1
|
Tarantino ME, Delaney S. Kinetic Analysis of the Effect of N-Terminal Acetylation on Thymine DNA Glycosylase. Biochemistry 2022; 61:895-908. [PMID: 35436101 PMCID: PMC9117521 DOI: 10.1021/acs.biochem.1c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thymine DNA glycosylase (TDG) is tasked with initiating DNA base excision repair by recognizing and removing T, U, the chemotherapeutic 5-fluorouracil (5-FU), and many other oxidized and halogenated pyrimidine bases. TDG contains a long, unstructured N-terminus that contains four known sites of acetylation: lysine (K) residues 59, 83, 84, and 87. Here, K to glutamine (Q) mutants are used as acetyl-lysine (AcK) analogues to probe the effect of N-terminal acetylation on the kinetics of TDG. We find that mimicking acetylation affects neither the maximal single-turnover rate kmax nor the turnover rate kTO, indicating that the steps after initial binding, through chemistry and product release, are not affected. Under subsaturating conditions, however, acetylation changes the processing of U substrates. Subtle differences among AcK analogues are revealed with 5-FU in single-stranded DNA. We propose that the subtleties observed among the AcK analogues may be amplified on the genomic scale, leading to regulation of TDG activity. N-terminal acetylation, though, may also play a structural, rather than kinetic role in vivo.
Collapse
Affiliation(s)
- Mary E. Tarantino
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| |
Collapse
|
2
|
The Role of Thymine DNA Glycosylase in Transcription, Active DNA Demethylation, and Cancer. Cancers (Basel) 2022; 14:cancers14030765. [PMID: 35159032 PMCID: PMC8833622 DOI: 10.3390/cancers14030765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Thymine DNA Glycosylase (TDG) is a DNA repair protein that plays an important role in gene regulation. Recent studies have shown that TDG interacts with various transcription factors to activate target genes. TDG also functions in a pathway known as active DNA demethylation, which removes 5-mC from DNA and replaces it with unmethylated cytosine. In this review, we summarize the various functions of TDG in gene regulation as well as the physiological relevance of TDG in cancer. Abstract DNA methylation is an essential covalent modification that is required for growth and development. Once considered to be a relatively stable epigenetic mark, many studies have established that DNA methylation is dynamic. The 5-methylcytosine (5-mC) mark can be removed through active DNA demethylation in which 5-mC is converted to an unmodified cytosine through an oxidative pathway coupled to base excision repair (BER). The BER enzyme Thymine DNA Glycosylase (TDG) plays a key role in active DNA demethylation by excising intermediates of 5-mC generated by this process. TDG acts as a key player in transcriptional regulation through its interactions with various nuclear receptors and transcription factors, in addition to its involvement in classical BER and active DNA demethylation, which serve to protect the stability of the genome and epigenome, respectively. Recent animal studies have identified a connection between the loss of Tdg and the onset of tumorigenesis. In this review, we summarize the recent findings on TDG’s function as a transcriptional regulator as well as the physiological relevance of TDG and active DNA demethylation in cancer.
Collapse
|
3
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Tarantino ME, Dow BJ, Drohat AC, Delaney S. Nucleosomes and the three glycosylases: High, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair (Amst) 2018; 72:56-63. [PMID: 30268365 DOI: 10.1016/j.dnarep.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
Human cells express the UDG superfamily of glycosylases, which excise uracil (U) from the genome. The three members of this structural superfamily are uracil DNA glycosylase (UNG/UDG), single-strand selective monofunctional uracil DNA glycosylase (SMUG1), and thymine DNA glycosylase (TDG). We previously reported that UDG is efficient at removing U from DNA packaged into nucleosome core particles (NCP) and is minimally affected by the histone proteins when acting on an outward-facing U in the dyad region. In an effort to determine whether this high activity is a general property of the UDG superfamily of glycosylases, we compare the activity of UDG, SMUG1, and TDG on a U:G wobble base pair using NCP assembled from Xenopus laevis histones and the Widom 601 positioning sequence. We found that while UDG is highly active, SMUG1 is severely inhibited on NCP and this inhibition is independent of sequence context. Here we also provide the first report of TDG activity on an NCP, and found that TDG has an intermediate level of activity in excision of U and is severely inhibited in its excision of T. These results are discussed in the context of cellular roles for each of these enzymes.
