortcomings of a variety of molecular methods reported so far, we developed a simple, rapid, accurate and multiplexed microbial rRNA quantification method to evaluate the abundance of specific microbial population in complex ecosystems. The developed method demonstrated high specificity, reproducibility, and applicability to such samples. The method is useful for quantitative detection of particular microbial members in the environment.
Collapse
|
12
|
New Endohyphal Relationships between Mucoromycota and Burkholderiaceae Representatives. Appl Environ Microbiol 2021; 87:AEM.02707-20. [PMID: 33483310 PMCID: PMC8091615 DOI: 10.1128/aem.02707-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/09/2021] [Indexed: 01/05/2023] Open
Abstract
Bacteria living within fungal hyphae present an example of one of the most intimate relationships between fungi and bacteria. Even though there are several well-described examples of such partnerships, their prevalence within the fungal kingdom remains unknown. Mucoromycota representatives are known to harbor two types of endohyphal bacteria (EHB)—Burkholderia-related endobacteria (BRE) and Mycoplasma-related endobacteria (MRE). While both BRE and MRE occur in fungi representing all subphyla of Mucoromycota, their distribution is not well studied. Therefore, it is difficult to resolve the evolutionary history of these associations in favor of one of the following two alternative hypotheses explaining their origin: “early invasion” and “late invasion.” Our main goal was to fill this knowledge gap by surveying Mucoromycota fungi for the presence of EHB. We screened 196 fungal strains from 16 genera using a PCR-based approach to detect bacterial 16S rRNA genes, complemented with fluorescence in situ hybridization (FISH) imaging to confirm the presence of bacteria within the hyphae. We detected Burkholderiaceae in ca. 20% of fungal strains. Some of these bacteria clustered phylogenetically with previously described BRE clades, whereas others grouped with free-living Paraburkholderia. Importantly, the latter were detected in Umbelopsidales, which previously were not known to harbor endobacteria. Our results suggest that this group of EHB is recruited from the environment, supporting the late invasion scenario. This pattern complements the early invasion scenario apparent in the BRE clade of EHB. IMPORTANCE Bacteria living within fungal hyphae present an example of one of the most intimate relationships between fungi and bacteria. Even though there are several well-described examples of such partnerships, their prevalence within the fungal kingdom remains unknown. Our study focused on early divergent terrestrial fungi in the phylum Mucoromycota. We found that ca. 20% of the strains tested harbored bacteria from the family Burkholderiaceae. Not only did we confirm the presence of bacteria from previously described endosymbiont clades, we also identified a new group of endohyphal Burkholderiaceae representing the genus Paraburkholderia. We established that more than half of the screened Umbelopsis strains were positive for bacteria from this new group. We also determined that, while previously described BRE codiverged with their fungal hosts, Paraburkholderia symbionts did not.
Collapse
|
13
|
Gnida A, Żubrowska-Sudoł M, Sytek-Szmeichel K, Podedworna J, Surmacz-Górska J, Marciocha D. Effect of anaerobic phases length on denitrifying dephosphatation biocenosis - a case study of IFAS-MBSBBR. BMC Microbiol 2020; 20:222. [PMID: 32709219 PMCID: PMC7379833 DOI: 10.1186/s12866-020-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study aimed to evaluate the influence of the duration times of anaerobic phases on the bacterial biocenosis characterisation while denitrifying dephosphatation in the Integrated Fixed-Film Activated Sludge - Moving-Bed Sequencing Batch Biofilm Reactor (IFAS-MBSBBR). The experiment was conducted in a laboratory model. The study consisted of four series, which differed in terms of the ratio of the anaerobic phases. duration concerning the overall reaction time in the cycle. The anaerobic phases covered from 18 to 30% of the whole cycle duration. During the reactor performance that took 9 months, the influent and effluent were monitored by analysis of COD, TKN, NH4-N, NO2-N, NO3-N, TP, PO4-P, pH, alkalinity and the phosphorus uptake batch tests. Characterisation of the activated sludge and the biofilm biocenosis was based on fluorescent in situ hybridisation (identification of PAO and GAO) and the denaturing gradient gel electrophoresis patterns. RESULTS The organic compounds removal was high (more than 95.7%) independently of cycle configuration. The best efficiency for nitrogen (91.1%) and phosphorus (98.8%) removal was achieved for the 30% share of the anaerobic phases in the reaction time. Denitrifying PAO (DPAO) covered more than 90% of PAO in the biofilm and usually around 70% of PAO in the activated sludge. A substantial part of the polyphosphate accumulating organisms (PAO) community were Actinobacteria. The denitrifying dephosphatation activity was performed mainly by Accumulibacter phosphatis. CONCLUSIONS High nutrient removal efficiencies may be obtained in IFAS-MBSBBR using the denitrifying dephosphatation process. It was found that the length of anaerobic phases influenced denitrification and the biological phosphorus removal. The extension of the anaerobic phases duration time in the reaction time caused an increase in the percentage share of denitrifying PAO (DPAO) in PAO. The biocenosis of the biofilm and the activated sludge reveal different species patterns and domination of the EBPR community.
Collapse
Affiliation(s)
- Anna Gnida
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 2A Akademicka St., 44-100, Gliwice, Poland.
| | - Monika Żubrowska-Sudoł
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, 00-653, Warsaw, Poland
| | - Katarzyna Sytek-Szmeichel
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, 00-653, Warsaw, Poland
| | - Jolanta Podedworna
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, 00-653, Warsaw, Poland
| | - Joanna Surmacz-Górska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 2A Akademicka St., 44-100, Gliwice, Poland
| | - Dorota Marciocha
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 2A Akademicka St., 44-100, Gliwice, Poland
| |
Collapse
|
14
|
Evidence of mutations conferring resistance to clarithromycin in wastewater and activated sludge. 3 Biotech 2020; 10:7. [PMID: 31832295 DOI: 10.1007/s13205-019-1989-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022] Open
Abstract
The occurrence of clarithromycin in wastewater samples and of the activated sludge bacteria possibly resistant to this pharmaceutical was the object of the study. Samples of wastewater or activated sludge were taken from a municipal wastewater treatment plant in summer and winter and characterised regarding their clarithromycin concentrations and the presence of nucleic acid fragments (Cla-sequences) known to be responsible for clarithromycin resistance in Helicobacter pylori. The concentrations of clarithromycin in raw wastewater were about 1086-2271 ng/L. Around 50-60% less of the pharmaceutical was found in treated wastewater. The concentrations were much higher in winter samples, as compared to summer samples. The clarithromycin resistance markers in H. pylori were detected by fluorescence in situ hybridisation in activated sludge bacterial cells. Cla-sequences were found in all the detected Proteobacteria, independently of the sampling season. Among nitrifying or phosphate or glycogen accumulating bacteria only Nitrosomonas spp. revealed presence of the clarithromycin sequences.
