1
|
Wang Y, Hou C, Wisler J, Singh K, Wu C, Xie Z, Lu Q, Zhou Z. Elevated histone H3 acetylation is associated with genes involved in T lymphocyte activation and glutamate decarboxylase antibody production in patients with type 1 diabetes. J Diabetes Investig 2019; 10:51-61. [PMID: 29791073 PMCID: PMC6319479 DOI: 10.1111/jdi.12867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS/INTRODUCTION Genetic and epigenetic mechanisms have been implicated in the pathogenesis of type 1 diabetes, and histone acetylation is an epigenetic modification pattern that activates gene transcription. However, the genome-wide histone H3 acetylation in new-onset type 1 diabetes patients has not been well described. Accordingly, we aimed to unveil the genome-wide promoter acetylation profile in CD4+ T lymphocytes from type 1 diabetes patients, especially for those who are glutamate decarboxylase antibody-positive. MATERIALS AND METHODS A total of 12 patients with new-onset type 1 diabetes who were glutamate decarboxylase antibody-positive were enrolled, and 12 healthy individuals were recruited as controls. The global histone H3 acetylation level of CD4+ T lymphocytes from peripheral blood was detected by western blot, with chromatin immunoprecipitation linked to microarrays to characterize the promoter acetylation profile. Furthermore, we validated the results of particular genes from chromatin immunoprecipitation linked to microarrays by using chromatin immunoprecipitation quantitative polymerase chain reaction, and analyzed the transcription level by real-time quantitative polymerase chain reaction. RESULTS Elevated global histone H3 acetylation level was observed in type 1 diabetes patients, with 607 differentially acetylated genes identified between type 1 diabetes patients and controls by chromatin immunoprecipitation linked to microarrays. The hyperacetylated genes were enriched in biological processes involved in immune cell activation and inflammatory response. Gene-specific assessments showed that increased transcription of inducible T-cell costimulator was in concordance with the elevated acetylation in its gene promoter, along with positive correlation with glutamate decarboxylase antibody titer in type 1 diabetes patients. CONCLUSIONS The present study generates a genome-wide histone acetylation profile specific to CD4+ T lymphocytes in type 1 diabetes patients who are glutamic acid decarboxylase antibody-positive, which is instrumental in improving our understanding of the epigenetic involvement in autoimmune diabetes.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Can Hou
- Department of Intensive Care UnitThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jonathan Wisler
- Department of SurgeryDivision of Trauma, Critical Care and Burn SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kanhaiya Singh
- Department of SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Chao Wu
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Zhiguo Xie
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Qianjin Lu
- Department of DermatologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiguang Zhou
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| |
Collapse
|
2
|
Bevington SL, Cauchy P, Cockerill PN. Chromatin priming elements establish immunological memory in T cells without activating transcription: T cell memory is maintained by DNA elements which stably prime inducible genes without activating steady state transcription. Bioessays 2016; 39. [PMID: 28026028 DOI: 10.1002/bies.201600184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have identified a simple epigenetic mechanism underlying the establishment and maintenance of immunological memory in T cells. By studying the transcriptional regulation of inducible genes we found that a single cycle of activation of inducible factors is sufficient to initiate stable binding of pre-existing transcription factors to thousands of newly activated distal regulatory elements within inducible genes. These events lead to the creation of islands of active chromatin encompassing nearby enhancers, thereby supporting the accelerated activation of inducible genes, without changing steady state levels of transcription in memory T cells. These studies also highlighted the need for more sophisticated definitions of gene regulatory elements. The chromatin priming elements defined here are distinct from classical enhancers because they function by maintaining chromatin accessibility rather than directly activating transcription. We propose that these priming elements are members of a wider class of genomic elements that support correct developmentally regulated gene expression.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
3
|
Yun SJ, Jun KJ, Komori K, Lee MJ, Kwon MH, Chwae YJ, Kim K, Shin HJ, Park S. The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter. Mol Immunol 2016; 75:60-8. [DOI: 10.1016/j.molimm.2016.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022]
|
4
|
Hogquist KA, Xing Y, Hsu FC, Shapiro VS. T Cell Adolescence: Maturation Events Beyond Positive Selection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1351-7. [PMID: 26254267 DOI: 10.4049/jimmunol.1501050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Single-positive thymocytes that successfully complete positive and negative selection must still undergo one final step, generally termed T cell maturation, before they gain functional competency and enter the long-lived T cell pool. Maturation initiates after positive selection in single-positive thymocytes and continues in the periphery in recent thymic emigrants, before these newly produced T cells gain functional competency and are ready to participate in the immune response as peripheral naive T cells. Recent work using genetically altered mice demonstrates that T cell maturation is not a single process, but a series of steps that occur independently and sequentially after positive selection. This review focuses on the changes that occur during T cell maturation, as well as the molecules and pathways that are critical at each step.
