1
|
Plessers S, Van Deuren V, Lavigne R, Robben J. High-Throughput Sequencing of Phage Display Libraries Reveals Parasitic Enrichment of Indel Mutants Caused by Amplification Bias. Int J Mol Sci 2021; 22:5513. [PMID: 34073702 PMCID: PMC8197208 DOI: 10.3390/ijms22115513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/23/2023] Open
Abstract
The combination of phage display technology with high-throughput sequencing enables in-depth analysis of library diversity and selection-driven dynamics. We applied short-read sequencing of the mutagenized region on focused display libraries of two homologous nucleic acid modification eraser proteins-AlkB and FTO-biopanned against methylated DNA. This revealed enriched genotypes with small indels and concomitant doubtful amino acid motifs within the FTO library. Nanopore sequencing of the entire display vector showed additional enrichment of large deletions overlooked by region-specific sequencing, and further impacted the interpretation of the obtained amino acid motifs. We could attribute enrichment of these corrupted clones to amplification bias due to arduous FTO display slowing down host cell growth as well as phage production. This amplification bias appeared to be stronger than affinity-based target selection. Recommendations are provided for proper sequence analysis of phage display data, which can improve motive discovery in libraries of proteins that are difficult to display.
Collapse
Affiliation(s)
- Sander Plessers
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, B-3001 Heverlee, Belgium;
| | - Johan Robben
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, B-3001 Heverlee, Belgium; (S.P.); (V.V.D.)
| |
Collapse
|
2
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Moomau C, Musalgaonkar S, Khan YA, Jones JE, Dinman JD. Structural and Functional Characterization of Programmed Ribosomal Frameshift Signals in West Nile Virus Strains Reveals High Structural Plasticity Among cis-Acting RNA Elements. J Biol Chem 2016; 291:15788-95. [PMID: 27226636 DOI: 10.1074/jbc.m116.735613] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
West Nile virus (WNV) is a prototypical emerging virus for which no effective therapeutics currently exist. WNV uses programmed -1 ribosomal frameshifting (-1 PRF) to synthesize the NS1' protein, a C terminally extended version of its non-structural protein 1, the expression of which enhances neuro-invasiveness and viral RNA abundance. Here, the NS1' frameshift signals derived from four WNV strains were investigated to better understand -1 PRF in this quasispecies. Sequences previously predicted to promote -1 PRF strongly promote this activity, but frameshifting was significantly more efficient upon inclusion of additional 3' sequence information. The observation of different rates of -1 PRF, and by inference differences in the expression of NS1', may account for the greater degrees of pathogenesis associated with specific WNV strains. Chemical modification and mutational analyses of the longer and shorter forms of the -1 PRF signals suggests dynamic structural rearrangements between tandem stem-loop and mRNA pseudoknot structures in two of the strains. A model is suggested in which this is employed as a molecular switch to fine tune the relative expression of structural to non-structural proteins during different phases of the viral replication cycle.
Collapse
Affiliation(s)
- Christine Moomau
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Sharmishtha Musalgaonkar
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Yousuf A Khan
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - John E Jones
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Jonathan D Dinman
- From the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
4
|
Mutuality in Discrete and Compositional Information: Perspectives for Synthetic Genetic Codes. Cognit Comput 2011. [DOI: 10.1007/s12559-011-9116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Evolutionarily conserved orthologous families in phages are relatively rare in their prokaryotic hosts. J Bacteriol 2011; 193:1806-14. [PMID: 21317336 DOI: 10.1128/jb.01311-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified conserved orthologs in completely sequenced genomes of double-strand DNA phages and arranged them into evolutionary families (phage orthologous groups [POGs]). Using this resource to analyze the collection of known phage genomes, we find that most orthologs are unique in their genomes (having no diverged duplicates [paralogs]), and while many proteins contain multiple domains, the evolutionary recombination of these domains does not appear to be a major factor in evolution of these orthologous families. The number of POGs has been rapidly increasing over the past decade, the percentage of genes in phage genomes that have orthologs in other phages has also been increasing, and the percentage of unknown "ORFans" is decreasing as more proteins find homologs and establish a family. Other properties of phage genomes have remained relatively stable over time, most notably the high fraction of genes that are never or only rarely observed in their cellular hosts. This suggests that despite the renowned ability of phages to transduce cellular genes, these cellular "hitchhiker" genes do not dominate the phage genomic landscape, and a large fraction of the genes in phage genomes maintain an evolutionary trajectory that is distinct from that of the host genes.
Collapse
|
6
|
Ahmed F, Benedito VA, Zhao PX. Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives. FRONTIERS IN PLANT SCIENCE 2011; 2:84. [PMID: 22639614 PMCID: PMC3355573 DOI: 10.3389/fpls.2011.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/03/2011] [Indexed: 05/03/2023]
Abstract
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
Collapse
Affiliation(s)
- Firoz Ahmed
- Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Vagner A. Benedito
- Genetics and Developmental Biology, Plant and Soil Sciences Division, West Virginia UniversityMorgantown, WV, USA
| | - Patrick Xuechun Zhao
- Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Patrick Xuechun Zhao, Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA e-mail:
| |
Collapse
|
7
|
Liao PY, Choi YS, Lee KH. FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots. Nucleic Acids Res 2010; 37:7302-11. [PMID: 19783813 PMCID: PMC2790909 DOI: 10.1093/nar/gkp796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In +1 programmed ribosomal frameshifting (PRF), ribosomes skip one nucleotide toward the 3'-end during translation. Most of the genes known to demonstrate +1 PRF have been discovered by chance or by searching homologous genes. Here, a bioinformatic framework called FSscan is developed to perform a systematic search for potential +1 frameshift sites in the Escherichia coli genome. Based on a current state of the art understanding of the mechanism of +1 PRF, FSscan calculates scores for a 16-nt window along a gene sequence according to different effects of the stimulatory signals, and ribosome E-, P- and A-site interactions. FSscan successfully identified the +1 PRF site in prfB and predicted yehP, pepP, nuoE and cheA as +1 frameshift candidates in the E. coli genome. Empirical results demonstrated that potential +1 frameshift sequences identified promoted significant levels of +1 frameshifting in vivo. Mass spectrometry analysis confirmed the presence of the frameshifted proteins expressed from a yehP-egfp fusion construct. FSscan allows a genome-wide and systematic search for +1 frameshift sites in E. coli. The results have implications for bioinformatic identification of novel frameshift proteins, ribosomal frameshifting, coding sequence detection and the application of mass spectrometry on studying frameshift proteins.
Collapse
Affiliation(s)
- Pei-Yu Liao
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Yong Seok Choi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Kelvin H. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- *To whom correspondence should be addressed. Tel: +1 302 831 0344;
| |
Collapse
|
8
|
Brown JD, Ryan MD. Ribosome “Skipping”: “Stop-Carry On” or “StopGo” Translation. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Abstract
Accuracy in the flow of genetic information from DNA to protein, or gene expression, is essential to the viability of an organisms. Pre-mRNA splicing and protein translation are two major steps in eukaryotic gene expression that necessitate the production of accurate gene products. Both processes occur in large complexes, consisting of both proteins and noncoding RNAs. Interestingly, the RNA components contain a large number of posttranscriptional modifications, including 2'-O-methylation and pseudouridylation, which are functionally important. In this chapter, we highlight the functional aspects of the modifications of spliceosomal snRNA and rRNA and provide a framework for understanding how posttranscriptional modifications are capable of influencing gene expression.
