1
|
de Mello VVC, de Oliveira LB, Coelho TFSB, Lee DAB, das Neves LF, Franco EO, Mongruel ACB, Machado RZ, André MR. Diversity of Ehrlichia spp., Anaplasma spp. and Neorickettsia spp. in vampire bats. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100182. [PMID: 38952690 PMCID: PMC11215215 DOI: 10.1016/j.crpvbd.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Although bats (Mammalia: Chiroptera) act as natural reservoirs for many zoonotic pathogens around the world, few studies have investigated the occurrence of Anaplasmataceae agents in bats, especially vampire bats. The family Anaplasmataceae (order Rickettsiales) encompasses obligate intracellular bacteria of the genera Anaplasma, Ehrlichia, Neorickettsia, Neoehrlichia, Wolbachia, and Allocryptoplasma. The present study aimed to investigate, using molecular techniques, the presence of species of Anaplasma, Ehrlichia, and Neorickettsia in vampire bats sampled in northern Brazil. Between 2017 and 2019, spleen samples were collected from vampire bats belonging to two species, Desmodus rotundus (n = 228) from the states of Pará (n = 207), Amazonas (n = 1), Roraima (n = 18) and Amapá (n = 3), and Diaemus youngii (n = 1) from Pará. Positivity rates of 5.2% (12/229), 3% (7/229), and 10.9% (25/229) were found in PCR assays for Anaplasma spp. (16S rRNA gene), Ehrlichia spp. (dsb gene) and Neorickettsia spp. (16S rRNA gene), respectively. The present study revealed, for the first time, the occurrence of Anaplasma spp. and different genotypes of Ehrlichia spp. in vampire bats from Brazil. While phylogenetic analyses based on the dsb and ftsZ genes of Ehrlichia and 16S rRNA of Anaplasma spp. revealed phylogenetic proximity of the genotypes detected in vampire bats with Anaplasmataceae agents associated with domestic ruminants, phylogenetic inferences based on the gltA and groEL genes evidenced the occurrence of genotypes apparently exclusive to bats. Neorickettsia sp. phylogenetically associated with N. risticii was also detected in vampire bats sampled in northern Brazil.
Collapse
Affiliation(s)
- Victória Valente Califre de Mello
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | - Laryssa Borges de Oliveira
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | | | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | - Lorena Freitas das Neves
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | - Eliz Oliveira Franco
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | - Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, 14884-900, SP, Brazil
| |
Collapse
|
2
|
Ho CW, Chen PY, Liao YT, Cheng YF, Tsou HH, Liu TY, Liang KH. Uncovering the microbiome landscape in sashimi delicacies. Sci Rep 2024; 14:5454. [PMID: 38443405 PMCID: PMC10914738 DOI: 10.1038/s41598-024-55938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
It is widely believed that a significant portion of the gut microbiota, which play crucial roles in overall health and disease, originates from the food we consume. Sashimi is a type of popular raw seafood cuisine. Its microbiome, however, remained to be thoroughly explored. The objective of this study is to explore the microbiome composition in sashimi at the time when it is served and ready to be eaten. Specifically, our tasks include investigating the diversity and characteristics of microbial profiles in sashimi with respect to the fish types. We utilized the Sanger-sequencing based DNA barcoding technology for fish species authentication and next-generation sequencing for sashimi microbiome profiling. We investigated the microbiome profiles of amberjack, cobia, salmon, tuna and tilapia sashimi, which were all identified using the MT-CO1 DNA sequences regardless of their menu offering names. Chao1 and Shannon indexes, as well as Bray-Curtis dissimilarity index were used to evaluate the alpha and beta diversities of sashimi microbiome. We successfully validated our previous observation that tilapia sashimi has a significantly higher proportions of Pseudomonas compared to other fish sashimi, using independent samples (P = 0.0010). Salmon sashimi exhibited a notably higher Chao1 index in its microbiome in contrast to other fish species (P = 0.0031), indicating a richer and more diverse microbial ecosystem. Non-Metric Multidimensional Scaling (NMDS) based on Bray-Curtis dissimilarity index revealed distinct clusters of microbiome profiles with respect to fish types. Microbiome similarity was notably observed between amberjack and tuna, as well as cobia and salmon. The relationship of microbiome similarity can be depicted as a tree which resembles partly the phylogenetic tree of host species, emphasizing the close relationship between host evolution and microbial composition. Moreover, salmon exhibited a pronounced relative abundance of the Photobacterium genus, significantly surpassing tuna (P = 0.0079), observed consistently across various restaurant sources. In conclusion, microbiome composition of Pseudomonas is significantly higher in tilapia sashimi than in other fish sashimi. Salmon sashimi has the highest diversity of microbiome among all fish sashimi that we analyzed. The level of Photobacterium is significantly higher in salmon than in tuna across all the restaurants we surveyed. These findings provide critical insights into the intricate relationship between the host evolution and the microbial composition. These discoveries deepen our understanding of sashimi microbiota, facilitating our decision in selecting raw seafood.