Collapse
Affiliation(s)
- Kristin A Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Yan Xing
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|
5
|
Long-Range Transcriptional Control of the Il2 Gene by an Intergenic Enhancer. Mol Cell Biol 2015; 35:3880-91. [PMID: 26351138 DOI: 10.1128/mcb.00592-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/28/2015] [Indexed: 02/08/2023] Open
Abstract
Interleukin-2 (IL-2) is a potent cytokine with roles in both immunity and tolerance. Genetic studies in humans and mice demonstrate a role for Il2 in autoimmune disease susceptibility, and for decades the proximal Il2 upstream regulatory region has served as a paradigm of tissue-specific, inducible gene regulation. In this study, we have identified a novel long-range enhancer of the Il2 gene located 83 kb upstream of the transcription start site. This element can potently enhance Il2 transcription in recombinant reporter assays in vitro, and the native region undergoes chromatin remodeling, transcribes a bidirectional enhancer RNA, and loops to physically interact with the Il2 gene in vivo in a CD28-dependent manner in CD4(+) T cells. This cis regulatory element is evolutionarily conserved and is situated near a human single-nucleotide polymorphism (SNP) associated with multiple autoimmune disorders. These results indicate that the regulatory architecture of the Il2 locus is more complex than previously appreciated and suggest a novel molecular basis for the genetic association of Il2 polymorphism with autoimmune disease.
Collapse
|
6
|
Crispín JC, Apostolidis SA, Rosetti F, Keszei M, Wang N, Terhorst C, Mayadas TN, Tsokos GC. Cutting edge: protein phosphatase 2A confers susceptibility to autoimmune disease through an IL-17-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2012; 188:3567-71. [PMID: 22422882 DOI: 10.4049/jimmunol.1200143] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The contribution of individual molecular aberrations to the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease that affects multiple organs, is often difficult to evaluate because of the presence of abundant confounding factors. To assess the effect of increased expression of the phosphatase protein phosphatase 2A (PP2A) in T cells, as recorded in SLE patients, we generated a transgenic mouse that overexpresses the PP2Ac subunit in T cells. The transgenic mouse displays a heightened susceptibility to immune-mediated glomerulonephritis in the absence of other immune defects. CD4(+) T cells produce increased amounts of IL-17 while the number of neutrophils in the peripheral blood is increased. IL-17 neutralization abrogated the development of glomerulonephritis. We conclude that increased PP2Ac expression participates in SLE pathogenesis by promoting inflammation through unchecked IL-17 production and facilitating the development of end-organ damage.
Collapse
Affiliation(s)
- José C Crispín
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hedrich CM, Rauen T, Tsokos GC. cAMP-responsive element modulator (CREM)α protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: implications in systemic lupus erythematosus. J Biol Chem 2011; 286:43429-36. [PMID: 21976679 PMCID: PMC3234875 DOI: 10.1074/jbc.m111.299339] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/28/2011] [Indexed: 12/18/2022] Open
Abstract
IL-2 is a key cytokine during proliferation and activation of T lymphocytes and functions as an auto- and paracrine growth factor. Regardless of activating effects on T lymphocytes, the absence of IL-2 has been linked to the development of autoimmune pathology in mice and humans. Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease and characterized by dysregulation of lymphocyte function, transcription factor and cytokine expression, and antigen presentation. Reduced IL-2 expression is a hallmark of SLE T lymphocytes and results in decreased numbers of regulatory T lymphocytes which play an important role in preventing autoimmunity. Reduced IL-2 expression was linked to overproduction of the transcription regulatory factor cAMP-responsive element modulator (CREM)α in SLE T lymphocytes and subsequent CREMα binding to a CRE site within the IL2 promoter (-180 CRE). In this study, we demonstrate the involvement of CREMα-mediated IL2 silencing in T lymphocytes from SLE patients through a gene-wide histone deacetylase 1-directed deacetylation of histone H3K18 and DNA methyltransferase 3a-directed cytosine phosphate guanosine (CpG)-DNA hypermethylation. For the first time, we provide direct evidence that CREMα mediates silencing of the IL2 gene in SLE T cells though histone deacetylation and CpG-DNA methylation.