Collapse
|
15
|
Lotti T, Burzi O, Scaglione D, Ramos CA, Ficara E, Pérez J, Carrera J. Two-stage granular sludge partial nitritation/anammox process for the treatment of digestate from the anaerobic digestion of the organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:36-44. [PMID: 31505402 DOI: 10.1016/j.wasman.2019.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The increasing amount of source separated organic fraction of municipal solid wastes (OFMSW) treated by anaerobic digestion for energy recovery requires the implementation of cost-efficient processes for the treatment of the produced digestate, especially in terms of nitrogen removal. The autotrophic nitrogen removal process, based on the coupling of two biological processes, partial nitritation (PN) and anammox (A), appears as a suitable solution due to important savings in operational costs compared to conventional treatment processes. However, its application could be hampered by the high salinity and inhibitory potential of this kind of digestate. In this contribution, two lab-scale granular sludge reactors performing the PN and anammox processes, respectively, were used to treat (opportunely diluted) real OFMSW digestate originating from full-scale biogas plants with the aim of assessing their treatment feasibility in a two-stage PN/A configuration. The PN process was implemented in an air-lift granular sludge reactor and was able to treat a nitrogen loading rate of about 1 g N L-1 d-1 at 30 ± 0.5 °C; moreover, its effluent was suitable for the subsequent anammox treatment, with an appropriate effluent NO2-/NH4+ ratio and marginal inhibiting effects. In the anammox granular sludge reactor, the anammox activity was affected by high salinity levels, nonetheless a stable reactor performance at a nitrogen removing rate of 0.83 ± 0.20 and 0.31 ± 0.04 g N L-1 d-1 at 35 ± 0.5 °C, were achieved when treating 50% and 30% diluted real wastewaters at a conductivity in the reactor of 9.1 and 11.2 mS cm-1, respectively.
Collapse
Affiliation(s)
- Tommaso Lotti
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milano, Italy.
| | - Ottavia Burzi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milano, Italy
| | - Davide Scaglione
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milano, Italy
| | - Carlos Antonio Ramos
- Universitat Autònoma de Barcelona, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Ed. Q-Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milano, Italy
| | - Julio Pérez
- Universitat Autònoma de Barcelona, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Ed. Q-Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Julián Carrera
- Universitat Autònoma de Barcelona, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Ed. Q-Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Duchatelet L, Delroisse J, Flammang P, Mahillon J, Mallefet J. Etmopterus spinax, the velvet belly lanternshark, does not use bacterial luminescence. Acta Histochem 2019; 121:516-521. [PMID: 31027729 DOI: 10.1016/j.acthis.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
Marine organisms are able to produce light using either their own luminous system, called intrinsic bioluminescence, or symbiotic luminous bacteria, called extrinsic bioluminescence. Among bioluminescent vertebrates, Osteichthyes are known to harbor both types of bioluminescence, while no study has so far addressed the potential use of intrinsic/extrinsic luminescence in elasmobranchs. In sharks, two families are known to emit light: Etmopteridae and Dalatiidae. The deep-sea bioluminescent Etmopteridae, Etmopterus spinax, has received a particular interest over the past fifteen years and its bioluminescence control was investigated in depth. However, the nature of the shark luminous system still remains enigmatic. The present work was undertaken to assess whether the light of this shark species originates from a bioluminescent bacterial symbiosis. Using fluorescent in situ hybridization (FISH) and transmission electron microscopy (TEM) image analyses, this study supports the conclusion that the bioluminescence in the deep-sea lanternshark, Etmopterus spinax, is not of bacterial origin.
Collapse
Affiliation(s)
- Laurent Duchatelet
- Université catholique de Louvain - UCLouvain, Earth and Life Institute, Marine Biology Laboratory, Croix du Sud, 3, 1348, Louvain-La Neuve, Belgium.
| | - Jérôme Delroisse
- Université de Mons - UMons, Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, 23 Place du Parc, 7000, Mons, Belgium
| | - Patrick Flammang
- Université de Mons - UMons, Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, 23 Place du Parc, 7000, Mons, Belgium
| | - Jacques Mahillon
- Université catholique de Louvain - UCLouvain, Earth and Life Institute, Laboratory of Food and Environmental Microbiology, Croix du Sud, 2, 1348, Louvain-la Neuve, Belgium
| | - Jérôme Mallefet
- Université catholique de Louvain - UCLouvain, Earth and Life Institute, Marine Biology Laboratory, Croix du Sud, 3, 1348, Louvain-La Neuve, Belgium
| |
Collapse
|
17
|
Methou P, Hernández-Ávila I, Aube J, Cueff-Gauchard V, Gayet N, Amand L, Shillito B, Pradillon F, Cambon-Bonavita MA. Is It First the Egg or the Shrimp? - Diversity and Variation in Microbial Communities Colonizing Broods of the Vent Shrimp Rimicaris exoculata During Embryonic Development. Front Microbiol 2019; 10:808. [PMID: 31057515 PMCID: PMC6478704 DOI: 10.3389/fmicb.2019.00808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/29/2019] [Indexed: 12/26/2022] Open
Abstract
Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female's abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria, and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.
Collapse
Affiliation(s)
- Pierre Methou
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Ivan Hernández-Ávila
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Johanne Aube
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes, Plouzané, France
| | - Nicolas Gayet
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | - Louis Amand
- Unité Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Eq. Adaptations aux Milieux Extrêmes (BOREA), CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Bruce Shillito
- Unité Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Eq. Adaptations aux Milieux Extrêmes (BOREA), CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Florence Pradillon
- Ifremer, Laboratoire Environnement Profond (REM/EEP/LEP), Plouzané, France
| | | |
Collapse
|
18
|
Xia X, Zhang J, Song T, Lu Y. Stimulation of Smithella-dominating propionate oxidation in a sediment enrichment by magnetite and carbon nanotubes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:236-248. [PMID: 30790444 DOI: 10.1111/1758-2229.12737] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that application of conductive materials including magnetite and carbon nanotubes (CNTs) can promote the methanogenic decomposition of short-chain fatty acids and even more complex organic matter in anaerobic digesters and natural habitats. The linkage to microbial identity and the mechanisms, however, remain poorly understood. Here, we evaluate the effects of nanoscale magnetite (nanoFe3 O4 ) and multiwalled CNTs on the syntrophic oxidation of propionate in an enrichment obtained from lake sediment. The microbial populations were composed mainly of Smithella, Syntrophomonas, Methanosaeta, Methanosarcina and Methanoregula. In addition to acetate, butyrate was transiently accumulated indicating that propionate was oxidized by Smithella via the dismutation pathway and part of the leaked butyrate was oxidized by Syntrophomonas. Propionate oxidation and CH4 production were significantly accelerated in the presence of nanoFe3 O4 and CNTs. While propionate oxidation was suppressed upon H2 application and suspended completely upon formate application in the control, this suppressive effect was substantially compromised in the presence of nanoFe3 O4 and CNTs. The tests on hydrogenotrophic methanogenesis of a pure culture methanogen and of the enrichment culture without propionate showed negative effect by both materials. The positive effect of nanoFe3 O4 disappeared when it was insulated by surface-coating with silica. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated the extensive formation of microbial cell-conductive material mixture aggregates. Our results suggest that direct interspecies electron transfer is likely activated by the conductive materials and operates in concert with H2 /formate-dependent electron transfer for syntrophic propionate oxidation in the sediment enrichment.
