1
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2025; 33:397-407. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Wei Z, Khan MT, Zhiyu F, Min W, Hong Z, Yuan Y, Di W, Zeying C, Xianlin H, Yaoju T, Haobin K. Diagnostic value of SAT-TB in stool and urine samples for intestinal and urinary tuberculosis. Diagn Microbiol Infect Dis 2025; 111:116672. [PMID: 39742705 DOI: 10.1016/j.diagmicrobio.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The simultaneous amplification/testing for tuberculosis (SAT-TB) targets specific 16s rRNA for detecting Mycobacterium tuberculosis in real-time. OBJECTIVE To evaluate SAT-TB's performance in detecting intestinal and urinary TB using stool and urine samples. METHODS Stool (94) and urine samples (69) (From 2021 to 2022), were collected from pulmonary combined with suspected intestinal or urinary tuberculosis. Simultaneous detection of Mycobacterium tuberculosis was performed using the SAT-TB method, Xpert MTB/RIF assay, and MGIT960 culture. RESULTS For stool samples, the sensitivity, specificity, and area under the curve (AUC) were 53.33 %, 93.88 %, and 0.736 for SAT-TB; 60 %, 81.63 %, and 0.708 for Xpert; and 40 %, 95.92 %, and 0.680 for MGIT960. For urine samples, the sensitivity, specificity, and AUC for SAT-TB, Xpert, and MGIT960 were 27.27 %, 98.28 %, 0.628; 54.55 %, 96.35 %, 0.755; and 45.45 %, 100 %, 0.727, respectively. CONCLUSION ROC analysis indicated that SAT-TB had the highest diagnostic efficacy for stool samples when tested individually.
Collapse
Affiliation(s)
- Zhao Wei
- Graduate School, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Muhammad Tahir Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China; Institute of Molecular Biology and Biotechnology, The University of Lahore, KM Defence Road, Lahore 58810, Pakistan.
| | - Feng Zhiyu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Wang Min
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Zhang Hong
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Yuan Yuan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Wu Di
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Chen Zeying
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Huang Xianlin
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Tan Yaoju
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| | - Kuang Haobin
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangdong 510095, PR China.
| |
Collapse
|
3
|
Huang Y, Mao X, Zheng X, Zhao Y, Wang D, Wang M, Chen Y, Liu L, Wang Y, Polz MF, Zhang T. Longitudinal dynamics and cross-domain interactions of eukaryotic populations in wastewater treatment plants. THE ISME JOURNAL 2025; 19:wraf058. [PMID: 40184632 PMCID: PMC12021597 DOI: 10.1093/ismejo/wraf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Activated sludge is a large reservoir of novel microorganisms and microbial genetic diversity. While much attention has been given to the profile and functions of prokaryotes, the eukaryotic diversity remains largely unexplored. In this study, we analysed longitudinal activated sludge samples spanning 13 years from the largest secondary wastewater treatment plants in Hong Kong, unveiling a wealth of eukaryotic taxa and 681 856 non-redundant protein-coding genes, the majority (416 044) of which appeared novel. Ciliophora was the most dominant phylum with a significant increase after a transient intervention (bleaching event). Our metagenomic analysis reveals close linkage and covariation of eukaryotes, prokaryotes, and prokaryotic viruses (phages), indicating common responses to environmental changes such as transient intervention and intermittent fluctuations. Furthermore, high-resolution cross-domain relationships were interpreted by S-map, demonstrating a predatory role of Arthropoda, Ascomycota, Mucoromycota, and Rotifera. This high-resolution profile of microbial dynamics expands our knowledge on yet-to-be-cultured populations and their cross-domain interactions and highlights the ecological importance of eukaryotes in the activated sludge ecosystem.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xuemei Mao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxiang Zhao
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengying Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yiqiang Chen
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, 999077, China
- School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077, China
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, 999078, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, 999077, China
- Shenzhen Innovation and Research Institute, The University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
4
|
Honda T, Sakai H, Inui M. Intracellular delivery of a phospholamban-targeting aptamer using cardiomyocyte-internalizing aptamers. Eur J Pharmacol 2024; 985:177130. [PMID: 39536855 DOI: 10.1016/j.ejphar.2024.177130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The sarco (endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a)-phospholamban (PLN) system within the sarcoplasmic reticulum is crucial for regulating intracellular Ca2+ cycling in ventricular cardiomyocytes. Given that impaired Ca2+ cycling is associated with heart failure, modulating SERCA2a activity represents a promising therapeutic strategy. Previously, we engineered an RNA aptamer (Apt30) that binds to PLN, thereby activating SERCA2a by alleviating PLN's inhibitory effect. However, Apt30 alone cannot reach intracellular PLN, necessitating the development of a mechanism for its specific internalization into cardiomyocytes. Using the systematic evolution of ligands by exponential enrichment (SELEX) method, we isolated RNA aptamers capable of internalizing into cardiomyocytes. These aptamers demonstrated sub-micromolar EC50 values for cardiomyocyte internalization and exhibited significantly reduced activity against various non-myocardial cells, highlighting their specificity for cardiomyocytes. Moreover, some of these cardiomyocyte-internalizing aptamers could be linked to Apt30 as a single RNA strand without compromising their internalization efficacy. Supplementing the culture medium with these hybrid aptamers enhanced Ca2+ transients and contractile function in rat cardiomyocytes. These findings provide critical insights for developing novel therapeutics directly acting on PLN in cardiomyocytes, potentially compensating for the disadvantages of conventional methods that involve viral vector-mediated intracellular transduction or alterations in endogenous protein expression.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Hiroki Sakai
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
5
|
Wang Z, Cao H, Jin J, Thorley E, Cava J, Sun Y, Zhang L, Wang N, Yang Z. Diel asynchrony in the expanded characteristics of toxic cyanobacterial blooms revealed by integrated metabolomics and metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136403. [PMID: 39522205 DOI: 10.1016/j.jhazmat.2024.136403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
We establish a field metabolomics protocol in Lake Taihu (China) and determined two critical parameters: the minimum amount of biomass for metabolomics and the daytime when metabolomes are stable. The minimum biomass is 475-950 µg dry weight (DW) or 204-408 ng DNA for F (phytoplankton) samples, and 940-1760 µg DW or 193-514 ng DNA for W (whole-water) samples. In a diel cycle, temporal taxonomical composition, metabolic state, and response to physiochemical factors progressed asynchronously between the F and W microbiomes. F peak growth (metabolic steady state) occurred 12-17 pm while W around 12 pm in metabolite identity, concentration, and molecular weight. 482 (∼50 %) metabolites highly correlated between the F and W microbiomes. Integrated analysis revealed different systematic changes between F and W sample, in taxon-associated metabolites, reactions, and biological functions: e.g., carbon metabolism and bioenergetics in F and amino acid metabolism and central metabolism in W samples. Metagenomics discovered important interspecific and intraspecific diversity using single-nucleotide polymorphism, and interactions between cyanobacteria and epibiotic bacteria. Diel intraspecific diversity shift inferred Microcystis aeruginosa and Anabaena sp. have different temperature optima experimentally verified. This integrated multi-omics protocol expands water microbiome analyses from conventional structure and function to diversity dynamics and interspecific metabolism and ecophysiology.
Collapse
Affiliation(s)
- Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu 215316, China
| | - Jin Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Elizabeth Thorley
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, 85287 AZ, USA
| | - John Cava
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, 85287 AZ, USA
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Nengfei Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
6
|
Zheng Y, Cai Y, Jia Z. Role of methanotrophic communities in atmospheric methane oxidation in paddy soils. Front Microbiol 2024; 15:1481044. [PMID: 39569004 PMCID: PMC11578120 DOI: 10.3389/fmicb.2024.1481044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Wetland systems are known methane (CH4) sources. However, flooded rice fields are periodically drained. The paddy soils can absorb atmospheric CH4 during the dry seasons due to high-affinity methane-oxidizing bacteria (methanotroph). Atmospheric CH4 uptake can be induced during the low-affinity oxidation of high-concentration CH4 in paddy soils. Multiple interacting factors control atmospheric CH4 uptake in soil ecosystems. Broader biogeographical data are required to refine our understanding of the biotic and abiotic factors related to atmospheric CH4 uptake in paddy soils. Thus, here, we aimed to assess the high-affinity CH4 oxidation activity and explored the community composition of active atmospheric methanotrophs in nine geographically distinct Chinese paddy soils. Our findings demonstrated that high-affinity oxidation of 1.86 parts per million by volume (ppmv) CH4 was quickly induced after 10,000 ppmv high-concentration CH4 consumption by conventional methanotrophs. The ratios of 16S rRNA to rRNA genes (rDNA) for type II methanotrophs were higher than those for type I methanotrophs in all acid-neutral soils (excluding the alkaline soil) with high-affinity CH4 oxidation activity. Both the 16S rRNA:rDNA ratios of type II methanotrophs and the abundance of 13C-labeled type II methanotrophs positively correlated with high-affinity CH4 oxidation activity. Soil abiotic factors can regulate methanotrophic community composition and atmospheric CH4 uptake in paddy soils. High-affinity methane oxidation activity, as well as the abundance of type II methanotroph, negatively correlated with soil pH, while they positively correlated with soil nutrient availability (soil organic carbon, total nitrogen, and ammonium-nitrogen). Our results indicate the importance of type II methanotrophs and abiotic factors in atmospheric CH4 uptake in paddy soils. Our findings offer a broader biogeographical perspective on atmospheric CH4 uptake in paddy soils. This provides evidence that periodically drained paddy fields can serve as the dry-season CH4 sink. This study is anticipated to help in determining and devising greenhouse gas mitigation strategies through effective farm management in paddy fields.
