1
|
Quillin SJ, Luo D, Gavagan A, Prindle A, Seifert HS. A droplet digital PCR assay to measure pilin antigenic variation frequency in Neisseria gonorrhoeae. mSphere 2025; 10:e0009425. [PMID: 40265899 PMCID: PMC12108084 DOI: 10.1128/msphere.00094-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
The strict human pathogen Neisseria gonorrhoeae (gonococcus [Gc]) infects an estimated 82 million individuals globally and is a World Health Organization-designated bacterial pathogen of public health importance due to escalating antimicrobial resistance. Gc vaccines have been hindered by Gc's ability to evade immune surveillance in part by varying its major surface antigens like the type IV pilus. We developed a quick and precise method for measuring pilin antigenic variation (Av) frequency using droplet digital PCR (ddPCR) technology. Two fluorescent probes were designed to detect either the hypervariable tail region of silent pilin locus pilS3-copy 1 (S3C1) or a sequence conserved in all pilE variants (CYS2). The appropriate frequency of pilin antigenic variation is measured by the proportion of pilE amplicons carrying the recombinant S3C1 copy relative to the total pilE amplicons measured by CYS2. The ddPCR assay is specific for RecA-dependent pilin antigenic variation. The reduced frequency of pilin Av in strains lacking RecA-modulating recombination protein RecX and the DNA helicase RecQ confirms the ability of the assay to measure changes in pilin Av frequency. We used the ddPCR assay to determine that pilin Av frequency is altered by the colony densities on a solid medium. The ddPCR assay is an accurate, efficient way to measure Gc pilin Av frequency. IMPORTANCE Gonorrhea is a sexually transmitted infectious disease of the human genital and nasopharyngeal mucosa caused by the host-restricted bacterium Neisseria gonorrhoeae. The rise of antibiotic-resistant gonorrhea is an urgent global threat to public health. Pilus antigenic variation is a gene conversion process that allows N. gonorrhoeae to evade host immune surveillance, and a mechanistic understanding of this process is crucial to understanding N. gonorrhoeae pathogenesis. This report shows that we can adopt a digital PCR methodology to quickly and accurately measure pilin antigenic variation.
Collapse
Affiliation(s)
- Sarah J. Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Di Luo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aoife Gavagan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arthur Prindle
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
PacBio Amplicon Sequencing Method To Measure Pilin Antigenic Variation Frequencies of Neisseria gonorrhoeae. mSphere 2019; 4:4/5/e00562-19. [PMID: 31578246 PMCID: PMC6796969 DOI: 10.1128/msphere.00562-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene diversification is a common mechanism pathogens use to alter surface structures to aid in immune avoidance. Neisseria gonorrhoeae uses a gene conversion-based diversification system to alter the primary sequence of the gene encoding the major subunit of the pilus, pilE Antigenic variation occurs when one of the nonexpressed 19 silent copies donates part of its DNA sequence to pilE We have developed a method using Pacific Biosciences (PacBio) amplicon sequencing and custom software to determine pilin antigenic variation frequencies. The program analyzes 37 variable regions across the strain FA1090 1-81-S2 pilE gene and can be modified to determine sequence variation from other starting pilE sequences or other diversity generation systems. Using this method, we measured pilin antigenic variation frequencies for various derivatives of strain FA1090 and showed we can also analyze pilin antigenic variation frequencies during macrophage infection.IMPORTANCE Diversity generation systems are used by many unicellular organism to provide subpopulations of cell with different properties that are available when needed. We have developed a method using the PacBio DNA sequencing technology and a custom computer program to analyze the pilin antigenic variation system of the organism that is the sole cause of the sexually transmitted infection, gonorrhea.