Collapse
Affiliation(s)
- Xingxuan Xia
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianchao Zhang
- Institute of Surface-Earth System Science, Tianjin University, 300072, China
| | - Tianze Song
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yahai Lu
- Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 2018; 43:88-107. [DOI: 10.1093/femsre/fuy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
20
|
Abstract
With the advent of low-cost, high-throughput sequencing, taxonomic profiling of complex microbial communities through 16S rRNA marker gene surveys has received widespread interest, uncovering a wealth of information concerning the bacterial composition of microbial communities, as well as their association with health and disease. On the other hand, little is known concerning the eukaryotic components of microbiomes. Such components include single-celled parasites and multicellular worms that are known to adversely impact the health of millions of people worldwide. Current molecular methods to detect eukaryotic microbes rely on the use of directed PCR analyses that are limited by their inability to inform beyond the taxon targeted. With increasing interest to develop equivalent marker-based surveys as used for bacteria, this chapter presents a stepwise protocol to characterize the diversity of eukaryotic microbes in a sample, using amplicon sequencing of hypervariable regions in the eukaryotic 18S rRNA gene.
Collapse
|
21
|
Scarascia G, Cheng H, Harb M, Hong PY. Application of hierarchical oligonucleotide primer extension (HOPE) to assess relative abundances of ammonia- and nitrite-oxidizing bacteria. BMC Microbiol 2017; 17:85. [PMID: 28376730 PMCID: PMC5381152 DOI: 10.1186/s12866-017-0998-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Establishing an optimal proportion of nitrifying microbial populations, including ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), complete nitrite oxidizers (comammox) and ammonia-oxidizing archaea (AOA), is important for ensuring the efficiency of nitrification in water treatment systems. Hierarchical oligonucleotide primer extension (HOPE), previously developed to rapidly quantify relative abundances of specific microbial groups of interest, was applied in this study to track the abundances of the important nitrifying bacterial populations. RESULTS The method was tested against biomass obtained from a laboratory-scale biofilm-based trickling reactor, and the findings were validated against those obtained by 16S rRNA gene-based amplicon sequencing. Our findings indicated a good correlation between the relative abundance of nitrifying bacterial populations obtained using both HOPE and amplicon sequencing. HOPE showed a significant increase in the relative abundance of AOB, specifically Nitrosomonas, with increasing ammonium content and shock loading (p < 0.001). In contrast, Nitrosospira remained stable in its relative abundance against the total community throughout the operational phases. There was a corresponding significant decrease in the relative abundance of NOB, specifically Nitrospira and those affiliated to comammox, during the shock loading. Based on the relative abundance of AOB and NOB (including commamox) obtained from HOPE, it was determined that the optimal ratio of AOB against NOB ranged from 0.2 to 2.5 during stable reactor performance. CONCLUSIONS Overall, the HOPE method was developed and validated against 16S rRNA gene-based amplicon sequencing for the purpose of performing simultaneous monitoring of relative abundance of nitrifying populations. Quantitative measurements of these nitrifying populations obtained via HOPE would be indicative of reactor performance and nitrification functionality.
Collapse
Affiliation(s)
- Giantommaso Scarascia
- Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - Hong Cheng
- Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - Moustapha Harb
- Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
22
|
Williams MR, Stedtfeld RD, Waseem H, Stedtfeld T, Upham B, Khalife W, Etchebarne B, Hughes M, Tiedje JM, Hashsham SA. Implications of direct amplification for measuring antimicrobial resistance using point-of-care devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:1229-1241. [PMID: 29657581 PMCID: PMC5898395 DOI: 10.1039/c6ay03405e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Antimicrobial resistance (AMR) is recognized as a global threat to human health. Rapid detection and characterization of AMR is a critical component of most antibiotic stewardship programs. Methods based on amplification of nucleic acids for detection of AMR are generally faster than culture-based approaches but they still require several hours to more than a day due to the need for transporting the sample to a centralized laboratory, processing of sample, and sometimes DNA purification and concentration. Nucleic acids-based point-of-care (POC) devices are capable of rapidly diagnosing antibiotic-resistant infections which may help in making timely and correct treatment decisions. However, for most POC platforms, sample processing for nucleic acids extraction and purification is also generally required prior to amplification. Direct amplification, an emerging possibility for a number of polymerases, has the potential to eliminate these steps without significantly impacting diagnostic performance. This review summarizes direct amplification methods and their implication for rapid measurement of AMR. Future research directions that may further strengthen the possibility of integrating direct amplification methods with POC devices are also summarized.
Collapse
Affiliation(s)
- M R Williams
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - R D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - H Waseem
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - T Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - B Upham
- Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - W Khalife
- Department of Microbiology, Sparrow Laboratories, Sparrow Health System, Lansing, MI 48912, USA
| | - B Etchebarne
- Osteopathic Medical Specialties, Section of Emergency Medicine, Michigan State University, East Lansing, MI 4882, USA
| | - M Hughes
- Osteopathic Medical Specialties, Section of Emergency Medicine, Michigan State University, East Lansing, MI 4882, USA
| | - J M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - S A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43:263-293. [PMID: 28129707 DOI: 10.3109/1040841x.2016.1169990] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early identification of microbial pathogens is essential for rational and conservative antibiotic use especially in the case of known regional resistance patterns. Here, we describe fluorescence in situ hybridization (FISH) as one of the rapid methods for easy identification of microbial pathogens, and its advantages and disadvantages for the diagnosis of pathogens in human infections in the laboratory diagnostic routine. Binding of short fluorescence-labeled DNA or nucleic acid-mimicking PNA probes to ribosomes of infectious agents with consecutive analysis by fluorescence microscopy allows identification of bacterial and eukaryotic pathogens at genus or species level. FISH analysis leads to immediate differentiation of infectious agents without delay due to the need for microbial culture. As a microscopic technique, FISH has the unique potential to provide information about spatial resolution, morphology and identification of key pathogens in mixed species samples. On-going automation and commercialization of the FISH procedure has led to significant shortening of the time-to-result and increased test reliability. FISH is a useful tool for the rapid initial identification of microbial pathogens, even from primary materials. Among the rapidly developing alternative techniques, FISH serves as a bridging technology between microscopy, microbial culture, biochemical identification and molecular diagnostic procedures.
