1
|
Kosaka Y, Miyawaki Y, Mori M, Aburaya S, Nishizawa C, Chujo T, Niwa T, Miyazaki T, Sugita T, Fukuyama M, Taguchi H, Tomizawa K, Sugase K, Ueda M, Aoki W. Autonomous ribosome biogenesis in vitro. Nat Commun 2025; 16:514. [PMID: 39779722 PMCID: PMC11711502 DOI: 10.1038/s41467-025-55853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Ribosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells. Despite its importance, this goal has not yet been achieved owing to its complexity. In this study, we report the successful realization of ribosome biogenesis in vitro. Specifically, we developed a highly specific and sensitive reporter assay for the detection of nascent ribosomes. The reporter assay allowed for combinatorial and iterative exploration of reaction conditions for ribosome biogenesis, leading to the simultaneous, autonomous synthesis of both small and large subunits of ribosomes in vitro through transcription, translation, processing, and assembly in a single reaction space. Our achievement represents a crucial advancement toward revealing the fundamental principles underlying the self-replication of life and creating artificial cells.
Collapse
Affiliation(s)
- Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Kyoto, Japan
| | - Yumi Miyawaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Megumi Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shunsuke Aburaya
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chisato Nishizawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- JST FOREST, Tokyo, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Takumi Miyazaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Mao Fukuyama
- JST FOREST, Tokyo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugase
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto, Japan
| | - Wataru Aoki
- JST FOREST, Tokyo, Japan.
- Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto, Japan.
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
3
|
Kerestesy GN, Dods KK, McFeely CAL, Hartman MCT. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids. ACS Synth Biol 2024; 13:119-128. [PMID: 38194520 PMCID: PMC11165968 DOI: 10.1021/acssynbio.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.
Collapse
Affiliation(s)
- Gianna N Kerestesy
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Clinton A L McFeely
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| |
Collapse
|
4
|
Melinek BJ, Tuck J, Probert P, Branton H, Bracewell DG. Designing of an extract production protocol for industrial application of cell-free protein synthesis technology: Building from a current best practice to a quality by design approach. ENGINEERING BIOLOGY 2023; 7:1-17. [PMID: 38094242 PMCID: PMC10715128 DOI: 10.1049/enb2.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS. The importance and difficulty of measuring the Raw Material Attributes (RMAs) of whole cell extract, such as constituent protein and metabolite concentrations, and of understanding and controlling these complicated enzymatic reactions is explored, for both centralised and distributed industrial production of biotherapeutics. It is suggested that a robust cell-free extract production process should produce cell extract of consistent quality; however, demonstrating this is challenging without a full understanding of the RMAs and their interaction with reaction conditions and product. Lack of technology transfer and knowledge sharing is identified as a key limiting factor in the development of CFPS. The article draws upon the experiences of industrial process specialists, discussions within the Future Targeted Healthcare Manufacturing Hub Specialist Working Groups and evidence drawn from various sources to identify sources of process variation and to propose an initial guide towards systematisation of CFPS process development and reporting. These proposals include the development of small scale screening tools, consistent reporting of selected process parameters and analytics and application of industrial thinking and manufacturability to protocol development.
Collapse
Affiliation(s)
| | - Jade Tuck
- CPIDarlingtonUK
- Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
5
|
Pierce DM, Buchanan FJT, Macrae FL, Mills JT, Cox A, Abualsaoud KM, Ward JC, Ariëns RAS, Harris M, Stonehouse NJ, Herod MR. Thrombin cleavage of the hepatitis E virus polyprotein at multiple conserved locations is required for genome replication. PLoS Pathog 2023; 19:e1011529. [PMID: 37478143 PMCID: PMC10395923 DOI: 10.1371/journal.ppat.1011529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
The genomes of positive-sense RNA viruses encode polyproteins that are essential for mediating viral replication. These viral polyproteins must undergo proteolysis (also termed polyprotein processing) to generate functional protein units. This proteolysis can be performed by virally-encoded proteases as well as host cellular proteases, and is generally believed to be a key step in regulating viral replication. Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis. The positive-sense RNA genome is translated to generate a polyprotein, termed pORF1, which is necessary and sufficient for viral genome replication. However, the mechanism of polyprotein processing in HEV remains to be determined. In this study, we aimed to understand processing of this polyprotein and its role in viral replication using a combination of in vitro translation experiments and HEV sub-genomic replicons. Our data suggest no evidence for a virally-encoded protease or auto-proteolytic activity, as in vitro translation predominantly generates unprocessed viral polyprotein precursors. However, seven cleavage sites within the polyprotein (suggested by bioinformatic analysis) are susceptible to the host cellular protease, thrombin. Using two sub-genomic replicon systems, we demonstrate that mutagenesis of these sites prevents replication, as does pharmacological inhibition of serine proteases including thrombin. Overall, our data supports a model where HEV uses host proteases to support replication and could have evolved to be independent of a virally-encoded protease for polyprotein processing.
Collapse
Affiliation(s)
- Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Frazer J T Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Jake T Mills
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Abigail Cox
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Khadijah M Abualsaoud
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Department of Laboratory and Blood Bank, Al Mikhwah General Hospital, Al Mikhwah, Saudi Arabia
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. PLoS One 2022; 17:e0273106. [PMID: 36037183 PMCID: PMC9423672 DOI: 10.1371/journal.pone.0273106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joshua Obiero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Rebecca A. Dabbs
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Kisly I, Kattel C, Remme J, Tamm T. Luciferase-based reporter system for in vitro evaluation of elongation rate and processivity of ribosomes. Nucleic Acids Res 2021; 49:e59. [PMID: 33684199 PMCID: PMC8191769 DOI: 10.1093/nar/gkab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The elongation step of translation is a key contributor to the abundance, folding and quality of proteins and to the stability of mRNA. However, control over translation elongation has not been thoroughly investigated. In this study, a Renilla-firefly luciferase fusion reporter system was further developed to investigate the in vitro elongation rate and processivity of ribosomes independent of the initiation and termination steps. The reporter mRNA was constructed to contain a single ORF encoding in-frame Renilla luciferase, a specific domain moiety and firefly luciferase. Such a reporter structure enables the quantitative and individual evaluation of the synthesis of a specific domain. As a proof of principle, the synthesis of three protein domains of different lengths and structures was analyzed. Using a cell-free translation assay, both the elongation rate and processivity of ribosomes were shown to vary depending on the domain synthesized. Additionally, a stalling sequence consisting of ten rare arginine codons notably reduced the elongation rate and the processivity of the ribosomes. All these results are consistent with the previously known dynamics of elongation in vivo. Overall, the methodology presented in this report provides a framework for studying aspects that contribute to the elongation step of translation.