Collapse
|
10
|
|
11
|
Bekaert M, Firth AE, Zhang Y, Gladyshev VN, Atkins JF, Baranov PV. Recode-2: new design, new search tools, and many more genes. Nucleic Acids Res 2009; 38:D69-74. [PMID: 19783826 PMCID: PMC2808893 DOI: 10.1093/nar/gkp788] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
‘Recoding’ is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of ‘recoded’ genes lags far behind annotation of ‘standard’ genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression—a factor of approximately three increase over the previous version of the database. Recode-2 is available at http://recode.ucc.ie
Collapse
Affiliation(s)
- Michaël Bekaert
- School of Biology and Environmental Science, University College Dublin, BioSciences Institute, University College Cork, Ireland
| | | | | | | | | | | |
Collapse
|
12
|
Huang Y, Koonin EV, Lipman DJ, Przytycka TM. Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res 2009; 37:6799-810. [PMID: 19745054 PMCID: PMC2777431 DOI: 10.1093/nar/gkp712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a wide range of genomes, it was observed that the usage of synonymous codons is biased toward specific codons and codon patterns. Factors that are implicated in the selection for codon usage include facilitation of fast and accurate translation. There are two types of translational errors: missense errors and processivity errors. There is considerable evidence in support of the hypothesis that codon usage is optimized to minimize missense errors. In contrast, little is known about the relationship between codon usage and frameshifting errors, an important form of processivity errors, which appear to occur at frequencies comparable to the frequencies of missense errors. Based on the recently proposed pause-and-slip model of frameshifting, we developed Frameshifting Robustness Score (FRS). We used this measure to test if the pattern of codon usage indicates optimization against frameshifting errors. We found that the FRS values of protein-coding sequences from four analyzed genomes (the bacteria Bacillus subtilis and Escherichia coli, and the yeasts Saccharomyces cerevisiae and Schizosaccharomyce pombe) were typically higher than expected by chance. Other properties of FRS patterns observed in B. subtilis, S. cerevisiae and S. pombe, such as the tendency of FRS to increase from the 5′- to 3′-end of protein-coding sequences, were also consistent with the hypothesis of optimization against frameshifting errors in translation. For E. coli, the results of different tests were less consistent, suggestive of a much weaker optimization, if any. Collectively, the results fit the concept of selection against mistranslation-induced protein misfolding being one of the factors shaping the evolution of both coding and non-coding sequences.
Collapse
Affiliation(s)
- Yang Huang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
13
|
Luke GA, Escuin H, Felipe PD, Ryan MD. 2A to the Fore – Research, Technology and Applications. Biotechnol Genet Eng Rev 2009; 26:223-60. [DOI: 10.5661/bger-26-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Jacobs GH, Chen A, Stevens SG, Stockwell PA, Black MA, Tate WP, Brown CM. Transterm: a database to aid the analysis of regulatory sequences in mRNAs. Nucleic Acids Res 2008; 37:D72-6. [PMID: 18984623 PMCID: PMC2686486 DOI: 10.1093/nar/gkn763] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses.
Collapse
Affiliation(s)
- Grant H Jacobs
- Biochemistry Department and Webster Centre, University of Otago, PO Box 56 and Bioinfotools, PO Box 6129, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
15
|
Theis C, Reeder J, Giegerich R. KnotInFrame: prediction of -1 ribosomal frameshift events. Nucleic Acids Res 2008; 36:6013-20. [PMID: 18820303 PMCID: PMC2566878 DOI: 10.1093/nar/gkn578] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Programmed −1 ribosomal frameshift (−1 PRF) allows for alternative reading frames within one mRNA. First found in several viruses, it is now believed to exist in all kingdoms of life. Strong stimulators for −1 PRF are a heptameric slippery site and an RNA pseudoknot. Here, we present a new algorithm KnotInFrame, for the automatic detection of −1 PRF signals from genomic sequences. It finds the frameshifting stimulators by means of a specialized RNA-pseudoknot folding program, fast enough for genome-wide analyses. Evaluations on known −1 PRF signals demonstrate a high sensitivity.
Collapse
Affiliation(s)
- Corinna Theis
- Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | | | | |
Collapse
|
16
|
Belew AT, Hepler NL, Jacobs JL, Dinman JD. PRFdb: a database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals. BMC Genomics 2008; 9:339. [PMID: 18637175 PMCID: PMC2483730 DOI: 10.1186/1471-2164-9-339] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 07/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Programmed Ribosomal Frameshift Database (PRFdb) provides an interface to help researchers identify potential programmed -1 ribosomal frameshift (-1 PRF) signals in eukaryotic genes or sequences of interest. RESULTS To identify putative -1 PRF signals, sequences are first imported from whole genomes or datasets, e.g. the yeast genome project and mammalian gene collection. They are then filtered through multiple algorithms to identify potential -1 PRF signals as defined by a heptameric slippery site followed by an mRNA pseudoknot. The significance of each candidate -1 PRF signal is evaluated by comparing the predicted thermodynamic stability (DeltaG degrees ) of the native mRNA sequence against a distribution of DeltaG degrees values of a pool of randomized sequences derived from the original. The data have been compiled in a user-friendly, easily searchable relational database. CONCLUSION The PRFdB enables members of the research community to determine whether genes that they are investigating contain potential -1 PRF signals, and can be used as a metasource of information for cross referencing with other databases. It is available on the web at http://dinmanlab.umd.edu/prfdb.
Collapse
Affiliation(s)
- Ashton T Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20854, USA.
| | | | | | | |
Collapse
|
17
|
Doronina VA, Wu C, de Felipe P, Sachs MS, Ryan MD, Brown JD. Site-specific release of nascent chains from ribosomes at a sense codon. Mol Cell Biol 2008; 28:4227-39. [PMID: 18458056 PMCID: PMC2447138 DOI: 10.1128/mcb.00421-08] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/14/2008] [Accepted: 04/28/2008] [Indexed: 12/16/2022] Open
Abstract
"2A" oligopeptides are autonomous elements containing a D(V/I)EXNPGP motif at the C terminus. Protein synthesis from an open reading frame containing an internal 2A coding sequence yields two separate polypeptides, corresponding to sequences up to and including 2A and those downstream. We show that the 2A reaction occurs in the ribosomal peptidyltransferase center. Ribosomes pause at the end of the 2A coding sequence, over the glycine and proline codons, and the nascent chain up to and including this glycine is released. Translation-terminating release factors eRF1 and eRF3 play key roles in the reaction. On the depletion of eRF1, a greater proportion of ribosomes extend through the 2A coding sequence, yielding the full-length protein. In contrast, impaired eRF3 GTPase activity leads to many ribosomes failing to translate beyond 2A. Further, high-level expression of a 2A peptide-containing protein inhibits the growth of cells compromised for release factor activity and leads to errors in stop codon recognition. We propose that the nascent 2A peptide interacts with ribosomes to drive a highly unusual and specific "termination" reaction, despite the presence of a proline codon in the A site. After this, the majority of ribosomes continue translation, generating the separate downstream product.