Collapse
|
3
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
4
|
Rotman E, Webber DM, Seifert HS. Analyzing Neisseria gonorrhoeae Pilin Antigenic Variation Using 454 Sequencing Technology. J Bacteriol 2016; 198:2470-82. [PMID: 27381912 PMCID: PMC4999939 DOI: 10.1128/jb.00330-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/28/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Many pathogens use homologous recombination to vary surface antigens in order to avoid immune surveillance. Neisseria gonorrhoeae, the bacterium responsible for the sexually transmitted infection gonorrhea, achieves this in part by changing the sequence of the major subunit of the type IV pilus in a process termed pilin antigenic variation (Av). The N. gonorrhoeae chromosome contains one expression locus (pilE) and many promoterless, partial-coding silent copies (pilS) that act as reservoirs for variant pilin information. Pilin Av occurs by high-frequency gene conversion reactions, which transfer pilS sequences into the pilE locus. We have developed a 454 sequencing-based assay to analyze the frequency and characteristics of pilin Av that allows a more robust analysis of pilin Av than previous assays. We used this assay to analyze mutations and conditions previously shown to affect pilin Av, confirming many but not all of the previously reported phenotypes. We show that mutations or conditions that cause growth defects can result in Av phenotypes when analyzed by phase variation-based assays. Adapting the 454 sequencing to analyze pilin Av demonstrates the utility of this technology to analyze any diversity generation system that uses recombination to develop biological diversity. IMPORTANCE Measuring and analyzing complex recombination-based systems constitute a major barrier to understanding the mechanisms used to generate diversity. We have analyzed the contributions of many gonococcal mutations or conditions to the process of pilin antigenic variation.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
6
|
Davies JK, Harrison PF, Lin YH, Bartley S, Khoo CA, Seemann T, Ryan CS, Kahler CM, Hill SA. The use of high-throughput DNA sequencing in the investigation of antigenic variation: application to Neisseria species. PLoS One 2014; 9:e86704. [PMID: 24466206 PMCID: PMC3899283 DOI: 10.1371/journal.pone.0086704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022] Open
Abstract
Antigenic variation occurs in a broad range of species. This process resembles gene conversion in that variant DNA is unidirectionally transferred from partial gene copies (or silent loci) into an expression locus. Previous studies of antigenic variation have involved the amplification and sequencing of individual genes from hundreds of colonies. Using the pilE gene from Neisseria gonorrhoeae we have demonstrated that it is possible to use PCR amplification, followed by high-throughput DNA sequencing and a novel assembly process, to detect individual antigenic variation events. The ability to detect these events was much greater than has previously been possible. In N. gonorrhoeae most silent loci contain multiple partial gene copies. Here we show that there is a bias towards using the copy at the 3' end of the silent loci (copy 1) as the donor sequence. The pilE gene of N. gonorrhoeae and some strains of Neisseria meningitidis encode class I pilin, but strains of N. meningitidis from clonal complexes 8 and 11 encode a class II pilin. We have confirmed that the class II pili of meningococcal strain FAM18 (clonal complex 11) are non-variable, and this is also true for the class II pili of strain NMB from clonal complex 8. In addition when a gene encoding class I pilin was moved into the meningococcal strain NMB background there was no evidence of antigenic variation. Finally we investigated several members of the opa gene family of N. gonorrhoeae, where it has been suggested that limited variation occurs. Variation was detected in the opaK gene that is located close to pilE, but not at the opaJ gene located elsewhere on the genome. The approach described here promises to dramatically improve studies of the extent and nature of antigenic variation systems in a variety of species.
Collapse
Affiliation(s)
- John K. Davies
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| | - Paul F. Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Ya-Hsun Lin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Chen Ai Khoo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Catherine S. Ryan
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine
- The Marshall Centre for Infectious Diseases, Research and Training, University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Institute of Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Stuart A. Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| |
Collapse
|
7
|
Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation. J Bacteriol 2013; 195:2255-61. [PMID: 23475972 DOI: 10.1128/jb.02217-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.