Collapse
Affiliation(s)
- Ivan Kisly
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Carolin Kattel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Tiina Tamm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
8
|
Batista AC, Soudier P, Kushwaha M, Faulon J. Optimising protein synthesis in cell‐free systems, a review. ENGINEERING BIOLOGY 2021; 5:10-19. [PMID: 36968650 PMCID: PMC9996726 DOI: 10.1049/enb2.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Over the last decades, cell-free systems have been extensively used for in vitro protein expression. A vast range of protocols and cellular sources varying from prokaryotes and eukaryotes are now available for cell-free technology. However, exploiting the maximum capacity of cell free systems is not achieved by using traditional protocols. Here, what are the strategies and choices one can apply to optimise cell-free protein synthesis have been reviewed. These strategies provide robust and informative improvements regarding transcription, translation and protein folding which can later be used for the establishment of individual best cell-free reactions per lysate batch.
Collapse
Affiliation(s)
- Angelo C. Batista
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Paul Soudier
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Manish Kushwaha
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Jean‐Loup Faulon
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
- SYNBIOCHEM Center School of Chemistry Manchester Institute of Biotechnology The University of Manchester Manchester UK
| |
Collapse
|
9
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
10
|
Colant N, Melinek B, Teneb J, Goldrick S, Rosenberg W, Frank S, Bracewell DG. A rational approach to improving titer in Escherichia coli-based cell-free protein synthesis reactions. Biotechnol Prog 2020; 37:e3062. [PMID: 32761750 DOI: 10.1002/btpr.3062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Cell-free protein synthesis (CFPS) is an established method for rapid recombinant protein production. Advantages like short synthesis times and an open reaction environment make CFPS a desirable platform for new and difficult-to-express products. Most recently, interest has grown in using the technology to make larger amounts of material. This has been driven through a variety of reasons from making site specific antibody drug conjugates, to emergency response, to the safe manufacture of toxic biological products. We therefore need robust methods to determine the appropriate reaction conditions for product expression in CFPS. Here we propose a process development strategy for Escherichia coli lysate-based CFPS reactions that can be completed in as little as 48 hr. We observed the most dramatic increases in titer were due to the E. coli strain for the cell extract. Therefore, we recommend identifying a high-producing cell extract for the product of interest as a first step. Next, we manipulated the plasmid concentration, amount of extract, temperature, concentrated reaction mix pH levels, and length of reaction. The influence of these process parameters on titer was evaluated through multivariate data analysis. The process parameters with the highest impact on titer were subsequently included in a design of experiments to determine the conditions that increased titer the most in the design space. This proposed process development strategy resulted in superfolder green fluorescent protein titers of 0.686 g/L, a 38% improvement on the standard operating conditions, and hepatitis B core antigen titers of 0.386 g/L, a 190% improvement.
Collapse
Affiliation(s)
- Noelle Colant
- Department of Biochemical Engineering, University College London, London, UK
| | - Beatrice Melinek
- Department of Biochemical Engineering, University College London, London, UK
| | - Jaime Teneb
- Department of Biochemical Engineering, University College London, London, UK
| | - Stephen Goldrick
- Department of Biochemical Engineering, University College London, London, UK
| | - William Rosenberg
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, London, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
11
|
Zhou C, Lin X, Lu Y, Zhang J. Flexible on-demand cell-free protein synthesis platform based on a tube-in-tube reactor. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00394k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flexible on-demand cell-free protein synthesis platform using a tube-in-tube reactor is established for continuous synthesis of different protein drugs.
Collapse
Affiliation(s)
- Caijin Zhou
- The State Key Lab of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Xiaomei Lin
- Key Lab of Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - Yuan Lu
- Key Lab of Industrial Biocatalysis
- Ministry of Education
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
12
|
Gräwe A, Dreyer A, Vornholt T, Barteczko U, Buchholz L, Drews G, Ho UL, Jackowski ME, Kracht M, Lüders J, Bleckwehl T, Rositzka L, Ruwe M, Wittchen M, Lutter P, Müller K, Kalinowski J. A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS One 2019; 14:e0210940. [PMID: 30840628 PMCID: PMC6402643 DOI: 10.1371/journal.pone.0210940] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/22/2018] [Indexed: 11/18/2022] Open
Abstract
Biosensors have emerged as a valuable tool with high specificity and sensitivity for fast and reliable detection of hazardous substances in drinking water. Numerous substances have been addressed using synthetic biology approaches. However, many proposed biosensors are based on living, genetically modified organisms and are therefore limited in shelf life, usability and biosafety. We addressed these issues by the construction of an extensible, cell-free biosensor. Storage is possible through freeze drying on paper. Following the addition of an aqueous sample, a highly efficient cell-free protein synthesis (CFPS) reaction is initiated. Specific allosteric transcription factors modulate the expression of ‘superfolder’ green fluorescent protein (sfGFP) depending on the presence of the substance of interest. The resulting fluorescence intensities are analyzed with a conventional smartphone accompanied by simple and cheap light filters. An ordinary differential equitation (ODE) model of the biosensors was developed, which enabled prediction and optimization of performance. With an optimized cell-free biosensor based on the Shigella flexneri MerR transcriptional activator, detection of 6 μg/L Hg(II) ions in water was achieved. Furthermore, a completely new biosensor for the detection of gamma-hydroxybutyrate (GHB), a substance used as date-rape drug, was established by employing the naturally occurring transcriptional repressor BlcR from Agrobacterium tumefaciens.