Collapse
Affiliation(s)
- Victoria A Doronina
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Guimarães RC, Moreira CHC, de Farias ST. A self-referential model for the formation of the genetic code. Theory Biosci 2008; 127:249-70. [PMID: 18493811 DOI: 10.1007/s12064-008-0043-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
A model for the formation of the genetic code is presented where protein synthesis is directed initially by tRNA dimers. Proteins that are resistant to degradation and efficient RNA-binders protect the RNAs. Replication becomes elongational producing poly-tRNAs from which the mRNAs and ribosomes are derived. Attributions are successively fixed to tRNAs paired through the perfect palindromic anticodons, with the same bases at the extremities (5'ANA: UNU 3'; GNG: CNC; principal dinucleotides, pDiN). The 5' degeneracy is then developed. The first pairs to be encoded correspond to the hydropathy correlation outliers (Gly-CC: Pro-GG and Ser-GA: Ser-CU) and to the sector of homogeneous pDiN, composed by two pyrimidines or two purines. These amino acids are preferred in the N-ends of proteins, stabilizers of proteins against catabolism and strong RNA-binders. The next pairs complete the sector of homogeneous pDiN (Asp, Glu-UC: Leu-AG and Asn, Lys-UU: Phe-AA). This set of nine amino acids forms the protein cores with the predominant aperiodic conformation. Next enter the pairs with mixed pDiN (one purine and one pyrimidine), the RY attributions composing the protein N-ends and the YR attributions the C-ends. The last pair contains the main punctuation signs (Ile, Met, iMet-AU: Tyr, Stop-UA). The model indicates that genetic information emerged during the process of formation of the coding/decoding system and that genes were defined by the proteins. Stable proteins constructed the nucleoprotein system by binding to the RNAs that produced them. In this circular rationale, genes are memories in a metabolic system for production of proteins that stabilize it. The simplicity and the highly deterministic character of the process suggest that the Last Universal Common Ancestor populations could be composed, in early stages, of lineages bearing similar genetic codes.
Collapse
Affiliation(s)
- Romeu Cardoso Guimarães
- Dept. Biologia Geral, Inst. Ciências Biológicas, Univ. Federal de Minas Gerais, Belo Horizonte, MG , 31270.901, Brazil.
| | | | | |
Collapse
|
19
|
Wolf M, Dimitrova M, Baumert TF, Schuster C. The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression. Nucleic Acids Res 2008; 36:3054-64. [PMID: 18400784 PMCID: PMC2396417 DOI: 10.1093/nar/gkn111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a human RNA virus encoding 10 proteins in a single open reading frame. In the +1 frame, an ‘alternate reading frame’ (ARF) overlaps with the core protein-encoding sequence and encodes the ARF protein (ARFP). Here, we investigated the molecular regulatory mechanisms of ARFP expression in HCV target cells. Chimeric HCV-luciferase reporter constructs derived from the infectious HCV prototype isolate H77 were transfected into hepatocyte-derived cell lines. Translation initiation was most efficient at the internal AUG codon at position 86/88, resulting in the synthesis of a truncated ARFP named 86/88ARFP. Interestingly, 86/88ARFP synthesis was markedly enhanced in constructs containing an inactivated core protein reading frame. This enhancement was reversed by co-expression of core protein in trans, demonstrating suppression of ARFP synthesis by HCV core protein. In conclusion, our results indicate that translation of ARFP occurs mainly by alternative internal initiation at position 86/88 and is regulated by HCV core protein expression. The suppression of ARFP translation by HCV core protein suggests that ARFP expression is inversely linked to the level of viral replication. These findings define key mechanisms regulating ARFP expression and set the stage for further studies addressing the function of ARFP within the viral life cycle.
Collapse
Affiliation(s)
- Marie Wolf
- Inserm, U748, Université Louis Pasteur, Strasbourg and Service d'Hépatogastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000, France
| | | | | | | |
Collapse
|
20
|
Bekaert M, Ivanov IP, Atkins JF, Baranov PV. Ornithine decarboxylase antizyme finder (OAF): fast and reliable detection of antizymes with frameshifts in mRNAs. BMC Bioinformatics 2008; 9:178. [PMID: 18384676 PMCID: PMC2375905 DOI: 10.1186/1471-2105-9-178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 04/02/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ornithine decarboxylase antizymes are proteins which negatively regulate cellular polyamine levels via their affects on polyamine synthesis and cellular uptake. In virtually all organisms from yeast to mammals, antizymes are encoded by two partially overlapping open reading frames (ORFs). A +1 frameshift between frames is required for the synthesis of antizyme. Ribosomes change translation phase at the end of the first ORF in response to stimulatory signals embedded in mRNA. Since standard sequence analysis pipelines are currently unable to recognise sites of programmed ribosomal frameshifting, proper detection of full length antizyme coding sequences (CDS) requires conscientious manual evaluation by a human expert. The rapid growth of sequence information demands less laborious and more cost efficient solutions for this problem. This manuscript describes a rapid and accurate computer tool for antizyme CDS detection that requires minimal human involvement. RESULTS We have developed a computer tool, OAF (ODC antizyme finder) for identifying antizyme encoding sequences in spliced or intronless nucleic acid sequenes. OAF utilizes a combination of profile hidden Markov models (HMM) built separately for the products of each open reading frame constituting the entire antizyme coding sequence. Profile HMMs are based on a set of 218 manually assembled antizyme sequences. To distinguish between antizyme paralogs and orthologs from major phyla, antizyme sequences were clustered into twelve groups and specific combinations of profile HMMs were designed for each group. OAF has been tested on the current version of dbEST, where it identified over six thousand Expressed Sequence Tags (EST) sequences encoding antizyme proteins (over two thousand antizyme CDS in these ESTs are non redundant). CONCLUSION OAF performs well on raw EST sequences and mRNA sequences derived from genomic annotations. OAF will be used for the future updates of the RECODE database. OAF can also be useful for identifying novel antizyme sequences when run with relaxed parameters. It is anticipated that OAF will be used for EST and genome annotation purposes. OAF outputs sequence annotations in fasta, genbank flat file or XML format. The OAF web interface and the source code are freely available at http://recode.ucc.ie/oaf/ and at a mirror site http://recode.genetics.utah.edu/oaf/.
Collapse
Affiliation(s)
- Michaël Bekaert
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
21
|
Castellano S, Gladyshev VN, Guigó R, Berry MJ. SelenoDB 1.0 : a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Res 2008; 36:D332-8. [PMID: 18174224 PMCID: PMC2238826 DOI: 10.1093/nar/gkm731] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selenoproteins are a diverse group of proteins usually misidentified and misannotated in sequence databases. The presence of an in-frame UGA (stop) codon in the coding sequence of selenoprotein genes precludes their identification and correct annotation. The in-frame UGA codons are recoded to cotranslationally incorporate selenocysteine, a rare selenium-containing amino acid. The development of ad hoc experimental and, more recently, computational approaches have allowed the efficient identification and characterization of the selenoproteomes of a growing number of species. Today, dozens of selenoprotein families have been described and more are being discovered in recently sequenced species, but the correct genomic annotation is not available for the majority of these genes. SelenoDB is a long-term project that aims to provide, through the collaborative effort of experimental and computational researchers, automatic and manually curated annotations of selenoprotein genes, proteins and SECIS elements. Version 1.0 of the database includes an initial set of eukaryotic genomic annotations, with special emphasis on the human selenoproteome, for immediate inspection by selenium researchers or incorporation into more general databases. SelenoDB is freely available at http://www.selenodb.org.
