1
|
Emmenecker C, Dai J, Lefranc S, Ouddah A, Guerin J, Pakzad S, Andrey P, Kumar R. A high-throughput differential chemical genetic screen uncovers genotype-specific compounds altering plant growth. iScience 2025; 28:112375. [PMID: 40292320 PMCID: PMC12032938 DOI: 10.1016/j.isci.2025.112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
The identification of chemical compounds regulating plant growth in a genetic context can greatly enhance our understanding of biological mechanisms. Here, we have developed a high-throughput phenotype-directed chemical screening method in plants to compare two genotypes and identify small molecules inducing genotype-specific phenotypes. We used Arabidopsis thaliana wild type and mus81, a DNA repair mutant, and screened off-patent drugs from the Prestwick library to selectively identify molecules affecting mus81 growth. We developed two complementary convolutional neural networks (CNN)-based image segmentation and classification programs to quantify Arabidopsis seedling growth. Using these approaches, we detected that about 10% of Prestwick molecules cause altered growth in both genotypes, suggesting their toxic effects on plant growth. We identified three Prestwick molecules specifically affecting mus81. Overall, we developed a straightforward, accurate, and adaptable methodology for performing high-throughput screening of chemical libraries in a time-efficient manner, accelerating the discovery of genotype-specific chemical regulators of plant growth.
Collapse
Affiliation(s)
- Côme Emmenecker
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Jingqi Dai
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Sandrine Lefranc
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Ayoub Ouddah
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Julie Guerin
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Simine Pakzad
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Philippe Andrey
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| | - Rajeev Kumar
- University of Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France
| |
Collapse
|
2
|
Du Y, Li Y, Tang W, Mo W, Ma T, Lin R. ESSENTIAL MEIOTIC ENDONUCLEASE 1 is required for chloroplast development and DNA repair in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333587 DOI: 10.1111/pbi.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Chloroplast development is fundamental to photosynthesis and plant growth but is sensitive to environmental stress. Chloroplast development and division require genome stability and DNA repair, but the underlying mechanisms have been unclear. Using a forward genetic approach, we identified the striped-leaf mutant k48 in the rice (Oryza sativa L. japonica) cultivar KY131 background. k48 displayed defects in chloroplast development and photosynthesis, especially under high-light conditions. Genetic and complementation studies revealed that the loss of ESSENTIAL MEIOTIC ENDONUCLEASE 1 (EME1) is responsible for the defects in k48. Transcriptomic analysis showed that OsEME1 globally regulates the expression of genes involved in photosynthesis and DNA repair. Furthermore, mutations in OsEME1 led to cell cycle arrest and a DNA damage response. An in vitro endonuclease activity assay indicated that OsEME1 directly binds to and cleaves DNA substrates with a specific structure and that four conserved amino acids are required for its activity. Notably, OsEME1 targeted DNA fragments of rice GOLDEN-LIKE 1 (GLK1) and GLK2. We also demonstrated that OsEME1 interacts with the structure-specific endonuclease methyl methanesulfonate (MMS) and UV-SENSITIVE PROTEIN 81 (MUS81). This study highlights the role of OsEME1 in regulating chloroplast development by modulating homologous recombination repair in response to damage to double-stranded DNA.
Collapse
Affiliation(s)
- Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Weiping Mo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
3
|
Durand S, Lian Q, Solier V, Fernandes J, Mercier R. MutLγ enforces meiotic crossovers in Arabidopsis thaliana. Nucleic Acids Res 2025; 53:gkaf157. [PMID: 40105241 PMCID: PMC11920796 DOI: 10.1093/nar/gkaf157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
During meiosis, each chromosome pair experiences at least one crossover (CO), which directs their balanced segregation in addition to shuffling genetic information. COs tend to be away from each other, a phenomenon known as CO interference. The main biochemical pathway for CO formation, which is conserved in distant eukaryotes, involves the ZMM proteins together with the MLH1-MLH3 complex (MutLγ). Here, we aim to clarify the role of MutLγ in CO formation in Arabidopsis thaliana. We show that AtMutLγ is partially dispensable for ZMM-dependent CO formation. HEI10 large foci-that mark CO sites in wild-type-form at a normal level in mlh1 and mlh3 mutants, but are inefficiently maturated into COs. Mutating the MUS81 nuclease in either mlh1 or mlh3 leads to chromosome fragmentation, which is suppressed by further mutating the zmm msh5. This suggests that in the absence of MutLγ, recombination intermediates produced by ZMMs are resolved by MUS81, which does not ensure CO formation. Finally, CO interference is marginally affected in mlh1, which is compatible with a random sub-sampling of normally patterned CO sites. We conclude that AtMutLγ imposes designated recombination intermediates to be resolved exclusively as COs, supporting the view that MutLγ asymmetrically resolves double-Holliday junctions, yielding COs.
Collapse
Affiliation(s)
- Stéphanie Durand
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Victor Solier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Joiselle Blanche Fernandes
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
4
|
Zhu L, Dluzewska J, Fernández-Jiménez N, Ranjan R, Pelé A, Dziegielewski W, Szymanska-Lejman M, Hus K, Górna J, Pradillo M, Ziolkowski PA. The kinase ATR controls meiotic crossover distribution at the genome scale in Arabidopsis. THE PLANT CELL 2024; 37:koae292. [PMID: 39471331 DOI: 10.1093/plcell/koae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Meiotic crossover, i.e. the reciprocal exchange of chromosome fragments during meiosis, is a key driver of genetic diversity. Crossover is initiated by the formation of programmed DNA double-strand breaks (DSBs). While the role of ATAXIA-TELANGIECTASIA AND RAD3-RELATED (ATR) kinase in DNA damage signaling is well-known, its impact on crossover formation remains understudied. Here, using measurements of recombination at chromosomal intervals and genome-wide crossover mapping, we showed that ATR inactivation in Arabidopsis (Arabidopsis thaliana) leads to dramatic crossover redistribution, with an increase in crossover frequency in chromosome arms and a decrease in pericentromeres. These global changes in crossover placement were not caused by alterations in DSB numbers, which we demonstrated by analyzing phosphorylated H2A.X foci in zygonema. Using the seed-typing technique, we found that hotspot usage remains mainly unchanged in atr mutants compared with wild-type individuals. Moreover, atr showed no change in the number of crossovers caused by two independent pathways, which implies no effect on crossover pathway choice. Analyses of genetic interaction indicate that while the effects of atr are independent of MMS AND UV SENSITIVE81 (MUS81), ZIPPER1 (ZYP1), FANCONI ANEMIA COMPLEMENTATION GROUP M (FANCM), and D2 (FANCD2), the underlying mechanism may be similar between ATR and FANCD2. This study extends our understanding of ATR's role in meiosis, uncovering functions in regulating crossover distribution.