Collapse
Affiliation(s)
- Alexander Gräwe
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anna Dreyer
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tobias Vornholt
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ursela Barteczko
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Luzia Buchholz
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Gila Drews
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Uyen Linh Ho
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marta Eva Jackowski
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Melissa Kracht
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Janina Lüders
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tore Bleckwehl
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Lukas Rositzka
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Matthias Ruwe
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Manuel Wittchen
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Petra Lutter
- Faculty of Biology, Mathematical Methods in Systems Biology, Proteome and Metabolome Research, Bielefeld University, Bielefeld, Germany
| | - Kristian Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Microbial Genomics and Biotechnology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
13
|
Mathieu K, Javed W, Vallet S, Lesterlin C, Candusso MP, Ding F, Xu XN, Ebel C, Jault JM, Orelle C. Functionality of membrane proteins overexpressed and purified from E. coli is highly dependent upon the strain. Sci Rep 2019; 9:2654. [PMID: 30804404 PMCID: PMC6390180 DOI: 10.1038/s41598-019-39382-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022] Open
Abstract
Overexpression of correctly folded membrane proteins is a fundamental prerequisite for functional and structural studies. One of the most commonly used expression systems for the production of membrane proteins is Escherichia coli. While misfolded proteins typically aggregate and form inclusions bodies, membrane proteins that are addressed to the membrane and extractable by detergents are generally assumed to be properly folded. Accordingly, GFP fusion strategy is often used as a fluorescent proxy to monitor their expression and folding quality. Here we investigated the functionality of two different multidrug ABC transporters, the homodimer BmrA from Bacillus subtilis and the heterodimer PatA/PatB from Streptococcus pneumoniae, when produced in several E. coli strains with T7 expression system. Strikingly, while strong expression in the membrane of several strains could be achieved, we observed drastic differences in the functionality of these proteins. Moreover, we observed a general trend in which mild detergents mainly extract the population of active transporters, whereas a harsher detergent like Fos-choline 12 could solubilize transporters irrespective of their functionality. Our results suggest that the amount of T7 RNA polymerase transcripts may indirectly but notably impact the structure and activity of overexpressed membrane proteins, and advise caution when using GFP fusion strategy.
Collapse
Affiliation(s)
- Khadija Mathieu
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Waqas Javed
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France.,Université Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Sylvain Vallet
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Christian Lesterlin
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Marie-Pierre Candusso
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France
| | - Feng Ding
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Xiaohong Nancy Xu
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Christine Ebel
- Université Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Jean-Michel Jault
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France.
| | - Cédric Orelle
- Université de Lyon, CNRS, UMR 5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 69367, Lyon, France.
| |
Collapse
|
14
|
Optimization of an In Vitro Transcription/Translation System Based on Sulfolobus solfataricus Cell Lysate. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2019; 2019:9848253. [PMID: 30886540 PMCID: PMC6388310 DOI: 10.1155/2019/9848253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022]
Abstract
A system is described which permits the efficient synthesis of proteins in vitro at high temperature. It is based on the use of an unfractionated cell lysate (S30) from Sulfolobus solfataricus previously well characterized in our laboratory for translation of pretranscribed mRNAs, and now adapted to perform coupled transcription and translation. The essential element in this expression system is a strong promoter derived from the S. solfataricus 16S/23S rRNA-encoding gene, from which specific mRNAs may be transcribed with high efficiency. The synthesis of two different proteins is reported, including the S. solfataricus DNA-alkylguanine-DNA-alkyl-transferase protein (SsOGT), which is shown to be successfully labeled with appropriate fluorescent substrates and visualized in cell extracts. The simplicity of the experimental procedure and specific activity of the proteins offer a number of possibilities for the study of structure-function relationships of proteins.
Collapse
|
15
|
Byun JY, Lee KH, Shin YB, Kim DM. Cascading Amplification of Immunoassay Signal by Cell-Free Expression of Firefly Luciferase from Detection Antibody-Conjugated DNA in an Escherichia coli Extract. ACS Sens 2019; 4:93-99. [PMID: 30582797 DOI: 10.1021/acssensors.8b00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expression immunoassay is a powerful technique that combines unique features of immunosorbent assays and cell-free protein synthesis. The main advantage of the expression immunoassay is a greatly amplified signal, whereas a conventional enzyme-linked immunosorbent assay (ELISA) employs a single enzyme molecule conjugated to a detection antibody to produce a measurable signal. Expression immunoassays utilize a DNA molecule conjugated to a target-bound antibody to generate multiple enzyme molecules that then produce the signal. To date, expression immunoassays have not been widely adopted due to the limited availability of efficient methods for translating antibody-conjugated DNA. We developed a highly efficient translation module for expression immunoassays using an Escherichia coli extract-based cell-free protein synthesis system. When we used our immunoassay technique to detect α-fetoprotein, we achieved a limit of detection of 7 fM. Given the outstanding sensitivity that can be obtained with only minimal modifications to the procedure of standard ELISA, we believe that this method will open up new possibilities for widespread application of expression immunoassays to ultrasensitive detection and diagnostics.
Collapse
Affiliation(s)
- Ju-Young Byun
- Hazards Monitoring BioNano Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Yong-Beom Shin
- Hazards Monitoring BioNano Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
16
|
Doerr A, de Reus E, van Nies P, van der Haar M, Wei K, Kattan J, Wahl A, Danelon C. Modelling cell-free RNA and protein synthesis with minimal systems. Phys Biol 2019; 16:025001. [DOI: 10.1088/1478-3975/aaf33d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Yelleswarapu M, van der Linden AJ, van Sluijs B, Pieters PA, Dubuc E, de Greef TFA, Huck WTS. Sigma Factor-Mediated Tuning of Bacterial Cell-Free Synthetic Genetic Oscillators. ACS Synth Biol 2018; 7:2879-2887. [PMID: 30408412 PMCID: PMC6305555 DOI: 10.1021/acssynbio.8b00300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Cell-free
transcription–translation provides a simplified
prototyping environment to rapidly design and study synthetic networks.