Collapse
Affiliation(s)
- Christian M. Hedrich
- From the Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Thomas Rauen
- From the Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
- the Department of Nephrology and Clinical Immunology, RWTH University of Aachen, 52074 Aachen, Germany
| | - George C. Tsokos
- From the Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
8
|
Ishihara S, Schwartz RH. Two-step binding of transcription factors causes sequential chromatin structural changes at the activated IL-2 promoter. THE JOURNAL OF IMMUNOLOGY 2011; 187:3292-9. [PMID: 21832163 DOI: 10.4049/jimmunol.1003173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most gene promoters have multiple binding sequences for many transcription factors, but the contribution of each of these factors to chromatin remodeling is still unclear. Although we previously found a dynamic change in the arrangement of nucleosome arrays at the Il2 promoter during T cell activation, its timing preceded that of a decrease in nucleosome occupancy at the promoter. In this article, we show that the initial nucleosome rearrangement was temporally correlated with the binding of NFAT1 and AP-1 (Fos/Jun), whereas the second step occurred in parallel with the recruitment of other transcription factors and RNA polymerase II. Pharmacologic inhibitors for activation of NFAT1 or induction of Fos blocked the initial phase in the sequential changes. This step was not affected, however, by inhibition of c-Jun phosphorylation, which instead blocked the binding of the late transcription factors, the recruitment of CREB-binding protein, and the acetylation of histone H3 at lysine 27. Thus, the sequential recruitment of transcription factors appears to facilitate two separate steps in chromatin remodeling at the Il2 locus.
Collapse
Affiliation(s)
- Satoru Ishihara
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Xiong L, Darwanto A, Sharma S, Herring J, Hu S, Filippova M, Filippov V, Wang Y, Chen CS, Duerksen-Hughes PJ, Sowers LC, Zhang K. Mass spectrometric studies on epigenetic interaction networks in cell differentiation. J Biol Chem 2011; 286:13657-68. [PMID: 21335548 DOI: 10.1074/jbc.m110.204800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arrest of cell differentiation is one of the leading causes of leukemia and other cancers. Induction of cell differentiation using pharmaceutical agents has been clinically attempted for the treatment of these cancers. Epigenetic regulation may be one of the underlying molecular mechanisms controlling cell proliferation or differentiation. Here, we report on the use of proteomics-based differential protein expression analysis in conjunction with quantification of histone modifications to decipher the interconnections among epigenetic modifications, their modifying enzymes or mediators, and changes in the associated pathways/networks that occur during cell differentiation. During phorbol-12-myristate 13-acetate-induced differentiation of U937 cells, fatty acid synthesis and its metabolic processing, the clathrin-coated pit endocytosis pathway, and the ubiquitin/26 S proteasome degradation pathways were up-regulated. In addition, global histone H3/H4 acetylation and H2B ubiquitination were down-regulated concomitantly with impaired chromatin remodeling machinery, RNA polymerase II complexes, and DNA replication. Differential protein expression analysis established the networks linking histone hypoacetylation to the down-regulated expression/activity of p300 and linking histone H2B ubiquitination to the RNA polymerase II-associated FACT-RTF1-PAF1 complex. Collectively, our approach has provided an unprecedentedly systemic set of insights into the role of epigenetic regulation in leukemia cell differentiation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
T-cell development endows cells with a flexible range of effector differentiation options, superimposed on a stable core of lineage-specific gene expression that is maintained while access to alternative hematopoietic lineages is permanently renounced. This combination of features could be explained by environmentally responsive transcription factor mobilization overlaying an epigenetically stabilized base gene expression state. For example, "poising" of promoters could offer preferential access to T-cell genes, while repressive histone modifications and DNA methylation of non-T regulatory genes could be responsible for keeping non-T developmental options closed. Here, we critically review the evidence for the actual deployment of epigenetic marking to support the stable aspects of T-cell identity. Much of epigenetic marking is dynamically maintained or subject to rapid modification by local action of transcription factors. Repressive histone marks are used in gene-specific ways that do not fit a simple, developmental lineage-exclusion hierarchy. We argue that epigenetic analysis may achieve its greatest impact for illuminating regulatory biology when it is used to locate cis-regulatory elements by catching them in the act of mediating regulatory change.