Collapse
Affiliation(s)
- Longfei Zhu
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rajeev Ranjan
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Karolina Hus
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Julia Górna
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
5
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
6
|
Fernandes JB, Naish M, Lian Q, Burns R, Tock AJ, Rabanal FA, Wlodzimierz P, Habring A, Nicholas RE, Weigel D, Mercier R, Henderson IR. Structural variation and DNA methylation shape the centromere-proximal meiotic crossover landscape in Arabidopsis. Genome Biol 2024; 25:30. [PMID: 38254210 PMCID: PMC10804481 DOI: 10.1186/s13059-024-03163-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined. RESULTS To explore the centromere-proximal meiotic recombination landscape, we map 14,397 crossovers against fully assembled Arabidopsis thaliana (A. thaliana) genomes. A. thaliana centromeres comprise megabase satellite repeat arrays that load nucleosomes containing the CENH3 histone variant. Each chromosome contains a structurally polymorphic region of ~3-4 megabases, which lack crossovers and include the satellite arrays. This polymorphic region is flanked by ~1-2 megabase low-recombination zones. These recombination-suppressed regions are enriched for Gypsy/Ty3 retrotransposons, and additionally contain expressed genes with high genetic diversity that initiate meiotic recombination, yet do not crossover. We map crossovers at high-resolution in proximity to CEN3, which resolves punctate centromere-proximal hotspots that overlap gene islands embedded in heterochromatin. Centromeres are densely DNA methylated and the recombination landscape is remodelled in DNA methylation mutants. We observe that the centromeric low-recombining zones decrease and increase crossovers in CG (met1) and non-CG (cmt3) mutants, respectively, whereas the core non-recombining zones remain suppressed. CONCLUSION Our work relates the genetic and epigenetic organization of A. thaliana centromeres and flanking pericentromeric heterochromatin to the zones of crossover suppression that surround the CENH3-occupied satellite repeat arrays.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Robert E Nicholas
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, D-72076, Tübingen, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
7
|
Tamilselvan-Nattar-Amutha S, Hiekel S, Hartmann F, Lorenz J, Dabhi RV, Dreissig S, Hensel G, Kumlehn J, Heckmann S. Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1201446. [PMID: 37404527 PMCID: PMC10315673 DOI: 10.3389/fpls.2023.1201446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023]
Abstract
Genome editing strategies in barley (Hordeum vulgare L.) typically rely on Agrobacterium-mediated genetic transformation for the delivery of required genetic reagents involving tissue culture techniques. These approaches are genotype-dependent, time-consuming, and labor-intensive, which hampers rapid genome editing in barley. More recently, plant RNA viruses have been engineered to transiently express short guide RNAs facilitating CRISPR/Cas9-based targeted genome editing in plants that constitutively express Cas9. Here, we explored virus-induced genome editing (VIGE) based on barley stripe mosaic virus (BSMV) in Cas9-transgenic barley. Somatic and heritable editing in the ALBOSTRIANS gene (CMF7) resulting in albino/variegated chloroplast-defective barley mutants is shown. In addition, somatic editing in meiosis-related candidate genes in barley encoding ASY1 (an axis-localized HORMA domain protein), MUS81 (a DNA structure-selective endonuclease), and ZYP1 (a transverse filament protein of the synaptonemal complex) was achieved. Hence, the presented VIGE approach using BSMV enables rapid somatic and also heritable targeted gene editing in barley.
Collapse
|
8
|
Dvořák Tomaštíková E, Prochazkova K, Yang F, Jemelkova J, Finke A, Dorn A, Said M, Puchta H, Pecinka A. SMC5/6 complex-mediated SUMOylation stimulates DNA-protein cross-link repair in Arabidopsis. THE PLANT CELL 2023; 35:1532-1547. [PMID: 36705512 PMCID: PMC10118267 DOI: 10.1093/plcell/koad020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
DNA-protein cross-links (DPCs) are highly toxic DNA lesions consisting of proteins covalently attached to chromosomal DNA. Unrepaired DPCs physically block DNA replication and transcription. Three DPC repair pathways have been identified in Arabidopsis (Arabidopsis thaliana) to date: the endonucleolytic cleavage of DNA by the structure-specific endonuclease MUS81; proteolytic degradation of the crosslinked protein by the metalloprotease WSS1A; and cleavage of the cross-link phosphodiester bonds by the tyrosyl phosphodiesterases TDP1 and TDP2. Here we describe the evolutionary conserved STRUCTURAL MAINTENANCE OF CHROMOSOMEs SMC5/6 complex as a crucial component involved in DPC repair. We identified multiple alleles of the SMC5/6 complex core subunit gene SMC6B via a forward-directed genetic screen designed to identify the factors involved in the repair of DPCs induced by the cytidine analog zebularine. We monitored plant growth and cell death in response to DPC-inducing chemicals, which revealed that the SMC5/6 complex is essential for the repair of several types of DPCs. Genetic interaction and sensitivity assays showed that the SMC5/6 complex works in parallel to the endonucleolytic and proteolytic pathways. The repair of zebularine-induced DPCs was associated with SMC5/6-dependent SUMOylation of the damage sites. Thus, we present the SMC5/6 complex as an important factor in plant DPC repair.
Collapse
Affiliation(s)
| | - Klara Prochazkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
| | - Fen Yang
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| | - Jitka Jemelkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Functional Genomics and Proteomics, National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | | | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900 Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, 12619, Cairo, Egypt
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | | |
Collapse
|
9
|
Ziolkowski PA. Why do plants need the ZMM crossover pathway? A snapshot of meiotic recombination from the perspective of interhomolog polymorphism. PLANT REPRODUCTION 2023; 36:43-54. [PMID: 35819509 PMCID: PMC9958190 DOI: 10.1007/s00497-022-00446-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 06/06/2023]
Abstract
At the heart of meiosis is crossover recombination, i.e., reciprocal exchange of chromosome fragments between parental genomes. Surprisingly, in most eukaryotes, including plants, several recombination pathways that can result in crossover event operate in parallel during meiosis. These pathways emerged independently in the course of evolution and perform separate functions, which directly translate into their roles in meiosis. The formation of one crossover per chromosome pair is required for proper chromosome segregation. This "obligate" crossover is ensured by the major crossover pathway in plants, and in many other eukaryotes, known as the ZMM pathway. The secondary pathways play important roles also in somatic cells and function mainly as repair mechanisms for DNA double-strand breaks (DSBs) not used for crossover formation. One of the consequences of the functional differences between ZMM and other DSB repair pathways is their distinct sensitivities to polymorphisms between homologous chromosomes. From a population genetics perspective, these differences may affect the maintenance of genetic variability. This might be of special importance when considering that a significant portion of plants uses inbreeding as a predominant reproductive strategy, which results in loss of interhomolog polymorphism. While we are still far from fully understanding the relationship between meiotic recombination pathways and genetic variation in populations, recent studies of crossovers in plants offer a new perspective.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
10
|
Mu N, Li Y, Li S, Shi W, Shen Y, Yang H, Zhang F, Tang D, Du G, You A, Cheng Z. MUS81 is required for atypical recombination intermediate resolution but not crossover designation in rice. THE NEW PHYTOLOGIST 2023; 237:2422-2434. [PMID: 36495065 DOI: 10.1111/nph.18668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.
Collapse
Affiliation(s)
- Na Mu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanhe Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
12
|
Darrier B, Colas I, Rimbert H, Choulet F, Bazile J, Sortais A, Jenczewski E, Sourdille P. Location and Identification on Chromosome 3B of Bread Wheat of Genes Affecting Chiasma Number. PLANTS (BASEL, SWITZERLAND) 2022; 11:2281. [PMID: 36079661 PMCID: PMC9460588 DOI: 10.3390/plants11172281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.