Collapse
Affiliation(s)
- Mary E Tarantino
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, United States
| | - Blaine J Dow
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, 02912, United States.
| |
Collapse
|
5
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
6
|
Liu Y, Duong W, Krawczyk C, Bretschneider N, Borbély G, Varshney M, Zinser C, Schär P, Rüegg J. Oestrogen receptor β regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase. Epigenetics Chromatin 2016; 9:7. [PMID: 26889208 PMCID: PMC4756533 DOI: 10.1186/s13072-016-0055-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/27/2016] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation is one way to encode epigenetic information and plays a crucial role in regulating gene expression during embryonic development. DNA methylation marks are established by the DNA methyltransferases and, recently, a mechanism for active DNA demethylation has emerged involving the ten-eleven translocator proteins and thymine DNA glycosylase (TDG). However, so far it is not clear how these enzymes are recruited to, and regulate DNA methylation at, specific genomic loci. A number of studies imply that sequence-specific transcription factors are involved in targeting DNA methylation and demethylation processes. Oestrogen receptor beta (ERβ) is a ligand-inducible transcription factor regulating gene expression in response to the female sex hormone oestrogen. Previously, we found that ERβ deficiency results in changes in DNA methylation patterns at two gene promoters, implicating an involvement of ERβ in DNA methylation. In this study, we set out to explore this involvement on a genome-wide level, and to investigate the underlying mechanisms of this function. Results Using reduced representation bisulfite sequencing, we compared genome-wide DNA methylation in mouse embryonic fibroblasts derived from wildtype and ERβ knock-out mice, and identified around 8000 differentially methylated positions (DMPs). Validation and further characterisation of selected DMPs showed that differences in methylation correlated with changes in expression of the nearest gene. Additionally, re-introduction of ERβ into the knock-out cells could reverse hypermethylation and reactivate expression of some of the genes. We also show that ERβ is recruited to regions around hypermethylated DMPs. Finally, we demonstrate here that ERβ interacts with TDG and that TDG binds ERβ-dependently to hypermethylated DMPs. Conclusion We provide evidence that ERβ plays a role in regulating DNA methylation at specific genomic loci, likely as the result of its interaction with TDG at these regions. Our findings imply a novel function of ERβ, beyond direct transcriptional control, in regulating DNA methylation at target genes. Further, they shed light on the question how DNA methylation is regulated at specific genomic loci by supporting a concept in which sequence-specific transcription factors can target factors that regulate DNA methylation patterns. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0055-7) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Yun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - William Duong
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.,Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, 4002 Basel, Switzerland
| | - Claudia Krawczyk
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | | - Gábor Borbély
- Swedish Toxicology Science Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet at Novum, 141 83 Stockholm, Sweden
| | - Christian Zinser
- Swedish Toxicology Science Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Joëlle Rüegg
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.,Swedish Toxicology Science Research Center (Swetox), Forskargatan 20, 151 36 Södertälje, Sweden.,Department of Clinical Neurosciences, Karolinska Institutet, CMM L8:00, 171 76 Stockholm, Sweden
| |
Collapse
|
7
|
Xu X, Watt DS, Liu C. Multifaceted roles for thymine DNA glycosylase in embryonic development and human carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:82-9. [PMID: 26370152 DOI: 10.1093/abbs/gmv083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/12/2015] [Indexed: 01/03/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.
Collapse
Affiliation(s)
- Xuehe Xu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| |
Collapse
|
8
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Periyasamy M, Patel H, Lai CF, Nguyen VTM, Nevedomskaya E, Harrod A, Russell R, Remenyi J, Ochocka AM, Thomas RS, Fuller-Pace F, Győrffy B, Caldas C, Navaratnam N, Carroll JS, Zwart W, Coombes RC, Magnani L, Buluwela L, Ali S. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer. Cell Rep 2015; 13:108-121. [PMID: 26411678 PMCID: PMC4597099 DOI: 10.1016/j.celrep.2015.08.066] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/16/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor α (ERα) is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B) is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER) and to repair by non-homologous end-joining (NHEJ) pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.
Collapse
Affiliation(s)
- Manikandan Periyasamy
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Hetal Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Van T M Nguyen
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ekaterina Nevedomskaya
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Alison Harrod
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Roslin Russell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Judit Remenyi
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Anna Maria Ochocka
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ross S Thomas
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Frances Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Second Department of Pediatrics, Semmelweis University and MTA-SE Pediatrics and Nephrology Research Group, Budapest 1085, Hungary
| | - Carlos Caldas
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Naveenan Navaratnam
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Wilbert Zwart
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - R Charles Coombes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
10
|
Lipid peroxidation product 4-hydroxy-2-nonenal modulates base excision repair in human cells. DNA Repair (Amst) 2014; 22:1-11. [DOI: 10.1016/j.dnarep.2014.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/01/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
|
11
|
Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. J Biol Chem 2014; 289:15810-9. [PMID: 24753249 DOI: 10.1074/jbc.m114.572081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 μM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.