Collapse
Affiliation(s)
- Hagen Frickmann
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | - Andreas Erich Zautner
- b Department of Medical Microbiology, University Medical Center Göttingen , Göttingen , Germany
| | - Annette Moter
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Judith Kikhney
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Ralf Matthias Hagen
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | | | - Sven Poppert
- e Institute for Medical Microbiology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
24
|
Cruz Viggi C, Simonetti S, Palma E, Pagliaccia P, Braguglia C, Fazi S, Baronti S, Navarra MA, Pettiti I, Koch C, Harnisch F, Aulenta F. Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:303. [PMID: 29255486 PMCID: PMC5729428 DOI: 10.1186/s13068-017-0994-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Recent studies have suggested that addition of electrically conductive biochar particles is an effective strategy to improve the methanogenic conversion of waste organic substrates, by promoting syntrophic associations between acetogenic and methanogenic organisms based on interspecies electron transfer processes. However, the underlying fundamentals of the process are still largely speculative and, therefore, a priori identification, screening, and even design of suitable biochar materials for a given biotechnological process are not yet possible. RESULTS Here, three charcoal-like products (i.e., biochars) obtained from the pyrolysis of different lignocellulosic materials, (i.e., wheat bran pellets, coppiced woodlands, and orchard pruning) were tested for their capacity to enhance methane production from a food waste fermentate. In all biochar-supplemented (25 g/L) batch experiments, the complete methanogenic conversion of fermentate volatile fatty acids proceeded at a rate that was up to 5 times higher than that observed in the unamended (or sand-supplemented) controls. Fluorescent in situ hybridization analysis coupled with confocal laser scanning microscopy revealed an intimate association between archaea and bacteria around the biochar particles and provided a clear indication that biochar also shaped the composition of the microbial consortium. Based on the application of a suite of physico-chemical and electrochemical characterization techniques, we demonstrated that the positive effect of biochar is directly related to the electron-donating capacity (EDC) of the material, but is independent of its bulk electrical conductivity and specific surface area. The latter properties were all previously hypothesized to play a major role in the biochar-mediated interspecies electron transfer process in methanogenic consortia. CONCLUSIONS Collectively, these results of this study suggest that for biochar addition in anaerobic digester operation, the screening and identification of the most suitable biochar material should be based on EDC determination, via simple electrochemical tests.
Collapse
Affiliation(s)
- Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Serena Simonetti
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Enza Palma
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Pamela Pagliaccia
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Camilla Braguglia
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Stefano Fazi
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Silvia Baronti
- Institute of Biometeorology (IBIMET), National Research Council (CNR), via G. Caproni 8, 50145 Florence, Italy
| | - Maria Assunta Navarra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 000185 Rome, Italy
| | - Ida Pettiti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 000185 Rome, Italy
| | - Christin Koch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research GmbH—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research GmbH—UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), via Salaria km 29,300, 00015 Monterotondo, Italy
| |
Collapse
|
25
|
Gokal J, Awolusi OO, Enitan AM, Kumari S, Bux F. Chapter 4 Molecular Characterization and Quantification of Microbial Communities in Wastewater Treatment Systems. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Nakipoglu M, Yilmaz F, Icgen B. vanA-targeted oligonucleotide DNA probe designed to monitor vancomycin- and teicoplanin-resistant bacteria in surface waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:569. [PMID: 27640164 DOI: 10.1007/s10661-016-5578-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
The glycopeptide antibiotics teicoplanin and vancomycin are common to treat severe Gram-positive bacterial infections. The gene vanA confers high-level resistance to these antibiotics, and these phenomena have been shown to be transferable. Release of vancomycin- and teicoplanin-resistant bacteria to surface waters is, therefore, of particular concern since they might proliferate and spread in different environments. Monitoring of the fate of vanA gene in these waters provides information on the exposure and potential threats of those bacteria for the environment and public health. Therefore, this study aimed at preparing a 25-mer-oligonucleotide DNA probe based on the 909 bp BamHI-ClaI fragment from Enterococcus faecium plasmids pVEF1 and pVEF2 through the use of Vector NTI Express Software. The newly designed vanA probe displayed highly specific hybridization with vanA-positive Enterococcus faecalis tested at 46 °C, 55 % formamide, and 0.020 M NaCl stringency conditions. In situ fluorescein hybridizations under the same stringency conditions were also used to monitor river water samples by using fluorescein microscopy. The results showed that the vanA-targeted oligonucleotide DNA probe prepared was not only highly specific but also quantitative tool for monitoring vancomycin- and teicoplanin-resistant bacteria in surface waters.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey
| | - Fadime Yilmaz
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Bulent Icgen
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey.
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
27
|
Powell E, Ratnayeke N, Moran NA. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 2016; 25:4461-71. [PMID: 27482856 DOI: 10.1111/mec.13787] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/30/2023]
Abstract
Host-restricted lineages of gut bacteria often include many closely related strains, but this fine-scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single-copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild-caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus-restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations.
Collapse
Affiliation(s)
- Elijah Powell
- Department of Integrative Biology, University of Texas, NMS Building, 2506 Speedway, A5000, Austin, TX, 78712, USA.
| | - Nalin Ratnayeke
- Department of Integrative Biology, University of Texas, NMS Building, 2506 Speedway, A5000, Austin, TX, 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, NMS Building, 2506 Speedway, A5000, Austin, TX, 78712, USA
| |
Collapse
|
28
|
Pérez-López E, Cela D, Costabile A, Mateos-Aparicio I, Rupérez P. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Br J Nutr 2016; 116:1116-24. [PMID: 27469454 DOI: 10.1017/s0007114516002816] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
At present, there is a huge interest in finding new prebiotics from agrofood industrial waste, such as the soyabean by-product Okara, rich in insoluble dietary fibre. A previous treatment of Okara with high hydrostatic pressure assisted by the food-grade enzyme Ultraflo ® L achieved a 58·2 % increment in its soluble dietary fibre (SDF) contents. Therefore, potential prebiotic effect of both treated and native Okara was assayed using 48 h, pH-controlled, anaerobic batch cultures inoculated with human faecal slurries, which simulate the human gut. Changes in faecal microbiota were evaluated using 16S rRNA-based fluorescence in situ hybridisation, whereas release of SCFA and lactic acid was assessed by HPLC. Both Okara samples exhibited potential prebiotic effects but Okara treated to maximise its SDF content showed higher SCFA plus lactic acid, better growth promotion of beneficial bacteria, including bifidobacteria after 4 and 48 h and lactobacilli after 4 h of fermentation, and a greater inhibition of potentially harmful bacterial groups such as clostridia and Bacteroides. Differences found between fructo-oligosaccharides and Okara substrates could be attributed to the great complexity of Okara's cell wall, which would need longer times to be fermented than other easily digested molecules, thus allowing an extended potential prebiotic effect. These results support an in vitro potential prebiotic effect of Okara.
Collapse
Affiliation(s)
- E Pérez-López
- 1Metabolism and Nutrition Department,Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN),Consejo Superior de Investigaciones Científicas (CSIC),José Antonio Novais 10,Ciudad Universitaria,E-28040 Madrid,Spain
| | - D Cela
- 2Food & Nutritional Sciences Unit,School of Chemistry, Food and Pharmacy,University of Reading,Reading,UK
| | - A Costabile
- 2Food & Nutritional Sciences Unit,School of Chemistry, Food and Pharmacy,University of Reading,Reading,UK
| | - I Mateos-Aparicio
- 4Departamento de Nutrición y Bromatología II,Bromatología, Facultad de Farmacia,Universidad Complutense de Madrid,Ciudad Universitaria,E-28040 Madrid,Spain
| | - P Rupérez
- 1Metabolism and Nutrition Department,Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN),Consejo Superior de Investigaciones Científicas (CSIC),José Antonio Novais 10,Ciudad Universitaria,E-28040 Madrid,Spain
| |
Collapse
|
29
|
Podedworna J, Zubrowska-Sudol M, Sytek-Szmeichel K, Gnida A, Surmacz-Górska J, Marciocha D. Impact of multiple wastewater feedings on the efficiency of nutrient removal in an IFAS-MBSBBR: number of feedings vs. efficiency of nutrient removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1457-1468. [PMID: 27685975 DOI: 10.2166/wst.2016.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article presents the results of research into the influence of one, two and three wastewater feedings in a cycle on efficiency and performance of combined biological nitrogen and phosphorus removal in an integrated fixed-film activated sludge and moving-bed sequencing batch biofilm reactor (IFAS-MBSBBR). The experiment lasted 158 days and was conducted in two laboratory models of the IFAS-MBSBBR with an active volume of 28 L. It was found that along with an increase in the number of wastewater feedings, an increase in nitrogen removal efficiency was observed (from 56.9 ± 2.30% for a single feeding to 91.4 ± 1.77% for three feedings). Moreover, the contribution of simultaneous nitrification/denitrification in nitrogen removal increased (from 2.58% for a single feeding to 69.5% for three feedings). Systems with a greater number of feedings stimulated the process of denitrifying phosphorus removal. Regardless of the way in which wastewater feeding was applied to the IFAS-MBSBBR, highly efficient chemical oxygen demand (COD) removal (94.8 ± 1.80%) and biological phosphorus removal (98.9 ± 0.87%) were achieved.