Collapse
Affiliation(s)
- Benoit Darrier
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
- Syngenta, Toulouse Innovation Centre 12 Chemin de l’Hobit, 31790 Saint-Sauveur, France
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hélène Rimbert
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Frédéric Choulet
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Jeanne Bazile
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Aurélien Sortais
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Pierre Sourdille
- UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, 5, INRAE–Université Clermont-Auvergne, Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii. Nat Genet 2022; 54:705-714. [PMID: 35513725 PMCID: PMC9110296 DOI: 10.1038/s41588-022-01052-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Most genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 different environmental growth conditions and chemical treatments. A total of 59% of genes are represented by at least one mutant that showed a phenotype, providing clues to the functions of thousands of genes. Mutant phenotypic profiles place uncharacterized genes into functional pathways such as DNA repair, photosynthesis, the CO2-concentrating mechanism and ciliogenesis. We illustrate the value of this resource by validating phenotypes and gene functions, including three new components of an actin cytoskeleton defense pathway. The data also inform phenotype discovery in land plants; mutants in Arabidopsis thaliana genes exhibit phenotypes similar to those we observed in their Chlamydomonas homologs. We anticipate that this resource will guide the functional characterization of genes across the tree of life. Systematic phenotyping of 58,101 mutants of the model eukaryotic alga Chlamydomonas reinhardtii under 121 environmental and chemical stress conditions provides a large resource for characterizing gene function.
Collapse
|
14
|
Verma P, Kumari P, Negi S, Yadav G, Gaur V. Holliday junction resolution by At-HIGLE: an SLX1 lineage endonuclease from Arabidopsis thaliana with a novel in-built regulatory mechanism. Nucleic Acids Res 2022; 50:4630-4646. [PMID: 35412622 PMCID: PMC9071465 DOI: 10.1093/nar/gkac239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
Holliday junction is the key homologous recombination intermediate, resolved by structure-selective endonucleases (SSEs). SLX1 is the most promiscuous SSE of the GIY-YIG nuclease superfamily. In fungi and animals, SLX1 nuclease activity relies on a non-enzymatic partner, SLX4, but no SLX1-SLX4 like complex has ever been characterized in plants. Plants exhibit specialized DNA repair and recombination machinery. Based on sequence similarity with the GIY-YIG nuclease domain of SLX1 proteins from fungi and animals, At-HIGLE was identified to be a possible SLX1 like nuclease from plants. Here, we elucidated the crystal structure of the At-HIGLE nuclease domain from Arabidopsis thaliana, establishing it as a member of the SLX1-lineage of the GIY-YIG superfamily with structural changes in DNA interacting regions. We show that At-HIGLE can process branched-DNA molecules without an SLX4 like protein. Unlike fungal SLX1, At-HIGLE exists as a catalytically active homodimer capable of generating two coordinated nicks during HJ resolution. Truncating the extended C-terminal region of At-HIGLE increases its catalytic activity, changes the nicking pattern, and monomerizes At-HIGLE. Overall, we elucidated the first structure of a plant SLX1-lineage protein, showed its HJ resolving activity independent of any regulatory protein, and identified an in-built novel regulatory mechanism engaging its C-terminal region.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Poonam Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shreya Negi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
15
|
Hacker L, Capdeville N, Feller L, Enderle-Kukla J, Dorn A, Puchta H. The DNA-dependent protease AtWSS1A suppresses persistent double strand break formation during replication. THE NEW PHYTOLOGIST 2022; 233:1172-1187. [PMID: 34761387 DOI: 10.1111/nph.17848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The protease WSS1A is an important factor in the repair of DNA-protein crosslinks in plants. Here we show that the loss of WSS1A leads to a reduction of 45S rDNA repeats and chromosomal fragmentation in Arabidopsis. Moreover, in the absence of any factor of the RTR (RECQ4A/TOP3α/RMI1/2) complex, which is involved in the dissolution of DNA replication intermediates, WSS1A becomes essential for viability. If WSS1A loss is combined with loss of the classical (c) or alternative (a) nonhomologous end joining (NHEJ) pathways of double-strand break (DSB) repair, the resulting mutants show proliferation defects and enhanced chromosome fragmentation, which is especially aggravated in the absence of aNHEJ. This indicates that WSS1A is involved either in the suppression of DSB formation or in DSB repair itself. To test the latter we induced DSB by CRISPR/Cas9 at different loci in wild-type and mutant cells and analyzed their repair by deep sequencing. However, no change in the quality of the repair events and only a slight increase in their quantity was found. Thus, by removing complex DNA-protein structures, WSS1A seems to be required for the repair of replication intermediates which would otherwise be resolved into persistent DSB leading to genome instability.
Collapse
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Niklas Capdeville
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Janina Enderle-Kukla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
16
|
Hacker L, Dorn A, Enderle J, Puchta H. The repair of topoisomerase 2 cleavage complexes in Arabidopsis. THE PLANT CELL 2022; 34:287-301. [PMID: 34524446 PMCID: PMC8773952 DOI: 10.1093/plcell/koab228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 05/04/2023]
Abstract
DNA-protein crosslinks (DPCs) and DNA double-stranded breaks (DSBs), including those produced by stalled topoisomerase 2 cleavage complexes (TOP2ccs), must be repaired to ensure genome stability. The basic mechanisms of TOP2cc repair have been characterized in other eukaryotes, but we lack information for plants. Using CRISPR/Cas-induced mutants, we show that Arabidopsis thaliana has two main TOP2cc repair pathways: one is defined by TYROSYL-DNA-PHOSPHODIESTERASE 2 (TDP2), which hydrolyzes TOP2-DNA linkages, the other by the DNA-dependent protease WSS1A (a homolog of human SPARTAN/yeast weak suppressor of smt3 [Wss1]), which also functions in DPC repair. TDP1 and TDP2 function nonredundantly in TOP1cc repair, indicating that they act specifically on their respective stalled cleavage complexes. The nuclease METHYL METHANESULFONATE AND UV-SENSITIVE PROTEIN 81 (MUS81) plays a major role in global DPC repair and a minor role in TOP2cc repair. DSBs arise as intermediates of TOP2cc repair and are repaired by classical and alternative nonhomologous end joining (NHEJ) pathways. Double-mutant analysis indicates that "clean" DNA ends caused by TDP2 hydrolysis are mainly religated by classical NHEJ, which helps avoid mutation. In contrast, the mutagenic alternative NHEJ pathway mainly processes nonligateable DNA ends. Thus, TDP2 promotes maintenance of plant genome integrity by error-free repair of TOP2cc.
Collapse
Affiliation(s)
- Leonie Hacker
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
17
|
Wolter F, Schindele P, Beying N, Scheben A, Puchta H. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. THE PLANT CELL 2021; 33:3454-3469. [PMID: 34375428 PMCID: PMC8566284 DOI: 10.1093/plcell/koab204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 05/03/2023]
Abstract
In nature, single-strand breaks (SSBs) in DNA occur more frequently (by orders of magnitude) than double-strand breaks (DSBs). SSBs induced by the CRISPR/Cas9 nickase at a distance of 50-100 bp on opposite strands are highly mutagenic, leading to insertions/deletions (InDels), with insertions mainly occurring as direct tandem duplications. As short tandem repeats are overrepresented in plant genomes, this mechanism seems to be important for genome evolution. We investigated the distance at which paired 5'-overhanging SSBs are mutagenic and which DNA repair pathways are essential for insertion formation in Arabidopsis thaliana. We were able to detect InDel formation up to a distance of 250 bp, although with much reduced efficiency. Surprisingly, the loss of the classical nonhomologous end joining (NHEJ) pathway factors KU70 or DNA ligase 4 completely abolished tandem repeat formation. The microhomology-mediated NHEJ factor POLQ was required only for patch-like insertions, which are well-known from DSB repair as templated insertions from ectopic sites. As SSBs can also be repaired using homology, we furthermore asked whether the classical homologous recombination (HR) pathway is involved in this process in plants. The fact that RAD54 is not required for homology-mediated SSB repair demonstrates that the mechanisms for DSB- and SSB-induced HR differ in plants.