Collapse
Affiliation(s)
- Christopher T Coey
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Megan E Fitzgerald
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Atanu Maiti
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Katherine H Reiter
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Catherine M Guzzo
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Michael J Matunis
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Alexander C Drohat
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
12
|
Lai CF, Flach KD, Alexi X, Fox SP, Ottaviani S, Thiruchelvam PTR, Kyle FJ, Thomas RS, Launchbury R, Hua H, Callaghan HB, Carroll JS, Charles Coombes R, Zwart W, Buluwela L, Ali S. Co-regulated gene expression by oestrogen receptor α and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells. Nucleic Acids Res 2013; 41:10228-40. [PMID: 24049078 PMCID: PMC3905875 DOI: 10.1093/nar/gkt827] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1-regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ERα binding sites. Analysis of select binding sites confirmed regulation of ERα-regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ERα recruitment, while LRH-1 knockdown reduced ERα recruitment to ERα binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ERα target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ERα at oestrogen response elements controls the expression of oestrogen-responsive genes.
Collapse
Affiliation(s)
- Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK, Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands and Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
DNA methylation has long been considered a very stable DNA modification in mammals that could only be removed by replication in the absence of remethylation - that is, by mere dilution of this epigenetic mark (so-called passive DNA demethylation). However, in recent years, a significant number of studies have revealed the existence of active processes of DNA demethylation in mammals, with important roles in development and transcriptional regulation, allowing the molecular mechanisms of active DNA demethylation to be unraveled. In this article, we review the recent literature highlighting the prominent role played in active DNA demethylation by base excision repair and especially by TDG.
Collapse
Affiliation(s)
- Shannon R Dalton
- Cancer Biology Program, Epigenetics & Progenitor Cells Program, Fox Chase Cancer Center, PA 19111, USA
| | | |
Collapse
|
14
|
Polyakova O, Borman S, Grimley R, Vamathevan J, Hayes B, Solari R. Identification of novel interacting partners of Sirtuin6. PLoS One 2012; 7:e51555. [PMID: 23240041 PMCID: PMC3519869 DOI: 10.1371/journal.pone.0051555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/01/2012] [Indexed: 02/01/2023] Open
Abstract
SIRT6 is a member of the Sirtuin family of histone deacetylases that has been implicated in inflammatory, aging and metabolic pathways. Some of its actions have been suggested to be via physical interaction with NFκB and HIF1α and transcriptional regulation through its histone deacetylase activity. Our previous studies have investigated the histone deacetylase activity of SIRT6 and explored its ability to regulate the transcriptional responses to an inflammatory stimulus such as TNFα. In order to develop a greater understanding of SIRT6 function we have sought to identify SIRT6 interacting proteins by both yeast-2-hybrid and co-immunoprecipitation studies. We report a number of interacting partners which strengthen previous findings that SIRT6 functions in base excision repair (BER), and novel interactors which suggest a role in nucleosome and chromatin remodeling, the cell cycle and NFκB biology.
Collapse
Affiliation(s)
- Oxana Polyakova
- Platform Technology Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Satty Borman
- Platform Technology Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Rachel Grimley
- Platform Technology Sciences, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Jessica Vamathevan
- Computational Biology, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Brian Hayes
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | - Roberto Solari
- Allergic Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
16
|
Abstract
The base excision repair system is vital to the repair of endogenous and exogenous DNA damage. This pathway is initiated by one of several DNA glycosylases that recognizes and excises specific DNA lesions in a coordinated fashion. Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase (TDG) are the two major G:T glycosylases that remove thymine generated by the deamination of 5-methylcytosine. Both of these glycosylases also remove a variety of other base lesions, including G:U and preferentially act at CpG sites throughout the genome. Many have questioned the purpose of seemingly redundant glycosylases, but new information has emerged to suggest MBD4 and TDG have diverse biological functions. MBD4 has been closely linked to apoptosis, while TDG has been clearly implicated in transcriptional regulation. This article reviews all of these developments, and discusses the consequences of germline and somatic mutations that lead to non-synonymous amino acid substitutions on MBD4 and TDG protein function. In addition, we report the finding of alternatively spliced variants of MBD4 and TDG and the results of functional studies of a tumor-associated variant of MBD4.
Collapse
|
17
|
Swartzlander DB, Bauer NC, Corbett AH, Doetsch PW. Regulation of base excision repair in eukaryotes by dynamic localization strategies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:93-121. [PMID: 22749144 DOI: 10.1016/b978-0-12-387665-2.00005-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter discusses base excision repair (BER) and the known mechanisms defined thus far regulating BER in eukaryotes. Unlike the situation with nucleotide excision repair and double-strand break repair, little is known about how BER is regulated to allow for efficient and accurate repair of many types of DNA base damage in both nuclear and mitochondrial genomes. Regulation of BER has been proposed to occur at multiple, different levels including transcription, posttranslational modification, protein-protein interactions, and protein localization; however, none of these regulatory mechanisms characterized thus far affect a large spectrum of BER proteins. This chapter discusses a recently discovered mode of BER regulation defined in budding yeast cells that involves mobilization of DNA repair proteins to DNA-containing organelles in response to genotoxic stress.