Collapse
|
8
|
Suggested role for G4 DNA in recombinational switching at the antigenic variation locus of the Lyme disease spirochete. PLoS One 2013; 8:e57792. [PMID: 23469068 PMCID: PMC3585125 DOI: 10.1371/journal.pone.0057792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Antigenic variation through targeted DNA rearrangements provides a powerful diversity generating mechanism that allows a variety of pathogens to stay one step ahead of acquired immunity in their hosts. The Lyme disease spirochete encodes such a system that is required for persistent infection. The vls locus, carried on a 29 kb linear plasmid (lp28-1) in the type strain B31, carries 15 silent cassettes from which information is unidirectionally transferred into the expression locus, vlsE. Recent studies have surprisingly shown that, with the exception of the RuvAB branch migrase, no other known recombination/repair proteins appear to play a role in the recombinational switching process. In the work presented here we show that G4 DNA can be formed by sequences within the B31 vlsE locus, prompting us to investigate the presence of potential G4-forming DNA throughout the vls locus of several Lyme spirochete strains and species. We found that runs of G, three nucleotides and longer occur at a very high density, with a greater than 100-fold strand-specific distribution in the vls locus of three B. burgdorferi strains as well as in B. afzelii and B. garinii, in spite of the bias for the use of A-T rich codons in Borrelia species. Our findings suggest the possibility that G4 DNA may be a mediator of recombinational switching at the vlsE locus in the Lyme spirochetes.
Collapse
|
9
|
Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev 2012; 36:917-948. [PMID: 22212019 PMCID: PMC3334452 DOI: 10.1111/j.1574-6976.2011.00321.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022] Open
Abstract
Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to the modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in the expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and that are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum, and Mycoplasma spp.), fungi (such as Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved.
Collapse
Affiliation(s)
- Cornelis Vink
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Imperial College-South Kensington, London, UK
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Cahoon LA, Stohl EA, Seifert HS. The Neisseria gonorrhoeae photolyase orthologue phrB is required for proper DNA supercoiling but does not function in photo-reactivation. Mol Microbiol 2011; 79:729-42. [PMID: 21255115 PMCID: PMC3079310 DOI: 10.1111/j.1365-2958.2010.07481.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neisseria gonorrhoeae (Gc) is an obligate human pathogen and the causative agent of the sexually transmitted infection, gonorrhoea. Despite the fact that the gonococcus is not normally exposed to UV irradiation or visible light, the bacterium expresses a phrB orthologue, which in other organisms encodes a DNA photolyase that repairs UV-induced pyrimidine dimers with energy provided by visible light. We show that a Gc phrB mutant is not more sensitive to UV irradiation, independent of visible light exposure, and that the Gc phrB cannot complement an Escherichia coli phrB mutant strain. The Gc phrB mutant had a reduced colony size that was not a result of a growth defect and the mutant cells exhibited an altered morphology. Although the phrB mutant exhibited increased sensitivity to oxidative killing; it showed increased survival on media containing nalidixic acid or rifampicin, but did not have an increased mutation rate to these antibiotics or spectinomycin and kasugamycin. The Gc phrB mutant showed increased negative DNA supercoiling, but while the protein bound double-stranded DNA, it did not express topoisomerase activity. We conclude that the Gc PhrB has a previously unrecognized role in maintaining DNA supercoiling that is important for normal cell physiology.
Collapse
Affiliation(s)
- Laty A. Cahoon
- Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Elizabeth A. Stohl
- Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - H. Steven Seifert
- Northwestern University, Feinberg School of Medicine, Department of Microbiology-Immunology, 303 E. Chicago Ave., Chicago, IL 60611, USA
| |
Collapse
|
11
|
Expression of the apoptosis-related proteins caspase-3 and NF-kappaB in the hippocampus of Tg2576 mice. Neurosci Bull 2010; 26:37-46. [PMID: 20101271 DOI: 10.1007/s12264-010-6122-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To investigate the relations between neuroapoptosis and the onset and development of Alzheimer's disease (AD), especially the role of NF-kappaB in the regulation of neuroapoptosis. METHODS Caspase-3 and NF-kappaB (p50) expressions in the CA3 region of the hippocampus in APPswe Tg2576 transgenic mice were studied from postnatal day 0-180, using Nissl staining, immunohistochemistry and RT-PCR methods. RESULTS Both neuronal apoptosis and NF-kappaB activity decreased gradually with the increase of age in wild type and Tg2576 mice. However, the number of caspase-3-positive or NF-kappaB-positive pyramidal cells in Tg2576 mice was greater than that in age-matched wild type mice, with significant differences after postnatal day 14 (P < 0.01 or P < 0.05). Linear regression analyses of caspase-3 and NF-kappaB expression demonstrated a correlation between neuroapoptosis and activity of NF-kappaB. CONCLUSION The process of neuroapoptosis is consistent with the onset and development of AD. Furthermore, the observed correlation between neuroapoptosis and NF-kappaB activity suggests a role of NF-kappaB in hippocampal neuroapoptosis.