Collapse
Affiliation(s)
- Cheng-Wei Ho
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Pei-Ying Chen
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Kung-Hao Liang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Biomedical Informatics, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Giengkam S, Kullapanich C, Wongsantichon J, Adcox HE, Gillespie JJ, Salje J. Orientia tsutsugamushi: comprehensive analysis of the mobilome of a highly fragmented and repetitive genome reveals the capacity for ongoing lateral gene transfer in an obligate intracellular bacterium. mSphere 2023; 8:e0026823. [PMID: 37850800 PMCID: PMC10732058 DOI: 10.1128/msphere.00268-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Obligate intracellular bacteria, or those only capable of growth inside other living cells, have limited opportunities for horizontal gene transfer with other microbes due to their isolated replicative niche. The human pathogen Ot, an obligate intracellular bacterium causing scrub typhus, encodes an unusually high copy number of a ~40 gene mobile genetic element that typically facilitates genetic transfer across microbes. This proliferated element is heavily degraded in Ot and previously assumed to be inactive. Here, we conducted a detailed analysis of this element in eight Ot strains and discovered two strains with at least one intact copy. This implies that the element is still capable of moving across Ot populations and suggests that the genome of this bacterium may be even more dynamic than previously appreciated. Our work raises questions about intracellular microbial evolution and sounds an alarm for gene-based efforts focused on diagnosing and combatting scrub typhus.
Collapse
Affiliation(s)
- Suparat Giengkam
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chitrasak Kullapanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Jeanne Salje
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Giengkam S, Kullapanich C, Wongsantichon J, Adcox HE, Gillespie JJ, Salje J. Orientia tsutsugamushi: analysis of the mobilome of a highly fragmented and repetitive genome reveals ongoing lateral gene transfer in an obligate intracellular bacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540415. [PMID: 37215039 PMCID: PMC10197636 DOI: 10.1101/2023.05.11.540415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The rickettsial human pathogen Orientia tsutsugamushi (Ot) is an obligate intracellular Gram-negative bacterium with one of the most highly fragmented and repetitive genomes of any organism. Around 50% of its ~2.3 Mb genome is comprised of repetitive DNA that is derived from the highly proliferated Rickettsiales amplified genetic element (RAGE). RAGE is an integrative and conjugative element (ICE) that is present in a single Ot genome in up to 92 copies, most of which are partially or heavily degraded. In this report, we analysed RAGEs in eight fully sequenced Ot genomes and manually curated and reannotated all RAGE-associated genes, including those encoding DNA mobilisation proteins, P-type (vir) and F-type (tra) type IV secretion system (T4SS) components, Ankyrin repeat- and tetratricopeptide repeat-containing effectors, and other piggybacking cargo. Originally, the heavily degraded Ot RAGEs led to speculation that they are remnants of historical ICEs that are no longer active. Our analysis, however, identified two Ot genomes harbouring one or more intact RAGEs with complete F-T4SS genes essential for mediating ICE DNA transfer. As similar ICEs have been identified in unrelated rickettsial species, we assert that RAGEs play an ongoing role in lateral gene transfer within the Rickettsiales. Remarkably, we also identified in several Ot genomes remnants of prophages with no similarity to other rickettsial prophages. Together these findings indicate that, despite their obligate intracellular lifestyle and host range restricted to mites, rodents and humans, Ot genomes are highly dynamic and shaped through ongoing invasions by mobile genetic elements and viruses.