Collapse
Affiliation(s)
- Yan Zheng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Kim SK, Orr MW, Turdiev H, Jenkins CC, Lormand JD, Myers TM, Burnim AA, Carter JA, Kung WC, Jiang X, Sondermann H, Winkler WC, Lee VT. Diribonuclease activity eliminates toxic diribonucleotide accumulation. Cell Rep 2024; 43:114759. [PMID: 39276351 PMCID: PMC11528712 DOI: 10.1016/j.celrep.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
RNA degradation is a central process required for transcriptional regulation. Eventually, this process degrades diribonucleotides into mononucleotides by specific diribonucleases. In Escherichia coli, oligoribonuclease (Orn) serves this function and is unique as the only essential exoribonuclease. Yet, related organisms, such as Pseudomonas aeruginosa, display a growth defect but are viable without Orn, contesting its essentiality. Here, we take advantage of P. aeruginosa orn mutants to screen for suppressors that restore colony morphology and identified yciV. Purified YciV (RNase AM) exhibits diribonuclease activity. While RNase AM is present in all γ-proteobacteria, phylogenetic analysis reveals differences that map to the active site. RNase AMPa expression in E. coli eliminates the necessity of orn. Together, these results show that diribonuclease activity prevents toxic diribonucleotide accumulation in γ-proteobacteria, suggesting that diribonucleotides may be utilized to monitor RNA degradation efficacy. Because higher eukaryotes encode Orn, these observations indicate a conserved mechanism for monitoring RNA degradation.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA; Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Mona W Orr
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Conor C Jenkins
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Justin D Lormand
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Tanner M Myers
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | | | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Warren C Kung
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Xiaofang Jiang
- Intramural Research Program, NLM, NIH, Bethesda, MD 20894, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
9
|
Lipońska A, Lee H, Yap MN. Staphylococcal exoribonuclease YhaM destabilizes ribosomes by targeting the mRNA of a hibernation factor. Nucleic Acids Res 2024; 52:8998-9013. [PMID: 38979572 PMCID: PMC11347170 DOI: 10.1093/nar/gkae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
The hibernation-promoting factor (Hpf) in Staphylococcus aureus binds to 70S ribosomes and induces the formation of the 100S complex (70S dimer), leading to translational avoidance and occlusion of ribosomes from RNase R-mediated degradation. Here, we show that the 3'-5' exoribonuclease YhaM plays a previously unrecognized role in modulating ribosome stability. Unlike RNase R, which directly degrades the 16S rRNA of ribosomes in S. aureus cells lacking Hpf, YhaM destabilizes ribosomes by indirectly degrading the 3'-hpf mRNA that carries an intrinsic terminator. YhaM adopts an active hexameric assembly and robustly cleaves ssRNA in a manganese-dependent manner. In vivo, YhaM appears to be a low-processive enzyme, trimming the hpf mRNA by only 1 nucleotide. Deletion of yhaM delays cell growth. These findings substantiate the physiological significance of this cryptic enzyme and the protective role of Hpf in ribosome integrity, providing a mechanistic understanding of bacterial ribosome turnover.
Collapse
Affiliation(s)
- Anna Lipońska
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 320 E Superior St, Chicago, IL 60611, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Biophysics Core in Research Resources Center, University of Illinois at Chicago (UIC), 1100 S Ashland Ave, Chicago, IL 60607, USA
| | - Mee-Ngan F Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 320 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Nandana V, Al-Husini N, Vaishnav A, Dilrangi KH, Schrader JM. Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness. Mol Biol Cell 2024; 35:ar104. [PMID: 38865176 PMCID: PMC11321048 DOI: 10.1091/mbc.e23-12-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.
Collapse
Affiliation(s)
- Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Arti Vaishnav
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | | | - Jared M. Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
11
|
Wang Y, Hao W, Guo Z, Sun Y, Wu Y, Sun Y, Gao T, Luo Y, Jin L, Yang J, Cheng K. Structural and functional investigation of the DHH/DHHA1 family proteins in Deinococcus radiodurans. Nucleic Acids Res 2024; 52:7142-7157. [PMID: 38804263 PMCID: PMC11229311 DOI: 10.1093/nar/gkae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
DHH/DHHA1 family proteins have been proposed to play critical roles in bacterial resistance to environmental stresses. Members of the most radioresistant bacteria genus, Deinococcus, possess two DHH/DHHA1 family proteins, RecJ and RecJ-like. While the functions of Deinococcus radiodurans RecJ (DrRecJ) in DNA damage resistance have been well characterized, the role and biochemical activities of D. radiodurans RecJ-like (DrRecJ-like) remain unclear. Phenotypic and transcriptomic analyses suggest that, beyond DNA repair, DrRecJ is implicated in cell growth and division. Additionally, DrRecJ-like not only affects stress response, cell growth, and division but also correlates with the folding/stability of intracellular proteins, as well as the formation and stability of cell membranes/walls. DrRecJ-like exhibits a preferred catalytic activity towards short single-stranded RNA/DNA oligos and c-di-AMP. In contrast, DrRecJ shows no activity against RNA and c-di-AMP. Moreover, a crystal structure of DrRecJ-like, with Mg2+ bound in an open conformation at a resolution of 1.97 Å, has been resolved. Subsequent mutational analysis was conducted to pinpoint the crucial residues essential for metal cation and substrate binding, along with the dimerization state, necessary for DrRecJ-like's function. This finding could potentially extend to all NrnA-like proteins, considering their conserved amino acid sequence and comparable dimerization forms.
Collapse
Affiliation(s)
- Ying Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanshan Hao
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ziming Guo
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiyang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Wu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianwen Gao
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yun Luo
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Lizan Jin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Jieyu Yang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
12
|
Tower J. Selectively advantageous instability in biotic and pre-biotic systems and implications for evolution and aging. FRONTIERS IN AGING 2024; 5:1376060. [PMID: 38818026 PMCID: PMC11137231 DOI: 10.3389/fragi.2024.1376060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Rules of biology typically involve conservation of resources. For example, common patterns such as hexagons and logarithmic spirals require minimal materials, and scaling laws involve conservation of energy. Here a relationship with the opposite theme is discussed, which is the selectively advantageous instability (SAI) of one or more components of a replicating system, such as the cell. By increasing the complexity of the system, SAI can have benefits in addition to the generation of energy or the mobilization of building blocks. SAI involves a potential cost to the replicating system for the materials and/or energy required to create the unstable component, and in some cases, the energy required for its active degradation. SAI is well-studied in cells. Short-lived transcription and signaling factors enable a rapid response to a changing environment, and turnover is critical for replacement of damaged macromolecules. The minimal gene set for a viable cell includes proteases and a nuclease, suggesting SAI is essential for life. SAI promotes genetic diversity in several ways. Toxin/antitoxin systems promote maintenance of genes, and SAI of mitochondria facilitates uniparental transmission. By creating two distinct states, subject to different selective pressures, SAI can maintain genetic diversity. SAI of components of synthetic replicators favors replicator cycling, promoting emergence of replicators with increased complexity. Both classical and recent computer modeling of replicators reveals SAI. SAI may be involved at additional levels of biological organization. In summary, SAI promotes replicator genetic diversity and reproductive fitness, and may promote aging through loss of resources and maintenance of deleterious alleles.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Horstmann L, Lipus D, Bartholomäus A, Arens F, Airo A, Ganzert L, Zamorano P, Schulze-Makuch D, Wagner D. Persistent microbial communities in hyperarid subsurface habitats of the Atacama Desert: Insights from intracellular DNA analysis. PNAS NEXUS 2024; 3:pgae123. [PMID: 38655503 PMCID: PMC11037274 DOI: 10.1093/pnasnexus/pgae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Desert environments constitute one of the largest and yet most fragile ecosystems on Earth. Under the absence of regular precipitation, microorganisms are the main ecological component mediating nutrient fluxes by using soil components, like minerals and salts, and atmospheric gases as a source for energy and water. While most of the previous studies on microbial ecology of desert environments have focused on surface environments, little is known about microbial life in deeper sediment layers. Our study is extending the limited knowledge about microbial communities within the deeper subsurface of the hyperarid core of the Atacama Desert. By employing intracellular DNA extraction and subsequent 16S rRNA sequencing of samples collected from a soil pit in the Yungay region of the Atacama Desert, we unveiled a potentially viable microbial subsurface community residing at depths down to 4.20 m. In the upper 80 cm of the playa sediments, microbial communities were dominated by Firmicutes taxa showing a depth-related decrease in biomass correlating with increasing amounts of soluble salts. High salt concentrations are possibly causing microbial colonization to cease in the lower part of the playa sediments between 80 and 200 cm depth. In the underlying alluvial fan deposits, microbial communities reemerge, possibly due to gypsum providing an alternative water source. The discovery of this deeper subsurface community is reshaping our understanding of desert soils, emphasizing the need to consider subsurface environments in future explorations of arid ecosystems.