Collapse
Affiliation(s)
- J Podedworna
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, Warsaw 00-653, Poland E-mail:
| | - M Zubrowska-Sudol
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, Warsaw 00-653, Poland E-mail:
| | - K Sytek-Szmeichel
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, Warsaw 00-653, Poland E-mail:
| | - A Gnida
- Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, Silesian University of Technology, Krzywoustego Str. 8, Gliwice 44-100, Poland
| | - J Surmacz-Górska
- Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, Silesian University of Technology, Akademicka Str. 2, Gliwice 44-100, Poland
| | - D Marciocha
- Faculty of Energy and Environmental Engineering, Environmental Biotechnology Department, Silesian University of Technology, Krzywoustego Str. 8, Gliwice 44-100, Poland
| |
Collapse
|
30
|
Zhang J, Lu Y. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments. Front Microbiol 2016; 7:1316. [PMID: 27597850 PMCID: PMC4992681 DOI: 10.3389/fmicb.2016.01316] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/09/2016] [Indexed: 11/15/2022] Open
Abstract
Syntrophic methanogenesis is an essential link in the global carbon cycle and a key bioprocess for the disposal of organic waste and production of biogas. Recent studies suggest direct interspecies electron transfer (DIET) is involved in electron exchange in methanogenesis occurring in paddy soils, anaerobic digesters, and specific co-cultures with Geobacter. In this study, we evaluate the possible involvement of DIET in the syntrophic oxidation of butyrate in the enrichments from two lake sediments (an urban lake and a natural lake). The results showed that the production of CH4 was significantly accelerated in the presence of conductive nanoscale Fe3O4 or carbon nanotubes in the sediment enrichments. Observations made with fluorescence in situ hybridization and scanning electron microscope indicated that microbial aggregates were formed in the enrichments. It appeared that the average cell-to-cell distance in aggregates in nanomaterial-amended enrichments was larger than that in aggregates in the non-amended control. These results suggested that DIET-mediated syntrophic methanogenesis could occur in the lake sediments in the presence of conductive materials. Microbial community analysis of the enrichments revealed that the genera of Syntrophomonas, Sulfurospirillum, Methanosarcina, and Methanoregula were responsible for syntrophic oxidation of butyrate in lake sediment samples. The mechanism for the conductive-material-facilitated DIET in butyrate syntrophy deserves further investigation.
Collapse
Affiliation(s)
- Jianchao Zhang
- College of Urban and Environmental Sciences, Peking University Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University Beijing, China
| |
Collapse
|
31
|
Topçuoğlu BD, Stewart LC, Morrison HG, Butterfield DA, Huber JA, Holden JF. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents. Front Microbiol 2016; 7:1240. [PMID: 27547206 PMCID: PMC4974244 DOI: 10.3389/fmicb.2016.01240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.
Collapse
Affiliation(s)
| | - Lucy C. Stewart
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| | - Hilary G. Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, SeattleWA, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, SeattleWA, USA
| | - Julie A. Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|
32
|
Neufeld JD. Direct-geneFISH: tuning up microscopic and molecular methodologies for targeted cell visualization. Environ Microbiol 2016; 19:3-4. [PMID: 27486074 DOI: 10.1111/1462-2920.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
33
|
Seyedmonir E, Yilmaz F, Icgen B. Methicillin-Resistant Bacteria Inhabiting Surface Waters Monitored by mecA-Targeted Oligonucleotide Probes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:261-271. [PMID: 27156085 DOI: 10.1007/s00128-016-1815-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Part of a 20-60 kb staphylococcal chromosome cassette called mecA encodes low-affinity penicillin-binding protein PBP2a and causes methicillin resistance. Among all methicillin-resistant bacteria, methicillin-resistant Staphylococcus aureus is a major pathogen and main concern worldwide. Although the origin of the mecA is not very well-defined, mecA homologues are also ubiquitous in methicillin-resistant non-staphylococcal bacteria. Due to the dissemination of methicillin resistance through the transmission of mecA gene among staphylococcal and non-staphylococcal bacteria inhabiting surface waters, there is a need to monitor mecA gene in these waters for public health safety. Therefore, this study aimed at monitoring mecA harboring bacteria inhabiting surface waters by using fluorescently labelled mecA-targeted oligonucleotide probes. Under the hybridization conditions of 55 % formamide and 0.020 M NaCl at 46°C, the oligonucleotide probe used in the study showed high hybridization stringency to the mecA gene targeted. The strong linear relationships observed between the signal intensity and the target gene were used to assess the population dynamics of mecA harboring isolates over a 2-year-period. The results indicated that mecA-targeted oligonucleotide probes can be effectively used for in situ monitoring of methicillin resistant isolates inhabiting surface waters.
Collapse
Affiliation(s)
- Elnaz Seyedmonir
- Department of Biochemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Fadime Yilmaz
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Bulent Icgen
- Department of Biochemistry, Middle East Technical University, 06800, Ankara, Turkey.
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
34
|
Tang X, Yang Q, Li J, Peng Y, Xu Z, He J. Semi-nitritation process producing optimum influent for anammox process in treatment of domestic wastewater. CHEMOSPHERE 2016; 152:55-61. [PMID: 26963236 DOI: 10.1016/j.chemosphere.2015.10.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
The process of anaerobic ammonium oxidation (Anammox) requires a proper ratio of NH4(+)-N and NO2(-)-N in the influent, which is difficult to control upon treating domestic wastewater. In this study, a control strategy of semi-nitritation (SN) process based on monitoring the pH profile and NH4(+)-N concentration in a sequencing batch reactor (SBR) was developed. The aeration time of each cycle in SN-SBR was calculated using the established equation tSN=tCOD+0.56αnS0/(S0-Sn). To verify the suitability of the control strategy, SN-SBR was operated continuously for 20 cycles, fed with real domestic wastewater with a fluctuating COD of 200-400 mg L(-1) and NH4(+)-N of 65-80 mg L(-1). The nitrogen removal performance of SN-anammox system using the developed control strategy was also monitored. Results showed that SN-SBR was able to generate a suitable ratio of NH4(+)-N to NO2(-)-N for the following anammox process, the TN removal rate of the SN-anammox system achieved 91.7 ± 0.4% and the average ammonium, nitrite and nitrate concentration of effluent was only 0.50 ± 0.24, 0.13 ± 0.09 and 4.9 ± 0.22 mg L(-1), respectively. This study has potential application in the treatment of domestic wastewater using combined SN-anammox process.