Collapse
Affiliation(s)
- Suparat Giengkam
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chitrasak Kullapanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD 21201
| | - Jeanne Salje
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Pathology, Department of Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
5
|
Budachetri K, Lin M, Yan Q, Chien RC, Hostnik LD, Haanen G, Leclère M, Waybright W, Baird JD, Arroyo LG, Rikihisa Y. Real-Time PCR Differential Detection of Neorickettsia findlayensis and N. risticii in Cases of Potomac Horse Fever. J Clin Microbiol 2022; 60:e0025022. [PMID: 35695520 PMCID: PMC9297838 DOI: 10.1128/jcm.00250-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Potomac horse fever (PHF) is an acute and potentially fatal enterotyphlocolitis of horses with clinical signs that include anorexia, fever, diarrhea, and laminitis. Its incidence is increasing despite a commercially available vaccine. PHF is caused by Neorickettsia risticii, and the recently rediscovered and classified N. findlayensis. PHF diagnosis is currently accomplished using serology or nested PCR. However, both methods cannot distinguish the two Neorickettsia species that cause PHF. Further, the current N. risticii real-time PCR test fails to detect N. findlayensis. Thus, in this study, two Neorickettsia species-specific real-time PCR assays based on Neorickettsia ssa2 and a Neorickettsia genus-specific real-time PCR assay based on Neorickettsia 16S rRNA gene were developed. The ssa2 real-time PCR tests differentiated N. findlayensis from N. risticii in the field samples for which infection with either species had been verified using multiple other molecular tests and culture isolation, and the 16S rRNA gene real-time PCR detected both Neorickettsia species in the samples. These tests were applied to new field culture isolates from three Canadian provinces (Alberta, Quebec, Ontario) and Ohio as well as archival DNA samples from suspected PHF cases to estimate the prevalence of N. findlayensis in different geographic regions. The results suggest that N. findlayensis frequently causes PHF in horses in Alberta and Quebec. The development of these tests will allow rapid, sensitive, and specific diagnosis of horses presenting with clinical signs of PHF. These tests will also enable rapid and targeted treatment and help develop broad-spectrum vaccines for PHF.
Collapse
Affiliation(s)
- Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mingqun Lin
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Qi Yan
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Rory C. Chien
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura D. Hostnik
- Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Gillian Haanen
- Moore Equine Veterinary Centre, Rocky View County, Alberta, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montréal, St. Hyacinthe, Québec, Canada
| | | | - John D. Baird
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Luis G. Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Cicuttin GL, De Salvo MN, Hercolini C, Arístegui E, Bruno A, Brambati D, Nava S. Detection of Neorickettsia sp. in Oligoryzomys flavescens rodent from a protected urban area in Buenos Aires City (Argentina). Vet Parasitol Reg Stud Reports 2022; 32:100742. [PMID: 35725109 DOI: 10.1016/j.vprsr.2022.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Rodents play an important role in vector-borne pathogens cycle. To detect Anaplasma, Ehrlichia, Neorickettsia, Rickettsia and Borrelia species in rodents from a protected urban area in Buenos Aires City (Argentina) were analyzed 203 organ pools of Mus musculus, Oligoryzomys flavescens, Rattus norvegicus, Deltamys kempi and Scapteromys aquaticus by PCR. Only one O. flavescens (1.2%) was positive by PCR for 16S rRNA fragment for the Anaplasmataceae family and the sequence had 99.7% identity with Neorickettsia risticii. Plus, the sequence obtained for a fragment of the p51 gene for the genus Neorickettsia from positive sample had 95.3-96.1% identity with N. risticii found previously in bats Tadarida brasiliensis from Buenos Aires City. Our study presents the first finding of Neorickettsia in rodents from natural environment, but further studies are necessary about these vector-borne bacteria and the rol of rodents in its epidemiology.