Collapse
|
11
|
Ishihara S, Varma R, Schwartz RH. A new fractionation assay, based on the size of formaldehyde-crosslinked, mildly sheared chromatin, delineates the chromatin structure at promoter regions. Nucleic Acids Res 2010; 38:e124. [PMID: 20371521 PMCID: PMC2887976 DOI: 10.1093/nar/gkq203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To explore the higher order structure of transcribable chromatin in vivo, its local configuration was assessed through the accessibility of the chromatin to crosslinking with formaldehyde. The application of crosslinked and mildly sheared chromatin to sedimentation velocity centrifugation followed by size-fractionation of the DNA enabled us to biochemically distinguish between chromatin with heavily versus sparsely crosslinkable structures. The separated fractions showed a good correlation with gene expression profiles. Genes with poor crosslinking around the promoter region were actively transcribed, while transcripts were hardly detected from genes with extensive crosslinking in their promoter regions. For the inducible gene, Il2, the distribution of the promoter shifted in the gradient following T-cell receptor stimulation, consistent with a change in structure at this locus during activation. The kinetics of this switch preceded the chromatin change observed in a DNase I accessibility assay. Thus, this new chromatin fractionation technique has revealed a change in chromatin structure that has not been previously characterized.
Collapse
Affiliation(s)
- Satoru Ishihara
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
12
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
13
|
Mirabella F, Baxter EW, Boissinot M, James SR, Cockerill PN. The human IL-3/granulocyte-macrophage colony-stimulating factor locus is epigenetically silent in immature thymocytes and is progressively activated during T cell development. THE JOURNAL OF IMMUNOLOGY 2010; 184:3043-54. [PMID: 20147630 DOI: 10.4049/jimmunol.0901364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The closely linked IL-3 and GM-CSF genes are located within a cluster of cytokine genes co-expressed in activated T cells. Their activation in response to TCR signaling pathways is controlled by specific, inducible upstream enhancers. To study the developmental regulation of this locus in T lineage cells, we created a transgenic mouse model encompassing the human IL-3 and GM-CSF genes plus the known enhancers. We demonstrated that the IL-3/GM-CSF locus undergoes progressive stages of activation, with stepwise increases in active modifications and the proportion of cytokine-expressing cells, throughout the course of T cell differentiation. Looking first at immature cells, we found that the IL-3/GM-CSF locus was epigenetically silent in CD4/CD8 double positive thymocytes, thereby minimizing the potential for inappropriate activation during the course of TCR selection. Furthermore, we demonstrated that the locus did not reach its maximal transcriptional potential until after T cells had undergone blast cell transformation to become fully activated proliferating T cells. Inducible locus activation in mature T cells was accompanied by noncoding transcription initiating within the enhancer elements. Significantly, we also found that memory CD4 positive T cells, but not naive T cells, maintain a remodeled chromatin structure resembling that seen in T blast cells.
Collapse
Affiliation(s)
- Fabio Mirabella
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Vazquez BN, Laguna T, Carabana J, Krangel MS, Lauzurica P. CD69 gene is differentially regulated in T and B cells by evolutionarily conserved promoter-distal elements. THE JOURNAL OF IMMUNOLOGY 2009; 183:6513-21. [PMID: 19841192 DOI: 10.4049/jimmunol.0900839] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD69 is a type II C-type lectin involved in lymphocyte migration and cytokine secretion. CD69 expression represents one of the earliest available indicators of leukocyte activation and its rapid induction occurs through transcriptional activation. In this study we examined the molecular mechanism underlying mouse CD69 gene transcription in vivo in T and B cells. Analysis of the 45-kb region upstream of the CD69 gene revealed evolutionary conservation at the promoter and at four noncoding sequences (CNS) that were called CNS1, CNS2, CNS3, and CNS4. These regions were found to be hypersensitive sites in DNase I digestion experiments, and chromatin immunoprecipitation assays showed specific epigenetic modifications. CNS2 and CNS4 displayed constitutive and inducible enhancer activity in transient transfection assays in T cells. Using a transgenic approach to test CNS function, we found that the CD69 promoter conferred developmentally regulated expression during positive selection of thymocytes but could not support regulated expression in mature lymphocytes. Inclusion of CNS1 and CNS2 caused suppression of CD69 expression, whereas further addition of CNS3 and CNS4 supported developmental-stage and lineage-specific regulation in T cells but not in B cells. We concluded CNS1-4 are important cis-regulatory elements that interact both positively and negatively with the CD69 promoter and that differentially contribute to CD69 expression in T and B cells.