Collapse
Affiliation(s)
- Sergi Castellano
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
| | | | | | | |
Collapse
|
22
|
Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, Romine M, Osterman A, Bafna V, Smith RD, Pevzner PA. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genes Dev 2007; 17:1362-77. [PMID: 17690205 PMCID: PMC1950905 DOI: 10.1101/gr.6427907] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
While bacterial genome annotations have significantly improved in recent years, techniques for bacterial proteome annotation (including post-translational chemical modifications, signal peptides, proteolytic events, etc.) are still in their infancy. At the same time, the number of sequenced bacterial genomes is rising sharply, far outpacing our ability to validate the predicted genes, let alone annotate bacterial proteomes. In this study, we use tandem mass spectrometry (MS/MS) to annotate the proteome of Shewanella oneidensis MR-1, an important microbe for bioremediation. In particular, we provide the first comprehensive map of post-translational modifications in a bacterial genome, including a large number of chemical modifications, signal peptide cleavages, and cleavages of N-terminal methionine residues. We also detect multiple genes that were missed or assigned incorrect start positions by gene prediction programs, and suggest corrections to improve the gene annotation. This study demonstrates that complementing every genome sequencing project by an MS/MS project would significantly improve both genome and proteome annotations for a reasonable cost.
Collapse
Affiliation(s)
- Nitin Gupta
- Bioinformatics Program, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sanders CL, Curran JF. Genetic analysis of the E site during RF2 programmed frameshifting. RNA (NEW YORK, N.Y.) 2007; 13:1483-91. [PMID: 17660276 PMCID: PMC1950767 DOI: 10.1261/rna.638707] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The roles of the ribosomal E site are not fully understood. Prior evidence suggests that deacyl-tRNA in the E site can prevent frameshifting. We hypothesized that if the E-site codon must dissociate from its tRNA to allow for frameshifting, then weak codon:anticodon duplexes should allow for greater frameshifting than stronger duplexes. Using the well-characterized Escherichia coli RF2 (prfB) programmed frameshift to study frameshifting, we mutagenized the E-site triplet to all Unn and Cnn codons. Those variants should represent a very wide range of duplex stability. Duplex stability was estimated using two different methods. Frameshifting is inversely correlated with stability, as estimated by either method. These findings indicate that pairing between the deacyl-tRNA and the E-site codon opposes frameshifting. We discuss the implications of these findings on frame maintenance and on the RF2 programmed frameshift mechanism.
Collapse
|
24
|
Léger M, Dulude D, Steinberg SV, Brakier-Gingras L. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift. Nucleic Acids Res 2007; 35:5581-92. [PMID: 17704133 PMCID: PMC2018615 DOI: 10.1093/nar/gkm578] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 06/28/2007] [Accepted: 07/13/2007] [Indexed: 11/17/2022] Open
Abstract
The -1 programmed ribosomal frameshifts (PRF), which are used by many viruses, occur at a heptanucleotide slippery sequence and are currently thought to involve the tRNAs interacting with the ribosomal P- and A-site codons. We investigated here whether the tRNA occupying the ribosomal E site that precedes a slippery site influences -1 PRF. Using the human immunodeficiency virus type 1 (HIV-1) frameshift region, we found that mutating the E-site codon altered the -1 PRF efficiency. When the HIV-1 slippery sequence was replaced with other viral slippery sequences, mutating the E-site codon also altered the -1 PRF efficiency. Because HIV-1 -1 PRF can be recapitulated in bacteria, we used a bacterial ribosome system to select, by random mutagenesis, 16S ribosomal RNA (rRNA) mutations that modify the expression of a reporter requiring HIV-1 -1 PRF. Three mutants were isolated, which are located in helices 21 and 22 of 16S rRNA, a region involved in translocation and E-site tRNA binding. We propose a novel model where -1 PRF is triggered by an incomplete translocation and depends not only on the tRNAs interacting with the P- and A-site codons, but also on the tRNA occupying the E site.
Collapse
Affiliation(s)
| | | | | | - Léa Brakier-Gingras
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada, H3T 1J4
| |
Collapse
|
25
|
Abstract
Programmed frameshifting is a recoding event in which a ribosome shifts reading frame by one or more nucleotides at a specific mRNA signal between overlapping genes. Programmed frameshifting is involved in the expression of many genes in a wide range of organisms, especially in viruses and bacteria. The mechanism of programmed frameshifting is not fully understood despite many studies, and there are few databases available for detailed information on programmed frameshifting. We have developed a database called FSDB (Frameshift Signal Database), which is a comprehensive compilation of experimentally known or computationally predicted data about programmed ribosomal frameshifting. FSDB provides a graphical view of frameshift signals and the genes using programmed frameshifting for their expression. It also allows the user himself/herself to find programmed frameshift sites in genomic sequences using a program called FSFinder (http://wilab.inha.ac.kr/fsfinder2). We believe FSDB will be a valuable resource for scientists studying programmed ribosomal frameshifting. FSDB is freely accessible at http://wilab.inha.ac.kr/fsdb/.
Collapse
Affiliation(s)
- Sanghoon Moon
- School of Computer Science and Engineering, Inha University, Inchon 402-751, Republic of Korea
| | | | | |
Collapse
|
26
|
Chechetkin VR, Lobzin VV. Anticodons, frameshifts, and hidden periodicities in tRNA sequences. J Biomol Struct Dyn 2006; 24:189-202. [PMID: 16928142 DOI: 10.1080/07391102.2006.10507112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fourier analysis of the short-range periodicities for the complete set of sequences coding for tRNA genes in genome of Bacillus subtilis proves that periodicities with periods p = 2, 3, 4, and 6 sites are the inherent properties of tRNAs. The related periodicities should be understood in a broad statistical sense and their identifying needs the elaborate statistical methods. To improve the statistics, the analysis of significant periodicities was performed for the binary R-Y, S-W, and K-M sequences. Generally, such short-range periodicities are produced via biased positioning of particular nucleotides rather than via the tandem multiplication and subsequent modifications of repeats, though the latter mechanism may also be realized. Quasi-coherently piercing long segments of tRNA, the short-range periodicities create the effective long-range structural coupling between the acceptor stem and the anticodon loop and may participate in the mechanisms of molecular recognition. The periodicities with p = 2 and 4 provide the natural ground for the translation with spontaneous or programmed frameshifting and are present in tRNAs decoding the most frameshift-prone codons. The observation of short-range periodicities suggests that the mechanisms of amino-acylation of tRNAs and codon-anticodon pairing are not independent. Their study may also provide the important information related to the origin and evolution of the genetic code.