Collapse
Affiliation(s)
- G L Cicuttin
- Instituto de Zoonosis Luis Pasteur, Av. Díaz Vélez 4821, CP 1405 Ciudad Autónoma de Buenos Aires, Argentina.
| | - M N De Salvo
- Instituto de Zoonosis Luis Pasteur, Av. Díaz Vélez 4821, CP 1405 Ciudad Autónoma de Buenos Aires, Argentina
| | - C Hercolini
- Instituto de Zoonosis Luis Pasteur, Av. Díaz Vélez 4821, CP 1405 Ciudad Autónoma de Buenos Aires, Argentina
| | - E Arístegui
- Instituto de Zoonosis Luis Pasteur, Av. Díaz Vélez 4821, CP 1405 Ciudad Autónoma de Buenos Aires, Argentina
| | - A Bruno
- Instituto de Zoonosis Luis Pasteur, Av. Díaz Vélez 4821, CP 1405 Ciudad Autónoma de Buenos Aires, Argentina; Independent
| | - D Brambati
- Instituto de Zoonosis Luis Pasteur, Av. Díaz Vélez 4821, CP 1405 Ciudad Autónoma de Buenos Aires, Argentina
| | - S Nava
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, CP 2300 Rafaela, Santa Fe, Argentina
| |
Collapse
|
7
|
Comparative Genomics of Clinical Isolates of the Emerging Tick-Borne Pathogen Neoehrlichia mikurensis. Microorganisms 2021; 9:microorganisms9071488. [PMID: 34361922 PMCID: PMC8303192 DOI: 10.3390/microorganisms9071488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Tick-borne ‘Neoehrlichia (N.) mikurensis’ is the cause of neoehrlichiosis, an infectious vasculitis of humans. This strict intracellular pathogen is a member of the family Anaplasmataceae and has been unculturable until recently. The only available genetic data on this new pathogen are six partially sequenced housekeeping genes. The aim of this study was to advance the knowledge regarding ‘N. mikurensis’ genomic relatedness with other Anaplasmataceae members, intra-species genotypic variability and potential virulence factors explaining its tropism for vascular endothelium. Here, we present the de novo whole-genome sequences of three ‘N. mikurensis’ strains derived from Swedish patients diagnosed with neoehrlichiosis. The genomes were obtained by extraction of DNA from patient plasma, library preparation using 10× Chromium technology, and sequencing by Illumina Hiseq-4500. ‘N. mikurensis’ was found to have the next smallest genome of the Anaplasmataceae family (1.1 Mbp with 27% GC contents) consisting of 845 protein-coding genes, every third of which with unknown function. Comparative genomic analyses revealed that ‘N. mikurensis’ was more closely related to Ehrlichia chaffeensis than to Ehrlichia ruminantium, the opposite of what 16SrRNA sequence-based phylogenetic analyses determined. The genetic variability of the three whole-genome-sequenced ‘N. mikurensis’ strains was extremely low, between 0.14 and 0.22‰, a variation that was associated with geographic origin. No protein-coding genes exclusively shared by N. mikurensis and E. ruminantium were identified to explain their common tropism for vascular endothelium.
Collapse
|
8
|
Lin M, Xiong Q, Chung M, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis. BMC Genomics 2021; 22:11. [PMID: 33407096 PMCID: PMC7789307 DOI: 10.1186/s12864-020-07309-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| | - Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Lindsey ARI. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in Wolbachia. Genes (Basel) 2020; 11:E813. [PMID: 32708808 PMCID: PMC7397232 DOI: 10.3390/genes11070813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia (Anaplasmataceae) is an endosymbiont of arthropods and nematodes that resides within host cells and is well known for manipulating host biology to facilitate transmission via the female germline. The effects Wolbachia has on host physiology, combined with reproductive manipulations, make this bacterium a promising candidate for use in biological- and vector-control. While it is becoming increasingly clear that Wolbachia's effects on host biology are numerous and vary according to the host and the environment, we know very little about the molecular mechanisms behind Wolbachia's interactions with its host. Here, I analyze 29 Wolbachia genomes for the presence of systems that are likely central to the ability of Wolbachia to respond to and interface with its host, including proteins for sensing, signaling, gene regulation, and secretion. Second, I review conditions under which Wolbachia alters gene expression in response to changes in its environment and discuss other instances where we might hypothesize Wolbachia to regulate gene expression. Findings will direct mechanistic investigations into gene regulation and host-interaction that will deepen our understanding of intracellular infections and enhance applied management efforts that leverage Wolbachia.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