Collapse
Affiliation(s)
- Lucas Horstmann
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Department Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University Göttingen, 37073 Göttingen, Germany
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Felix Arens
- Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Alessandro Airo
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
| | - Lars Ganzert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, University of Antofagasta, Antofagasta 02800, Chile
| | - Dirk Schulze-Makuch
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, 10623 Berlin, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Pereira-Marques J, Ferreira RM, Figueiredo C. A metatranscriptomics strategy for efficient characterization of the microbiome in human tissues with low microbial biomass. Gut Microbes 2024; 16:2323235. [PMID: 38425025 PMCID: PMC10913719 DOI: 10.1080/19490976.2024.2323235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The high background of host RNA poses a major challenge to metatranscriptome analysis of human samples. Hence, metatranscriptomics has been mainly applied to microbe-rich samples, while its application in human tissues with low ratio of microbial to host cells has yet to be explored. Since there is no computational workflow specifically designed for the taxonomic and functional analysis of this type of samples, we propose an effective metatranscriptomics strategy to accurately characterize the microbiome in human tissues with a low ratio of microbial to host content. We experimentally generated synthetic samples with well-characterized bacterial and host cell compositions, and mimicking human samples with high and low microbial loads. These synthetic samples were used for optimizing and establishing the workflow in a controlled setting. Our results show that the integration of the taxonomic analysis of optimized Kraken 2/Bracken with the functional analysis of HUMAnN 3 in samples with low microbial content, enables the accurate identification of a large number of microbial species with a low false-positive rate, while improving the detection of microbial functions. The effectiveness of our metatranscriptomics workflow was demonstrated in synthetic samples, simulated datasets, and most importantly, human gastric tissue specimens, thus providing a proof of concept for its applicability on mucosal tissues of the gastrointestinal tract. The use of an accurate and reliable metatranscriptomics approach for human tissues with low microbial content will expand our understanding of the functional activity of the mucosal microbiome, uncovering critical interactions between the microbiome and the host in health and disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Rui M. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Sangermani M, Desiati I, Jørgensen SM, Li JV, Andreassen T, Bathen TF, Giskeødegård GF. Stability in fecal metabolites amid a diverse gut microbiome composition: a one-month longitudinal study of variability in healthy individuals. Gut Microbes 2024; 16:2427878. [PMID: 39533520 PMCID: PMC11562901 DOI: 10.1080/19490976.2024.2427878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of microbial-host interactions exists in the gut, making the gut microbiome a complex ecosystem to untangle. The microbial composition and the fecal metabolites are important readouts to investigate intricate microbiota-diet-host interplay. However, this ecosystem is dynamic, and it is of interest to understand the degree and timescale of changes occurring in the gut microbiota, during disease as well as in healthy individuals. Cross-sectional study design is often used to investigate the microbiome, but this design provides a static snapshot and cannot provide evidence on the dynamic nature of the gut microbiome. Longitudinal studies are better suited to extrapolate causation in a study or assess changes over time. This study investigates longitudinal change in the gut microbiome and fecal metabolites in 14 healthy individuals with weekly sampling over a period of one-month (four time points), to elucidate the temporal changes occurring in the gut microbiome composition and fecal metabolites. Utilizing 16S rRNA amplicon sequencing for microbiome analysis and NMR spectroscopy for fecal metabolite characterization, we assessed the stability of these two types of measurable parameters in fecal samples during the period of one month. Our results show that the gut microbiome display large variations between healthy individuals, but relatively lower within-individual variations, which makes it possible to uniquely identify individuals. The fecal metabolites showed higher stability over time compared to the microbiome and exhibited consistently smaller variations both within and between individuals. This relative higher stability of the fecal metabolites suggests a balanced, consistent output even amid individual's differences in microbial composition and they can provide a viable complementary readout to better understand the microbiome activity.
Collapse
Affiliation(s)
- Matteo Sangermani
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Indri Desiati
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | | | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Central Staff, St. Olavs Hospital HF, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Guro F. Giskeødegård
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Nandana V, Al-Husini N, Vaishnav A, Dilrangi KH, Schrader JM. Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571756. [PMID: 38168245 PMCID: PMC10760160 DOI: 10.1101/2023.12.15.571756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' UTR. While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal IDR of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase-separation correlates with enhanced 5' UTR cleavage, suggesting that phase-separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.
Collapse
Affiliation(s)
- Vidhyadhar Nandana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | | | | | - Jared M. Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
17
|
Feng M, Zhou X, Hu Y, Zhang J, Yang T, Chen Z, Yuan W. Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss. Biomolecules 2023; 13:1537. [PMID: 37892219 PMCID: PMC10605720 DOI: 10.3390/biom13101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most common neurodegenerative disorders in elderly individuals and has a prevalence of approximately 70-80% among individuals aged 65 and older. As ARHL is an intricate and multifactorial disease, the exact pathogenesis of ARHL is not fully understood. There is evidence that transcriptional dysregulation mediated by epigenetic modifications is widespread in ARHL. However, the potential role of N6-methyladenosine (m6A) modification, as a crucial component of epigenetics, in ARHL progression remains unclear. In this study, we confirmed that the downregulation of m6A modification in cochlear tissues is related to ARHL and found that the expression of the m6A methylation regulators Wilms tumour suppressor-1-associated protein (WTAP), methyltransferase-like 3 (METTL3), ALKB homologous protein 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) is decreased significantly at the mRNA and protein levels in ARHL mice. Then, we used methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) to identify the differentially m6A-methylated genes in the cochlear tissues of ARHL mice. A total of 3438 genes with differential m6A methylation were identified, of which 1332 genes were m6A-hypermethylated and 2106 genes were m6A-hypomethylated in the ARHL group compared to the control group according to MeRIP-seq. Further joint analysis of RNA-Seq and MeRIP-Seq data showed that 262 genes had significant differences in both mRNA expression and m6A methylation. GO and KEGG analyses indicated that 262 unique genes were enriched mainly in the PI3K-AKT signalling pathway. In conclusion, the results of this study reveal differential m6A methylation patterns in the cochlear tissues of ARHL mice, providing a theoretical basis for further study of the pathogenesis of ARHL and potential therapeutic strategies.
Collapse
Affiliation(s)
- Menglong Feng
- Chongqing Medical University, Chongqing 400016, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Xiaoqing Zhou
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Yaqin Hu
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Juhong Zhang
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Ting Yang
- Chongqing Medical University, Chongqing 400016, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Zhiji Chen
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing 400016, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Department of Otolaryngology & Head and Neck, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
18
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
19
|
Yeh TK, Lin KP, Chuang YC, Wang LA, Chen CJ, Lee DY, Huang YT, Liu PY. Clinical metagenomics-assisted diagnosis of relapsed HIV-associated cryptococcal meningitis. Int J STD AIDS 2023; 34:740-744. [PMID: 37147923 DOI: 10.1177/09564624231174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To date, the identification of crypotococcal relapse remains clinically challenging as it often has similar manifestation with paradoxical immune reconstitution inflammatory syndrome. This study reports on the use of metagenomics assisted next generation sequencing to aid in diagnosing recurrent cryptococcal meningitis in an person living with HIV experiencing recurring symptoms, despite negative culture results for Cryptococcus neoformans in the cerebrospinal fluid. Although fungal culture was negative, when reads from metagenomic and metatranscriptomic sequencing performed on the Day 308 cerebrospinal fluid sample were mapped onto the genome from the Day 4 isolate, 589 specific reads were identified. NCBI BLAST search also revealed Cryptococcus-specific 18S/25S/28S ribosomal RNA, indicating a relapse of the disease.