Collapse
Affiliation(s)
- V R Chechetkin
- Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI), Theoretical Department of Division for Perspective Investigations, 142190 Troitsk, Moscow Region, Russia.
| | | |
Collapse
|
27
|
Jacobs JL, Belew AT, Rakauskaite R, Dinman JD. Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res 2006; 35:165-74. [PMID: 17158156 PMCID: PMC1802563 DOI: 10.1093/nar/gkl1033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/29/2006] [Accepted: 11/06/2006] [Indexed: 01/30/2023] Open
Abstract
In viruses, programmed -1 ribosomal frameshifting (-1 PRF) signals direct the translation of alternative proteins from a single mRNA. Given that many basic regulatory mechanisms were first discovered in viral systems, the current study endeavored to: (i) identify -1 PRF signals in genomic databases, (ii) apply the protocol to the yeast genome and (iii) test selected candidates at the bench. Computational analyses revealed the presence of 10 340 consensus -1 PRF signals in the yeast genome. Of the 6353 yeast ORFs, 1275 contain at least one strong and statistically significant -1 PRF signal. Eight out of nine selected sequences promoted efficient levels of PRF in vivo. These findings provide a robust platform for high throughput computational and laboratory studies and demonstrate that functional -1 PRF signals are widespread in the genome of Saccharomyces cerevisiae. The data generated by this study have been deposited into a publicly available database called the PRFdb. The presence of stable mRNA pseudoknot structures in these -1 PRF signals, and the observation that the predicted outcomes of nearly all of these genomic frameshift signals would direct ribosomes to premature termination codons, suggest two possible mRNA destabilization pathways through which -1 PRF signals could post-transcriptionally regulate mRNA abundance.
Collapse
Affiliation(s)
- Jonathan L. Jacobs
- Department of Cell Biology & Molecular Genetics, University of Maryland2135 Microbiology Building, College Park, MD 20742, USA
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics, University of Maryland2135 Microbiology Building, College Park, MD 20742, USA
| | - Rasa Rakauskaite
- Department of Cell Biology & Molecular Genetics, University of Maryland2135 Microbiology Building, College Park, MD 20742, USA
| | - Jonathan D. Dinman
- Department of Cell Biology & Molecular Genetics, University of Maryland2135 Microbiology Building, College Park, MD 20742, USA
| |
Collapse
|
28
|
Penno C, Hachani A, Biskri L, Sansonetti P, Allaoui A, Parsot C. Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri. Mol Microbiol 2006; 62:1460-8. [PMID: 17059566 DOI: 10.1111/j.1365-2958.2006.05456.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During transcription, series of approximately 9 As or Ts can direct RNA polymerase to incorporate into the mRNA nucleotides not encoded by the DNA, changing the reading frame downstream from the slippage site. We detected series of 9 or 10 As in spa13, spa33 and mxiA encoding type III secretion apparatus components. Analysis of cDNAs indicated that transcriptional slippage occurs in spa13, mxiA and spa33. Changes in the reading frame were confirmed by using plasmids carrying slippage sites in the 5' part of lacZ. Slippage is required for production of Spa13 from two overlapping reading frames and should lead to production of truncated MxiA and Spa33 proteins. Complementation of spa13 and mxiA mutants with plasmids carrying altered sites indicated that slippage in spa13 is required for assembly of the secretion apparatus and that slippage sites in spa13 and mxiA have not been selected to encode Lys residues or to produce two proteins endowed with different activities. The presence of slippage sites decreases production of Spa13 by 70%, of MxiA and Spa33 by 15% and of Spa32 (encoded downstream from spa13) by 50%. These results suggest that transcriptional slippage controls protein production by reducing the proportion of mRNA translated into functional proteins.
Collapse
Affiliation(s)
- Christophe Penno
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
29
|
Slootweg EJ, Keller HJHG, Hink MA, Borst JW, Bakker J, Schots A. Fluorescent T7 display phages obtained by translational frameshift. Nucleic Acids Res 2006; 34:e137. [PMID: 17040895 PMCID: PMC1635266 DOI: 10.1093/nar/gkl600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lytic phages form a powerful platform for the display of large cDNA libraries and offer the possibility to screen for interactions with almost any substrate. To visualize these interactions directly by fluorescence microscopy, we constructed fluorescent T7 phages by exploiting the flexibility of phages to incorporate modified versions of its capsid protein. By applying translational frameshift sequences, helper plasmids were constructed that expressed a fixed ratio of both wild-type capsid protein (gp10) and capsid protein fused to enhanced yellow fluorescent protein (EYFP). The frameshift sequences were inserted between the 3′ end of the capsid gene and the sequence encoding EYFP. Fluorescent fusion proteins are only formed when the ribosome makes a −1 shift in reading frame during translation. Using standard fluorescence microscopy, we could sensitively monitor the enrichment of specific binders in a cDNA library displayed on fluorescent T7 phages. The perspectives of fluorescent display phages in the fast emerging field of single molecule detection and sorting technologies are discussed.
Collapse
Affiliation(s)
- Erik J Slootweg
- Laboratory of Molecular Recognition and Antibody Technology, Wageningen University Binnenhaven 5, 6709 PD, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Bekaert M, Atkins JF, Baranov PV. ARFA: a program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting. ACTA ACUST UNITED AC 2006; 22:2463-5. [PMID: 16895933 DOI: 10.1093/bioinformatics/btl430] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED Correct annotation of genes encoding release factors in bacterial genomes is often complicated by utilization of +1 programmed ribosomal frameshifting during synthesis of release factor 2, RF2. In the absence of robust computational approaches for predicting ribosomal frameshifting, the success of proper annotation depends on annotators' familiarity with this phenomenon. Here we describe a novel computer tool that allows automatic discrimination of genes encoding class-I bacterial release factors, RF1, RF2 and RFH. Most usefully, this program identifies and automatically annotates +1 frameshifting in RF2 encoding genes. Comparison of ARFA performance with existing annotations of bacterial genomes revealed that only 20% of RF2 genes utilizing ribosomal frameshifting during their expression are annotated correctly. AVAILABILITY The PHP based web interface of ARFA and the source code are located at http://recode.genetics.utah.edu/arfa
Collapse
Affiliation(s)
- Michaël Bekaert
- Biosciences Institute, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
31
|
Doronina VA, Brown JD. When nonsense makes sense and vice versa: Noncanonical decoding events at stop codons in eukaryotes. Mol Biol 2006. [DOI: 10.1134/s0026893306040182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Baranov PV, Fayet O, Hendrix RW, Atkins JF. Recoding in bacteriophages and bacterial IS elements. Trends Genet 2006; 22:174-81. [PMID: 16460832 DOI: 10.1016/j.tig.2006.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/30/2005] [Accepted: 01/13/2006] [Indexed: 11/16/2022]
Abstract
Dynamic shifts between open reading frames and the redefinition of codon meaning at specific sites, programmed by signals in mRNA, permits versatility of gene expression. Such alterations are characteristic of organisms in all domains of life and serve a variety of functional purposes. In this article, we concentrate on programmed ribosomal frameshifting, stop codon read-through and transcriptional slippage in the decoding of phage genes and bacterial mobile elements. Together with their eukaryotic counterparts, the genes encoding these elements are the richest known source of nonstandard decoding. Recent analyses revealed several novel sequences encoding programmed alterations in gene decoding and provide a glimpse of the emerging picture.