Collapse
Affiliation(s)
- Daniel B Swartzlander
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
19
|
Smet-Nocca C, Wieruszeski JM, Léger H, Eilebrecht S, Benecke A. SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity. BMC BIOCHEMISTRY 2011; 12:4. [PMID: 21284855 PMCID: PMC3040724 DOI: 10.1186/1471-2091-12-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 02/01/2011] [Indexed: 12/01/2022]
Abstract
Background The human thymine-DNA glycosylase (TDG) plays a dual role in base excision repair of G:U/T mismatches and in transcription. Regulation of TDG activity by SUMO-1 conjugation was shown to act on both functions. Furthermore, TDG can interact with SUMO-1 in a non-covalent manner. Results Using NMR spectroscopy we have determined distinct conformational changes in TDG upon either covalent sumoylation on lysine 330 or intermolecular SUMO-1 binding through a unique SUMO-binding motif (SBM) localized in the C-terminal region of TDG. The non-covalent SUMO-1 binding induces a conformational change of the TDG amino-terminal regulatory domain (RD). Such conformational dynamics do not exist with covalent SUMO-1 attachment and could potentially play a broader role in the regulation of TDG functions for instance during transcription. Both covalent and non-covalent processes activate TDG G:U repair similarly. Surprisingly, despite a dissociation of the SBM/SUMO-1 complex in presence of a DNA substrate, SUMO-1 preserves its ability to stimulate TDG activity indicating that the non-covalent interactions are not directly involved in the regulation of TDG activity. SUMO-1 instead acts, as demonstrated here, indirectly by competing with the regulatory domain of TDG for DNA binding. Conclusions SUMO-1 increases the enzymatic turnover of TDG by overcoming the product-inhibition of TDG on apurinic sites. The mechanism involves a competitive DNA binding activity of SUMO-1 towards the regulatory domain of TDG. This mechanism might be a general feature of SUMO-1 regulation of other DNA-bound factors such as transcription regulatory proteins.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Institut de Recherche Interdisciplinaire, Université de Lille1 - Université de Lille2 - CNRS USR3078, Parc de la Haute Borne, 50 avenue de Halley, 59658 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
20
|
Schär P, Fritsch O. DNA repair and the control of DNA methylation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:51-68. [PMID: 21141724 DOI: 10.1007/978-3-7643-8989-5_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The successful establishment and stable maintenance of cell identity are critical for organismal development and tissue homeostasis. Cell identity is provided by epigenetic mechanisms that facilitate a selective readout of the genome. Operating at the level of chromatin, they establish defined gene expression programs during cell differentiation. Among the epigenetic modifications in mammalian chromatin, the 5'-methylation of cytosine in CpG dinucleotides is unique in that it affects the DNA rather than histones and the biochemistry of the DNA methylating enzymes offers a mechanistic explanation for stable inheritance. Yet, DNA methylation states appear to be more dynamic and their maintenance more complex than existing models predict. Also, methylation patterns are by far not always faithfully inherited, as best exemplified by human cancers. Often, these show widespread hypo- or hypermethylation across their genomes, reflecting an underlying epigenetic instability that may have contributed to carcinogenesis. The phenotype of unstable methylation in cancer illustrates the importance of quality control in the DNA methylation system and implies the existence of proof-reading mechanisms that enforce fidelity to DNA methylation in healthy tissue. Fidelity seems particularly important in islands of unmethylated CpG-rich sequences where an accurate maintenance of un- or differentially methylated states is critical for stable expression of nearby genes. Methylation proof-reading in such sequences requires a system capable of recognition and active demethylation of erroneously methylated CpGs. Active demethylation of 5-methylcytosine has been known to occur for long, but the underlying mechanisms have remained enigmatic and controversial. However, recent progress in this direction substantiates a role of DNA repair in such processes. This review will address general aspects of cytosine methylation stability in mammalian DNA and explore a putative role of DNA repair in methylation control.