Collapse
Affiliation(s)
- Berta N Vazquez
- Departament de Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
Wells AD. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. THE JOURNAL OF IMMUNOLOGY 2009; 182:7331-41. [PMID: 19494254 DOI: 10.4049/jimmunol.0803917] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The vertebrate immune system has evolved to deal with invasive pathogens, but this adaptation comes at the expense of immunopathology. Among a number of mechanisms that coevolved to control adaptive immunity is anergy, the functional inactivation of T lymphocytes that respond to Ag in the absence of inflammation. In this review, I highlight a series of intracellular proteins in quiescent T cells that function to integrate signals from Ag, costimulatory, and growth factor receptors. These factors ensure that cells that fail to engage all three pathways are shunted into an alternative transcriptional program designed to dissuade them from participating in subsequent immune responses. Recent studies indicate that anergy is the combined result of factors that negatively regulate proximal TCR-coupled signal transduction, together with a program of active transcriptional silencing that is reinforced through epigenetic mechanisms.
Collapse
Affiliation(s)
- Andrew D Wells
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Wang J, Wicker LS, Santamaria P. IL-2 and its high-affinity receptor: genetic control of immunoregulation and autoimmunity. Semin Immunol 2009; 21:363-71. [PMID: 19447046 DOI: 10.1016/j.smim.2009.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease featured by destruction of the insulin producing beta-cells of the pancreas by autoreactive T-lymphocytes. Putative environmental triggers conspire with a constellation of genetic elements scattered throughout the genome to elicit a multifactorial autoimmune response involving virtually every cell type of the immune system against pancreatic beta-cells. Recent highly powered genome-wide association studies have confirmed and identified fifteen chromosomal regions harboring several candidate T1D-associated gene loci. Here, we summarize what we know about the genetics of T1D with an emphasis on the contributions of mouse Il2 and human IL2RA polymorphisms and the IL-2-IL-2R pathway to autoimmunity and, more specifically, Treg development and function.
Collapse
Affiliation(s)
- Jinguo Wang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology and Infectious Diseases, Institute of Inflammation, Infection and Immunity, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
17
|
David-Fung ES, Butler R, Buzi G, Yui MA, Diamond RA, Anderson MK, Rowen L, Rothenberg EV. Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Dev Biol 2009; 325:444-67. [PMID: 19013443 PMCID: PMC2663971 DOI: 10.1016/j.ydbio.2008.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 12/15/2022]
Abstract
Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between alphabeta and gammadelta T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification.
Collapse
|
18
|
Abstract
The regulation of IL-2 production is central to our understanding of the immune system. Key during T cell activation, it also plays an essential role in the regulation of the immune response. This review discusses the function of recently described factors that modulate transcription and chromatin remodeling at the IL2 promoter. Also, it addresses the role of FoxP3 as a transcriptional regulator in conventional T cells and regulatory T cells, and the mechanisms whereby CD28 stabilizes IL2 transcription and translation. Finally, the alterations that prevent T cells from SLE patients from producing normal amounts of IL-2 upon stimulation are described.