Despite the presence of a well characterized toolbox of genetic elements,
examples of genetic networks that exhibit complex temporal behavior
are scarce. Here, we present a genetic oscillator implemented in an E. coli-based cell-free system under steady-state conditions
using microfluidic flow reactors. The oscillator has an activator–repressor
motif that utilizes the native transcriptional machinery of E. coli: the RNAP and its associated sigma factors.
We optimized a kinetic model with experimental data using an evolutionary
algorithm to quantify the key regulatory model parameters. The functional
modulation of the RNAP was investigated by coupling two oscillators
driven by competing sigma factors, allowing the modification of network
properties by means of passive transcriptional regulation.
Collapse
Affiliation(s)
- Maaruthy Yelleswarapu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ardjan J. van der Linden
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bob van Sluijs
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Pascal A. Pieters
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emilien Dubuc
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tom F. A. de Greef
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Computational Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
18
|
Wiegand DJ, Lee HH, Ostrov N, Church GM. Establishing a Cell-Free Vibrio natriegens Expression System. ACS Synth Biol 2018; 7:2475-2479. [PMID: 30160938 DOI: 10.1021/acssynbio.8b00222] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fast growing bacterium Vibrio natriegens is an emerging microbial host for biotechnology. Harnessing its productive cellular components may offer a compelling platform for rapid protein production and prototyping of metabolic pathways or genetic circuits. Here, we report the development of a V. natriegens cell-free expression system. We devised a simplified crude extract preparation protocol and achieved >260 μg/mL of superfolder GFP in a small-scale batch reaction after 3 h. Culturing conditions, including growth media and cell density, significantly affect translation kinetics and protein yield of extracts. We observed maximal protein yield at incubation temperatures of 26 or 30 °C, and show improved yield by tuning ions crucial for ribosomal stability. This work establishes an initial V. natriegens cell-free expression system, enables probing of V. natriegens biology, and will serve as a platform to accelerate metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Daniel J. Wiegand
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Henry H. Lee
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Failmezger J, Scholz S, Blombach B, Siemann-Herzberg M. Cell-Free Protein Synthesis From Fast-Growing Vibrio natriegens. Front Microbiol 2018; 9:1146. [PMID: 29910785 PMCID: PMC5992293 DOI: 10.3389/fmicb.2018.01146] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/02/2022] Open
Abstract
Vibrio natriegens constitutes one of the fastest-growing nonpathogenic bacteria and a potential novel workhorse for many biotechnological applications. Here, we report the development of a Vibrio-based cell-free protein synthesis system (CFPS). Specifically, up to 0.4 g L-1 eGFP could be successfully synthesized in small-scale batch reactions using cell-free extract obtained from fast-growing V. natriegens cultures. Versatile CFPS system characterization attained by combining the analyses of key metabolites for translation and ribosomes revealed limitations regarding rRNA stability and critical substrate consumption (e.g., amino acids). Alternatively, rRNA showed increased stability by inducing Mg2+homeostasis in the reaction. Although the enormous translation capacity of the CFPS system based on the available ribosome concentration could not yet be fully exploited, its potential was successfully demonstrated by activating an endogenous transcription unit with V. natriegensRNA polymerase (RNAP) for protein expression. This allowed the use of in vitro screening for promoter strength, a critical factor for efficient gene expression in vitro and in vivo. Three different promoters were tested and output signals corresponded well with the expected affinity for V. natriegens RNAP. This established CFPS toolbox may provide a foundation to establish V. natriegens as a valuable platform in biotechnology as well as synthetic biology.
Collapse
|
20
|
Failmezger J, Rauter M, Nitschel R, Kraml M, Siemann-Herzberg M. Cell-free protein synthesis from non-growing, stressed Escherichia coli. Sci Rep 2017; 7:16524. [PMID: 29184159 PMCID: PMC5705671 DOI: 10.1038/s41598-017-16767-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023] Open
Abstract
Cell-free protein synthesis is a versatile protein production system. Performance of the protein synthesis depends on highly active cytoplasmic extracts. Extracts from E. coli are believed to work best; they are routinely obtained from exponential growing cells, aiming to capture the most active translation system. Here, we report an active cell-free protein synthesis system derived from cells harvested at non-growth, stressed conditions. We found a downshift of ribosomes and proteins. However, a characterization revealed that the stoichiometry of ribosomes and key translation factors was conserved, pointing to a fully intact translation system. This was emphasized by synthesis rates, which were comparable to those of systems obtained from fast-growing cells. Our approach is less laborious than traditional extract preparation methods and multiplies the yield of extract per cultivation. This simplified growth protocol has the potential to attract new entrants to cell-free protein synthesis and to broaden the pool of applications. In this respect, a translation system originating from heat stressed, non-growing E. coli enabled an extension of endogenous transcription units. This was demonstrated by the sigma factor depending activation of parallel transcription. Our cell-free expression platform adds to the existing versatility of cell-free translation systems and presents a tool for cell-free biology.