Collapse
Affiliation(s)
- Ting Kuang Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuan Pei Lin
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu Chuan Chuang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li An Wang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih Jun Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ding Yu Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yao Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Po Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
- Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
20
|
VanMensel D, Chaganti SR, Droppo IG, Weisener CG. Microbe-sediment interactions in Great Lakes recreational waters: Implications for human health risk. Environ Microbiol 2023; 25:1605-1623. [PMID: 36998158 DOI: 10.1111/1462-2920.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Microbial assessments of recreational water have traditionally focused on culturing or DNA-based approaches of the planktonic water column, omitting influence from microbe-sediment relationships. Sediment (bed and suspended) has been shown to often harbour levels of bacteria higher than the planktonic phase. The fate of suspended sediment (SS) bacteria is extensively related to transport dynamics (e.g., deposition) of the associated sediment/floc. When hydraulic energy allows, SS will settle, introducing new (potentially pathogenic) organisms to the bed. With turbulence, including waves, currents and swimmers, the risk of human ingestion is elevated due to resuspension of bed sediment and associated microbes. This research used multiplex nanofluidic reverse transcriptase quantitative PCR on RNA of bacteria associated with bed and SS to explore the active bacteria in freshwater shorelines. Bacterial genes of human health concern regarding recreational water use were targeted, such as faecal indicator bacteria (FIB), microbial source tracking genes and virulence factors from waterborne pathogens. Results indicate avian sources (i.e., gulls, geese) to be the largest nonpoint source of FIB associated with sediment in Great Lakes shorelines. This research introduces a novel approach to microbial water quality assessments and enhances our understanding of microbe-sediment dynamics and the quality of freshwater beaches.
Collapse
Affiliation(s)
- Danielle VanMensel
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, 4840 South State Street, Ann Arbor, Michigan, 48108, USA
| | - Ian G Droppo
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, N9B 3P4, Windsor, Ontario, Canada
| |
Collapse
|
21
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
22
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
23
|
Solodushko V, Fouty B. Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail. Gene Ther 2023; 30:620-627. [PMID: 36828937 PMCID: PMC9951143 DOI: 10.1038/s41434-023-00391-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
Synthesizing mRNA in vitro is a standard and simple procedure. Adding the 5' cap and 3' polyadenylated (poly(A)) tail to make this mRNA functional for use as a vaccine or therapy increases the time and cost of production and usually decreases the yield, however. We designed mRNA that lacked a cap and poly(A) tail but included an internal ribosomal entry site (IRES) to initiate protein translation. To protect the 5' and 3' ends of mRNA from exonucleases, we added stable terminal hairpins. When compared against typical mRNA (i.e., mRNA that contained a cap and poly(A) tail but lacked hairpins), expression of the delivered reporter protein in HEK293 cells was similar. Using a triple instead of a single hairpin at each end increased protein expression even more. This method has the potential to simplify the production and reduce the cost of synthesizing exogenous mRNA for use as biologics or vaccines.
Collapse
Affiliation(s)
- Victor Solodushko
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
| | - Brian Fouty
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- Department of Internal Medicine, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
- The Division of Pulmonary and Critical Care Medicine, University of South Alabama School of Medicine, Mobile, AL, 36688, USA.
| |
Collapse
|
24
|
Huch S, Nersisyan L, Ropat M, Barrett D, Wu M, Wang J, Valeriano VD, Vardazaryan N, Huerta-Cepas J, Wei W, Du J, Steinmetz LM, Engstrand L, Pelechano V. Atlas of mRNA translation and decay for bacteria. Nat Microbiol 2023:10.1038/s41564-023-01393-z. [PMID: 37217719 DOI: 10.1038/s41564-023-01393-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Regulation of messenger RNA stability is pivotal for programmed gene expression in bacteria and is achieved by a myriad of molecular mechanisms. By bulk sequencing of 5' monophosphorylated mRNA decay intermediates (5'P), we show that cotranslational mRNA degradation is conserved among both Gram-positive and -negative bacteria. We demonstrate that, in species with 5'-3' exonucleases, the exoribonuclease RNase J tracks the trailing ribosome to produce an in vivo single-nucleotide toeprint of the 5' position of the ribosome. In other species lacking 5'-3' exonucleases, ribosome positioning alters endonucleolytic cleavage sites. Using our metadegradome (5'P degradome) sequencing approach, we characterize 5'P mRNA decay intermediates in 96 species including Bacillus subtilis, Escherichia coli, Synechocystis spp. and Prevotella copri and identify codon- and gene-level ribosome stalling responses to stress and drug treatment. We also apply 5'P sequencing to complex clinical and environmental microbiomes and demonstrate that metadegradome sequencing provides fast, species-specific posttranscriptional characterization of responses to drug or environmental perturbations. Finally we produce a degradome atlas for 96 species to enable analysis of mechanisms of RNA degradation in bacteria. Our work paves the way for the application of metadegradome sequencing to investigation of posttranscriptional regulation in unculturable species and complex microbial communities.
Collapse
Affiliation(s)
- Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Maria Ropat
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Donal Barrett
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Mengjun Wu
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Jing Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Valerie D Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Nelli Vardazaryan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Jaime Huerta-Cepas
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo-UPM, Madrid, Spain
| | - Wu Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
25
|
Watanabe S, Stazic D, Georg J, Ohtake S, Sakamaki Y, Numakura M, Asayama M, Chibazakura T, Wilde A, Steglich C, Hess WR. Regulation of RNase E during the UV stress response in the cyanobacterium Synechocystis sp. PCC 6803. MLIFE 2023; 2:43-57. [PMID: 38818332 PMCID: PMC10989929 DOI: 10.1002/mlf2.12056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 06/01/2024]
Abstract
Endoribonucleases govern the maturation and degradation of RNA and are indispensable in the posttranscriptional regulation of gene expression. A key endoribonuclease in Gram-negative bacteria is RNase E. To ensure an appropriate supply of RNase E, some bacteria, such as Escherichia coli, feedback-regulate RNase E expression via the rne 5'-untranslated region (5' UTR) in cis. However, the mechanisms involved in the control of RNase E in other bacteria largely remain unknown. Cyanobacteria rely on solar light as an energy source for photosynthesis, despite the inherent ultraviolet (UV) irradiation. In this study, we first investigated globally the changes in gene expression in the cyanobacterium Synechocystis sp. PCC 6803 after a brief exposure to UV. Among the 407 responding genes 2 h after UV exposure was a prominent upregulation of rne mRNA level. Moreover, the enzymatic activity of RNase E rapidly increased as well, although the protein stability decreased. This unique response was underpinned by the increased accumulation of full-length rne mRNA caused by the stabilization of its 5' UTR and suppression of premature transcriptional termination, but not by an increased transcription rate. Mapping of RNA 3' ends and in vitro cleavage assays revealed that RNase E cleaves within a stretch of six consecutive uridine residues within the rne 5' UTR, indicating autoregulation. These observations suggest that RNase E in cyanobacteria contributes to reshaping the transcriptome during the UV stress response and that its required activity level is secured at the RNA level despite the enhanced turnover of the protein.