10
|
Detection of Neorickettsia risticii, the agent of Potomac horse fever, in horses from Rio de Janeiro, Brazil. Sci Rep 2020; 10:7208. [PMID: 32350359 PMCID: PMC7190851 DOI: 10.1038/s41598-020-64328-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/10/2020] [Indexed: 12/05/2022] Open
Abstract
This study aims to report the presence of Neorickettsia risticii DNA in blood samples from naturally infected horses in Rio de Janeiro, provide clinicopathological findings related to the infection, and report the phylogenetic diversity of the 16S rDNA of N. risticii in order to evaluate its heterogeneity. Real-time quantitative polymerase chain reaction (qPCR) was performed to investigate the presence of N. risticii in samples collected from horses (n = 187). Five positive samples were found in the molecular screening. Hypoalbuminemia and high levels of creatine kinase and lactate dehydrogenase were the predominant findings in the biochemical analysis. The sequences were similar to those of N. risticii. Phylogenetic analysis revealed genotype segregation based on the geographical distribution in the N. risticii sequence clade. Dendrograms constructed with five hypervariable regions revealed that V4 distinguished Neorickettsia at the species level and produced a phylogeny that best represented the phylogeny obtained with the complete 16S rDNA sequence. This is the first report of N. risticii DNA in the blood of Brazilian horses based on sequences deposited in GenBank. Further studies are necessary to clarify the epidemiological chain of this vector-borne parasite in order to determine and establish appropriate preventive measures in the equine trading market.
Collapse
|
11
|
Abstract
Despite the detection of Neorickettsia species DNA sequences in various trematode species and their hosts, only three Neorickettsia species have been cell culture isolated and whole-genome sequenced and are known to infect mammals and/or cause disease. The molecular mechanisms that enable the obligatory intracellular bacterium Neorickettsia to colonize trematodes and to horizontally transmit from trematodes to mammals, as well as the virulence factors associated with specific mammalian hosts, are unknown. Potomac horse fever (PHF) is a severe and acute systemic infectious disease of horses, with clinical signs that include diarrhea. Neorickettsia risticii is the only known bacterial species that causes PHF. Ingestion of insects harboring N. risticii-infected trematodes by horses leads to PHF. Our discovery of a new Neorickettsia species that causes PHF and whole-genome sequence analysis of this bacterium will improve laboratory diagnosis and vaccine development for PHF and will contribute to our understanding of Neorickettsia ecology, pathogenesis, and biology. Potomac horse fever (PHF), a severe and frequently fatal febrile diarrheal disease, has been known to be caused only by Neorickettsia risticii, an endosymbiont of digenean trematodes. Here, we report the cell culture isolation of a new Neorickettsia species found in two locations in eastern Ontario, Canada, in 2016 and 2017 (in addition to 10 variable strains of N. risticii) from N. risticii PCR-negative horses with clinical signs of PHF. Gene sequences of 16S rRNA and the major surface antigen P51 of this new Neorickettsia species were distinct from those of all previously characterized N. risticii strains and Neorickettsia species, except for those from an uncharacterized Neorickettsia species culture isolate from a horse with PHF in northern Ohio in 1991. The new Neorickettsia species nonetheless had the characteristic intramolecular repeats within strain-specific antigen 3 (Ssa3), which were found in all sequenced Ssa3s of N. risticii strains. Experimental inoculation of two naive ponies with the new Neorickettsia species produced severe and subclinical PHF, respectively, and the bacteria were reisolated from both of them, fulfilling Koch’s postulates. Serological assay titers against the new Neorickettsia species were higher than those against N. risticii. Whole-genome sequence analysis of the new Neorickettsia species revealed unique features of this bacterium compared with N. risticii. We propose to classify this new bacterium as Neorickettsia finleia sp. nov. This finding will improve the laboratory diagnosis of and vaccine for PHF, environmental risk assessment of PHF, and understanding of PHF pathogenesis and Neorickettsia biology in general.