Collapse
Affiliation(s)
- Xiaoxue Tang
- Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China; China Academy of Building Research, Beijing 100013, PR China
| | - Qing Yang
- Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jianlin Li
- China Academy of Building Research, Beijing 100013, PR China
| | - Yongzhen Peng
- Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhubing Xu
- Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jianzhong He
- Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
35
|
Icgen B, Yilmaz F. Use of cadA-Specific Primers and DNA Probes as Tools to Select Cadmium Biosorbents with Potential in Remediation Strategies. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:685-693. [PMID: 26969609 DOI: 10.1007/s00128-016-1767-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Biosorption, using cadmium-resistant bacterial isolates, is often regarded as a relatively inexpensive and efficient way of cleaning up wastes, sediments, or soils polluted with cadmium. Therefore, many efforts have been devoted to the isolation of cadmium-resistant isolates for the efficient management of cadmium remediation processes. However, isolation, identification and in situ screening of efficient cadmium-resistant isolates are primary challenges. To overcome these challanges, in this study, cadA, cadmium resistance coding gene, specific primers and DNA probes were used to identify and screen cadmium-resistant bacteria in the cadmium-polluted river waters through polymerase chain reaction (PCR) and fluorescein in situ hybridization (FISH). PCR amplification of the cadA amplicon coupled with 16S rRNA sequencing revealed various gram-positive and -negative bacterial isolates harboring cadA. Accordingly, a cadA-mediated DNA probe was prepared and used for in situ screening of cadmium-resistant isolates from water samples collected from cadmium-polluted river waters. The FISH analyses of cadA probe showed highly specific and efficient hybridization with cadA harboring isolates. The use of primers and DNA probes specific for cadA gene seems to be very helpful tools for the selection and screening of cadmium biosorbents with potential to be used in the remediation of cadmium-polluted sites.
Collapse
Affiliation(s)
- Bulent Icgen
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | - Fadime Yilmaz
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
36
|
Icgen B, Yilmaz F. Design a cadA-targeted DNA probe for screening of potential bacterial cadmium biosorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5743-5752. [PMID: 26585451 DOI: 10.1007/s11356-015-5810-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Due to their metal removal ability, bacterial biosorbents can be effectively used for the treatment of wastewaters containing heavy metals. Searching for bacterial biosorbents for hazardous heavy metals like cadmium is a pivotal for remediation efforts. The gene cadA, that mediates resistance to cadmium over an ATP-dependent efflux mechanism, provides a good target for the selection of potential cadmium biosorbents. For this reason, in this study, a 36-mer-oligonucleotide DNA probe based on the entire 3.5-kb BglII-XbaI fragment of cadA operon from staphylococcal plasmid pI258 was prepared by using Vector NTI Express software. Under the hybridization conditions of 46 °C, 50 % formamide, and 0.028 M NaCl, the designed cadA probe appeared to be highly specific to the cadA-positive Staphylococcus warneri and Delftia acidovorans isolates tested. The results indicated that the newly designed cadA-targeted DNA probe has potential as a specific, sensitive, and quantitative tool in selecting and in situ screening of potential cadmium biosorbents.
Collapse
Affiliation(s)
- Bulent Icgen
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| | - Fadime Yilmaz
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
37
|
Zoppini A, Ademollo N, Amalfitano S, Capri S, Casella P, Fazi S, Marxsen J, Patrolecco L. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1364-1371. [PMID: 26479910 DOI: 10.1016/j.scitotenv.2015.09.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/27/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.
Collapse
Affiliation(s)
- Annamaria Zoppini
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy.
| | - Nicoletta Ademollo
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Stefano Amalfitano
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Silvio Capri
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Patrizia Casella
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Stefano Fazi
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| | - Juergen Marxsen
- Limnologische Fluss-Station des Max-Planck-Instituts für Limnologie, Schlitz, Germany and Institut für Allgemeine und Spezielle Zoologie, Tierökologie, Justus-Liebig-Universität, Gießen, Germany
| | - Luisa Patrolecco
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR), Via Salaria km 29.300, CP10, 00015 Monterotondo, Roma, Italy
| |
Collapse
|
38
|
Greuter D, Loy A, Horn M, Rattei T. probeBase--an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res 2016; 44:D586-9. [PMID: 26586809 PMCID: PMC4702872 DOI: 10.1093/nar/gkv1232] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022] Open
Abstract
probeBase http://www.probebase.net is a manually maintained and curated database of rRNA-targeted oligonucleotide probes and primers. Contextual information and multiple options for evaluating in silico hybridization performance against the most recent rRNA sequence databases are provided for each oligonucleotide entry, which makes probeBase an important and frequently used resource for microbiology research and diagnostics. Here we present a major update of probeBase, which was last featured in the NAR Database Issue 2007. This update describes a complete remodeling of the database architecture and environment to accommodate computationally efficient access. Improved search functions, sequence match tools and data output now extend the opportunities for finding suitable hierarchical probe sets that target an organism or taxon at different taxonomic levels. To facilitate the identification of complementary probe sets for organisms represented by short rRNA sequence reads generated by amplicon sequencing or metagenomic analysis with next generation sequencing technologies such as Illumina and IonTorrent, we introduce a novel tool that recovers surrogate near full-length rRNA sequences for short query sequences and finds matching oligonucleotides in probeBase.
Collapse
Affiliation(s)
- Daniel Greuter
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| | - Matthias Horn
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, A-1090 Wien, Austria
| |
Collapse
|
39
|
Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchs BM. MiL-FISH: Multilabeled Oligonucleotides for Fluorescence In Situ Hybridization Improve Visualization of Bacterial Cells. Appl Environ Microbiol 2016; 82:62-70. [PMID: 26475101 PMCID: PMC4702640 DOI: 10.1128/aem.02776-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/04/2015] [Indexed: 01/29/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Mario P Schimak
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Bremen, Germany Energy Bioengineering and Geomicrobiology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Silke Wetzel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | |
Collapse
|
40
|
Miłobędzka A, Witeska A, Muszyński A. Factors affecting population of filamentous bacteria in wastewater treatment plants with nutrients removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:790-797. [PMID: 26901721 DOI: 10.2166/wst.2015.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them--bulking and foaming of activated sludge.