Collapse
Affiliation(s)
- Satoru Watanabe
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Damir Stazic
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
- Present address:
NexxiotPrime Tower (Hardstrasse 201)ZurichSwitzerland
| | - Jens Georg
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| | - Shota Ohtake
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Yutaka Sakamaki
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Megumi Numakura
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Munehiko Asayama
- School of Agriculture, Molecular GeneticsIbaraki UniversityIbarakiJapan
| | - Taku Chibazakura
- Faculty of Biology, Genetics and Experimental BioinformaticsUniversity of FreiburgFreiburgGermany
| | - Annegret Wilde
- Faculty of Biology, Molecular GeneticsUniversity of FreiburgFreiburgGermany
| | - Claudia Steglich
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| | - Wolfgang R. Hess
- Department of BioscienceTokyo University of AgricultureSetagaya‐kuTokyoJapan
| |
Collapse
|
26
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. The genetic response of Salmonella Typhimurium during trans-cinnamaldehyde assisted heat treatment and its correlation with bacterial resistance in different low moisture food components. Food Microbiol 2023; 113:104271. [PMID: 37098431 DOI: 10.1016/j.fm.2023.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Our previous study found that water activity (aw)- and matrix-dependent bacterial resistance wasdeveloped in Salmonella Typhimurium during antimicrobial-assisted heat treatment in low moisture foods (LMFs) matrices. To better understand the molecular mechanism behind the observed bacterial resistance, gene expression analysis was conducted on S. Typhimurium adapted to different conditions with or without the trans-cinnamaldehyde (CA)-assisted heat treatment via quantitative polymerase chain reaction (qPCR). Expression profiles of nine stress-related genes were analyzed. The upregulation of rpoH and dnaK and downregulation of ompC were observed during bacterial adaptation in LMF matrices and the combined heat treatment, which likely contributed to the bacterial resistance during the combined treatment. Their expression profiles were partially consistent with the previously-observed effect of aw or matrix on bacterial resistance. The upregulation of rpoE, otsB, proV, and fadA was also observed during adaptation in LMF matrices and might contribute to desiccation resistance, but likely did not contribute to bacterial resistance during the combined heat treatment. The observed upregulation of fabA and downregulation of ibpA could not be directly linked to bacterial resistance to either desiccation or the combined heat treatment. The results may assist the development of more efficient processing methods against S. Typhimurium in LMFs.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
27
|
Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat Commun 2022; 13:7353. [PMID: 36446788 PMCID: PMC9708144 DOI: 10.1038/s41467-022-35050-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria and excessive inflammation are two main factors causing non-healing wounds. However, current studies have mainly focused on the inhibition of bacteria survival for wound healing while ignoring the excessive inflammation induced by dead bacteria-released lipopolysaccharide (LPS) or peptidoglycan (PGN). Herein, a boron-trapping strategy has been proposed to prevent both infection and excessive inflammation by synthesizing a class of reactive metal boride nanoparticles (MB NPs). Our results show that the MB NPs are gradually hydrolyzed to generate boron dihydroxy groups and metal cations while generating a local alkaline microenvironment. This microenvironment greatly enhances boron dihydroxy groups to trap LPS or PGN through an esterification reaction, which not only enhances metal cation-induced bacterial death but also inhibits dead bacteria-induced excessive inflammation both in vitro and in vivo, finally accelerating wound healing. Taken together, this boron-trapping strategy provides an approach to the treatment of bacterial infection and the accompanying inflammation.
Collapse
|
28
|
Zhang Y, Bailey TS, Kubiak AM, Lambin P, Theys J. Heterologous Gene Regulation in Clostridia: Rationally Designed Gene Regulation for Industrial and Medical Applications. ACS Synth Biol 2022; 11:3817-3828. [PMID: 36265075 PMCID: PMC9680021 DOI: 10.1021/acssynbio.2c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using β-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.
Collapse
Affiliation(s)
- Yanchao Zhang
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,
| | - Tom S. Bailey
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands,Exomnis
Biotech BV, Oxfordlaan
55, 6229 EV Maastricht, The Netherlands
| | - Philippe Lambin
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The
M-Lab, Department of Precision Medicine, GROW - School of Oncology
and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
29
|
Mtafya B, Sabi I, John J, Sichone E, Olomi W, Gillespie SH, Ntinginya NE, Sabiiti W. Systematic assessment of clinical and bacteriological markers for tuberculosis reveals discordance and inaccuracy of symptom-based diagnosis for treatment response monitoring. Front Med (Lausanne) 2022; 9:992451. [DOI: 10.3389/fmed.2022.992451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundClinical symptoms are the benchmark of tuberculosis (TB) diagnosis and monitoring of treatment response but are not clear how they relate to TB bacteriology, particularly the novel tuberculosis-molecular bacterial load assay (TB-MBLA).MethodsPresumptive cases were bacteriologically confirmed for TB and assessed for symptoms and bacteriological resolution using smear microscopy (SM), culture, and TB-MBLA over 6-month treatment course. Kaplan–Meier and Kappa statistics were used to test the relationship between symptoms and bacteriological positivity.ResultsA cohort of 46 bacteriologically confirmed TB cases were analyzed for treatment response over a 6-month treatment course. Pre-treatment symptoms and bacteriological positivity concurred in over 70% of the cases. This agreement was lost in over 50% of cases whose chest pain, night sweat, and loss of appetite had resolved by week 2 of treatment. Cough resolved at a 3.2% rate weekly and was 0.3% slower than the combined bacteriological (average of MGIT and TB-MBLA positivity) resolution rate, 3.5% per week. A decrease in TB-MBLA positivity reflected a fall in bacillary load, 5.7 ± 1.3- at baseline to 0.30 ± 1.0- log10 eCFU/ml at month 6, and closer to cough resolution than other bacteriological measures, accounting for the only one bacteriologically positive case out of seven still coughing at month 6. Low baseline bacillary load patients were more likely to be bacteriologically negative, HR 5.6, p = 0.003 and HR 3.2, p = 0.014 by months 2 and 6 of treatment, respectively.ConclusionThe probability of clinical symptoms reflecting bacteriological positivity weakens as the patient progresses on anti-TB therapy, making the symptom-based diagnosis a less reliable marker of treatment response.
Collapse
|
30
|
Dash S, Palma CSD, Baptista ISC, Almeida BLB, Bahrudeen MNM, Chauhan V, Jagadeesan R, Ribeiro AS. Alteration of DNA supercoiling serves as a trigger of short-term cold shock repressed genes of E. coli. Nucleic Acids Res 2022; 50:8512-8528. [PMID: 35920318 PMCID: PMC9410904 DOI: 10.1093/nar/gkac643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cold shock adaptability is a key survival skill of gut bacteria of warm-blooded animals. Escherichia coli cold shock responses are controlled by a complex multi-gene, timely-ordered transcriptional program. We investigated its underlying mechanisms. Having identified short-term, cold shock repressed genes, we show that their responsiveness is unrelated to their transcription factors or global regulators, while their single-cell protein numbers' variability increases after cold shock. We hypothesized that some cold shock repressed genes could be triggered by high propensity for transcription locking due to changes in DNA supercoiling (likely due to DNA relaxation caused by an overall reduction in negative supercoiling). Concomitantly, we found that nearly half of cold shock repressed genes are also highly responsive to gyrase inhibition (albeit most genes responsive to gyrase inhibition are not cold shock responsive). Further, their response strengths to cold shock and gyrase inhibition correlate. Meanwhile, under cold shock, nucleoid density increases, and gyrases and nucleoid become more colocalized. Moreover, the cellular energy decreases, which may hinder positive supercoils resolution. Overall, we conclude that sensitivity to diminished negative supercoiling is a core feature of E. coli's short-term, cold shock transcriptional program, and could be used to regulate the temperature sensitivity of synthetic circuits.
Collapse
Affiliation(s)
- Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Cristina S D Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Bilena L B Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mohamed N M Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Rahul Jagadeesan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland.,Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon 2829-516, Monte de Caparica, Portugal
| |
Collapse
|
31
|
Naked mole-rats resist the accumulation of hypoxia-induced oxidative damage. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111282. [PMID: 35907588 DOI: 10.1016/j.cbpa.2022.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Naked mole-rats are among the few mammals with the ability to endure severe hypoxia. These unique rodents use metabolic rate depression along with various molecular mechanisms to successfully overcome the challenges of oxygen-limitation, which they experience in their underground borrows. While studies have reported that naked mole-rats exhibit inherently higher levels of oxidative damage across their lifespan as compared to mice, it has yet to be determined whether naked mole-rats are vulnerable to oxidative damage during periods of low oxygen exposure. To investigate this phenomenon, we examined cellular oxidative damage markers of macromolecules: DNA oxidation determined as 8-oxo-2'deoxyguanosine (8-OHdG8) levels, RNA oxidation as 8-hydroxyguanosine (8-OHG), protein carbonylation, and lipid peroxidation in normoxic (control), acute (4 h at 7% O2), and chronic (24 h at 7% O2) hypoxia-exposed naked mole-rats. Brain appears to be the most resilient organ to hypoxia-induced oxidative damage, with both brain and heart exhibiting enhanced antioxidant capacity during hypoxia. Levels of DNA and RNA oxidation were minimally changed in all tissues and no changes were observed in protein carbonylation. Most tissues experienced lipid peroxidation, with liver displaying a 9.6-fold increase during hypoxia. Concomitantly, levels of DNA damage repair proteins were dynamically regulated in a tissue-specific manner, with white adipose displaying a significant reduction during hypoxia. Our findings show that naked mole-rats largely avoid hypoxia-induced oxidative damage, possibly due to their high tolerance to redox stress, or to reduced oxidative requirements made possible during their hypometabolic response when oxygen supply is limited.