Collapse
Affiliation(s)
- Jurek Failmezger
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Rauter
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Robert Nitschel
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Michael Kraml
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
21
|
Nieß A, Failmezger J, Kuschel M, Siemann-Herzberg M, Takors R. Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions. ACS Synth Biol 2017. [PMID: 28627886 DOI: 10.1021/acssynbio.7b00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free (in vitro) protein synthesis (CFPS) systems provide a versatile tool that can be used to investigate different aspects of the transcription-translation machinery by reducing cells to the basic functions of protein formation. Recent improvements in reaction stability and lysate preparation offer the potential to expand the scope of in vitro biosynthesis from a research tool to a multifunctional and versatile platform for protein production and synthetic biology. To date, even the best-performing CFPS systems are drastically slower than in vivo references. Major limitations are imposed by ribosomal activities that progress in an order of magnitude slower on the mRNA template. Owing to the complex nature of the ribosomal machinery, conventional "trial and error" experiments only provide little insight into how the desired performance could be improved. By applying a DNA-sequence-oriented mechanistic model, we analyzed the major differences between cell-free in vitro and in vivo protein synthesis. We successfully identified major limiting elements of in vitro translation, namely the supply of ternary complexes consisting of EFTu and tRNA. Additionally, we showed that diluted in vitro systems suffer from reduced ribosome numbers. On the basis of our model, we propose a new experimental design predicting 90% increased translation rates, which were well achieved in experiments. Furthermore, we identified a shifting control in the translation rate, which is characterized by availability of the ternary complex under in vitro conditions and the initiation of translation in a living cell. Accordingly, the model can successfully be applied to sensitivity analyses and experimental design.
Collapse
Affiliation(s)
- Alexander Nieß
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Jurek Failmezger
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | - Maike Kuschel
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| | | | - Ralf Takors
- Institute
of Biochemical Engineering, University of Stuttgart, Stuttgart, D-70569, Germany
| |
Collapse
|
22
|
Hurst GB, Asano KG, Doktycz CJ, Consoli EJ, Doktycz WL, Foster CM, Morrell-Falvey JL, Standaert RF, Doktycz MJ. Proteomics-Based Tools for Evaluation of Cell-Free Protein Synthesis. Anal Chem 2017; 89:11443-11451. [DOI: 10.1021/acs.analchem.7b02555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Robert F. Standaert
- University of Tennessee, Department of Biochemistry & Cellular and Molecular Biology, Knoxville, Tennessee 37996, United States
| | | |
Collapse
|
23
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
24
|
Jérôme V, Thoring L, Salzig D, Kubick S, Freitag R. Comparison of cell-based versus cell-free mammalian systems for the production of a recombinant human bone morphogenic growth factor. Eng Life Sci 2017; 17:1097-1107. [PMID: 32624737 DOI: 10.1002/elsc.201700005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
The human bone morphogenetic protein-2 (hBMP2) is a glycoprotein, which induces de novo bone formation. Here, recombinant production in stably transfected Chinese Hamster Ovary (CHO) cells is compared to transient expression in Human Embryo Kidney (HEK) cells and cell-free synthesis in CHO cell lysates containing microsomal structures as sites of post-translational processing. In case of the stably transfected cells, growth rates and viabilities were similar to those of the parent cells, while entry into the death phase of the culture was delayed. The maximum achievable rhBMP2 concentration in these cultures was 153 pg/mL. Up to 280 ng/mL could be produced in the transient expression system. In both cases the rhBMP-2 was found to interact with the producer cells, which presumably contributed to the low yields. In the cell-free system, hBMP2 yields could be increased to almost 40 μg/mL, reached within three hours. The cell-free system thus approached productivities for the active (renatured) protein previously only recorded for bacterial hosts, while assuring comprehensive post-translational processing.
Collapse
Affiliation(s)
- Valérie Jérôme
- Chair for Process Biotechnology University of Bayreuth Germany
| | - Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Germany
| | - Denise Salzig
- Chair for Process Biotechnology University of Bayreuth Germany
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Germany
| | - Ruth Freitag
- Chair for Process Biotechnology University of Bayreuth Germany
| |
Collapse
|
25
|
Kwon SJ, Kim D, Lee I, Kim J, Dordick JS. In vitro gene expression-coupled bacterial cell chip for screening species-specific antimicrobial enzymes. Biotechnol Bioeng 2017; 114:1648-1657. [PMID: 28369698 DOI: 10.1002/bit.26300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Targeting infectious bacterial pathogens is important for reducing the evolution of antibiotic-resistant bacteria and preserving the endogenous human microbiome. Cell lytic enzymes including bacteriophage endolysins, bacterial autolysins, and other bacteriolysins are useful antibiotic alternatives due to their exceptional target selectivity, which may be used to lysins rapidly kill target bacteria and their high specificity permit the normal commensal microflora to be left undisturbed. Genetic information of numerous lysins is currently available, but the identification of their antimicrobial function and specificity has been limited because most lysins are often poorly expressed and exhibit low solubilities. Here, we report the development of bacterial cell chip for rapidly accessing the function of diverse genes that are suggestive of encoding lysins. This approach can be used to evaluate rapidly the species-specific antimicrobial activity of diverse lysins synthesized from in vitro transcription and translation (TNT) of plasmid DNA. In addition, new potent lysins can be assessed that are not expressed in hosts and display low solubility. As a result of evaluating the species-specific antimicrobial function of 11 (un)known lysins with an in vitro TNT-coupled bacterial cell chip, a potent recombinant lysin against Staphylococcus strains, SA1, was identified. The SA1 was highly potent against not only S. aureus, but also both lysostaphin-resistant S. simulans and S. epidermidis cells. To this end, the SA1 may be applicable to treat both methicillin-resistant S. aureus (MRSA) and lysostaphin-resistant MRSA mutants. Biotechnol. Bioeng. 2017;114: 1648-1657. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Domyoung Kim
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| |
Collapse
|
26
|
Hansen MMK, Ventosa Rosquelles M, Yelleswarapu M, Maas RJM, van Vugt-Jonker AJ, Heus HA, Huck WTS. Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems. ACS Synth Biol 2016; 5:1433-1440. [PMID: 27306580 DOI: 10.1021/acssynbio.6b00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Secondary structure formation of mRNA, caused by desynchronization of transcription and translation, is known to impact gene expression in vivo. Yet, inactivation of mRNA by secondary structures in cell-free protein expression is frequently overlooked. Transcription and translation rates are often not highly synchronized in cell-free expression systems, leading to a temporal mismatch between the processes and a drop in efficiency of protein production. By devising a cell-free gene expression platform in which transcriptional and translational elongation are successfully performed independently, we determine that sequence-dependent mRNA secondary structures are the main cause of mRNA inactivation in in vitro gene expression.