Collapse
|
12
|
Algorithmic assessment of vaccine-induced selective pressure and its implications on future vaccine candidates. Adv Bioinformatics 2010; 2010:178069. [PMID: 20150957 PMCID: PMC2817498 DOI: 10.1155/2010/178069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/04/2009] [Indexed: 01/18/2023] Open
Abstract
Posttrial assessment of a vaccine's selective pressure on infecting strains may be realized through a bioinformatic tool such as parsimony phylogenetic analysis. Following a failed gonococcal pilus vaccine trial of Neisseria gonorrhoeae, we conducted a phylogenetic analysis of pilin DNA and predicted peptide sequences from clinical isolates to assess the extent of the vaccine's effect on the type of field strains that the volunteers contracted. Amplified pilin DNA sequences from infected vaccinees, placebo recipients, and vaccine specimens were phylogenetically analyzed. Cladograms show that the vaccine peptides have diverged substantially from their paternal isolate by clustering distantly from each other. Pilin genes of the field clinical isolates were heterogeneous, and their peptides produced clades comprised of vaccinated and placebo recipients' strains indicating that the pilus vaccine did not exert any significant selective pressure on gonorrhea field strains. Furthermore, sequences of the semivariable and hypervariable regions pointed out heterotachous rates of mutation and substitution.
Collapse
|
13
|
Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae. J Bacteriol 2010; 192:316-25. [PMID: 19854909 DOI: 10.1128/jb.01228-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mismatch correction (MMC) system repairs DNA mismatches and single nucleotide insertions or deletions postreplication. To test the functions of MMC in the obligate human pathogen Neisseria gonorrhoeae, homologues of the core MMC genes mutS and mutL were inactivated in strain FA1090. No mutH homologue was found in the FA1090 genome, suggesting that gonococcal MMC is not methyl directed. MMC mutants were compared to a mutant in uvrD, the helicase that functions with MMC in Escherichia coli. Inactivation of MMC or uvrD increased spontaneous resistance to rifampin and nalidixic acid, and MMC/uvrD double mutants exhibited higher mutation frequencies than any single mutant. Loss of MMC marginally enhanced the transformation efficiency of DNA carrying a single nucleotide mismatch but not that of DNA with a 1-kb insertion. Unlike the exquisite UV sensitivity of the uvrD mutant, inactivating MMC did not affect survival after UV irradiation. MMC and uvrD mutants exhibited increased PilC-dependent pilus phase variation. mutS-deficient gonococci underwent an increased frequency of pilin antigenic variation, whereas uvrD had no effect. Recombination tracts in the mutS pilin variants were longer than in parental gonococci but utilized the same donor pilS loci. These results show that gonococcal MMC repairs mismatches and small insertion/deletions in DNA and also affects the recombination events underlying pilin antigenic variation. The differential effects of MMC and uvrD in gonococci unexpectedly reveal that MMC can function independently of uvrD in this human-specific pathogen.