Collapse
|
32
|
Carbonne C, Labadie K, Cruaud C, Brun E, Barbe V, Monnet C. Metatranscriptomics of cheese microbial communities: Efficiency of RNA extraction from various cheese types and of mRNA enrichment. Int J Food Microbiol 2022; 373:109701. [DOI: 10.1016/j.ijfoodmicro.2022.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/27/2022]
|
33
|
Hemagirri M, Sasidharan S. Biology of aging: Oxidative stress and RNA oxidation. Mol Biol Rep 2022; 49:5089-5105. [PMID: 35449319 DOI: 10.1007/s11033-022-07219-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
The prevalence of aged people has increased rapidly in recent years and brings profound demographic changes worldwide. The multi-level progression of aging occurs at diverse stages of complexity, from cell to organ systems and eventually to the human as a whole. The cellular and molecular damages are usually regulated by the cells; repair or degrade mechanisms. However, these mechanisms are not entirely functional; their effectiveness decreases with age due to influence from endogenous sources like oxidative stress, which all contribute to the aging process. The hunt for novel strategies to increase the man's longevity since ancient times needs better understandings of the biology of aging, oxidative stress, and their roles in RNA oxidation. The critical goal in developing new strategies to increase the man's longevity is to compile the novel developed knowledge on human aging into a single picture, preferably able to understand the biology of aging and the contributing factors. This review discusses the biology of aging, oxidative stress, and their roles in RNA oxidation, leading to aging in humans.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
34
|
Daniels PW, Hama Soor T, Levicky Q, Hettema EH, Mitchell P. Contribution of domain structure to the function of the yeast DEDD family exoribonuclease and RNase T functional homolog, Rex1. RNA (NEW YORK, N.Y.) 2022; 28:493-507. [PMID: 35082142 PMCID: PMC8925975 DOI: 10.1261/rna.078939.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The 3' exonucleolytic processing of stable RNAs is conserved throughout biology. Yeast strains lacking the exoribonuclease Rex1 are defective in the 3' processing of stable RNAs, including 5S rRNA and tRNA. The equivalent RNA processing steps in Escherichia coli are carried out by RNase T. Rex1 is larger than RNase T, the catalytic DEDD domain being embedded within uncharacterized amino- and carboxy-terminal regions. Here we report that both amino- and carboxy-terminal regions of Rex1 are essential for its function, as shown by genetic analyses and 5S rRNA profiling. Full-length Rex1, but not mutants lacking amino- or carboxy-terminal regions, accurately processed a 3' extended 5S rRNA substrate. Crosslinking analyses showed that both amino- and carboxy-terminal regions of Rex1 directly contact RNA in vivo. Sequence homology searches identified YFE9 in Schizosaccharomyces pombe and SDN5 in Arabidopsis thaliana as closely related proteins to Rex1. In addition to the DEDD domain, these proteins share a domain, referred to as the RYS (Rex1, YFE9 and SDN5) domain, that includes elements of both the amino- and caroxy-terminal flanking regions. We also characterize a nuclear localization signal in the amino-terminal region of Rex1. These studies reveal a novel dual domain structure at the core of Rex1-related ribonucleases, wherein the catalytic DEDD domain and the RYS domain are aligned such that they both contact the bound substrate. The domain organization of Rex1 is distinct from that of other previously characterized DEDD family nucleases and expands the known repertoire of structures for this fundamental family of RNA processing enzymes.
Collapse
Affiliation(s)
- Peter W Daniels
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Taib Hama Soor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Quentin Levicky
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Phil Mitchell
- Department of Molecular Biology and Biotechnology, The University of Sheffield, S10 2TN Sheffield, United Kingdom
| |
Collapse
|
35
|
Chen X, Yu H, Li Z, Ye W, Liu Z, Gao J, Wang Y, Li X, Zhang L, Alenina N, Bader M, Ding H, Li P, Aung LHH. Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Front Physiol 2022; 13:725919. [PMID: 35418873 PMCID: PMC8995861 DOI: 10.3389/fphys.2022.725919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Excessive production of free radicals can induce cellular damage, which is associated with many diseases. RNA is more susceptible to oxidative damage than DNA due to its single-stranded structure, and lack of protective proteins. Yet, oxidative damage to RNAs received little attention. Accumulating evidence reveals that oxidized RNAs may be dysfunctional and play fundamental role in the occurrence and development of type 2 diabetes (T2D) and its complications. Oxidized guanine nucleoside, 8-oxo-7, 8-dihydroguanine (8-oxoGuo) is a biomarker of RNA oxidation that could be associated with prognosis in patients with T2D. Nowadays, some clinical trials used antioxidants for the treatment of T2D, though the pharmacological effects remained unclear. In this review, we overview the cellular handling mechanisms and the consequences of the oxidative RNA damage for the better understanding of pathogenesis of T2D and may provide new insights to better therapeutic strategy.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Zhe Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Ye
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Device, Huaiyin Institute of Technology, Huaian, China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xin Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Hongyan Ding
- School of Bioengineering, Suqian University, Suqian, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Boeri L, Donnaloja F, Campanile M, Sardelli L, Tunesi M, Fusco F, Giordano C, Albani D. Using integrated meta-omics to appreciate the role of the gut microbiota in epilepsy. Neurobiol Dis 2022; 164:105614. [PMID: 35017031 DOI: 10.1016/j.nbd.2022.105614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
The way the human microbiota may modulate neurological pathologies is a fascinating matter of research. Epilepsy is a common neurological disorder, which has been largely investigated in correlation with microbiota health and function. However, the mechanisms that regulate this apparent connection are scarcely defined, and extensive effort has been conducted to understand the role of microbiota in preventing and reducing epileptic seizures. Intestinal bacteria seem to modulate the seizure frequency mainly by releasing neurotransmitters and inflammatory mediators. In order to elucidate the complex microbial contribution to epilepsy pathophysiology, integrated meta-omics could be pivotal. In fact, the combination of two or more meta-omics approaches allows a multifactorial study of microbial activity within the frame of disease or drug treatments. In this review, we provide information depicting and supporting the use of multi-omics to study the microbiota-epilepsy connection. We described different meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics), focusing on current technical challenges in stool collection procedures, sample extraction methods and data processing. We further discussed the current advantages and limitations of using the integrative approach of multi-omics in epilepsy investigations.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marzia Campanile
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Federica Fusco
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milan, Italy.
| |
Collapse
|
37
|
RNase III, Ribosome Biogenesis and Beyond. Microorganisms 2021; 9:microorganisms9122608. [PMID: 34946208 PMCID: PMC8708148 DOI: 10.3390/microorganisms9122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
The ribosome is the universal catalyst for protein synthesis. Despite extensive studies, the diversity of structures and functions of this ribonucleoprotein is yet to be fully understood. Deciphering the biogenesis of the ribosome in a step-by-step manner revealed that this complexity is achieved through a plethora of effectors involved in the maturation and assembly of ribosomal RNAs and proteins. Conserved from bacteria to eukaryotes, double-stranded specific RNase III enzymes play a large role in the regulation of gene expression and the processing of ribosomal RNAs. In this review, we describe the canonical role of RNase III in the biogenesis of the ribosome comparing conserved and unique features from bacteria to eukaryotes. Furthermore, we report additional roles in ribosome biogenesis re-enforcing the importance of RNase III.
Collapse
|
38
|
Wahab C, Fakhoury O, Serhan H, Ayash J, Jabbour F, Dirani A, Kallassy M, Waked N. Biomolecular evaluation of cryopreserved amniotic membranes for ophthalmological use by ELISA and RT-PCR at one and eighteen months. J Fr Ophtalmol 2021; 44:1529-1535. [PMID: 34728097 DOI: 10.1016/j.jfo.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To study the presence of certain proteins - EGF (epidermal growth factor), KGF (keratinocyte growth factor), IL-10 (interleukin 10), HGF (hepatocyte growth factor), Alpha2-macroglobulin and IL-1RA (interleukin 1 receptor antagonist) in cryopreserved amniotic membranes at 1 and 18 months and, as a secondary objective, to detect mRNA corresponding to KGF, IL-1Ra, Alpha2-macroglobulin, Fas Ligand, TGF beta (transforming growth factor beta) and Lumican by RT-PCR in membranes preserved at 1 and 18 months. MATERIAL AND METHODS Four samples of amniotic membrane were divided into 2 groups: the first group (N=2) cryopreserved for 1 month and the second group (N=2) cryopreserved for 18 months, in order to be studied by RT-PCR and ELISA. RESULTS RT-PCR detected KGF, IL-1Ra, Alpha2-macroglobulin, Fas Ligand, and Lumican. Of these, FAS Ligand mRNA was found in samples preserved for 1and 18 months. KGF, Lumican, and alpha2-microglobulin mRNA were found only at 1 month, and IL-1Ra mRNA was absent in both sample groups. RT-PCR for TGF-beta was inconclusive. ELISA was performed for detection and quantification of 6 proteins (EGF, KGF, IL-10, HGF, Alpha2-macroglobulin and IL-1Ra) in both amniotic membrane groups. All 6 proteins were found in all samples, with a lower concentration at 18 months compared to 1 month of preservation. CONCLUSION This study shows that membranes cryopreserved in 50% glycerol for 18 months do retain the proteins necessary for regeneration of the corneal surface, giving these membranes their biochemical properties.