Collapse
Affiliation(s)
- Felix Wolter
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Natalja Beying
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Author for correspondence:
| |
Collapse
|
18
|
Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021970118. [PMID: 34385313 PMCID: PMC8379953 DOI: 10.1073/pnas.2021970118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination plays a fundamental role in shaping genetic diversity in eukaryotes. Extensive variation in crossover rate exists between populations and species. The identity of modifier loci and their roles in genome evolution remain incompletely understood. We explored natural variation in Arabidopsis crossover and identified SNI1 as the causal gene underlying a major modifier locus. To date, SNI1 had no known role in crossover. SNI1 is a component of the SMC5/6 complex that is closely related to cohesin and condensin. Arabidopsis sni1 and other SMC5/6 mutants show similar effects on the interference-independent crossover pathway. Hence, our findings demonstrate that the SMC5/6 complex, which is known for its role in DNA damage repair, is also important for control of meiotic crossover. The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1. The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.
Collapse
|
19
|
Kurzbauer MT, Janisiw MP, Paulin LF, Prusén Mota I, Tomanov K, Krsicka O, von Haeseler A, Schubert V, Schlögelhofer P. ATM controls meiotic DNA double-strand break formation and recombination and affects synaptonemal complex organization in plants. THE PLANT CELL 2021; 33:1633-1656. [PMID: 33659989 PMCID: PMC8254504 DOI: 10.1093/plcell/koab045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Meiosis is a specialized cell division that gives rise to genetically distinct gametic cells. Meiosis relies on the tightly controlled formation of DNA double-strand breaks (DSBs) and their repair via homologous recombination for correct chromosome segregation. Like all forms of DNA damage, meiotic DSBs are potentially harmful and their formation activates an elaborate response to inhibit excessive DNA break formation and ensure successful repair. Previous studies established the protein kinase ATM as a DSB sensor and meiotic regulator in several organisms. Here we show that Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover (CO) formation and synaptonemal complex (SC) organization, all vital for the successful completion of meiosis. We developed a single-molecule approach to quantify meiotic breaks and determined that ATM is essential to limit the number of meiotic DSBs. Local and genome-wide recombination screens showed that ATM restricts the number of interference-insensitive COs, while super-resolution STED nanoscopy of meiotic chromosomes revealed that the kinase affects chromatin loop size and SC length and width. Our study extends our understanding of how ATM functions during plant meiosis and establishes it as an integral factor of the meiotic program.
Collapse
Affiliation(s)
- Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Michael Peter Janisiw
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ignacio Prusén Mota
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Konstantin Tomanov
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ondrej Krsicka
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
20
|
Han Y, Zhao Y, Wang H, Zhang Y, Ding Q, Ma L. Identification of ceRNA and candidate genes related to fertility conversion of TCMS line YS3038 in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:190-207. [PMID: 33214039 DOI: 10.1016/j.plaphy.2020.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have indicated that noncoding RNAs are important factors in gene functions. To explore the mechanism of male sterility of YS3038, the sterile genes were mapped, and based on previous work, the expression of long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and their target genes was studied. Weighted gene coexpression network analysis (WGCNA) and competitive endogenous RNA (ceRNA) analysis were further performed for differentially expressed noncoding RNAs and target genes. At last, the candidate genes were silenced by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) to prove their function. The sterile genes were mapped on chromosomes 1B and 6B based on chip mix pool analysis, and one major effect QTL (27.3190% variation) was found based on SSR primers. The WGCNA analysis revealed that the dark turquoise and steel blue modules were highly correlated with anther development and fertility conversion, respectively. The ceRNA analysis showed that a total of 184 RNAs interacted with each other, including 115 mRNAs, 55 microRNAs (miRNAs), eight circRNAs, and six lncRNAs. Finally, the seed setting rate of the plant was significantly decreased after fatty acyl-CoA reductase 5 silencing. This study provides breeders with a new option for the development of thermosensitive cytoplasmic male-sterile (TCMS) wheat lines, which will favor the sustainable development of two-line hybrid wheat.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiyang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Ngo ST, Vu VV, Phung HTT. Computational investigation of possible inhibitors of the winged-helix domain of MUS81. J Mol Graph Model 2020; 103:107771. [PMID: 33340918 DOI: 10.1016/j.jmgm.2020.107771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
The methyl methanesulfonate and ultraviolet sensitive 81 (MUS81) is a structure-specific endonuclease that is highly conserved in eukaryotes and essential for homologous recombination repair. The winged-helix domain at the N-terminus of MUS81 (wMUS81) can bind DNA substrates and regulate the endonuclease activity. The repression of MUS81 activity could enhance the sensitivity to antitumor compounds of different tumour cells. Thus, MUS81 is a potential therapeutic target in cancer therapy. However, specific inhibitors of MUS81 have remained elusive. Here, for the first time, we attempt to discover the compounds disrupting the wMUS81 activity. The binding affinity of available drugs to wMUS81 was first estimated by molecular docking. pKa values were taken into consideration to eliminate unlikely protonation states of the ligands. Top-lead compounds were then estimated the binding affinity using the fast pulling ligand simulations. Finally, the free energy perturbation method accurately defined the absolute binding free energy of the top four ligands, revealing the most potential inhibitors of wMUS81 including simeprevir and nilotinib. Binding of simeprevir destabilizes the β-hairpin region of wMUS81, likely disturbing the wMUS81 function. The van der Waals free binding energy majorly modulates the ligand-binding mechanism. The two conserved residues Leu189 and Arg196 are likely important in monitoring the interacting process of simeprevir to wMUS81.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
| | - Van Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
22
|
Abstract
Meiotic and somatic recombination share a common set of factors. Thus, the analysis of somatic DNA repair in meiotic mutant lines should be of special interest. Growth defects of mutant plants induced by specific genotoxins can thereby hint to DNA repair functions of the affected proteins. Here, we describe two kinds of approaches to characterize deficiencies in DNA repair in mutant lines of Arabidopsis thaliana, after genotoxin treatment.
Collapse
|
23
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
24
|
Wang H, Xu W, Sun Y, Lian Q, Wang C, Yu C, He C, Wang J, Ma H, Copenhaver GP, Wang Y. The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PLoS Genet 2020; 16:e1008849. [PMID: 32516352 PMCID: PMC7304647 DOI: 10.1371/journal.pgen.1008849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.