Collapse
Affiliation(s)
- Primo Schär
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
21
|
Smet-Nocca C, Wieruszeski JM, Melnyk O, Benecke A. NMR-based detection of acetylation sites in peptides. J Pept Sci 2010; 16:414-23. [PMID: 20572211 DOI: 10.1002/psc.1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acetylation of histone tails as well as non-histone proteins was found to be a major component of the 'chromatin code' that regulates transcription through the recruitment of transcription factors, co-regulators and DNA-binding proteins. Acetylation can have several effects modifying protein-protein interactions, protein activity, localization and stability. Using NMR spectroscopy, we provide a simple way to detect acetyl moieties at the epsilon-amino function of lysine residues based on peptides derived from Histone H4 and TDG amino-terminal domains. Significant changes of acetyl-lysine resonances as compared to non-acetylated residues allow a direct identification of specific acetylated lysine. We also show that, in unfolded peptides, acetylation of lysine side chains leads to characteristic NMR signals that vary only weakly depending on the primary sequence or the total number of acetylated sites, indicating that the acetamide group does not establish any interactions with other residues. Furthermore, resonance changes upon acetylation are restricted to residues nearby the acetylation site, indicating that acetylation does not modify the overall peptide conformation.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Institut de Recherche Interdisciplinaire, CNRS USR3078, Université de Lille1, Parc de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|
22
|
Smet-Nocca C, Wieruszeski JM, Chaar V, Leroy A, Benecke A. The thymine-DNA glycosylase regulatory domain: residual structure and DNA binding. Biochemistry 2010; 47:6519-30. [PMID: 18512959 DOI: 10.1021/bi7022283] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymine-DNA glycosylases (TDGs) initiate base excision repair by debasification of the erroneous thymine or uracil nucleotide in G.T and G.U mispairs which arise at high frequency through spontaneous or enzymatic deamination of methylcytosine and cytosine, respectively. Human TDG has furthermore been shown to have a functional role in transcription and epigenetic regulation through the interaction with transcription factors from the nuclear receptor superfamily, transcriptional coregulators, and a DNA methyltransferase. The TDG N-terminus encodes regulatory functions, as it assures both G.T versus G.U specificity and contains the sites for interaction and posttranslational modification by transcription-related activities. While the molecular function of the evolutionarily conserved central catalytic domain of TDG in base excision repair has been elucidated by determination of its three-dimensional structure, the mechanisms by which the N-terminus exerts its regulatory roles, as well as the function of TDG in transcription regulation, remain to be understood. We describe here the residual structure of the TDG N-terminus in both contexts of the isolated domain and the entire protein. These studies lead to the characterization of a small structural domain in the TDG N-terminal region preceding the catalytic core and coinciding with the region of functional regulation of TDG's activities. This regulatory domain exhibits a small degree of organization and is implicated in dynamic molecular interactions with the catalytic domain and nonselective interactions with double-stranded DNA, providing a molecular explanation for the evolutionarily acquired G.T mismatch processing activity of TDG.
Collapse
Affiliation(s)
- Caroline Smet-Nocca
- Institut de Recherche Interdisciplinaire, USR CNRS 3078, Université de Lille 1, 1 rue du Professeur Calmette, 59021 Lille Cedex, France
| | | | | | | | | |
Collapse
|
23
|
Wong A, Christopher AB, Buehner NA, Wolfner MF. Immortal coils: conserved dimerization motifs of the Drosophila ovulation prohormone ovulin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:303-10. [PMID: 20138215 PMCID: PMC2854237 DOI: 10.1016/j.ibmb.2010.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/15/2009] [Accepted: 01/17/2010] [Indexed: 05/28/2023]
Abstract
Dimerization is an important feature of the function of some proteins, including prohormones. For proteins whose amino acid sequences evolve rapidly, it is unclear how such structural characteristics are retained biochemically. Here we address this question by focusing on ovulin, a prohormone that induces ovulation in Drosophila melanogaster females after mating. Ovulin is known to dimerize, and is one of the most rapidly evolving proteins encoded by the Drosophila genome. We show that residues within a previously hypothesized conserved dimerization domain (a coiled-coil) and a newly identified conserved dimerization domain (YxxxY) within ovulin are necessary for the formation of ovulin dimers. Moreover, dimerization is conserved in ovulin proteins from non-melanogaster species of Drosophila despite up to 80% sequence divergence. We show that heterospecific ovulin dimers can be formed in interspecies hybrid animals and in two-hybrid assays between ovulin proteins that are 15% diverged, indicating conservation of tertiary structure amidst a background of rapid sequence evolution. Our results suggest that because ovulin's self-interaction requires only small conserved domains, the rest of the molecule can be relatively tolerant to mutations. Consistent with this view, in comparisons of 8510 proteins across 6 species of Drosophila we find that rates of amino acid divergence are higher for proteins with coiled-coil protein-interaction domains than for non-coiled-coil proteins.