Collapse
Affiliation(s)
- C Wahab
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - O Fakhoury
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban.
| | - H Serhan
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - J Ayash
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - F Jabbour
- Département d'ophtalmologie du centre médical universitaire de l'hôpital Saint-George en association avec l'université de Balamand, Beyrouth, Liban
| | - A Dirani
- Département d'ophtalmologie CHU de Québec, Québec, Canada
| | - M Kallassy
- Département des sciences de la terre et de la vie, université Saint-Joseph, Beyrouth, Liban
| | - N Waked
- Département d'ophtalmologie de l'Hôtel Dieu de France, Beyrouth, Liban
| |
Collapse
|
39
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
40
|
RNase Z Oxidative Degradation Impedes tRNA Maturation and is Involved in Streptococcal Translation Regulation in Response to Oxidative Stress. Microbiol Spectr 2021; 9:e0116721. [PMID: 34704809 PMCID: PMC8549757 DOI: 10.1128/spectrum.01167-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When encountering oxidative stress, organisms selectively upregulate antioxidant genes and simultaneously suppress the translation of most other proteins. Eukaryotes employ multiple strategies to adjust translation at both the initiation and elongation stages; however, how prokaryotes modulate translation under oxidative stress remains unclear. Here, we report that upon hydrogen peroxide (H2O2) challenge, Streptococcus oligofermentans reduced translation via RNase Z (So-RNaseZ) oxidative degradation, thus hindering tRNA maturation. S. oligofermentans encodes all CCA-less tRNAs that require So-RNaseZ for 3′ end maturation. A combination of nonreducing SDS-PAGE and liquid chromatography/tandem mass spectrometry (LC/MS-MS) assays demonstrated that H2O2 oxidation induced Cys38-Cys149 disulfide linkages in recombinant So-RNaseZ protein, and serine substitution of Cys38 or Cys149 abolished these disulfide linkages. Consistently, redox Western blotting also determined intramolecular disulfide-linked So-RNaseZ in H2O2-treated S. oligofermentans cells. The disulfide-linked So-RNaseZ and monomer were both subject to proteolysis, whereas C149S mutation alleviated oxidative degradation of So-RNaseZ, suggesting that H2O2-mediated disulfide linkages substantially contributed to So-RNaseZ degradation. Accordingly, Northern blotting determined that tRNA precursor accumulation and mature tRNA species decrease in H2O2-treated S. oligofermentans. Moreover, reduced overall protein synthesis, as indicated by puromycin incorporation, and retarded growth of S. oligofermentans occurred in an H2O2 concentration-dependent manner. Overexpression of So-RNaseZ not only elevated tRNA precursor processing and protein synthesis but also partly rescued H2O2-suppressed S. oligofermentans growth. Moreover, So-RNaseZ oxidative degradation-mediated translation repression elevated S. oligofermentans survival under high H2O2 stress. Therefore, this work found that So-RNaseZ oxidative degradation-impeded tRNA maturation contributes to streptococcal translation repression and provides the oxidative stress adaptability for S. oligofermentans. IMPORTANCE Translation regulation is a common strategy used by organisms to reduce oxidative damage. Catalase-negative streptococci produce as well as tolerate high levels of H2O2. This work reports a novel translation regulation mechanism employed by Streptococcus oligofermentans in response to H2O2 challenge, in which the key tRNA endonuclease So-RNaseZ is oxidized to form Cys38-Cys149 disulfide linkages and both the disulfide-linked So-RNaseZ and monomers are subject to proteolysis; thus, tRNA maturation, protein translation, and growth are all suppressed. Notably, So-RNaseZ oxidative degradation-mediated translation repression offers oxidative adaptability to S. oligofermentans and enhances its survival against high H2O2 challenge. So-RNaseZ orthologs and H2O2-sensitive cysteines (Cys38 and Cys149) are widely distributed in Streptococcus and Lactococcus species genomes, which also encode all CCA-less tRNAs and lack catalase. Therefore, RNase Z oxidative degradation-based translation regulation could be widely employed by these lactic acid bacteria, including pathogenic streptococci, to cope with H2O2.
Collapse
|
41
|
Merker Breyer G, Malvessi Cattani A, Silveira Schrank I, Maboni Siqueira F. The influence of regulatory elements on Mycoplasma hyopneumoniae 7448 transcriptional response during oxidative stress and heat shock. Mol Biol Rep 2021; 49:139-147. [PMID: 34676505 DOI: 10.1007/s11033-021-06851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The comprehension of genome organization and gene modulation is essential for understanding pathogens' infection mechanisms. Mycoplasma hyopneumoniae 7448 genome is organized in transcriptional units (TUs), which are flanked by regulatory elements such as putative promoters, terminators and repetitive sequences. Yet the relationship between the presence of these elements and bacterial responses during stress conditions remains unclear. Thus, in this study, in silico and RT-qPCR analyses were associated to determine the effect of regulatory elements in gene expression regulation upon heat shock and oxidative stress conditions. METHODS AND RESULTS Thirteen TU's organizational profiles were found based on promoters and terminators distribution. Differential expression in genes sharing the same TUs was observed, suggesting the activity of internal regulatory elements. Moreover, 88.8% of tested genes were differentially expressed under oxidative stress in comparison to the control condition, being 81.3% of them surrounded by their own regulatory elements. Similarly, under heat shock, 44.4% of the genes showed regulation when compared to control condition, being 75.0% of them surrounded by their own regulatory elements. CONCLUSIONS Altogether, this data suggests the activity of internal regulatory elements in gene modulation of M. hyopneumoniae 7448 transcription.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Malvessi Cattani
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Irene Silveira Schrank
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection. Microorganisms 2021; 9:microorganisms9102166. [PMID: 34683487 PMCID: PMC8539884 DOI: 10.3390/microorganisms9102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing lethal infection. The various phases of pneumonic plague are yet to be fully understood. A well-established way to address the pathology of infectious diseases in general, and pneumonic plague in particular, is to conduct concomitant transcriptomic analysis of the bacteria and the host. The analysis of dual RNA by RNA sequencing technology is challenging, due the difficulties of extracting bacterial RNA, which is overwhelmingly outnumbered by the host RNA, especially at the critical early time points post-infection (prior to 48 h). Here, we describe a novel technique that employed the infusion of an RNA preserving reagent (RNAlater) into the lungs of the animals, through the trachea, under deep anesthesia. This method enabled the isolation of stable dual mRNA from the lungs of mice infected with Y. pestis, as early as 24 h post-infection. The RNA was used for transcriptomic analysis, which provided a comprehensive gene expression profile of both the host and the pathogen.
Collapse
|
43
|
Mining the Microbiome and Microbiota-Derived Molecules in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms222011243. [PMID: 34681902 PMCID: PMC8540913 DOI: 10.3390/ijms222011243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is a complex community that consists of an ecosystem with a dynamic interplay between bacteria, fungi, archaea, and viruses. Recent advances in model systems have revealed that the gut microbiome is critical for maintaining homeostasis through metabolic digestive function, immune regulation, and intestinal barrier integrity. Taxonomic shifts in the intestinal microbiota are strongly correlated with a multitude of human diseases, including inflammatory bowel disease (IBD). However, many of these studies have been descriptive, and thus the understanding of the cause and effect relationship often remains unclear. Using non-human experimental model systems such as gnotobiotic mice, probiotic mono-colonization, or prebiotic supplementation, researchers have defined numerous species-level functions of the intestinal microbiota that have produced therapeutic candidates for IBD. Despite these advances, the molecular mechanisms responsible for the function of much of the microbiota and the interplay with host cellular processes remain areas of tremendous research potential. In particular, future research will need to unlock the functional molecular units of the microbiota in order to utilize this untapped resource of bioactive molecules for therapy. This review will highlight the advances and remaining challenges of microbiota-based functional studies and therapeutic discovery, specifically in IBD. One of the limiting factors for reviewing this topic is the nascent development of this area with information on some drug candidates still under early commercial development. We will also highlight the current and evolving strategies, including in the biotech industry, used for the discovery of microbiota-derived bioactive molecules in health and disease.