Collapse
Affiliation(s)
- Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yujin Sun
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chengpeng He
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Nibau C, Lloyd A, Dadarou D, Betekhtin A, Tsilimigka F, Phillips DW, Doonan JH. CDKG1 Is Required for Meiotic and Somatic Recombination Intermediate Processing in Arabidopsis. THE PLANT CELL 2020; 32:1308-1322. [PMID: 32047050 PMCID: PMC7145484 DOI: 10.1105/tpc.19.00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 05/12/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) cyclin-dependent kinase G1 (CDKG1) is necessary for recombination and synapsis during male meiosis at high ambient temperature. In the cdkg1-1 mutant, synapsis is impaired and there is a dramatic reduction in the number of class I crossovers, resulting in univalents at metaphase I and pollen sterility. Here, we demonstrate that CDKG1 is necessary for the processing of recombination intermediates in the canonical ZMM recombination pathway and that loss of CDKG1 results in increased class II crossovers. While synapsis and events associated with class I crossovers are severely compromised in a cdkg1-1 mutant, they can be restored by increasing the number of recombination intermediates in the double cdkg1-1 fancm-1 mutant. Despite this, recombination intermediates are not correctly resolved, leading to the formation of chromosome aggregates at metaphase I. Our results show that CDKG1 acts early in the recombination process and is necessary to stabilize recombination intermediates. Finally, we show that the effect on recombination is not restricted to meiosis and that CDKG1 is also required for normal levels of DNA damage-induced homologous recombination in somatic tissues.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Andrew Lloyd
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Despoina Dadarou
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Foteini Tsilimigka
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Dylan W Phillips
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - John H Doonan
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| |
Collapse
|
26
|
Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. RICE (NEW YORK, N.Y.) 2019; 12:95. [PMID: 31858277 PMCID: PMC6923311 DOI: 10.1186/s12284-019-0355-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/18/2023]
Abstract
Continuing crop domestication/redomestication and modification is a key determinant of the adaptation and fulfillment of the food requirements of an exploding global population under increasingly challenging conditions such as climate change and the reduction in arable lands. Monocotyledonous crops are not only responsible for approximately 70% of total global crop production, indicating their important roles in human life, but also the first crops to be challenged with the abovementioned hurdles; hence, monocot crops should be the first to be engineered and/or de novo domesticated/redomesticated. A long time has passed since the first green revolution; the world is again facing the challenge of feeding a predicted 9.7 billion people in 2050, since the decline in world hunger was reversed in 2015. One of the major lessons learned from the first green revolution is the importance of novel and advanced trait-carrying crop varieties that are ideally adapted to new agricultural practices. New plant breeding techniques (NPBTs), such as genome editing, could help us succeed in this mission to create novel and advanced crops. Considering the importance of NPBTs in crop genetic improvement, we attempt to summarize and discuss the latest progress with major approaches, such as site-directed mutagenesis using molecular scissors, base editors and especially homology-directed gene targeting (HGT), a very challenging but potentially highly precise genome modification approach in plants. We therefore suggest potential approaches for the improvement of practical HGT, focusing on monocots, and discuss a potential approach for the regulation of genome-edited products.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
27
|
DNA Helicases as Safekeepers of Genome Stability in Plants. Genes (Basel) 2019; 10:genes10121028. [PMID: 31835565 PMCID: PMC6947026 DOI: 10.3390/genes10121028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic information of all organisms is coded in double-stranded DNA. DNA helicases are essential for unwinding this double strand when it comes to replication, repair or transcription of genetic information. In this review, we will focus on what is known about a variety of DNA helicases that are required to ensure genome stability in plants. Due to their sessile lifestyle, plants are especially exposed to harmful environmental factors. Moreover, many crop plants have large and highly repetitive genomes, making them absolutely dependent on the correct interplay of DNA helicases for safeguarding their stability. Although basic features of a number of these enzymes are conserved between plants and other eukaryotes, a more detailed analysis shows surprising peculiarities, partly also between different plant species. This is additionally of high relevance for plant breeding as a number of these helicases are also involved in crossover control during meiosis and influence the outcome of different approaches of CRISPR/Cas based plant genome engineering. Thus, gaining knowledge about plant helicases, their interplay, as well as the manipulation of their pathways, possesses the potential for improving agriculture. In the long run, this might even help us cope with the increasing obstacles of climate change threatening food security in completely new ways.
Collapse
|
28
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
29
|
DNA- and DNA-Protein-Crosslink Repair in Plants. Int J Mol Sci 2019; 20:ijms20174304. [PMID: 31484324 PMCID: PMC6747210 DOI: 10.3390/ijms20174304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
DNA-crosslinks are one of the most severe types of DNA lesions. Crosslinks (CLs) can be subdivided into DNA-intrastrand CLs, DNA-interstrand CLs (ICLs) and DNA-protein crosslinks (DPCs), and arise by various exogenous and endogenous sources. If left unrepaired before the cell enters S-phase, ICLs and DPCs pose a major threat to genomic integrity by blocking replication. In order to prevent the collapse of replication forks and impairment of cell division, complex repair pathways have emerged. In mammals, ICLs are repaired by the so-called Fanconi anemia (FA) pathway, which includes 22 different FANC genes, while in plants only a few of these genes are conserved. In this context, two pathways of ICL repair have been defined, each requiring the interaction of a helicase (FANCJB/RTEL1) and a nuclease (FAN1/MUS81). Moreover, homologous recombination (HR) as well as postreplicative repair factors are also involved. Although DPCs possess a comparable toxic potential to cells, it has only recently been shown that at least three parallel pathways for DPC repair exist in plants, defined by the protease WSS1A, the endonuclease MUS81 and tyrosyl-DNA phosphodiesterase 1 (TDP1). The importance of crosslink repair processes are highlighted by the fact that deficiencies in the respective pathways are associated with diverse hereditary disorders.
Collapse
|
30
|
Dorn A, Feller L, Castri D, Röhrig S, Enderle J, Herrmann NJ, Block-Schmidt A, Trapp O, Köhler L, Puchta H. An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. PLoS Genet 2019; 15:e1008174. [PMID: 31120885 PMCID: PMC6550410 DOI: 10.1371/journal.pgen.1008174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Castri
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalie J. Herrmann
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Astrid Block-Schmidt
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Köhler
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
31
|
Enderle J, Dorn A, Beying N, Trapp O, Puchta H. The Protease WSS1A, the Endonuclease MUS81, and the Phosphodiesterase TDP1 Are Involved in Independent Pathways of DNA-protein Crosslink Repair in Plants. THE PLANT CELL 2019; 31:775-790. [PMID: 30760561 PMCID: PMC6501609 DOI: 10.1105/tpc.18.00824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 05/04/2023]
Abstract
DNA-protein crosslinks (DPCs) represent a severe threat to the genome integrity; however, the main mechanisms of DPC repair were only recently elucidated in humans and yeast. Here we define the pathways for DPC repair in plants. Using CRISPR/Cas9, we could show that only one of two homologs of the universal repair proteases SPARTAN/ weak suppressor of smt3 (Wss1), WSS1A, is essential for DPC repair in Arabidopsis (Arabidopsis thaliana). WSS1A defective lines exhibit developmental defects and are hypersensitive to camptothecin (CPT) and cis-platin. Interestingly, the CRISPR/Cas9 mutants of TYROSYL-DNA PHOSPHODIESTERASE 1 (TDP1) are insensitive to CPT, and only the wss1A tdp1 double mutant reveals a higher sensitivity than the wss1A single mutant. This indicates that TDP1 defines a minor backup pathway in the repair of DPCs. Moreover, we found that knock out of the endonuclease METHYL METHANESULFONATE AND UV SENSITIVE PROTEIN 81 (MUS81) results in a strong sensitivity to DPC-inducing agents. The fact that wss1A mus81 and tdp1 mus81 double mutants exhibit growth defects and an increase in dead cells in root meristems after CPT treatment demonstrates that there are three independent pathways for DPC repair in Arabidopsis. These pathways are defined by their different biochemical specificities, as main actors, the DNA endonuclease MUS81 and the protease WSS1A, and the phosphodiesterase TDP1 as backup.
Collapse
Affiliation(s)
- Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe 76131, Germany
| | - Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe 76131, Germany
| | - Natalja Beying
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe 76131, Germany
| | - Oliver Trapp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe 76131, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe 76131, Germany
| |
Collapse
|
32
|
Keilwagen J, Hartung F, Grau J. GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-seq Data. Methods Mol Biol 2019; 1962:161-177. [PMID: 31020559 DOI: 10.1007/978-1-4939-9173-0_9] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GeMoMa is a homology-based gene prediction program that predicts gene models in target species based on gene models in evolutionary related reference species. GeMoMa utilizes amino acid sequence conservation, intron position conservation, and RNA-seq data to accurately predict protein-coding transcripts. Furthermore, GeMoMa supports the combination of predictions based on several reference species allowing to transfer high-quality annotation of different reference species to a target species. Here, we present a detailed description of GeMoMa modules and the GeMoMa pipeline and how they can be used on the command line to address particular biological problems.