Collapse
|
12
|
Lin M, Bachman K, Cheng Z, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Analysis of complete genome sequence and major surface antigens of Neorickettsia helminthoeca, causative agent of salmon poisoning disease. Microb Biotechnol 2017; 10:933-957. [PMID: 28585301 PMCID: PMC5481527 DOI: 10.1111/1751-7915.12731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N. helminthoeca: a single small circular chromosome of 884 232 bp encoding 774 potential proteins. N. helminthoeca is unable to synthesize lipopolysaccharides and most amino acids, but is capable of synthesizing vitamins, cofactors, nucleotides and bacterioferritin. N. helminthoeca is, however, distinct from majority of the family Anaplasmataceae to which it belongs, as it encodes nearly all enzymes required for peptidoglycan biosynthesis, suggesting its structural hardiness and inflammatory potential. Using sera from dogs that were experimentally infected by feeding with parasitized fish or naturally infected in southern California, Western blot analysis revealed that among five predicted N. helminthoeca outer membrane proteins, P51 and strain-variable surface antigen were uniformly recognized. Our finding will help understanding pathogenesis, prevalence of N. helminthoeca infection among trematodes, canids and potentially other animals in nature to develop effective SPD diagnostic and preventive measures. Recent progresses in large-scale genome sequencing have been uncovering broad distribution of Neorickettsia spp., the comparative genomics will facilitate understanding of biology and the natural history of these elusive environmental bacteria.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Katherine Bachman
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Zhihui Cheng
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Fischer K, Tkach VV, Curtis KC, Fischer PU. Ultrastructure and localization of Neorickettsia in adult digenean trematodes provides novel insights into helminth-endobacteria interaction. Parasit Vectors 2017; 10:177. [PMID: 28407790 PMCID: PMC5390476 DOI: 10.1186/s13071-017-2123-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/29/2017] [Indexed: 08/24/2023] Open
Abstract
Background Neorickettsia are a group of intracellular α proteobacteria transmitted by digeneans (Platyhelminthes, Trematoda). These endobacteria can also infect vertebrate hosts of the helminths and cause serious diseases in animals and humans. Neorickettsia have been isolated from infected animals and maintained in cell cultures, and their morphology in mammalian cells has been described. However, limited information is available on the morphology and localization of Neorickettsia in the trematode host. Methods We used a Neorickettsia-infected strain of the model trematode Plagiorchis elegans to infect Syrian Golden hamsters to produce adult worms. Ultrastructure of Neorickettsia was assessed by transmission electron microscopy of high pressure freezing/freeze substitution fixed specimens. A Neorickettsia surface protein from P. elegans (PeNsp-3) was cloned and antibodies against the recombinant protein were used to localize Neorickettsia by immunohistochemistry. Results Ultrastructural analysis revealed moderate numbers of pleomorphic endobacteria with a median size of 600 × 400 nm and characteristic double membranes in various tissue types. Endobacteria showed tubular membrane invaginations and secretion of polymorphic vesicles. Endobacteria were unevenly localized as single cells, or less frequently as small morula-like clusters in the ovary, Mehlis’ gland, vitelline follicles, uterus, intrauterine eggs, testis, cirrus-sac, tegument, intestine and the oral and ventral sucker. Examination of hamster small intestine infected with P. elegans showed many endobacteria at the host-parasite interface such as the oral and ventral sucker, the tegument and the excretory pore. Conclusions We conclude that adult P. elegans trematodes carry Neorickettsia endobacteria in varying numbers in many tissue types that support vertical transmission, trematode to trematode transmission via seminal fluid, and possibly horizontal transmission from trematodes to vertebrate hosts. These means appear to be novel mechanisms of pathogen transmission by endoparasitic worms. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2123-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA
| | - Kurt C Curtis
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peter U Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
McNulty SN, Tort JF, Rinaldi G, Fischer K, Rosa BA, Smircich P, Fontenla S, Choi YJ, Tyagi R, Hallsworth-Pepin K, Mann VH, Kammili L, Latham PS, Dell’Oca N, Dominguez F, Carmona C, Fischer PU, Brindley PJ, Mitreva M. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers. PLoS Genet 2017; 13:e1006537. [PMID: 28060841 PMCID: PMC5257007 DOI: 10.1371/journal.pgen.1006537] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/23/2017] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.
Collapse
Affiliation(s)
- Samantha N. McNulty
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Jose F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Kerstin Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Young-Jun Choi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
| | | | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Lakshmi Kammili
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Patricia S. Latham
- Department of Pathology, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Nicolas Dell’Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Fernanda Dominguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Carlos Carmona
- Unidad de Biología Parasitaria, Instituto de Biología, Facultad de Ciencias, Instituto de Higiene, Montevideo, Uruguay
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Makedonka Mitreva
- McDonnell Genome Institute at Washington University, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
15
|
Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3-GENES GENOMES GENETICS 2016; 6:3343-3349. [PMID: 27543297 PMCID: PMC5068953 DOI: 10.1534/g3.116.031237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.