Collapse
|
44
|
In Vivo Production of Small Recombinant RNAs Embedded in 5S rRNA-Derived Protective Scaffold. Methods Mol Biol 2021; 2323:75-97. [PMID: 34086275 DOI: 10.1007/978-1-0716-1499-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preparative synthesis of RNA is a challenging task that is usually accomplished by either chemical or enzymatic polymerization of ribonucleotides in vitro. Herein, we describe an alternative approach in which RNAs of interest are expressed as a fusion with a 5S rRNA-derived scaffold. The scaffold provides protection against cellular ribonucleases resulting in cellular accumulations comparable to those of regular ribosomal RNAs. After isolation of the chimeric RNA from the cells, the scaffold can be removed, if necessary, by deoxyribozyme-catalyzed cleavage followed by preparative electrophoretic separation of the reaction products. The protocol is designed for sustained production of high quality RNA on the milligram scale.
Collapse
|
45
|
Pan X, Pei X, Huang H, Su N, Wu Z, Wu Z, Qi X. One-in-one individual package and delivery of CRISPR/Cas9 ribonucleoprotein using apoferritin. J Control Release 2021; 337:686-697. [PMID: 34389365 DOI: 10.1016/j.jconrel.2021.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
So far, most reported delivery of CRISPR/Cas9 is achieved by internalized or encapsulated multiple ribonucleoprotein units into only one carrier unit, with relatively large size. Here, we report a novel, small-sized, individual package of CRISPR/Cas9, via using tetralysine modified H-chian apoferritin (TL-HFn) as packaging material. In this paper, each CRISPR/Cas9 complex is proved to be successfully installed into one TL-HFn (~26 nm), and delivered into the targeting cell via TfR1-mediated endocytosis. We found that after 6 h of treatment, the CRISPR/Cas9 complex can be tracked within the nuclear of Hela cells for the purpose of gene editing of enhanced green fluorescent protein (EGFP). Moreover, TL-HFn individually packed CRISPR/Cas9 displayed higher genome editing activity compared with that of free CRISPR/Cas9 treated group both in vitro (up to 28.96%) and in vivo. Such satisfied genome editing efficiency could be attributed to the endosomal escape and pH-induced disassembly abilities given by TL-HFn after uptake into cytoplasm, which had been verified in our previous research. In all, those results prompted that TL-HFn possessed more potential for intracellular delivery of CRISPR/Cas9, with potential biocompatibility, stability and delivery efficiency.
Collapse
Affiliation(s)
- Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaochen Pei
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haiqin Huang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Su
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ziheng Wu
- Parkville campus, Monash University, VIC 3052, Australia
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
46
|
Yadav A, Maertens L, Meese T, Van Nieuwerburgh F, Mysara M, Leys N, Cuypers A, Janssen PJ. Genetic Responses of Metabolically Active Limnospira indica Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle. Microorganisms 2021; 9:1626. [PMID: 34442705 PMCID: PMC8400943 DOI: 10.3390/microorganisms9081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Two morphotypes of the cyanobacterial Limnospira indica (formerly Arthrospira sp.) strain PCC 8005, denoted as P2 (straight trichomes) and P6 (helical trichomes), were subjected to chronic gamma radiation from spent nuclear fuel (SNF) rods at a dose rate of ca. 80 Gy·h-1 for one mass doubling period (approximately 3 days) under continuous light with photoautotrophic metabolism fully active. Samples were taken for post-irradiation growth recovery and RNA-Seq transcriptional analysis at time intervals of 15, 40, and 71.5 h corresponding to cumulative doses of ca. 1450, 3200, and 5700 Gy, respectively. Both morphotypes, which were previously reported by us to display different antioxidant capacities and differ at the genomic level in 168 SNPs, 48 indels and 4 large insertions, recovered equally well from 1450 and 3200 Gy. However, while the P2 straight type recovered from 5700 Gy by regaining normal growth within 6 days, the P6 helical type took about 13 days to recover from this dose, indicating differences in their radiation tolerance and response. To investigate these differences, P2 and P6 cells exposed to the intermediate dose of gamma radiation (3200 Gy) were analyzed for differential gene expression by RNA-Seq analysis. Prior to batch normalization, a total of 1553 genes (887 and 666 of P2 and P6, respectively, with 352 genes in common) were selected based on a two-fold change in expression and a false discovery rate FDR smaller or equal to 0.05. About 85% of these 1553 genes encoded products of yet unknown function. Of the 229 remaining genes, 171 had a defined function while 58 genes were transcribed into non-coding RNA including 21 tRNAs (all downregulated). Batch normalization resulted in 660 differentially expressed genes with 98 having a function and 32 encoding RNA. From PCC 8005-P2 and PCC 8005-P6 expression patterns, it emerges that although the cellular routes used by the two substrains to cope with ionizing radiation do overlap to a large extent, both strains displayed a distinct preference of priorities.
Collapse
Affiliation(s)
- Anu Yadav
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Laurens Maertens
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
- Research Unit in Biology of Microorganisms (URBM), Narilis Institute, University of Namur, 5000 Namur, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium; (T.M.); (F.V.N.)
| | - Mohamed Mysara
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Natalie Leys
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
| | - Paul Jaak Janssen
- Interdisciplinary Biosciences, Microbiology Unit, Belgian Nuclear Research Centre (SCKCEN), 2400 Mol, Belgium; (A.Y.); (L.M.); (M.M.); (N.L.)
| |
Collapse
|
47
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Hibernation-Promoting Factor Sequesters Staphylococcus aureus Ribosomes to Antagonize RNase R-Mediated Nucleolytic Degradation. mBio 2021; 12:e0033421. [PMID: 34253058 PMCID: PMC8406268 DOI: 10.1128/mbio.00334-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacterial and eukaryotic hibernation factors prevent translation by physically blocking the decoding center of ribosomes, a phenomenon called ribosome hibernation that often occurs in response to nutrient deprivation. The human pathogen Staphylococcus aureus lacking the sole hibernation factor HPF undergoes massive ribosome degradation via an unknown pathway. Using genetic and biochemical approaches, we find that inactivating the 3′-to-5′ exonuclease RNase R suppresses ribosome degradation in the Δhpf mutant. In vitro cell-free degradation assays confirm that 30S and 70S ribosomes isolated from the Δhpf mutant are extremely susceptible to RNase R, in stark contrast to nucleolytic resistance of the HPF-bound 70S and 100S complexes isolated from the wild type. In the absence of HPF, specific S. aureus 16S rRNA helices are sensitive to nucleolytic cleavage. These RNase hot spots are distinct from that found in the Escherichia coli ribosomes. S. aureus RNase R is associated with ribosomes, but unlike the E. coli counterpart, it is not regulated by general stressors and acetylation. The results not only highlight key differences between the evolutionarily conserved RNase R homologs but also provide direct evidence that HPF preserves ribosome integrity beyond its role in translational avoidance, thereby poising the hibernating ribosomes for rapid resumption of translation.
Collapse
|
49
|
Grünberg S, Coxam B, Chen TH, Dai N, Saleh L, Corrêa IR, Nichols NM, Yigit E. E. coli RNase I exhibits a strong Ca2+-dependent inherent double-stranded RNase activity. Nucleic Acids Res 2021; 49:5265-5277. [PMID: 33885787 PMCID: PMC8136782 DOI: 10.1093/nar/gkab284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 01/23/2023] Open
Abstract
Since its initial characterization, Escherichia coli RNase I has been described as a single-strand specific RNA endonuclease that cleaves its substrate in a largely sequence independent manner. Here, we describe a strong calcium (Ca2+)-dependent activity of RNase I on double-stranded RNA (dsRNA), and a Ca2+-dependent novel hybridase activity, digesting the RNA strand in a DNA:RNA hybrid. Surprisingly, Ca2+ does not affect the activity of RNase I on single stranded RNA (ssRNA), suggesting a specific role for Ca2+ in the modulation of RNase I activity. Mutation of a previously overlooked Ca2+ binding site on RNase I resulted in a gain-of-function enzyme that is highly active on dsRNA and could no longer be stimulated by the metal. In summary, our data imply that native RNase I contains a bound Ca2+, allowing it to target both single- and double-stranded RNAs, thus having a broader substrate specificity than originally proposed for this traditional enzyme. In addition, the finding that the dsRNase activity, and not the ssRNase activity, is associated with the Ca2+-dependency of RNase I may be useful as a tool in applied molecular biology.
Collapse
Affiliation(s)
| | - Baptiste Coxam
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Tien-Hao Chen
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Nicole M Nichols
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Erbay Yigit
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
50
|
Bailey SF, Alonso Morales LA, Kassen R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol Evol 2021; 13:6300525. [PMID: 34132772 PMCID: PMC8410137 DOI: 10.1093/gbe/evab141] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be 'seen' by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.
Collapse
Affiliation(s)
- Susan F Bailey
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | | | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|