Collapse
Affiliation(s)
- Aleksandra Miłobędzka
- Department of Biology, Faculty of Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland E-mail:
| | - Anna Witeska
- Department of Informatics and Environmental Quality Research, Faculty of Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland
| | - Adam Muszyński
- Department of Biology, Faculty of Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland E-mail:
| |
Collapse
|
41
|
Liu M, Yang Q, Peng Y, Liu T, Xiao H, Wang S. Treatment performance and N2O emission in the UASB-A/O shortcut biological nitrogen removal system for landfill leachate at different salinity. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M. Residual impact of aged nZVI on heavy metal-polluted soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 535:79-84. [PMID: 25863574 DOI: 10.1016/j.scitotenv.2015.03.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 05/20/2023]
Abstract
In the present study, the residual toxicity and impact of aged nZVI after a leaching experiment on heavy metal (Pb, Zn) polluted soils was evaluated. No negative effects on physico-chemical soil properties were observed after aged nZVI exposure. The application of nZVI to soil produced a significant increase in Fe availability. The impact on soil biodiversity was assessed by fluorescence in situ hybridization (FISH). A significant effect of nZVI application on microbial structure has been recorded in the Pb-polluted soil nZVI-treated. Soil bacteria molecular response, evaluated by RT-qPCR using exposure biomarkers (pykA, katB) showed a decrease in the cellular activity (pykA) due to enhanced intracellular oxidative stress (katB). Moreover, ecotoxicological standardised test on Caenorhabditis elegans (C. elegans) showed a decrease in the growth endpoint in the Pb-polluted soil, and particularly in the nZVI-treated. A different pattern has been observed in Zn-polluted soils: no changes in soil biodiversity, an increase in biological activity and a significant decrease of Zn toxicity on C. elegans growth were observed after aged nZVI exposure. The results reported indicated that the pollutant and its nZVI interaction should be considered to design soil nanoremediation strategies to immobilise heavy metals.
Collapse
Affiliation(s)
- C Fajardo
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - M Gil-Díaz
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - G Costa
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - J Alonso
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - A M Guerrero
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - M Nande
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | - M C Lobo
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentación, Finca "El Encín", A-2, Km 38,2, 28800 Alcalá de Henares, Madrid, Spain.
| | - M Martín
- Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
43
|
Miłobędzka A, Muszyński A. Population dynamics of filamentous bacteria identified in Polish full-scale wastewater treatment plants with nutrients removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:675-684. [PMID: 25768213 DOI: 10.2166/wst.2014.512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A comprehensive study of the identity and population dynamics of filamentous bacteria in five Polish full-scale municipal wastewater treatment plants (WWTPs) with nutrients removal had been carried out for 2 years. A quantitative culture-independent, molecular method - fluorescence in situ hybridization - was applied to evaluate the structure of different filamentous bacteria populations and their temporal variations. Activated sludge was examined for the abundance of 11 groups of filamentous bacteria. On average, filaments constituted 28% of all bacteria. All samples presented a low diversity of probe-defined filamentous bacteria, usually with significant domination of Chloroflexi (with distinction to types 1851, 0803 and others) and/or Microthrix (14% and 7% of EUBmix, respectively). Haliscomenobacter hydrossis, Mycolata, Skermania piniformis and TM7 were less abundant, whereas Curvibacter, Thiothrix/021N and family Gordonia have not been detected in any of the samples. The tested WWTPs showed similarity among species found and differences in their abundance. The composition of filamentous populations was rather stable in each plant and similar to those found in other European countries. Little differences between plants were shown by multivariate analysis of variance in terms of Chloroflexi and Microthrix. No significant general correlations have been found with Pearson product-moment correlation coefficient and Spearman's rank correlation coefficient. Medium correlation strength between the presence of different filaments was recorded only for Microthrix and Skermania piniformis. Deleterious effect on settling properties of sludge (measured as sludge volume index) was found only for abundance of Microthrix; a strong linear correlation was recorded between them. However, no other correlations with wastewater and operational data were revealed.
Collapse
Affiliation(s)
- A Miłobędzka
- Faculty of Environmental Engineering, Department of Biology, Warsaw University of Technology, Nowowiejska 20, Warsaw 00-653, Poland E-mail:
| | - A Muszyński
- Faculty of Environmental Engineering, Department of Biology, Warsaw University of Technology, Nowowiejska 20, Warsaw 00-653, Poland E-mail:
| |
Collapse
|
44
|
Lebuhn M, Weiß S, Munk B, Guebitz GM. Microbiology and Molecular Biology Tools for Biogas Process Analysis, Diagnosis and Control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:1-40. [PMID: 26337842 DOI: 10.1007/978-3-319-21993-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biotechnological processes such as biogas production or defined biotransformations are carried out by microorganisms or tightly cooperating microbial communities. Process breakdown is the maximum credible accident for the operator. Any time savings that can be provided by suitable early-warning systems and allow for specific countermeasures are of great value. Process disturbance, frequently due to nutritional shortcomings, malfunction or operational deficits, is evidenced conventionally by process chemistry parameters. However, knowledge on systems microbiology and its function has essentially increased in the last two decades, and molecular biology tools, most of which are directed against nucleic acids, have been developed to analyze and diagnose the process. Some of these systems have been shown to indicate changes of the process status considerably earlier than the conventionally applied process chemistry parameters. This is reasonable because the triggering catalyst is determined, activity changes of the microbes that perform the reaction. These molecular biology tools have thus the potential to add to and improve the established process diagnosis system. This chapter is dealing with the actual state of the art of biogas process analysis in practice, and introduces molecular biology tools that have been shown to be of particular value in complementing the current systems of process monitoring and diagnosis, with emphasis on nucleic acid targeted molecular biology systems.
Collapse
Affiliation(s)
- Michael Lebuhn
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture (LfL), Lange Point 6, 85354, Freising, Germany
| | | | | | | |
Collapse
|
45
|
Tacchi L, Musharrafieh R, Larragoite ET, Crossey K, Erhardt EB, Martin SAM, LaPatra SE, Salinas I. Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat Commun 2014; 5:5205. [PMID: 25335508 DOI: 10.1038/ncomms6205] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/09/2014] [Indexed: 01/14/2023] Open
Abstract
The mucosal surfaces of all vertebrates have been exposed to similar evolutionary pressures for millions of years. In terrestrial vertebrates such as birds and mammals, the nasopharynx-associated lymphoid tissue (NALT) represents a first line of immune defence. Here we propose that NALT is an ancient arm of the mucosal immune system not restricted to terrestrial vertebrates. We find that NALT is present in rainbow trout and that it resembles other teleost mucosa-associated lymphoid tissues. Trout NALT consists of diffuse lymphoid cells and lacks tonsils and adenoids. The predominant B-cell subset found in trout NALT are IgT(+) B cells, similar to skin and gut. The trout olfactory organ is colonized by abundant symbiotic bacteria, which are coated by trout secretory immunoglobulin. Trout NALT is capable of mounting strong anti-viral immune responses following nasal delivery of a live attenuated viral vaccine. Our results open up a new tool for the control of aquatic infectious diseases via nasal vaccination.