Collapse
Affiliation(s)
- Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany.
| | - Frank Hartung
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Han TT, Liu WC, Lu YT. General control non-repressible 20 (GCN20) functions in root growth by modulating DNA damage repair in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:274. [PMID: 30419826 PMCID: PMC6233562 DOI: 10.1186/s12870-018-1444-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/27/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Most ABC transporters are engaged in transport of various compounds, but its subfamily F lacks transmembrane domain essential for chemical transportation. Thus the function of subfamily F remains further elusive. RESULTS Here, we identified General Control Non-Repressible 20 (GCN20), a member of subfamily F, as new factor for DNA damage repair in root growth. While gcn20-1 mutant had a short primary root with reduced meristem size and cell number, similar primary root lengths were assayed in both wild-type and GCN20::GCN20 gcn20-1 plants, indicating the involvement of GCN20 in root elongation. Further experiments with EdU incorporation and comet assay demonstrated that gcn20-1 displays increased cell cycle arrest at G2/M checkpoint and accumulates more damaged DNA. This is possible due to impaired ability of DNA repair in gcn20-1 since gcn20-1 seedlings are hypersensitive to DNA damage inducers MMC and MMS compared with the wild type plants. This note was further supported by the observation that gcn20-1 is more sensitive than the wild type when subjected to UV treatment in term of changes of both fresh weight and survival rate. CONCLUSIONS Our study indicates that GCN20 functions in primary root growth by modulating DNA damage repair in Arabidopsis. Our study will be useful to understand the functions of non-transporter ABC proteins in plant growth.
Collapse
Affiliation(s)
- Tong-Tong Han
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
34
|
Dorn A, Röhrig S, Papp K, Schröpfer S, Hartung F, Knoll A, Puchta H. The topoisomerase 3α zinc-finger domain T1 of Arabidopsis thaliana is required for targeting the enzyme activity to Holliday junction-like DNA repair intermediates. PLoS Genet 2018; 14:e1007674. [PMID: 30222730 PMCID: PMC6160208 DOI: 10.1371/journal.pgen.1007674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/27/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase 3α, a class I topoisomerase, consists of a TOPRIM domain, an active centre and a variable number of zinc-finger domains (ZFDs) at the C-terminus, in multicellular organisms. Whereas the functions of the TOPRIM domain and the active centre are known, the specific role of the ZFDs is still obscure. In contrast to mammals where a knockout of TOP3α leads to lethality, we found that CRISPR/Cas induced mutants in Arabidopsis are viable but show growth retardation and meiotic defects, which can be reversed by the expression of the complete protein. However, complementation with AtTOP3α missing either the TOPRIM-domain or carrying a mutation of the catalytic tyrosine of the active centre leads to embryo lethality. Surprisingly, this phenotype can be overcome by the simultaneous removal of the ZFDs from the protein. In combination with a mutation of the nuclease AtMUS81, the TOP3α knockout proved to be also embryo lethal. Here, expression of TOP3α without ZFDs, and in particular without the conserved ZFD T1, leads to only a partly complementation in root growth-in contrast to the complete protein, that restores root length to mus81-1 mutant level. Expressing the E. coli resolvase RusA in this background, which is able to process Holliday junction (HJ)-like recombination intermediates, we could rescue this root growth defect. Considering all these results, we conclude that the ZFD T1 is specifically required for targeting the topoisomerase activity to HJ like recombination intermediates to enable their processing. In the case of an inactivated enzyme, this leads to cell death due to the masking of these intermediates, hindering their resolution by MUS81.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kristin Papp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Frank Hartung
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
35
|
Röhrig S, Dorn A, Enderle J, Schindele A, Herrmann NJ, Knoll A, Puchta H. The RecQ-like helicase HRQ1 is involved in DNA crosslink repair in Arabidopsis in a common pathway with the Fanconi anemia-associated nuclease FAN1 and the postreplicative repair ATPase RAD5A. THE NEW PHYTOLOGIST 2018; 218:1478-1490. [PMID: 29577315 DOI: 10.1111/nph.15109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/12/2018] [Indexed: 05/24/2023]
Abstract
RecQ helicases are important caretakers of genome stability and occur in varying copy numbers in different eukaryotes. Subsets of RecQ paralogs are involved in DNA crosslink (CL) repair. The orthologs of AtRECQ2, AtRECQ3 and AtHRQ1, HsWRN, DmRECQ5 and ScHRQ1 participate in CL repair in their respective organisms, and we aimed to define the function of these helicases for plants. We obtained Arabidopsis mutants of the three RecQ helicases and determined their sensitivity against CL agents in single- and double-mutant analyses. Only Athrq1, but not Atrecq2 and Atrecq3, mutants proved to be sensitive to intra- and interstrand crosslinking agents. AtHRQ1 is specifically involved in the repair of replicative damage induced by CL agents. It shares pathways with the Fanconi anemia-related endonuclease FAN1 but not with the endonuclease MUS81. Most surprisingly, AtHRQ1 is epistatic to the ATPase RAD5A for intra- as well as interstrand CL repair. We conclude that, as in fungi, AtHRQ1 has a conserved function in DNA excision repair. Additionally, HRQ1 not only shares pathways with the Fanconi anemia repair factors, but in contrast to fungi also seems to act in a common pathway with postreplicative DNA repair.
Collapse
Affiliation(s)
- Sarah Röhrig
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Janina Enderle
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Angelina Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Natalie J Herrmann
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Alexander Knoll
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, BW, 76131, Germany
| |
Collapse
|
36
|
Modliszewski JL, Wang H, Albright AR, Lewis SM, Bennett AR, Huang J, Ma H, Wang Y, Copenhaver GP. Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLoS Genet 2018; 14:e1007384. [PMID: 29771908 PMCID: PMC5976207 DOI: 10.1371/journal.pgen.1007384] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 04/27/2018] [Indexed: 11/29/2022] Open
Abstract
For most eukaryotes, sexual reproduction is a fundamental process that requires meiosis. In turn, meiosis typically depends on a reciprocal exchange of DNA between each pair of homologous chromosomes, known as a crossover (CO), to ensure proper chromosome segregation. The frequency and distribution of COs are regulated by intrinsic and extrinsic environmental factors, but much more is known about the molecular mechanisms governing the former compared to the latter. Here we show that elevated temperature induces meiotic hyper-recombination in Arabidopsis thaliana and we use genetic analysis with mutants in different recombination pathways to demonstrate that the extra COs are derived from the major Type I interference sensitive pathway. We also show that heat-induced COs are not the result of an increase in DNA double-strand breaks and that the hyper-recombinant phenotype is likely specific to thermal stress rather than a more generalized stress response. Taken together, these findings provide initial mechanistic insight into how environmental cues modulate plant meiotic recombination and may also offer practical applications. Meiosis is the cell division used by sexually reproducing species to produce sperm and egg cells. During meiosis, programmed Double Strand Breaks (DSBs) occur on each chromosome, which allows DNA to be exchanged between chromosome pairs, resulting in crossovers (COs). COs are necessary to ensure faithful chromosome segregation during meiosis, and thus fertility, but are also an important source of genetic variation. As such, CO formation is tightly regulated. Despite this, CO frequency can be altered by external factors, such as temperature. In Arabidopsis thaliana, COs are formed through two pathways: interference-sensitive (Type I) and interference-insensitive (Type II). An increase in temperature results in an increase in CO frequency. Using a pollen based assay, we show that COs are formed in the Type I pathway, which accounts for approximately 85% of the COs in Arabidopsis. To investigate whether temperature-dependent COs are the result of additional DSBs, we used immunological staining to examine protein foci, which mark the sites of DSBs. We discovered that temperature likely increases CO frequency by shifting alternative repair outcomes, called non-crossovers, to favor additional COs, rather than by increasing DSBs. Lastly, we found that temperature is not a general stress response, as plants subject to salt stress did not exhibit an increase in CO frequency. Our results may prove valuable in aiding plant breeding by enhancing our ability to rapidly introgress suites of elite traits from wild-plants into their crop relatives, a method that is particularly attractive as it does not require genetic modifications.