Collapse
Affiliation(s)
- José C Crispín
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Martins GA, Cimmino L, Liao J, Magnusdottir E, Calame K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. ACTA ACUST UNITED AC 2008; 205:1959-65. [PMID: 18725523 PMCID: PMC2526191 DOI: 10.1084/jem.20080526] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mice with a T cell–specific deletion of Prdm1, encoding Blimp-1, have aberrant T cell homeostasis and develop fatal colitis. In this study, we show that one critical activity of Blimp-1 in T cells is to repress IL-2, and that it does so by direct repression of Il2 transcription, and also by repression of Fos transcription. Using these mechanisms Blimp-1 participates in an autoregulatory loop by which IL-2 induces Prdm1 expression and thus represses its own expression after T cell activation, ensuring that the immune response is appropriately controlled. This activity of Blimp-1 is important for cytokine deprivation–induced T cell death and for attenuating T cell proliferation in antigen-specific responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Gislâine A Martins
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
20
|
Li YJ, Wei YS, Fu XH, Hao DL, Xue Z, Gong H, Zhang ZQ, Liu DP, Liang CC. The apolipoprotein CIII enhancer regulates both extensive histone modification and intergenic transcription of human apolipoprotein AI/CIII/AIV genes but not apolipoprotein AV. J Biol Chem 2008; 283:28436-44. [PMID: 18678879 DOI: 10.1074/jbc.m710289200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The apolipoprotein (apo) AI/CIII/AIV/AV cluster genes are expressed at different levels in the liver and intestine. The apoCIII enhancer, a common regulatory element, regulates the tissue-specific expression of apoAI, apoCIII, and apoAIV but not apoAV. To study this regulation at the chromatin level, the histone modifications and intergenic transcription in the human apoAI/CIII/AIV/AV cluster were investigated in HepG2 and Caco-2 cells and in the livers of transgenic mice carrying the human gene cluster constructs with or without the apoCIII enhancer. We found that both the promoters and the intergenic regions of the apoAI/CIII/AIV genes were hyperacetylated and formed an open subdomain that did not include the apoAV gene. Hepatic and intestinal intergenic transcripts were identified to transcribe bidirectionally with strand preferences along the cluster. The deletion of the apoCIII enhancer influenced both histone modification and intergenic transcription in the apoAI/CIII/AIV gene region. These results demonstrate that the apoCIII enhancer contributes to the maintenance of an active chromatin subdomain of the apoAI/CIII/AIV genes, but not apoAV.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Luca V, Strauss J, Semeralul M, Huang S, Li PP, Warsh JJ, Kennedy JL, Wong AH. Analysis of BDNF Val66Met allele-specific mRNA levels in bipolar disorder. Neurosci Lett 2008; 441:229-32. [DOI: 10.1016/j.neulet.2008.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 01/13/2023]
|
22
|
McKarns SC, Schwartz RH. Biphasic regulation of Il2 transcription in CD4+ T cells: roles for TNF-alpha receptor signaling and chromatin structure. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1272-81. [PMID: 18606681 PMCID: PMC2484123 DOI: 10.4049/jimmunol.181.2.1272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe a novel biphasic regulation of Il2 transcription in naive CD4(+) T cells. Few ( approximately 5%) CD4(+) T cells transcribe Il2 within 6 h of anti-TCR-beta plus anti-CD28 stimulation (early phase). Most naive CD4(+) T cells do not initiate Il2 transcription until after an additional approximately 12 h of T cell stimulation (late phase). In comparison, essentially all previously activated (Pre-Ac) CD4(+) T cells that transcribe Il2 do so with an early-phase response. Late-phase Il2 expression mostly requires c-Rel, CD28, and TNFR signaling. In contrast, early-phase transcription is only partly c-Rel and CD28 dependent and TNFR independent. There was also increased stable DNA accessibility at the Il2 locus and elevated c-Rel expression in resting Pre-Ac CD4(+) cells. Upon T cell activation, a faster and greater increase in DNA accessibility as well as c-Rel nuclear expression were observed in Pre-Ac CD4(+) cells relative to naive CD4(+) T cells. In addition, both acetylated histone H3 and total H3 decreased at the Il2 locus upon rechallenge of Pre-Ac CD4(+) T cells, whereas increased acetylated histone H3 with no change in total H3 was observed following activation of naive CD4(+) T cells. We propose a model in which nucleosome disassembly facilitates rapid initiation of Il2 transcription in CD4(+) T cells, and suggest that a threshold level of c-Rel must be reached for Il2 promoter activity in both naive and Pre-Ac CD4(+) T cells. This is provided, at least partially, by TNFR signaling during priming, but not during recall.
Collapse
MESH Headings
- Acetylation
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Chromatin/metabolism
- Histones/metabolism
- Interleukin-2/genetics
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Lymphocyte Activation
- Mice
- Mice, Mutant Strains
- Nucleosomes/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-rel/genetics
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction
- Transcription, Genetic
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Susan C McKarns
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
23
|
Thomas RM, Chunder N, Chen C, Umetsu SE, Winandy S, Wells AD. Ikaros enforces the costimulatory requirement for IL2 gene expression and is required for anergy induction in CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 179:7305-15. [PMID: 18025173 DOI: 10.4049/jimmunol.179.11.7305] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation results in dynamic remodeling of the chromatin at the IL2 promoter and induction of IL2 gene transcription. These processes are each dependent upon CD28 costimulation, but the molecular basis for this requirement is not clear. The IL2 promoter contains consensus-binding elements for Ikaros, a lymphocyte-specific zinc-finger DNA-binding protein that can regulate gene expression by recruiting chromatin-remodeling complexes. We find that native Ikaros in CD4(+) T cells exhibits sequence-specific binding to these elements in vitro, and interacts with the endogenous IL2 promoter in vivo, in a manner dependent upon its DNA-binding domain. This binding has important consequences on the regulation of the IL2 gene, because CD4(+) T cells with reduced Ikaros DNA-binding activity no longer require signals from the TCR or CD28 for histone acetylation at the endogenous IL2 promoter, and no longer require CD28 costimulation for expression of the IL2 gene. Furthermore, CD4(+) T cells with reduced Ikaros activity are resistant to clonal anergy induced by TCR ligation in the absence of either CD28 or IL-2R signals. These results establish Ikaros as a transcriptional repressor of the IL2 gene that functions through modulation of chromatin structure and has an obligate role in the induction of anergy.