Collapse
Affiliation(s)
- Pavel V Baranov
- Bioscience Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
33
|
Jacobs GH, Stockwell PA, Tate WP, Brown CM. Transterm--extended search facilities and improved integration with other databases. Nucleic Acids Res 2006; 34:D37-40. [PMID: 16381889 PMCID: PMC1347521 DOI: 10.1093/nar/gkj159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transterm has now been publicly available for >10 years. Major changes have been made since its last description in this database issue in 2002. The current database provides data for key regions of mRNA sequences, a curated database of mRNA motifs and tools to allow users to investigate their own motifs or mRNA sequences. The key mRNA regions database is derived computationally from Genbank. It contains 3' and 5' flanking regions, the initiation and termination signal context and coding sequence for annotated CDS features from Genbank and RefSeq. The database is non-redundant, enabling summary files and statistics to be prepared for each species. Advances include providing extended search facilities, the database may now be searched by BLAST in addition to regular expressions (patterns) allowing users to search for motifs such as known miRNA sequences, and the inclusion of RefSeq data. The database contains >40 motifs or structural patterns important for translational control. In this release, patterns from UTRsite and Rfam are also incorporated with cross-referencing. Users may search their sequence data with Transterm or user-defined patterns. The system is accessible at http://uther.otago.ac.nz/Transterm.html.
Collapse
|
34
|
Liu J, Glazko G, Mushegian A. Protein repertoire of double-stranded DNA bacteriophages. Virus Res 2006; 117:68-80. [PMID: 16490276 DOI: 10.1016/j.virusres.2006.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 01/11/2006] [Accepted: 01/18/2006] [Indexed: 01/21/2023]
Abstract
The complexity and diversity of phage gene sets, which are produced by rapid evolution of phage genomes and rampant gene exchanges among phages, hamper the efforts to decipher the evolutionary relationships between individual phage proteins and reconstruct the complete set of evolutionary events leading to the known phages. To start unraveling the natural history of phages, we built the phage orthologous groups (POGs), a natural system of phage protein families that includes 6378 genes from 164 complete genome sequences of double-stranded DNA bacteriophages. Phage proteomes have high POG coverage: on average, 39 genes per phage genome belong to POGs, which is close to half of all genes in most phages. In an agreement with the notion of phage role in horizontal gene transfer, we see many cases of likely gene exchange between phages and their microbial hosts. At the same time, about 80% of all POGs are highly specific to phage genomes and are not commonly found in microbial genomes, indicating coherence and large degree of evolutionary independence of phage gene sets. The information on orthologous genes is essential for evolutionary classification of known bacteriophages and for reconstruction of ancestral phage genomes.
Collapse
Affiliation(s)
- Jing Liu
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA
| | | | | |
Collapse
|
35
|
Bekaert M, Richard H, Prum B, Rousset JP. Identification of programmed translational -1 frameshifting sites in the genome of Saccharomyces cerevisiae. Genome Res 2006; 15:1411-20. [PMID: 16204194 PMCID: PMC1240084 DOI: 10.1101/gr.4258005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Frameshifting is a recoding event that allows the expression of two polypeptides from the same mRNA molecule. Most recoding events described so far are used by viruses and transposons to express their replicase protein. The very few number of cellular proteins known to be expressed by a -1 ribosomal frameshifting has been identified by chance. The goal of the present work was to set up a systematic strategy, based on complementary bioinformatics, molecular biology, and functional approaches, without a priori knowledge of the mechanism involved. Two independent methods were devised. The first looks for genomic regions in which two ORFs, each carrying a protein pattern, are in a frameshifted arrangement. The second uses Hidden Markov Models and likelihood in a two-step approach. When this strategy was applied to the Saccharomyces cerevisiae genome, 189 candidate regions were found, of which 58 were further functionally investigated. Twenty-eight of them expressed a full-length mRNA covering the two ORFs, and 11 showed a -1 frameshift efficiency varying from 5% to 13% (50-fold higher than background), some of which corresponds to genes with known functions. From other ascomycetes, four frameshifted ORFs are found fully conserved. Strikingly, most of the candidates do not display a classical viral-like frameshift signal and would have escaped a search based on current models of frameshifting. These results strongly suggest that -1 frameshifting might be more widely distributed than previously thought.
Collapse
Affiliation(s)
- Michaël Bekaert
- Institut de Génétique et Microbiologie CNRS UMR 8621, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
36
|
Abstract
We outline three very different concepts of the gene-instrumental, nominal, and postgenomic. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype.
Collapse
Affiliation(s)
- Paul E Griffiths
- Biohumanities Project, University of Queensland, 301 Michie Building, Brisbane, QLD, 4072, Australia.
| | | |
Collapse
|
37
|
Degnan PH, Lazarus AB, Wernegreen JJ. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 2005; 15:1023-33. [PMID: 16077009 PMCID: PMC1182215 DOI: 10.1101/gr.3771305] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The distinct lifestyle of obligately intracellular bacteria can alter fundamental forces that drive and constrain genome change. In this study, sequencing the 792-kb genome of Blochmannia pennsylvanicus, an obligate endosymbiont of Camponotus pennsylvanicus, enabled us to trace evolutionary changes that occurred in the context of a bacterial-ant association. Comparison to the genome of Blochmannia floridanus reveals differential loss of genes involved in cofactor biosynthesis, the composition and structure of the cell wall and membrane, gene regulation, and DNA replication. However, the two Blochmannia species show complete conservation in the order and strand orientation of shared genes. This finding of extreme stasis in genome architecture, also reported previously for the aphid endosymbiont Buchnera, suggests that genome stability characterizes long-term bacterial mutualists of insects and constrains their evolutionary potential. Genome-wide analyses of protein divergences reveal 10- to 50-fold faster amino acid substitution rates in Blochmannia compared to related bacteria. Despite these varying features of genome evolution, a striking correlation in the relative divergences of proteins indicates parallel functional constraints on gene functions across ecologically distinct bacterial groups. Furthermore, the increased rates of amino acid substitution and gene loss in Blochmannia have occurred in a lineage-specific fashion, which may reflect life history differences of their ant hosts.
Collapse
Affiliation(s)
- Patrick H Degnan
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | | | |
Collapse
|
38
|
Béroud C, Hamroun D, Collod-Béroud G, Boileau C, Soussi T, Claustres M. UMD (Universal Mutation Database): 2005 update. Hum Mutat 2005; 26:184-91. [PMID: 16086365 DOI: 10.1002/humu.20210] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
With the completion of the Human Genome Project, our vision of human genetic diseases has changed. The cloning of new disease-causing genes can now be performed in silico, and thousands of mutations are being identified in diagnostic and research laboratories yearly. Knowledge about these mutations and their association with clinical and biological data is essential for clinicians, geneticists, and researchers. To collect and analyze these data, we developed a generic software called Universal Mutation Databases (UMD) to create locus-specific databases. Here we report the new release (September 2004) of this freely available tool (www.umd.be), which allows the creation of LSDBs for virtually any gene and includes a large set of new analysis tools. We have implemented new features to integrate noncoding sequences, clinical data, pictures, monoclonal antibodies, and polymorphic markers (SNPs). Today the UMD retains all specifically designed tools to analyze mutations at the molecular level, as well as new sets of routines to search for genotype-phenotype correlations. We also created specific tools for infrequent mutations such as gross deletions and duplications, and deep intronic mutations. A large set of dedicated tools are now available for intronic mutations, including methods to calculate the consensus values (CVs) of potential splice sites and to search for exonic splicing enhancer (ESE) motifs. In addition, we have created specific routines to help researchers design new therapeutic strategies, such as exon skipping, aminoglycoside read-through of stop codons, or monoclonal antibody selection and epitope scanning for gene therapy.