Collapse
Affiliation(s)
- Jennifer L. Modliszewski
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ashley R. Albright
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Scott M. Lewis
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexander R. Bennett
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jiyue Huang
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
|
38
|
Wiedemann G, van Gessel N, Köchl F, Hunn L, Schulze K, Maloukh L, Nogué F, Decker EL, Hartung F, Reski R. RecQ Helicases Function in Development, DNA Repair, and Gene Targeting in Physcomitrella patens. THE PLANT CELL 2018; 30:717-736. [PMID: 29514942 PMCID: PMC5894843 DOI: 10.1105/tpc.17.00632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 05/18/2023]
Abstract
RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Fabian Köchl
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Hunn
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Schulze
- Julius Kuehn Institute, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| | - Lina Maloukh
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Hartung
- Julius Kuehn Institute, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
39
|
Kurzbauer MT, Pradillo M, Kerzendorfer C, Sims J, Ladurner R, Oliver C, Janisiw MP, Mosiolek M, Schweizer D, Copenhaver GP, Schlögelhofer P. Arabidopsis thaliana FANCD2 Promotes Meiotic Crossover Formation. THE PLANT CELL 2018; 30:415-428. [PMID: 29352063 PMCID: PMC5868695 DOI: 10.1105/tpc.17.00745] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Fanconi anemia (FA) is a human autosomal recessive disorder characterized by chromosomal instability, developmental pathologies, predisposition to cancer, and reduced fertility. So far, 19 genes have been implicated in FA, most of them involved in DNA repair. Some are conserved across higher eukaryotes, including plants. The Arabidopsis thaliana genome encodes a homolog of the Fanconi anemia D2 gene (FANCD2) whose function in DNA repair is not yet fully understood. Here, we provide evidence that AtFANCD2 is required for meiotic homologous recombination. Meiosis is a specialized cell division that ensures reduction of genomic content by half and DNA exchange between homologous chromosomes via crossovers (COs) prior to gamete formation. In plants, a mutation in AtFANCD2 results in a 14% reduction of CO numbers. Genetic analysis demonstrated that AtFANCD2 acts in parallel to both MUTS HOMOLOG4 (AtMSH4), known for its role in promoting interfering COs and MMS AND UV SENSITIVE81 (AtMUS81), known for its role in the formation of noninterfering COs. AtFANCD2 promotes noninterfering COs in a MUS81-independent manner and is therefore part of an uncharted meiotic CO-promoting mechanism, in addition to those described previously.
Collapse
Affiliation(s)
- Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Claudia Kerzendorfer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Jason Sims
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Rene Ladurner
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Michael Peter Janisiw
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Magdalena Mosiolek
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Dieter Schweizer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
40
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF, Bae H. Genome Editing Tools in Plants. Genes (Basel) 2017; 8:E399. [PMID: 29257124 PMCID: PMC5748717 DOI: 10.3390/genes8120399] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs.
Collapse
Affiliation(s)
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
41
|
Séguéla-Arnaud M, Choinard S, Larchevêque C, Girard C, Froger N, Crismani W, Mercier R. RMI1 and TOP3α limit meiotic CO formation through their C-terminal domains. Nucleic Acids Res 2017; 45:1860-1871. [PMID: 27965412 PMCID: PMC5389728 DOI: 10.1093/nar/gkw1210] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023] Open
Abstract
At meiosis, hundreds of programmed DNA double-strand breaks (DSBs) form and are repaired by homologous recombination. From this large number of DSBs, only a subset yields crossovers (COs), with a minimum of one CO per chromosome pair. All DSBs must be repaired and every recombination intermediate must be resolved to avoid subsequent entanglement and chromosome breakage. The conserved BLM-TOP3α-RMI1 (BTR) complex acts on early and late meiotic recombination intermediates to both limit CO outcome and promote chromosome integrity. In Arabidopsis, the BLM homologues RECQ4A and RECQ4B act redundantly to prevent meiotic extra COs, but recombination intermediates are fully resolved in their absence. In contrast, TOP3α is needed for both processes. Here we show through the characterization of specific mutants that RMI1 is a major anti-CO factor, in addition to being essential to prevent chromosome breakage and entanglement. Further, our findings suggest a specific role of the C-terminal domains of RMI1 and TOP3α, that respectively contain an Oligo Binding domain (OB2) and ZINC finger motifs, in preventing extra-CO. We propose that these domains of TOP3α and RMI1 define a sub-domain of the BTR complex which is dispensable for the resolution of recombination intermediates but crucial to limit extra-COs.
Collapse
Affiliation(s)
- Mathilde Séguéla-Arnaud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Sandrine Choinard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Cécile Larchevêque
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Chloé Girard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Nicole Froger
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Wayne Crismani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| |
Collapse
|
42
|
Modliszewski JL, Copenhaver GP. Meiotic recombination gets stressed out: CO frequency is plastic under pressure. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:95-102. [PMID: 28258986 DOI: 10.1016/j.pbi.2016.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/13/2016] [Indexed: 05/02/2023]
Abstract
Meiotic recombination ensures the fertility of gametes and creates novel genetic combinations. Although meiotic crossover (CO) frequency is under homeostatic control, CO frequency is also plastic in nature and can respond to environmental conditions. Most investigations have focused on temperature and recombination, but other external and internal stimuli also have important roles in modulating CO frequency. Even less is understood about the molecular mechanisms that underly these phenomenon, but recent work has begun to advance our knowledge in this field. In this review, we identify and explore potential mechanisms including changes in: the synaptonemal complex, chromatin state, DNA methylation, and RNA splicing.
Collapse
Affiliation(s)
- Jennifer L Modliszewski
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States.
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, United States
| |
Collapse
|
43
|
Röhrig S, Schröpfer S, Knoll A, Puchta H. The RTR Complex Partner RMI2 and the DNA Helicase RTEL1 Are Both Independently Involved in Preserving the Stability of 45S rDNA Repeats in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006394. [PMID: 27760121 PMCID: PMC5070779 DOI: 10.1371/journal.pgen.1006394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
The stability of repetitive sequences in complex eukaryotic genomes is safeguarded by factors suppressing homologues recombination. Prominent in this is the role of the RTR complex. In plants, it consists of the RecQ helicase RECQ4A, the topoisomerase TOP3α and RMI1. Like mammals, but not yeast, plants harbor an additional complex partner, RMI2. Here, we demonstrate that, in Arabidopsis thaliana, RMI2 is involved in the repair of aberrant replication intermediates in root meristems as well as in intrastrand crosslink repair. In both instances, RMI2 is involved independently of the DNA helicase RTEL1. Surprisingly, simultaneous loss of RMI2 and RTEL1 leads to loss of male fertility. As both the RTR complex and RTEL1 are involved in suppression of homologous recombination (HR), we tested the efficiency of HR in the double mutant rmi2-2 rtel1-1 and found a synergistic enhancement (80-fold). Searching for natural target sequences we found that RTEL1 is required for stabilizing 45S rDNA repeats. In the double mutant with rmi2-2 the number of 45S rDNA repeats is further decreased sustaining independent roles of both factors in this process. Thus, loss of suppression of HR does not only lead to a destabilization of rDNA repeats but might be especially deleterious for tissues undergoing multiple cell divisions such as the male germline. The Bloom syndrome and Hoyeraal Hreidarsson syndrome are severe diseases in humans that are correlated with genome instability. Interestingly, plants harbor homologs of factors that are defective in the respective diseases. In the model plant A. thaliana these proteins play important roles in various aspects of the repair of genetic information and the maintenance of repetitive elements. Here, we show that the concomitant loss of function of two specific factors that are representative for each syndrome leads in plants to male sterility, due to somatic catastrophe leading to instability and cell death. This defect is correlated with a massive loss of repetitive genes involved in general protein production. It has been shown before for mammals that loss of certain other factors involved in genome stability leads to a defect in neural development. Our results now demonstrate that genome instability can also result in organ-specific defects in plants, in our case during flower development, leading to a defect in the cell proliferation of the premeiotic male germline.