Collapse
Affiliation(s)
- Rajan M Thomas
- Joseph Stokes, Jr Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The transcription of almost all developmental genes is driven by tissue- and time-specific regulatory elements. These transcriptional regulatory elements lie in the genomic DNA proximal to the gene, and hence are cis-regulatory (as opposed to trans-regulatory elements like transcription factor genes). Over the past three decades, a number of techniques have been applied to the problem of finding and characterizing these regulatory elements. In this chapter, I discuss some computational approaches that have been particularly useful in identifying developmental cis-regulatory regions, and provide a tutorial on how to apply these approaches to the study of chick development.
Collapse
|
25
|
Bostik P, Noble ES, Stephenson ST, Villinger F, Ansari AA. CD4+ T cells from simian immunodeficiency virus disease-resistant sooty mangabeys produce more IL-2 than cells from disease-susceptible species: involvement of p300 and CREB at the proximal IL-2 promoter in IL-2 up-regulation. THE JOURNAL OF IMMUNOLOGY 2007; 178:7720-9. [PMID: 17548609 DOI: 10.4049/jimmunol.178.12.7720] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL-2 is an important cytokine required for the physiological function of CD4(+) T cells. Immunological unresponsiveness-anergy- of CD4(+) T cells is characterized by the inability of these cells to synthesize IL-2. Both progressive HIV infection leading to AIDS in humans and SIV infection in rhesus macaques (RM) are associated with dysregulation of IL-2 synthesis. In certain nonhuman primate species, such as sooty mangabeys (SM), SIV infection does not lead to AIDS. We have shown that this is associated with the resistance of the CD4(+) T cells from SM to undergo anergy in vitro. In this study, we show that CD4(+) T cells from SM spontaneously synthesize 2- to 3-fold higher levels of IL-2 than corresponding cells from RM. Proximal IL-2 promoter constructs derived from SM show significantly higher activity than the RM-derived constructs in primary CD4(+) T cells, which is associated with an element at approximately nt -200. Activity of both constructs was up-regulated by p300 and down-regulated by CREB to a similar degree. Chromatin immunoprecipitation analysis showed significantly higher binding of p300 and lower binding of CREB to the SM promoter in vivo. Two single nucleotide substitutions present in the SM sequence around position -200 and -180 seem to increase the affinity of these sites for the binding of transcription factors, one of which was identified as Oct-1. These unique characteristics of the proximal IL-2 promoter in SM therefore can represent one of the mechanisms contributing to the resistance of these cells to undergo anergy.
Collapse
Affiliation(s)
- Pavel Bostik
- Department of Pathology and Laboratory Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
26
|
Attema JL, Papathanasiou P, Forsberg EC, Xu J, Smale ST, Weissman IL. Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci U S A 2007; 104:12371-6. [PMID: 17640913 PMCID: PMC1924790 DOI: 10.1073/pnas.0704468104] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cells (HSC) produce all blood cell lineages by virtue of their capacity to self-renew and differentiate into progenitors with decreasing cellular potential. Recent studies suggest that epigenetic mechanisms play an important role in controlling stem cell potency and cell fate decisions. To investigate this hypothesis in HSC, we have modified the conventional chromatin immunoprecipitation assay allowing for the analysis of 50,000 prospectively purified stem and progenitor cells. Together with bisulfite sequencing analysis, we found that methylated H3K4 and AcH3 and unmethylated CpG dinucleotides colocalize across defined regulatory regions of lineage-affiliated genes in HSC. These active epigenetic histone modifications either accumulated or were replaced by increased DNA methylation and H3K27 trimethylation in committed progenitors consistent with gene expression. We also observed bivalent histone modifications at a lymphoid-affiliated gene in HSC and downstream transit-amplifying progenitors. Together, these data support a model in which epigenetic modifications serve as an important mechanism to control HSC multipotency.