Collapse
|
39
|
Chaudhuri BN, Yeates TO. A computational method to predict genetically encoded rare amino acids in proteins. Genome Biol 2005; 6:R79. [PMID: 16168086 PMCID: PMC1242214 DOI: 10.1186/gb-2005-6-9-r79] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 06/20/2005] [Accepted: 07/27/2005] [Indexed: 11/25/2022] Open
Abstract
A new method for predicting recoding by rare amino acids such as selenocysteine and pyrrolysine was used to survey a set of microbial genomes. In several natural settings, the standard genetic code is expanded to incorporate two additional amino acids with distinct functionality, selenocysteine and pyrrolysine. These rare amino acids can be overlooked inadvertently, however, as they arise by recoding at certain stop codons. We report a method for such recoding prediction from genomic data, using read-through similarity evaluation. A survey across a set of microbial genomes identifies almost all the known cases as well as a number of novel candidate proteins.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- UCLA-DOE Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| |
Collapse
|
40
|
Gurvich OL, Baranov PV, Gesteland RF, Atkins JF. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. J Bacteriol 2005; 187:4023-32. [PMID: 15937165 PMCID: PMC1151738 DOI: 10.1128/jb.187.12.4023-4032.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rare codons AGG and AGA comprise 2% and 4%, respectively, of the arginine codons of Escherichia coli K-12, and their cognate tRNAs are sparse. At tandem occurrences of either rare codon, the paucity of cognate aminoacyl tRNAs for the second codon of the pair facilitates peptidyl-tRNA shifting to the +1 frame. However, AGG_AGG and AGA_AGA are not underrepresented and occur 4 and 42 times, respectively, in E. coli genes. Searches for corresponding occurrences in other bacteria provide no strong support for the functional utilization of frameshifting at these sequences. All sequences tested in their native context showed 1.5 to 11% frameshifting when expressed from multicopy plasmids. A cassette with one of these sequences singly integrated into the chromosome in stringent cells gave 0.9% frameshifting in contrast to two- to four-times-higher values obtained from multicopy plasmids in stringent cells and eight-times-higher values in relaxed cells. Thus, +1 frameshifting efficiency at AGG_AGG and AGA_AGA is influenced by the mRNA expression level. These tandem rare codons do not occur in highly expressed mRNAs.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, 15N 2030E, Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|
41
|
Plant EP, Pérez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig M, Dinman JD. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol 2005; 3:e172. [PMID: 15884978 PMCID: PMC1110908 DOI: 10.1371/journal.pbio.0030172] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 03/14/2005] [Indexed: 12/16/2022] Open
Abstract
A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.
Collapse
Affiliation(s)
- Ewan P Plant
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Gabriela C Pérez-Alvarado
- 2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jonathan L Jacobs
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Bani Mukhopadhyay
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| | - Mirko Hennig
- 2Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CaliforniaUnited States of America
| | - Jonathan D Dinman
- 1Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MarylandUnited States of America
| |
Collapse
|
42
|
Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 2005; 332:498-510. [PMID: 15680415 PMCID: PMC7111862 DOI: 10.1016/j.virol.2004.11.038] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 09/07/2004] [Accepted: 11/30/2004] [Indexed: 11/25/2022]
Abstract
Programmed ribosomal frameshifting is an essential mechanism used for the expression of orf1b in coronaviruses. Comparative analysis of the frameshift region reveals a universal shift site U_UUA_AAC, followed by a predicted downstream RNA structure in the form of either a pseudoknot or kissing stem loops. Frameshifting in SARS-CoV has been characterized in cultured mammalian cells using a dual luciferase reporter system and mass spectrometry. Mutagenic analysis of the SARS-CoV shift site and mass spectrometry of an affinity tagged frameshift product confirmed tandem tRNA slippage on the sequence U_UUA_AAC. Analysis of the downstream pseudoknot stimulator of frameshifting in SARS-CoV shows that a proposed RNA secondary structure in loop II and two unpaired nucleotides at the stem I–stem II junction in SARS-CoV are important for frameshift stimulation. These results demonstrate key sequences required for efficient frameshifting, and the utility of mass spectrometry to study ribosomal frameshifting.
Collapse
Affiliation(s)
- Pavel V. Baranov
- Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, 84112-5330 UT, USA
- Bioscience Institute, University College Cork, Cork, Ireland
| | - Clark M. Henderson
- Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, 84112-5330 UT, USA
| | - Christine B. Anderson
- Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, 84112-5330 UT, USA
| | - Raymond F. Gesteland
- Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, 84112-5330 UT, USA
| | - John F. Atkins
- Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, 84112-5330 UT, USA
- Bioscience Institute, University College Cork, Cork, Ireland
| | - Michael T. Howard
- Department of Human Genetics, University of Utah, 15 N 2030 E, Room 7410, Salt Lake City, 84112-5330 UT, USA
- Corresponding author. Fax: +1 801 585 3910.
| |
Collapse
|
43
|
Romine MF, Elias DA, Monroe ME, Auberry K, Fang R, Fredrickson JK, Anderson GA, Smith RD, Lipton MS. Validation of Shewanella oneidensis MR-1 small proteins by AMT tag-based proteome analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2005; 8:239-54. [PMID: 15669716 DOI: 10.1089/omi.2004.8.239] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Using stringent criteria for protein identification by accurate mass and time (AMT) tag mass spectrometric methodology, we detected 36 proteins of <101 amino acids in length, including 10 that were annotated as hypothetical proteins, in 172 global tryptic digests of Shewanella oneidensis MR-1 proteins. Peptides that map to the conserved, but functionally uncharacterized proteins SO4134 and SO2787, were the most frequently detected peptides in these samples, while those that map to hypotheticals SO2669 and SO2063, conserved hypotheticals SO0335 and SO2176, and the SlyX protein (SO1063) were observed at frequencies similar to those from essential small proteins (ribosomal proteins and translation initiation factor IF-1), suggesting that they may function in similarly important cellular functions. In addition, peptides were detected that map to 30 genes predicted to encode frameshifts, point mutations, or recoding signals. Of these 30 genes, peptides that map to positions beyond internal stop codons were detected in 13 genes (SO0101, SO0419, SO0590, SO0738, SO1113, SO1211, SO3079, SO3130, SO3240, SO4231, SO4328, SO4422, and SO4657). While expression of the full-length formate dehydrogenase encoded by SO0101 can be explained by incorporation of selenocysteine at the internal stop codon, the mechanism of translating downstream sequences in the remaining genes remains unknown.