Collapse
Affiliation(s)
| | - Adam B. Christopher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Norene A. Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
24
|
Mohan RD, Litchfield DW, Torchia J, Tini M. Opposing regulatory roles of phosphorylation and acetylation in DNA mispair processing by thymine DNA glycosylase. Nucleic Acids Res 2009; 38:1135-48. [PMID: 19966277 PMCID: PMC2831317 DOI: 10.1093/nar/gkp1097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CpG dinucleotides are mutational hotspots associated with cancer and genetic diseases. Thymine DNA glycosylase (TDG) plays an integral role in CpG maintenance by excising mispaired thymine and uracil in a CpG context and also participates in transcriptional regulation via gene-specific CpG demethylation and functional interactions with the transcription machinery. Here, we report that protein kinase C α (PKCα) interacts with TDG and phosphorylates amino-terminal serine residues adjacent to lysines acetylated by CREB-binding protein (CBP) and p300 (CBP/p300). We establish that acetylation and phosphorylation are mutually exclusive, and their interplay dramatically alters the DNA mispair-processing functions of TDG. Remarkably, acetylation of the amino-terminal region abrogates high-affinity DNA binding and selectively prevents processing of G:T mispairs. In contrast, phosphorylation does not markedly alter DNA interactions, but may preserve G:T processing in vivo by preventing CBP-mediated acetylation. Mutational analysis suggests that the acetyl-acceptor lysines are not directly involved in contacting DNA, but may constitute a conformationally sensitive interface that modulates DNA interactions. These findings reveal opposing roles of CBP/p300 and PKCα in regulating the DNA repair functions of TDG and suggest that the interplay of these modifications in vivo may be critically important in the maintenance of CpG dinucleotides and epigenetic regulation.
Collapse
Affiliation(s)
- Ryan D Mohan
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
The interaction between thymine DNA glycosylase and nuclear receptor coactivator 3 is required for the transcriptional activation of nuclear hormone receptors. Mol Cell Biochem 2009; 333:221-32. [DOI: 10.1007/s11010-009-0223-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
|
26
|
Zhou J, Blue EK, Hu G, Herring BP. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding. J Biol Chem 2008; 283:35383-92. [PMID: 18945672 PMCID: PMC2602901 DOI: 10.1074/jbc.m805489200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/15/2008] [Indexed: 11/06/2022] Open
Abstract
Myocardin is a serum response factor (SRF) co-activator that regulates transcription of many smooth muscle-specific genes and is essential for development of vascular smooth muscle. We used a yeast two-hybrid screen, with myocardin as bait in a search for factors that regulate myocardin transcriptional activity. From this screen, thymine DNA glycosylase (TDG) was identified as a myocardin-associated protein. TDG was originally identified as an enzyme involved in base excision repair of T:G mismatches caused by spontaneous deamination of methylated cytosines. However, TDG has also been shown to act as a transcriptional co-activator or co-repressor. The interaction between TDG and myocardin was confirmed in vitro by glutathione S-transferase pull down and in vivo by co-immunoprecipitation assays. We found that TDG abrogates myocardin induced expression of smooth muscle-specific genes and represses the trans-activation of the promoters of myocardin of these genes. Overexpression of TDG in SMCs down-regulated smooth muscle marker expression. Conversely, depletion of endogenous TDG in SMCs increased smooth muscle-specific myosin heavy chain (SM MHC) and Telokin gene expression. Glutathione S-transferase pull-down assays demonstrated that TDG binds to a region of myocardin that includes the SRF binding domain. Furthermore, TDG was found to compete with SRF for binding to myocardin in vitro and in vivo, suggesting that TDG can inhibit expression of smooth muscle-specific genes, at least in part, through disrupting SRF/myocardin interactions. Finally, we demonstrated that the glycosylase activity of TDG is not required for its inhibitory effects on myocardin function. This study reveals a previously unsuspected role for the repair enzyme TDG as a repressor of smooth muscle differentiation via competing with SRF for binding to myocardin.