Collapse
Affiliation(s)
- Joanne L. Attema
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
- To whom correspondence may be addressed: or
| | - Peter Papathanasiou
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - E. Camilla Forsberg
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Jian Xu
- Howard Hughes Medical Institute, Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Stephen T. Smale
- Howard Hughes Medical Institute, Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Irving L. Weissman
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
- To whom correspondence may be addressed: or
| |
Collapse
|
27
|
Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 2007; 27:6555-68. [PMID: 17636034 PMCID: PMC2099626 DOI: 10.1128/mcb.00273-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placenta-specific paralogs. Activation of the cluster in both tissues depends on 5' remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5' of the cluster (position -14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5'-remote HSV-HSIII region (kb -28 to -32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di- and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VES, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 2007; 39:329-37. [PMID: 17277778 PMCID: PMC2886969 DOI: 10.1038/ng1958] [Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 12/20/2006] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulation. Here, we show that autoimmune disease susceptibility and resistance alleles on mouse chromosome 3 (Idd3) correlate with differential expression of the key immunoregulatory cytokine interleukin-2 (IL-2). In order to test directly that an approximately twofold reduction in IL-2 underpins the Idd3-linked destabilization of immune homeostasis, we show that engineered haplodeficiency of Il2 gene expression not only reduces T cell IL-2 production by twofold but also mimics the autoimmune dysregulatory effects of the naturally occurring susceptibility alleles of Il2. Reduced IL-2 production achieved by either genetic mechanism correlates with reduced function of CD4(+) CD25(+) regulatory T cells, which are critical for maintaining immune homeostasis.
Collapse
Affiliation(s)
- Jun Yamanouchi
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology and Infectious Diseases, Institute of Inflammation, Infection and Immunity, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
David-Fung ES, Yui MA, Morales M, Wang H, Taghon T, Diamond RA, Rothenberg EV. Progression of regulatory gene expression states in fetal and adult pro-T-cell development. Immunol Rev 2006; 209:212-36. [PMID: 16448545 PMCID: PMC4157939 DOI: 10.1111/j.0105-2896.2006.00355.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T-cell stages is faster than in the adult and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-T-cell receptor-deficient mutant mice and a quantitative comparison of the profiles of transcription factor gene expression in pro-T-cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two basic helix-loop-helix antagonist Id factors, the Ets family factor SpiB and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first T-cell receptor-dependent selection events in fetal and adult thymopoiesis.
Collapse
|
30
|
Li B, Samanta A, Song X, Furuuchi K, Iacono KT, Kennedy S, Katsumata M, Saouaf SJ, Greene MI. FOXP3 ensembles in T-cell regulation. Immunol Rev 2006; 212:99-113. [PMID: 16903909 DOI: 10.1111/j.0105-2896.2006.00405.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our recent studies have identified dynamic protein ensembles containing forkhead box protein 3 (FOXP3) that provide insight into the molecular complexity of suppressor T-cell activities, and it is our goal to determine how these ensembles regulate FOXP3's transcriptional activity in vivo. In this review, we summarize our current understanding of how FOXP3 expression is induced and how FOXP3 functions in vivo as a transcriptional regulator by assembling a multisubunit complex involved in histone modification as well as chromatin remodeling.
Collapse
Affiliation(s)
- Bin Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bunting K, Wang J, Shannon MF. Control of interleukin-2 gene transcription: a paradigm for inducible, tissue-specific gene expression. VITAMINS AND HORMONES 2006; 74:105-45. [PMID: 17027513 DOI: 10.1016/s0083-6729(06)74005-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interleukin-2 (IL-2) is a key cytokine that controls immune cell function, in particular the adaptive arm of the immune system, through its ability to control the clonal expansion and homeostasis of peripheral T cells. IL-2 is produced almost exclusively by T cells in response to antigenic stimulation and thus provides an excellent example of a cell-specific inducible gene. The mechanisms that control IL-2 gene transcription have been studied in detail for the past 20 years and our current understanding of the nature of the inducible and tissue-specific controls will be discussed.
Collapse
Affiliation(s)
- Karen Bunting
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|