Collapse
Affiliation(s)
- Maike M. K. Hansen
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Marta Ventosa Rosquelles
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Maaruthy Yelleswarapu
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Aafke J. van Vugt-Jonker
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
27
|
Cell-Free Synthesis of Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [PMID: 27165320 DOI: 10.1007/978-3-319-27216-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Cell-free protein synthesis based on E. coli cell extracts has been described for the first time more than 50 years ago. To date, cell-free synthesis is widely used for the preparation of toxic proteins, for studies of the translation process and its regulation as well as for the incorporation of artificial or labeled amino acids into a polypeptide chain. Many efforts have been directed towards establishing cell-free expression as a standard method for gene expression, with limited success. In this chapter we will describe the state-of-the-art of cell-free expression, extract preparation methods and recent examples for successful applications of cell-free synthesis of macromolecular complexes.
Collapse
|
28
|
Li J, Gu L, Aach J, Church GM. Improved cell-free RNA and protein synthesis system. PLoS One 2014; 9:e106232. [PMID: 25180701 PMCID: PMC4152126 DOI: 10.1371/journal.pone.0106232] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Abstract
Cell-free RNA and protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE) system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4), ribosome recycling factor (RRF), release factors (RF1, RF2, RF3), chaperones (GroEL/ES), BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liangcai Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Jackson K, Fan ZH. Cell-Free Protein Synthesis in Miniaturized Array Devices and Effects of Device Orientation. ACTA ACUST UNITED AC 2014; 19:366-74. [DOI: 10.1177/2211068213501497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 11/17/2022]
|
30
|
Rosenblum G, Cooperman BS. Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 2013; 588:261-8. [PMID: 24161673 DOI: 10.1016/j.febslet.2013.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
Abstract
The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching to tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression.
Collapse
Affiliation(s)
- Gabriel Rosenblum
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States.
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
31
|
Sun ZZ, Hayes CA, Shin J, Caschera F, Murray RM, Noireaux V. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp 2013:e50762. [PMID: 24084388 PMCID: PMC3960857 DOI: 10.3791/50762] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ideal cell-free expression systems can theoretically emulate an in vivo cellular environment in a controlled in vitro platform.1 This is useful for expressing proteins and genetic circuits in a controlled manner as well as for providing a prototyping environment for synthetic biology.2,3 To achieve the latter goal, cell-free expression systems that preserve endogenous Escherichia coli transcription-translation mechanisms are able to more accurately reflect in vivo cellular dynamics than those based on T7 RNA polymerase transcription. We describe the preparation and execution of an efficient endogenous E. coli based transcription-translation (TX-TL) cell-free expression system that can produce equivalent amounts of protein as T7-based systems at a 98% cost reduction to similar commercial systems.4,5 The preparation of buffers and crude cell extract are described, as well as the execution of a three tube TX-TL reaction. The entire protocol takes five days to prepare and yields enough material for up to 3000 single reactions in one preparation. Once prepared, each reaction takes under 8 hr from setup to data collection and analysis. Mechanisms of regulation and transcription exogenous to E. coli, such as lac/tet repressors and T7 RNA polymerase, can be supplemented.6 Endogenous properties, such as mRNA and DNA degradation rates, can also be adjusted.7 The TX-TL cell-free expression system has been demonstrated for large-scale circuit assembly, exploring biological phenomena, and expression of proteins under both T7- and endogenous promoters.6,8 Accompanying mathematical models are available.9,10 The resulting system has unique applications in synthetic biology as a prototyping environment, or "TX-TL biomolecular breadboard."
Collapse
Affiliation(s)
- Zachary Z Sun
- Department of Biology, California Institute of Technology
| | | | | | | | | | | |
Collapse
|
32
|
Hodgman CE, Jewett MC. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol Bioeng 2013; 110:2643-54. [PMID: 23832321 DOI: 10.1002/bit.24942] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 01/31/2023]
Abstract
Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1) µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
33
|
Chappell J, Jensen K, Freemont PS. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 2013; 41:3471-81. [PMID: 23371936 PMCID: PMC3597704 DOI: 10.1093/nar/gkt052] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology.
Collapse
Affiliation(s)
- James Chappell
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
34
|
Enhanced in vitro translation at reduced temperatures using a cold-shock RNA motif. Biotechnol Lett 2012; 35:389-95. [DOI: 10.1007/s10529-012-1091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
35
|
Araújo WL, Trofimova L, Mkrtchyan G, Steinhauser D, Krall L, Graf A, Fernie AR, Bunik VI. On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. Amino Acids 2012; 44:683-700. [DOI: 10.1007/s00726-012-1392-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
|
36
|
Rosenblum G, Chen C, Kaur J, Cui X, Goldman YE, Cooperman BS. Real-time assay for testing components of protein synthesis. Nucleic Acids Res 2012; 40:e88. [PMID: 22422844 PMCID: PMC3384345 DOI: 10.1093/nar/gks232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present a flexible, real-time-coupled transcription–translation assay that involves the continuous monitoring of fluorescent Emerald GFP formation. Along with numerical simulation of a reaction kinetics model, the assay permits quantitative estimation of the effects on full-length protein synthesis of various additions, subtractions or substitutions to the protein synthesis machinery. Since the assay uses continuous fluorescence monitoring, it is much simpler and more rapid than other assays of protein synthesis and is compatible with high-throughput formats. Straightforward alterations of the assay permit determination of (i) the fraction of ribosomes in a cell-free protein synthesis kit that is active in full-length protein synthesis and (ii) the relative activities in supporting protein synthesis of modified (e.g. mutated, fluorescent-labeled) exogenous components (ribosomes, amino acid-specific tRNAs) that replace the corresponding endogenous components. Ribosomes containing fluorescent-labeled L11 and tRNAs labeled with fluorophores in the D-loop retain substantial activity. In the latter case, the extent of activity loss correlates with a combination of steric bulk and hydrophobicity of the fluorophore.