Collapse
Affiliation(s)
- Jiliang Zhou
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
27
|
Kim EJ, Um SJ. Thymine–DNA glycosylase interacts with and functions as a coactivator of p53 family proteins. Biochem Biophys Res Commun 2008; 377:838-42. [DOI: 10.1016/j.bbrc.2008.10.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
28
|
Xie Z, Grotewold E. Serial ChIP as a tool to investigate the co-localization or exclusion of proteins on plant genes. PLANT METHODS 2008; 4:25. [PMID: 18954450 PMCID: PMC2584005 DOI: 10.1186/1746-4811-4-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/27/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND Establishing transcriptional regulatory networks that include protein-protein and protein-DNA interactions has become a key component to better understanding many fundamental biological processes. Although a variety of techniques are available to expose protein-protein and protein-DNA interactions, unequivocally establishing whether two proteins are targeted together to the same promoter or DNA molecule poses a very challenging endeavour. Yet, the recruitment of multiple regulatory proteins simultaneously to the same promoter provides the basis for combinatorial transcriptional regulation, central to the transcriptional regulatory network of eukaryotes. The serial ChIP (sChIP) technology was developed to fill this gap in our knowledge, and we illustrate here its application in plants. RESULTS Here we describe a modified sChIP protocol that provides robust and quantitative information on the co-association or exclusion of DNA-binding proteins on particular promoters. As a proof of principle, we investigated the association of histone H3 protein variants with modified tails (H3K9ac and H3K9me2) with Arabidopsis RNA polymerase II (RNPII) on the promoter of the constitutively expressed actin gene (At5g09810), and the trichome-expressed GLABRA3 (GL3) gene. As anticipated, our results show a strong positive correlation between H3K9ac and RNPII and a negative correlation between H3K9me2 and RNPII on the actin gene promoter. Our findings also establish a weak positive correlation between both H3K9ac and H3K9me2 and RNPII on the GL3 gene promoter, whose expression is restricted to a discrete number of cell types. We also describe mathematical tools that allow the easy interpretation of sChIP results. CONCLUSION The sChIP method described here provides a reliable tool to determine whether the tethering of two proteins to the same DNA molecule is positively or negatively correlated. With the increasing need for establishing transcriptional regulatory networks, this modified sChIP method is anticipated to provide an excellent way to explore combinatorial gene regulation in eukaryotes.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Plant Cellular and Molecular Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Department of Plant Cellular and Molecular Biology, The Ohio State University, Columbus, OH 43210, USA
- Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Active DNA demethylation and DNA repair. Differentiation 2008; 77:1-11. [PMID: 19281759 DOI: 10.1016/j.diff.2008.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 12/17/2022]
Abstract
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic "active" DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that "pruning" of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.
Collapse
|
30
|
Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 2008; 43:239-76. [PMID: 18756381 DOI: 10.1080/10409230802309905] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Gent, Belgium
| | | |
Collapse
|
31
|
Boland MJ, Christman JK. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J Mol Biol 2008; 379:492-504. [PMID: 18452947 PMCID: PMC2705441 DOI: 10.1016/j.jmb.2008.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 11/22/2022]
Abstract
Methylation of cytosine residues in CpG dinucleotides plays an important role in epigenetic regulation of gene expression and chromatin structure/stability in higher eukaryotes. DNA methylation patterns are established and maintained at CpG dinucleotides by DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b). In mammals and many other eukaryotes, the CpG dinucleotide is underrepresented in the genome. This loss is postulated to be the result of unrepaired deamination of cytosine and 5-methylcytosine to uracil and thymine, respectively. Two thymine glycosylases are believed to reduce the impact of 5-methylcytosine deamination. G/T mismatch-specific thymine-DNA glycosylase (Tdg) and methyl-CpG binding domain protein 4 can both excise uracil or thymine at U.G and T.G mismatches to initiate base excision repair. Here, we report the characterization of interactions between Dnmt3b and both Tdg and methyl-CpG binding domain protein 4. Our results demonstrate (1) that both Tdg and Dnmt3b are colocalized to heterochromatin and (2) reduction of T.G mismatch repair efficiency upon loss of DNA methyltransferase expression, as well as a requirement for an RNA component for correct T.G mismatch repair.
Collapse
Affiliation(s)
- Michael J. Boland
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE. 68198
| | - Judith K. Christman
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE. 68198
- The Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE. 68198
- UNMC/Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE. 68198
| |
Collapse
|
32
|
Lopez-Garcia J, Periyasamy M, Thomas RS, Christian M, Leao M, Jat P, Kindle KB, Heery DM, Parker MG, Buluwela L, Kamalati T, Ali S. ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases. Nucleic Acids Res 2006; 34:6126-36. [PMID: 17085477 PMCID: PMC1693901 DOI: 10.1093/nar/gkl875] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/05/2006] [Accepted: 10/06/2006] [Indexed: 01/08/2023] Open
Abstract
The regulation of gene expression by estrogen receptor-alpha (ERalpha) requires the coordinated and temporal recruitment of diverse sets of transcriptional co-regulator complexes, which mediate nucleosome remodelling and histone modification. Using ERalpha as bait in a yeast two-hybrid screen, we have identified a novel ERalpha-interacting protein, ZNF366, which is a potent corepressor of ERalpha activity. The interaction between ZNF366 and ERalpha has been confirmed in vitro and in vivo, and is mediated by the zinc finger domains of the two proteins. Further, we show that ZNF366 acts as a corepressor by interacting with other known ERalpha corepressors, namely RIP140 and CtBP, to inhibit expression of estrogen-responsive genes in vivo. Together, our results indicate that ZNF366 may play an important role in regulating the expression of genes in response to estrogen.