Collapse
Affiliation(s)
- Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bucklin DJ, Wills NM, Gesteland RF, Atkins JF. P-site pairing subtleties revealed by the effects of different tRNAs on programmed translational bypassing where anticodon re-pairing to mRNA is separated from dissociation. J Mol Biol 2005; 345:39-49. [PMID: 15567409 DOI: 10.1016/j.jmb.2004.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/11/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022]
Abstract
Programmed ribosomal bypassing occurs in decoding phage T4 gene 60 mRNA. Half the ribosomes bypass a 50 nucleotide gap between codons 46 and 47. Peptidyl-tRNA dissociates from the "take-off" GGA, codon 46, and re-pairs to mRNA at a matched GGA "landing site" codon directly 5' of codon 47 where translation resumes. The system described here allows the contribution of peptidyl-tRNA re-pairing to be measured independently of dissociation. The matched GGA codons have been replaced by 62 other matched codons, giving a wide range of bypassing efficiencies. Codons with G or C in either or both of the first two codon positions yielded high levels of bypassing. The results are compared with those from a complementary study of non-programmed bypassing, where the combined effects of peptidyl-tRNA dissociation and reassociation were measured. The wild-type, GGA, matched codons are the most efficient in their gene 60 context in contrast to the relatively low value in the non-programmed bypassing study.
Collapse
Affiliation(s)
- Douglas J Bucklin
- Department of Human Genetics, University of Utah, 15N 2030E Rm7410, Salt Lake City, UT 84112-5330, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Computational identification of ribosomal frameshift sites in genomic sequences is difficult due to their diverse nature, yet it provides useful information for understanding the underlying mechanisms and discovering new genes. We have developed an algorithm that searches entire genomic or mRNA sequences for frameshifting sites, and implements the algorithm as a web-based program called FSFinder (Frameshift Signal Finder). The current version of FSFinder is capable of finding -1 frameshift sites on heptamer sequences X XXY YYZ, and +1 frameshift sites for two genes: protein chain release factor B (prfB) and ornithine decarboxylase antizyme (oaz). We tested FSFinder on approximately 190 genomic and partial DNA sequences from a number of organisms and found that it predicted frameshift sites efficiently and with greater sensitivity and specificity than existing approaches. It has improved sensitivity because it considers many known components of a frameshifting cassette and searches these components on both + and - strands, and its specificity is increased because it focuses on overlapping regions of open reading frames and prioritizes candidate frameshift sites. FSFinder is useful for discovering unknown genes that utilize alternative decoding, as well as for analyzing frameshift sites. It is freely accessible at http://wilab.inha.ac.kr/FSFinder/.
Collapse
Affiliation(s)
- Sanghoon Moon
- School of Computer Science and Engineering, Inha University, Inchon 402-751, Korea
| | | | | | | | | |
Collapse
|
46
|
Baranov PV, Gesteland RF, Atkins JF. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2004; 10:221-30. [PMID: 14730021 PMCID: PMC1370534 DOI: 10.1261/rna.5122604] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/09/2003] [Indexed: 05/22/2023]
Abstract
The expression of some genes requires a high proportion of ribosomes to shift at a specific site into one of the two alternative frames. This utilized frameshifting provides a unique tool for studying reading frame control. Peptidyl-tRNA slippage has been invoked to explain many cases of programmed frameshifting. The present work extends this to other cases. When the A-site is unoccupied, the P-site tRNA can be repositioned forward with respect to mRNA (although repositioning in the minus direction is also possible). A kinetic model is presented for the influence of both, the cognate tRNAs competing for overlapping codons in A-site, and the stabilities of P-site tRNA:mRNA complexes in the initial and new frames. When the A-site is occupied, the P-site tRNA can be repositioned backward. Whether frameshifting will happen depends on the ability of the A-site tRNA to subsequently be repositioned to maintain physical proximity of the tRNAs. This model offers an alternative explanation to previously published mechanisms of programmed frameshifting, such as out-of-frame tRNA binding, and a different perspective on simultaneous tandem tRNA slippage.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | |
Collapse
|
47
|
Polycarpo C, Ambrogelly A, Ruan B, Tumbula-Hansen D, Ataide SF, Ishitani R, Yokoyama S, Nureki O, Ibba M, Söll D. Activation of the Pyrrolysine Suppressor tRNA Requires Formation of a Ternary Complex with Class I and Class II Lysyl-tRNA Synthetases. Mol Cell 2003; 12:287-94. [PMID: 14536069 DOI: 10.1016/s1097-2765(03)00280-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monomethylamine methyltransferase of the archaeon Methanosarcina barkeri contains a rare amino acid, pyrrolysine, encoded by the termination codon UAG. Translation of this UAG requires the aminoacylation of the corresponding amber suppressor tRNAPyl. Previous studies reported that tRNAPyl could be aminoacylated by the synthetase-like protein PylS. We now show that tRNAPyl is efficiently aminoacylated in the presence of both the class I LysRS and class II LysRS of M. barkeri, but not by either enzyme acting alone or by PylS. In vitro studies show that both the class I and II LysRS enzymes must bind tRNAPyl in order for the aminoacylation reaction to proceed. Structural modeling and selective inhibition experiments indicate that the class I and II LysRSs form a ternary complex with tRNAPyl, with the aminoacylation activity residing in the class II enzyme.
Collapse
Affiliation(s)
- Carla Polycarpo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hansen TM, Baranov PV, Ivanov IP, Gesteland RF, Atkins JF. Maintenance of the correct open reading frame by the ribosome. EMBO Rep 2003; 4:499-504. [PMID: 12717454 PMCID: PMC1319180 DOI: 10.1038/sj.embor.embor825] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 03/10/2003] [Accepted: 03/17/2003] [Indexed: 11/09/2022] Open
Abstract
During translation, a string of non-overlapping triplet codons in messenger RNA is decoded into protein. The ability of a ribosome to decode mRNA without shifting between reading frames is a strict requirement for accurate protein biosynthesis. Despite enormous progress in understanding the mechanism of transfer RNA selection, the mechanism by which the correct reading frame is maintained remains unclear. In this report, evidence is presented that supports the idea that the translational frame is controlled mainly by the stability of codon-anticodon interactions at the P site. The relative instability of such interactions may lead to dissociation of the P-site tRNA from its codon, and formation of a complex with an overlapping codon, the process known as P-site tRNA slippage. We propose that this process is central to all known cases of +1 ribosomal frameshifting, including that required for the decoding of the yeast transposable element Ty3. An earlier model for the decoding of this element proposed 'out-of-frame' binding of A-site tRNA without preceding P-site tRNA slippage.
Collapse
Affiliation(s)
- Thomas M. Hansen
- Present address: Department of Molecular Cell Biology, University of Copenhagen, Øster Farimagsgade 2A 3. sal, DK-1353 Copenhagen K, Denmark
- These authors contributed equally to this work
| | - Pavel V. Baranov
- Present address: Department of Molecular Cell Biology, University of Copenhagen, Øster Farimagsgade 2A 3. sal, DK-1353 Copenhagen K, Denmark
| | - Ivaylo P. Ivanov
- Department of Human Genetics, University of Utah, 15N 2030E Room 7410, Salt Lake City, UT 84112-5330, USA
| | - Raymond F. Gesteland
- Department of Human Genetics, University of Utah, 15N 2030E Room 7410, Salt Lake City, UT 84112-5330, USA
| | - John F. Atkins
- Department of Human Genetics, University of Utah, 15N 2030E Room 7410, Salt Lake City, UT 84112-5330, USA
- Tel: +1 801 585 3434; Fax: +1 801 585 3910;
| |
Collapse
|