Collapse
Affiliation(s)
- Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Rami Musharrafieh
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Erin T Larragoite
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Kyle Crossey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
46
|
Mohammed RN, Abu-Alhail S, Xi-Wu L. Long-term operation of a novel pilot-scale six tanks alternately operating activated sludge process in treating domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2014; 35:1874-1885. [PMID: 24956781 DOI: 10.1080/09593330.2014.885068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The performance of a new pilot-scale six tanks activated sludge process has been evaluated for 303 d, receiving real domestic wastewater with a flow rate of 15-24.4 L/h. Partial nitrification via nitrite and microbial community structure were investigated in this system. The result shows that the nitrite accumulation rate was achieved successfully over 94% in the last aerobic compartment through a combination of short hydraulic retention time and low dissolved oxygen (DO) level. Fluorescence in situ hybridization analysis was used to correlate ammonia-oxidizing bacteria (AOB) numbers with nutrient removal via nitrite. It was shown that in response to complete and partial nitrification modes, the numbers of AOB population were 7.7 x 10(7) cells/g mixed liquor suspended solids (MLSS) and 5.31 x 10(8) cells/g MLSS, respectively. The morphology of the sludge indicated that there is a small rod-shaped and spherical cluster which was mainly dominantly bacterial according to scanning electron microscope. Higher pollutant removal efficiencies of 86.2%, 98%, and 96.1%, for total nitrogen, NH4+ - N, and total phosphorus, respectively, were achieved by a long-term operation of the six tanks activated sludge process at a low DO concentration and low chemical oxygen demand to nitrogen ratio which were approximately equal to the complete nitrification-ldenitrification with the addition of an external carbon source at a concentration of 1.5-2.5 mg/L.
Collapse
|
47
|
Lotti T, Kleerebezem R, van Erp Taalman Kip C, Hendrickx TLG, Kruit J, Hoekstra M, van Loosdrecht MCM. Anammox growth on pretreated municipal wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7874-80. [PMID: 24927034 DOI: 10.1021/es500632k] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Autotrophic nitrogen removal from municipal wastewater enables development of energy autarkic wastewater treatment plants. In this study we report the evaluation of the anammox process in a granular sludge fluidized bed lab-scale reactor continuously fed with the actual effluent of the A-stage of the WWTP of Dokhaven, Rotterdam. The reactor was anoxic, and nitrite was dosed continuously to support anammox activity only. The system was operated for more than ten months at temperatures between 20 and 10 °C. COD was also consumed during the process, but heterotrophs could not outcompete anammox bacteria. Volumetric N-removal rates obtained were comparable or higher than those of conventional N-removal systems, with values higher than 0.4 g-N L(-1) d(-1) when operated at 10 °C. The biomass specific N-removal rate at 10 °C was on average 50±7 mg-N g-VSS(-1) d(-1) during the last month of operations, almost two times higher than previously reported activities at this temperature. FISH analysis revealed that the dominant anammox species was Candidatus Brocadia Fulgida throughout the experimentation. Evidence for growth of anammox bacteria at mainstream conditions was demonstrated for the entire temperature range tested (10-20 °C), and new granules were shown to be actively formed and efficiently retained in the system.
Collapse
Affiliation(s)
- Tommaso Lotti
- Department of Biotechnology, Delft University of Technology , Julianalaan 67, Delft 2628 BC, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Jump RLP, Polinkovsky A, Hurless K, Sitzlar B, Eckart K, Tomas M, Deshpande A, Nerandzic MM, Donskey CJ. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice. PLoS One 2014; 9:e101267. [PMID: 24988418 PMCID: PMC4079339 DOI: 10.1371/journal.pone.0101267] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/04/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment. METHODS To assess in vivo colonization resistance, mice were challenged with oral vancomycin-resistant Enterococcus or Clostridium difficile spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam. RESULTS Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families Lachnospiraceae and Ruminococcaceae, both part of the phylum Firmicutes. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30%) exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of in vivo colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites) or decreased (pentoses, dipeptides) with clindamycin treatment. Piperacillin/tazobactam treatment caused similar alterations in the intestinal microbiota and fecal metabolites. CONCLUSIONS Recovery of colonization resistance after antibiotic treatment coincided with restoration of several fecal bacterial metabolites. These metabolites could provide useful biomarkers indicating intact or disrupted colonization resistance during and after antibiotic treatment.
Collapse
Affiliation(s)
- Robin L. P. Jump
- Geriatric Research Education and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - Alex Polinkovsky
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Kelly Hurless
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Brett Sitzlar
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Kevin Eckart
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Myreen Tomas
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Abhishek Deshpande
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Michelle M. Nerandzic
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Curtis J. Donskey
- Geriatric Research Education and Clinical Center, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| |
Collapse
|
49
|
Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7536-43. [PMID: 24901501 DOI: 10.1021/es5016789] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Interspecies electron transfer mechanisms between Bacteria and Archaea play a pivotal role during methanogenic degradation of organic matter in natural and engineered anaerobic ecosystems. Growing evidence suggests that in syntrophic communities electron transfer does not rely exclusively on the exchange of diffusible molecules and energy carriers such as hydrogen or formate, rather microorganisms have the capability to exchange metabolic electrons in a more direct manner. Here, we show that supplementation of micrometer-size magnetite (Fe3O4) particles to a methanogenic sludge enhanced (up to 33%) the methane production rate from propionate, a key intermediate in the anaerobic digestion of organic matter and a model substrate to study energy-limited syntrophic communities. The stimulatory effect most probably resulted from the establishment of a direct interspecies electron transfer (DIET), based on magnetite particles serving as electron conduits between propionate-oxidizing acetogens and carbon dioxide-reducing methanogens. Theoretical calculations revealed that DIET allows electrons to be transferred among syntrophic partners at rates which are substantially higher than those attainable via interspecies H2 transfer. Besides the remarkable potential for improving anaerobic digestion, which is a proven biological strategy for renewable energy production, the herein described conduction-based DIET could also have a role in natural methane emissions from magnetite-rich soils and sediments.
Collapse
Affiliation(s)
- Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR) , via Salaria km 29.300, 00015 Monterotondo (RM), Italy
| | | | | | | | | | | |
Collapse
|
50
|
Saccà ML, Fajardo C, Costa G, Lobo C, Nande M, Martin M. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms. CHEMOSPHERE 2014; 104:184-9. [PMID: 24287264 DOI: 10.1016/j.chemosphere.2013.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 05/20/2023]
Abstract
Nanosized zero-valent iron (nZVI) is a new option for the remediation of contaminated soil and groundwater, but the effect of nZVI on soil biota is mostly unknown. In this work, nanotoxicological studies were performed in vitro and in two different standard soils to assess the effect of nZVI on autochthonous soil organisms by integrating classical and molecular analysis. Standardised ecotoxicity testing methods using Caenorhabditis elegans were applied in vitro and in soil experiments and changes in microbial biodiversity and biomarker gene expression were used to assess the responses of the microbial community to nZVI. The classical tests conducted in soil ruled out a toxic impact of nZVI on the soil nematode C. elegans in the test soils. The molecular analysis applied to soil microorganisms, however, revealed significant changes in the expression of the proposed biomarkers of exposure. These changes were related not only to the nZVI treatment but also to the soil characteristics, highlighting the importance of considering the soil matrix on a case by case basis. Furthermore, due to the temporal shift between transcriptional responses and the development of the corresponding phenotype, the molecular approach could anticipate adverse effects on environmental biota.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; Moncloa Campus of International Excellence (UCM-UPM), 28040 Madrid, Spain
| | - Carmen Fajardo
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Gonzalo Costa
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carmen Lobo
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Finca "El Encín" Km 38, 2 A-II Apdo 127, 28800 Madrid, Spain
| | - Mar Nande
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Margarita Martin
- Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|