Collapse
Affiliation(s)
- Gabriel Rosenblum
- The Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ge X, Luo D, Xu J. Cell-free protein expression under macromolecular crowding conditions. PLoS One 2011; 6:e28707. [PMID: 22174874 PMCID: PMC3234285 DOI: 10.1371/journal.pone.0028707] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 11/14/2011] [Indexed: 01/29/2023] Open
Abstract
Background Cell-free protein expression (CFPE) comprised of in vitro transcription and translation is currently manipulated in relatively dilute solutions, in which the macromolecular crowding effects present in living cells are largely ignored. This may not only affect the efficiency of protein synthesis in vitro, but also limit our understanding of the functions and interactions of biomolecules involved in this fundamental biological process. Methodology/Principal Findings Using cell-free synthesis of Renilla luciferase in wheat germ extract as a model system, we investigated the CFPE under macromolecular crowding environments emulated with three different crowding agents: PEG-8000, Ficoll-70 and Ficoll-400, which vary in chemical properties and molecular size. We found that transcription was substantially enhanced in the macromolecular crowding solutions; up to 4-fold increase in the mRNA production was detected in the presence of 20% (w/v) of Ficoll-70. In contrast, translation was generally inhibited by the addition of each of the three crowding agents. This might be due to PEG-induced protein precipitation and non-specific binding of translation factors to Ficoll molecules. We further explored a two-stage CFPE in which transcription and translation was carried out under high then low macromolecular crowding conditions, respectively. It produced 2.2-fold higher protein yield than the coupled CFPE control. The macromolecular crowding effects on CFPE were subsequently confirmed by cell-free synthesis of an approximately two-fold larger protein, Firefly luciferase, under macromolecular crowding environments. Conclusions/Significance Three macromolecular crowding agents used in this research had opposite effects on transcription and translation. The results of this study should aid researchers in their choice of macromolecular crowding agents and shows that two-stage CFPE is more efficient than coupled CFPE.
Collapse
Affiliation(s)
- Xumeng Ge
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jianfeng Xu
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kobayashi T, Nakamura Y, Mikami S, Masutani M, Machida K, Imataka H. Synthesis of encephalomyocarditis virus in a cell-free system: from DNA to RNA virus in one tube. Biotechnol Lett 2011; 34:67-73. [DOI: 10.1007/s10529-011-0744-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
|
39
|
Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD. NMR structures of thiostrepton derivatives for characterization of the ribosomal binding site. Angew Chem Int Ed Engl 2011; 50:3308-12. [PMID: 21365717 DOI: 10.1002/anie.201003582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/20/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Hendrik R A Jonker
- Johann Wolfgang Goethe-Universität, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Noireaux V, Maeda YT, Libchaber A. Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci U S A 2011; 108:3473-80. [PMID: 21317359 PMCID: PMC3048108 DOI: 10.1073/pnas.1017075108] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This article describes the state and the development of an artificial cell project. We discuss the experimental constraints to synthesize the most elementary cell-sized compartment that can self-reproduce using synthetic genetic information. The original idea was to program a phospholipid vesicle with DNA. Based on this idea, it was shown that in vitro gene expression could be carried out inside cell-sized synthetic vesicles. It was also shown that a couple of genes could be expressed for a few days inside the vesicles once the exchanges of nutrients with the outside environment were adequately introduced. The development of a cell-free transcription/translation toolbox allows the expression of a large number of genes with multiple transcription factors. As a result, the development of a synthetic DNA program is becoming one of the main hurdles. We discuss the various possibilities to enrich and to replicate this program. Defining a program for self-reproduction remains a difficult question as nongenetic processes, such as molecular self-organization, play an essential and complementary role. The synthesis of a stable compartment with an active interface, one of the critical bottlenecks in the synthesis of artificial cell, depends on the properties of phospholipid membranes. The problem of a self-replicating artificial cell is a long-lasting goal that might imply evolution experiments.
Collapse
Affiliation(s)
- Vincent Noireaux
- University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455; and
| | - Yusuke T. Maeda
- The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Albert Libchaber
- The Rockefeller University, 1230 York Avenue, New York, NY 10021
| |
Collapse
|
41
|
Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD. NMR-Strukturen von Thiostrepton-Derivaten zur Charakterisierung der ribosomalen Bindetasche. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201003582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Conde J, de la Fuente JM, Baptista PV. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles. NANOTECHNOLOGY 2010; 21:505101. [PMID: 21098932 DOI: 10.1088/0957-4484/21/50/505101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.
Collapse
Affiliation(s)
- J Conde
- Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
43
|
Miot M, Betton JM. Reconstitution of the Cpx signaling system from cell-free synthesized proteins. N Biotechnol 2010; 28:277-81. [PMID: 20601270 DOI: 10.1016/j.nbt.2010.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/16/2010] [Indexed: 11/29/2022]
Abstract
Cell-free expression has received growing attention as an effective system to produce integral membrane proteins for biochemical studies. We have applied this technology for the production of the histidine kinase CpxA, an integral membrane sensor that regulates an envelope stress response in Escherichia coli. All phosphotransfer activities of detergent-solubilized CpxA synthesized in vitro have been characterized and compared with those of CpxA solubilized from bacterial membranes. The results demonstrate the simplicity and efficiency of this technology for purifying large quantities of functional membrane proteins.
Collapse
Affiliation(s)
- Marika Miot
- Unité de Biochimie Structurale, Institut Pasteur, URA-CNRS 2185, 75724 Paris cedex 15, France
| | | |
Collapse
|
44
|
Shin J, Noireaux V. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70. J Biol Eng 2010; 4:8. [PMID: 20576148 PMCID: PMC3161345 DOI: 10.1186/1754-1611-4-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022] Open
Abstract
Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP) regeneration systems: creatine phosphate (CP), phosphoenolpyruvate (PEP), and 3-phosphoglyceric acid (3-PGA). The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma factor 70 are available that form a broad library of regulatory parts. In this work, cell-free expression is developed as a toolbox to design and to study synthetic gene circuits in vitro.