Collapse
Affiliation(s)
- Jorge Lopez-Garcia
- Department of Oncology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Ludwig Institute for Cancer Research, University College London Branch91 Riding House Street, London W1W 7BS, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonQueen Square, London WC1N 3BG, UK
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - Manikandan Periyasamy
- Department of Oncology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Ludwig Institute for Cancer Research, University College London Branch91 Riding House Street, London W1W 7BS, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonQueen Square, London WC1N 3BG, UK
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - Ross S. Thomas
- Department of Oncology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Ludwig Institute for Cancer Research, University College London Branch91 Riding House Street, London W1W 7BS, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonQueen Square, London WC1N 3BG, UK
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
| | - Maria Leao
- Ludwig Institute for Cancer Research, University College London Branch91 Riding House Street, London W1W 7BS, UK
| | - Parmjit Jat
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonQueen Square, London WC1N 3BG, UK
| | - Karin B. Kindle
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - David M. Heery
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - Malcolm G. Parker
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
| | - Lakjaya Buluwela
- Department of Oncology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Ludwig Institute for Cancer Research, University College London Branch91 Riding House Street, London W1W 7BS, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonQueen Square, London WC1N 3BG, UK
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - Tahereh Kamalati
- Department of Oncology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Institute of Reproductive and Developmental Biology, Imperial College LondonDu Cane Road, London W12 0NN, UK
- Ludwig Institute for Cancer Research, University College London Branch91 Riding House Street, London W1W 7BS, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College LondonQueen Square, London WC1N 3BG, UK
- School of Pharmacy, University of NottinghamUniversity Park, Nottingham NG7 2RD, UK
| | - Simak Ali
- To whom correspondence should be addressed. Tel: +44 20 8383 3789; Fax: +44 20 8383 5830;
| |
Collapse
|
33
|
Mohan RD, Rao A, Gagliardi J, Tini M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol Cell Biol 2006; 27:229-43. [PMID: 17060459 PMCID: PMC1800658 DOI: 10.1128/mcb.00323-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the base excision repair enzyme thymine DNA glycosylase (TDG) mediates recruitment of histone acetyltransferases CREB-binding protein (CBP) and p300 to DNA, suggesting a plausible role for these factors in TDG-mediated repair. Furthermore, TDG was found to potentiate CBP/p300-dependent transcription and serve as a substrate for CBP/p300 acetylation. Here, we show that the small ubiquitin-like modifier 1 (SUMO-1) protein binding activity of TDG is essential for activation of CBP and localization to promyelocytic leukemia protein oncogenic domains (PODs). SUMO-1 binding is mediated by two distinct amino- and carboxy-terminal motifs (residues 144 to 148 and 319 to 322) that are negatively regulated by DNA binding via an amino-terminal hydrophilic region (residues 1 to 121). TDG is also posttranslationally modified by covalent conjugation of SUMO-1 (sumoylation) to lysine 341. Interestingly, we found that sumoylation of TDG blocks interaction with CBP and prevents TDG acetylation in vitro. Furthermore, sumoylation effectively abrogates intermolecular SUMO-1 binding and a sumoylation-deficient mutant accumulates in PODs, suggesting that sumoylation negatively regulates translocation to these nuclear structures. These findings suggest that TDG sumoylation promotes intramolecular interactions with amino- and carboxy-terminal SUMO-1 binding motifs that dramatically alter the biochemical properties and subcellular localization of TDG.
Collapse
Affiliation(s)
- Ryan D Mohan
- Department of Physiology and Pharmacology, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6G 2V4
| | | | | | | |
Collapse
|
34
|
Waters L, Yue B, Veverka V, Renshaw P, Bramham J, Matsuda S, Frenkiel T, Kelly G, Muskett F, Carr M, Heery DM. Structural diversity in p160/CREB-binding protein coactivator complexes. J Biol Chem 2006; 281:14787-95. [PMID: 16540468 DOI: 10.1074/jbc.m600237200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-induced transcription by nuclear receptors involves the recruitment of p160 coactivators such as steroid receptor coactivator 1 (SRC1), in complex with histone acetyltransferases such as CREB-binding protein (CBP) and p300. Here we describe the solution structure of a complex formed by the SRC1 interaction domain (SID) of CBP and the activation domain (AD1) of SRC1, both of which contain four helical regions (Calpha1, Calpha2, Calpha3, and Calpha3' in CBP and Salpha1, Salpha2', Salpha2, and Salpha3 in SRC1). A tight four-helix bundle is formed between Salpha1, Calpha1, Calpha2, and Calpha3 that is capped by Salpha3. In contrast to the structure of the AD1 domain of the related p160 protein ACTR in complex with CBP SID, the sequences forming Salpha2' and Salpha2 in SRC1 AD1 are not involved in the interface between the two domains but rather serve to position Salpha3. Thus, although the CBP SID domain adopts a similar fold in complex with different p160 proteins, the topologies of the AD1 domains are strikingly different, a feature that is likely to contribute to functional specificity of these coactivator complexes.
Collapse
Affiliation(s)
- Lorna Waters
- Department of Biochemistry, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|