Collapse
|
14
|
Pilin antigenic variation occurs independently of the RecBCD pathway in Neisseria gonorrhoeae. J Bacteriol 2009; 191:5613-21. [PMID: 19592592 DOI: 10.1128/jb.00535-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pilus expression has been strongly implicated in the virulence of Neisseria gonorrhoeae, the causative agent of gonorrhea. In Neisseria, these pili undergo frequent antigenic variation (Av), which is presumed to allow reinfection of high-risk groups. Pilin Av is the result of RecA-mediated recombination events between the gene encoding the major pilin subunit (pilE) and multiple silent pilin locus (pilS) copies, utilizing a RecF-like recombination pathway. The role of RecBCD in pilin Av has been controversial. Previous studies measuring pilin Av in recB and recD mutants in two independent strains of N. gonorrhoeae (MS11 and FA1090) by indirect methods yielded conflicting results. In addition, these two laboratory strains have been suggested to express very different DNA repair capabilities. We show that the FA1090 and MS11 parental strains have similar abilities to repair DNA damage via UV-induced DNA damage, nalidixic acid-induced double-strand breaks, and methyl methanesulfonate-induced alkylation and that RecB and RecD are involved in the repair of these lesions. To test the role of the RecBCD pathway in pilin Av, the rate and frequency of pilin Av were directly measured by sequencing the pilE locus in randomly selected piliated progeny of both MS11 and FA1090 in recB and recD mutants. Our results definitively show that recB and recD mutants undergo pilin Av at rates similar to those of the parents in both strain backgrounds, demonstrating that efficient pilin Av is neither enhanced nor inhibited by the RecBCD complex.
Collapse
|
15
|
Abstract
Neisseria gonorrhoeae displays considerable potential for antigenic variation as shown in human experimental studies. Various surface antigens can change either by antigenic variation using RecA-dependent recombination schemes (e.g. PilE antigenic variation) or, alternatively, through phase variation (on/off switching) in a RecA-independent fashion (e.g. Opa and lipooligosaccharide phase variation). PilE antigenic variation has been well documented over the years. However, with the availability of the N. gonorrhoeae FA1090 genome sequence, considerable genetic advances have recently been made regarding the mechanistic considerations of the gene conversion event, leading to an altered PilE protein. This review will compare the various models that have been presented and will highlight potential mechanistic problems that may constrain any genetic model for pilE gene variation.
Collapse
Affiliation(s)
- Stuart A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, 60115, USA.
| | | |
Collapse
|
16
|
Hansen JK, Demick KP, Mansfield JM, Forest KT. Conserved regions from Neisseria gonorrhoeae pilin are immunosilent and not immunosuppressive. Infect Immun 2007; 75:4138-47. [PMID: 17562775 PMCID: PMC1951979 DOI: 10.1128/iai.02015-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PilE is the primary subunit of type IV pili from Neisseria gonorrhoeae and contains a surface-exposed hypervariable region thought to be one feature of pili that has prevented development of a pilin-based vaccine. We have created a three-dimensional structure-based antigen by replacing the hypervariable region of PilE with an aspartate-glutamine linker chosen from the sequence of Pseudomonas aeruginosa PilA. We then characterized murine immune responses to this novel protein to determine if conserved PilE regions could serve as a vaccine candidate. The control PilE protein elicited strong T-cell-dependent B-cell responses that are specific to epitopes in both the hypervariable deletion and control proteins. In contrast, the hypervariable deletion protein was unable to elicit an immune response in mice, suggesting that in the absence of the hypervariable region, the conserved regions of PilE alone are not sufficient for antibody production. Further analysis of these PilE proteins with suppressor cell assays showed that neither suppresses T- or B-cell responses, and flow cytometry experiments suggested that they do not exert suppressor effects by activating T regulatory cells. Our results show that in the murine model, the hypervariable region of PilE is required to activate immune responses to pilin, whereas the conserved regions are unusually nonimmunogenic. In addition, we show that both hypervariable and conserved regions of pilin are not suppressive, suggesting that PilE does not cause the decrease in T-cell populations observed during gonococcal cervicitis.