Collapse
Affiliation(s)
- Jonghyeon Shin
- University of Minnesota, 116 Church Street S,E,, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
45
|
Krokidis MG, Kostopoulou ON, Kalpaxis DL, Dinos GP. Dissecting the ribosomal inhibition mechanism of a new ketolide carrying an alkyl-aryl group at C-13 of its lactone ring. Int J Antimicrob Agents 2010; 35:235-9. [PMID: 20045632 DOI: 10.1016/j.ijantimicag.2009.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Ketolides are effective not only against macrolide-sensitive bacteria but also against some macrolide-resistant strains. Here we present data regarding a new ketolide with an alkyl-aryl side chain at C-13 of its lactone ring. It behaves as a strong inhibitor of protein synthesis in a model coupled transcription/translation system, although it does not affect the accuracy of translation. In addition, detailed kinetic analysis shows that it slowly forms a very tight, slowly reversible complex with prokaryotic ribosomes, a property that could be correlated with its superior activity compared with erythromycin against Escherichia coli both in vivo and in vitro.
Collapse
Affiliation(s)
- Marios G Krokidis
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | | |
Collapse
|
46
|
Takahashi S, Iida M, Furusawa H, Shimizu Y, Ueda T, Okahata Y. Real-time monitoring of cell-free translation on a quartz-crystal microbalance. J Am Chem Soc 2009; 131:9326-32. [PMID: 19518055 DOI: 10.1021/ja9019947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficiency of protein synthesis is often regulated post-transcriptionally by sequences within the mRNA. To investigate the reactions of protein translation, we established a system that allowed real-time monitoring of protein synthesis using a cell-free translation mixture and a 27 MHz quartz-crystal microbalance (QCM). Using an mRNA that encoded a fusion polypeptide comprising the streptavidin-binding peptide (SBP) tag, a portion of Protein D as a spacer, and the SecM arrest sequence, we could follow the binding of the SBP tag, while it was displayed on the 70S ribosome, to a streptavidin-modified QCM over time. Thus, we could follow a single turnover of protein synthesis as a change in mass. This approach allowed us to evaluate the effects of different antibiotics and mRNA sequences on the different steps of translation. From the results of this study, we have determined that both the formation of the initiation complex from the 70S ribosome, mRNA, and fMet-tRNA(fMet) and the accommodation of the second aminoacyl-tRNA to the initiation complex are rate-limiting steps in protein synthesis.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
47
|
A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif 2008; 62:190-8. [DOI: 10.1016/j.pep.2008.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/01/2008] [Accepted: 09/04/2008] [Indexed: 11/21/2022]
|
48
|
Szaflarski W, Vesper O, Teraoka Y, Plitta B, Wilson DN, Nierhaus KH. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J Mol Biol 2008; 380:193-205. [PMID: 18508080 DOI: 10.1016/j.jmb.2008.04.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
We describe the optimization of a poly(Phe) synthesis system, the conditions of which have been applied for efficient translation of heteropolymeric mRNAs. Here we identify two parameters that are essential to obtain translation at efficiency and accuracy levels equivalent to those in vivo, viz., the fine-tuning of the energy-rich components with an acetyl-phosphate substrate for energy regeneration, as well as the ionic conditions. Applying this system revealed a number of new features: (i) 70S ribosomes are able to recycle within 300 s in a non-enzymatic fashion in the absence of tmRNA. This observation might explain the fact that a knockout of the tmRNA gene ssrA is not lethal for Escherichia coli cells in contrast to other bacterial strains, such as Bacillus subtilis. (ii) The high efficiency of the system was exploited to analyze the misincorporation of various amino acids (resolution limit=1:15,000). No misreading was observed at the middle codon position and only marginal effects were observed at the first one (even when misreading was artificially stimulated 20- to 30-fold), yielding an improved definition of the near-cognate and non-cognate aminoacyl-tRNAs. (iii) Aminoglycosides increase Phe and Lys incorporation about 2-fold in the presence of poly(U) or poly(UUC) and poly(A), respectively, and induce a back-translocation (except hygromycin B) exclusively in the absence of EF-G*GTP, as do the non-related drugs viomycin and edeine.
Collapse
Affiliation(s)
- Witold Szaflarski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Nierhaus KH. Question 6: early steps of evolution and some ideas about a simplified translational machinery. ORIGINS LIFE EVOL B 2007; 37:391-8. [PMID: 17668285 DOI: 10.1007/s11084-007-9096-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/14/2007] [Indexed: 11/24/2022]
Abstract
Here, the undisputed steps in the beginning of life on earth are compiled, before a retrograde approach is presented outlining a possible minimal set of components required for protein synthesis, based on our knowledge of modern translational apparatus of Escherichia coli.
Collapse
Affiliation(s)
- Knud H Nierhaus
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestr. 73, 14195 Berlin, Germany.
| |
Collapse
|
50
|
Szaflarski W, Nierhaus KH. Question 7: optimized energy consumption for protein synthesis. ORIGINS LIFE EVOL B 2007; 37:423-8. [PMID: 17634746 DOI: 10.1007/s11084-007-9091-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/20/2007] [Indexed: 11/26/2022]
Abstract
In our previous contribution (Nierhaus, Orig Life Evol Biosph, this volume, 2007) we mentioned that life had solved the problem of energy supply in three major steps, and that these steps also mark major stages during the development of life. We further outlined a possible scenario concerning a minimal translational apparatus focusing on the essential components necessary for protein synthesis. Here we continue that consideration by addressing on one of the main problems of early life, namely avoiding wasteful energy loss. With regard to the limiting energy supply of early living systems, i.e. those of say more than 3,000 Ma, a carefully controlled and product oriented energy consumption was in demand. In recent years we learned how a bacterial cell avoids energy drain, thus being able to pump most of the energy into protein synthesis. These lessons must be followed by the design of a minimal living system, which is surveyed in this short article.
Collapse
Affiliation(s)
- Witold Szaflarski
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 63-73, 14195 Berlin, Germany
| | | |
Collapse
|