Collapse
Affiliation(s)
- Sarah Röhrig
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Susan Schröpfer
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
44
|
Abstract
Because the genome stores all genetic information required for growth and development, it is of pivotal importance to maintain DNA integrity, especially during cell division, when the genome is prone to replication errors and damage. Although over the last two decades it has become evident that the basic cell cycle toolbox of plants shares several similarities with those of fungi and mammals, plants appear to have evolved a set of distinct checkpoint regulators in response to different types of DNA stress. This might be a consequence of plants' sessile lifestyle, which exposes them to a set of unique DNA damage-inducing conditions. In this review, we highlight the types of DNA stress that plants typically experience and describe the plant-specific molecular mechanisms that control cell division in response to these stresses.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | |
Collapse
|
45
|
Richter KS, Serra H, White CI, Jeske H. The recombination mediator RAD51D promotes geminiviral infection. Virology 2016; 493:113-27. [PMID: 27018825 DOI: 10.1016/j.virol.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
To study a possible role for homologous recombination in geminivirus replication, we challenged Arabidopsis recombination gene knockouts by Euphorbia yellow mosaic virus infection. Our results show that the RAD51 paralog RAD51D, rather than RAD51 itself, promotes viral replication at early stages of infection. Blot hybridization analyses of replicative intermediates using one- and two-dimensional gels and deep sequencing point to an unexpected facet of recombination-dependent replication, the repair by single-strand annealing (SSA) during complementary strand replication. A significant decrease of both intramolecular, yielding defective DNAs and intermolecular recombinant molecules between the two geminiviral DNA components (A, B) were observed in the absence of RAD51D. By contrast, DNA A and B reacted differentially with the generation of inversions. A model to implicate single-strand annealing recombination in geminiviral recombination-dependent replication is proposed.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Heϊdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
46
|
Olivier M, Da Ines O, Amiard S, Serra H, Goubely C, White CI, Gallego ME. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis. THE PLANT CELL 2016; 28:74-86. [PMID: 26704385 PMCID: PMC4746687 DOI: 10.1105/tpc.15.00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 05/02/2023]
Abstract
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.
Collapse
Affiliation(s)
- Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Heïdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Chantal Goubely
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Maria E Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| |
Collapse
|
47
|
Kobbe S, Trapp O, Knoll A, Manuss A, Puchta H. The Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2718-29. [PMID: 26474640 PMCID: PMC4677884 DOI: 10.1104/pp.15.00806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required for resistance to interstrand and intrastrand cross-linking agents, but not alkylating agents. To better define the role of REV3 in relation to other key factors involved in DNA repair, we perform epistasis analysis and show that REV3-mediated resistance to DNA-damaging agents is independent of the replication damage checkpoint kinase ataxia telangiectasia-mutated and rad3-related homolog. REV3 cooperates with the endonuclease MMS and UV-sensitive protein81 in response to interstrand cross links and alkylated bases, whereas it acts independently of the ATP-dependent DNA helicase RECQ4A. Taken together, our data show that four DNA intrastrand cross-link subpathways exist in Arabidopsis, defined by ATP-dependent DNA Helicase RECQ4A, MMS and UV-sensitive protein81, REV3, and the ATPase Radiation Sensitive Protein 5A.
Collapse
Affiliation(s)
- Sabrina Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Anja Manuss
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany
| |
Collapse
|
48
|
Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM. Proc Natl Acad Sci U S A 2015; 112:4713-8. [PMID: 25825745 DOI: 10.1073/pnas.1423107112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases--the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs--as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs.
Collapse
|
49
|
Herrmann NJ, Knoll A, Puchta H. The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81. Nucleic Acids Res 2015; 43:3653-66. [PMID: 25779053 PMCID: PMC4402529 DOI: 10.1093/nar/gkv208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia is a severe genetic disorder. Mutations in one of several genes lead to defects in DNA crosslink (CL) repair in human cells. An essential step in CL repair is the activation of the pathway by the monoubiquitination of the heterodimer FANCD2/FANCI, which recruits the nuclease FAN1 to the CL site. Surprisingly, FAN1 function is not conserved between different eukaryotes. No FAN1 homolog is present in Drosophila and Saccharomyces cerevisiae. The FAN1 homolog in Schizosaccharomyces pombe is involved in CL repair; a homolog is present in Xenopus but is not involved in CL repair. Here we show that a FAN1 homolog is present in plants and it is involved in CL repair in Arabidopsis thaliana. Both the virus-type replication-repair nuclease and the ubiquitin-binding ubiquitin-binding zinc finger domains are essential for this function. FAN1 likely acts upstream of two sub-pathways of CL repair. These pathways are defined by the Bloom syndrome homolog RECQ4A and the ATPase RAD5A, which is involved in error-free post-replicative repair. Mutations in both FAN1 and the endonuclease MUS81 resulted in greater sensitivity against CLs than in the respective single mutants. These results indicate that the two nucleases define two independent pathways of CL repair in plants.
Collapse
Affiliation(s)
- Natalie J Herrmann
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| |
Collapse
|
50
|
Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3-GENES GENOMES GENETICS 2015; 5:385-98. [PMID: 25585881 PMCID: PMC4349092 DOI: 10.1534/g3.114.016501] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reshuffling of existing genetic variation during meiosis is important both during evolution and in breeding. The reassortment of genetic variants relies on the formation of crossovers (COs) between homologous chromosomes. The pattern of genome-wide CO distributions can be rapidly and precisely established by the short-read sequencing of individuals from F2 populations, which in turn are useful for quantitative trait locus (QTL) mapping. Although sequencing costs have decreased precipitously in recent years, the costs of library preparation for hundreds of individuals have remained high. To enable rapid and inexpensive CO detection and QTL mapping using low-coverage whole-genome sequencing of large mapping populations, we have developed a new method for library preparation along with Trained Individual GenomE Reconstruction, a probabilistic method for genotype and CO predictions for recombinant individuals. In an example case with hundreds of F2 individuals from two Arabidopsis thaliana accessions, we resolved most CO breakpoints to within 2 kb and reduced a major flowering time QTL to a 9-kb interval. In addition, an extended region of unusually low recombination revealed a 1.8-Mb inversion polymorphism on the long arm of chromosome 4. We observed no significant differences in the frequency and distribution of COs between F2 individuals with and without a functional copy of the DNA helicase gene RECQ4A. In summary, we present a new, cost-efficient method for large-scale, high-precision genotyping-by-sequencing.
Collapse
|