Collapse
Affiliation(s)
- Johanna K Hansen
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
17
|
Sechman EV, Kline KA, Seifert HS. Loss of both Holliday junction processing pathways is synthetically lethal in the presence of gonococcal pilin antigenic variation. Mol Microbiol 2006; 61:185-93. [PMID: 16824104 PMCID: PMC2612780 DOI: 10.1111/j.1365-2958.2006.05213.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The obligate human pathogen Neisseria gonorrhoeae (Gc) has co-opted conserved recombination pathways to achieve immune evasion by way of antigenic variation (Av). We show that both the RuvABC and RecG Holliday junction (HJ) processing pathways are required for recombinational repair, each can act during genetic transfer, and both are required for pilin Av. Analysis of double mutants shows that either the RecG or RuvAB HJ processing pathway must be functional for normal growth of Gc when RecA is expressed. HJ processing-deficient survivors of RecA expression are enriched for non-piliated bacteria that carry large deletions of the pilE gene. Mutations that prevent pilin variation such as recO, recQ, and a cis-acting pilE transposon insertion all rescue the RecA-dependent growth inhibition of a HJ processing-deficient strain. These results show that pilin Av produces a recombination intermediate that must be processed by either one of the HJ pathways to retain viability, but requires both HJ processing pathways to yield pilin variants. The need for diversity generation through frequent recombination reactions creates a situation where the HJ processing machinery is essential for growth and presents a possible target for novel antimicrobials against gonorrhoea.
Collapse
MESH Headings
- Antigenic Variation/genetics
- Antigenic Variation/physiology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Repair
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Cruciform/genetics
- DNA, Cruciform/metabolism
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Gonorrhea/microbiology
- Humans
- Models, Genetic
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/immunology
- Neisseria gonorrhoeae/metabolism
- Rec A Recombinases/genetics
- Rec A Recombinases/metabolism
- Recombination, Genetic/genetics
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transformation, Bacterial/genetics
Collapse
Affiliation(s)
- Eric V Sechman
- Northwestern University Feinberg School of Medicine, Department of Microbiology - Immunology, 303 E. Chicago Ave, Searle 6-450, Chicago, IL 60611, USA
| | | | | |
Collapse
|
18
|
Tobiason DM, Seifert HS. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol 2006; 4:e185. [PMID: 16719561 PMCID: PMC1470461 DOI: 10.1371/journal.pbio.0040185] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 04/05/2006] [Indexed: 11/19/2022] Open
Abstract
We show using several methodologies that the Gram-negative, diplococcal-bacterium Neisseria gonorrhoeae has more than one complete genome copy per cell. Gene dosage measurements demonstrated that only a single replication initiation event per chromosome occurs per round of cell division, and that there is a single origin of replication. The region containing the origin does not encode any genes previously associated with bacterial origins of replication. Quantitative PCR results showed that there are on average three genome copies per coccal cell unit. These findings allow a model for gonococcal DNA replication and cell division to be proposed, in which a minimum of two chromosomal copies exist per coccal unit within a monococcal or diplococcal cell, and these chromosomes replicate in unison to produce four chromosomal copies during cell division. Immune evasion via antigenic variation is an important mechanism that allows these organisms to continually infect a high risk population of people. We propose that polyploidy may be necessary for the high frequency gene conversion system that mediates pilin antigenic variation and the propagation of N. gonorrhoeae within its human hosts.
Collapse
Affiliation(s)
- Deborah M Tobiason
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - H. Steven Seifert
- 1Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
19
|
Abstract
The pilin antigenic variation (Av) system of Neisseria gonorrhoeae (Gc) mediates unidirectional DNA recombination from silent gene copies into the pilin expression locus. A DNA sequencing assay was developed to accurately measure pilin Av in a population of Gc strain FA1090 arising from a defined pilin progenitor under non-selective culture conditions. This assay employs a piliated parental Gc variant with a recA allele whose promoter is replaced by lac-regulatory elements, allowing for controlled induction of pilin Av. From this assay, the frequency of pilin Av was measured as 0.13 recombination events per cell, with a corresponding rate of pilin Av of 4x10(-3) events per cell per generation. Most pilin variants retained the parental piliation phenotype, providing the first comprehensive analysis of piliated variants arising from a piliated progenitor. Sequence analysis of pilin variants revealed that a subset of possible recombination events predominated, which differed between piliated and non-piliated progeny. Pilin Av exhibits the highest reported frequency of any pathogenic gene conversion system and can account for the extensive pilin variation detected during human infection.
Collapse
Affiliation(s)
- Alison K. Criss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| | | | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|