Collapse
|
16
|
VieBrock L, Evans SM, Beyer AR, Larson CL, Beare PA, Ge H, Singh S, Rodino KG, Heinzen RA, Richards AL, Carlyon JA. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum. Front Cell Infect Microbiol 2015; 4:186. [PMID: 25692099 PMCID: PMC4315096 DOI: 10.3389/fcimb.2014.00186] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022] Open
Abstract
Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.
Collapse
Affiliation(s)
- Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Sean M Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Charles L Larson
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Hong Ge
- Viral and Rickettsial Diseases Department, Naval Medical Research Center Silver Spring, MD, USA
| | - Smita Singh
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center Silver Spring, MD, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
17
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Fukuda K, Yatera K, Ogawa M, Kawanami T, Yamasaki K, Noguchi S, Murphy RS, Mukae H, Taniguchi H. An unclassified microorganism: novel pathogen candidate lurking in human airways. PLoS One 2014; 9:e103646. [PMID: 25080337 PMCID: PMC4117515 DOI: 10.1371/journal.pone.0103646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023] Open
Abstract
During the assessments of the correlation of the diseases and the microbiota of various clinical specimens, unique 16S ribosomal RNA (rRNA) gene sequences (less than 80% similarity to known bacterial type strains) were predominantly detected in a bronchoalveolar lavage fluid (BALF) specimen from a patient with chronic lower respiratory tract infection. The origin of this unique sequence is suspected to be the causative agent of the infection. We temporarily named the owner organism of this sequence "IOLA" (Infectious Organism Lurking in Airways). In order to evaluate the significance of IOLA in human lung disorders, we performed several experiments. IOLA-16S rRNA genes were detected in 6 of 386 clone libraries constructed from clinical specimens of patients with respiratory diseases (in our study series). The gene sequences (1,427 bp) are identical, and no significantly similar sequence was found in public databases (using NCBI blastn) except for the 8 shorter sequences detected from patients with respiratory diseases in other studies from 2 other countries. Phylogenetic analyses revealed that the 16S rRNA gene of IOLA is more closely related to eukaryotic mitochondria than bacteria. However, the size and shape of IOLA seen by fluorescent in-situ hybridization are similar to small bacteria (approximately 1 µm with a spherical shape). Furthermore, features of both bacteria and mitochondria were observed in the genomic fragment (about 19 kb) of IOLA, and the GC ratio of the sequence was extremely low (20.5%). Two main conclusions were reached: (1) IOLA is a novel bacteria-like microorganism that, interestingly, possesses features of eukaryotic mitochondria. (2) IOLA is a novel pathogen candidate, and it may be the causative agent of human lung or airway disease. IOLA exists in BALF specimens from patients with remarkable symptoms; this information is an important piece for helping solve the elusive etiology of chronic respiratory disorders.
Collapse
Affiliation(s)
- Kazumasa Fukuda
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
- * E-mail:
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Midori Ogawa
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Toshinori Kawanami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Robert S. Murphy
- Center of Fundamental Education, University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Hatsumi Taniguchi
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
19
|
Bacterial endosymbiosis in a chordate host: long-term co-evolution and conservation of secondary metabolism. PLoS One 2013; 8:e80822. [PMID: 24324632 PMCID: PMC3851785 DOI: 10.1371/journal.pone.0080822] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Intracellular symbiosis is known to be widespread in insects, but there are few described examples in other types of host. These symbionts carry out useful activities such as synthesizing nutrients and conferring resistance against adverse events such as parasitism. Such symbionts persist through host speciation events, being passed down through vertical transmission. Due to various evolutionary forces, symbionts go through a process of genome reduction, eventually resulting in tiny genomes where only those genes essential to immediate survival and those beneficial to the host remain. In the marine environment, invertebrates such as tunicates are known to harbor complex microbiomes implicated in the production of natural products that are toxic and probably serve a defensive function. Here, we show that the intracellular symbiont Candidatus Endolissoclinum faulkneri is a long-standing symbiont of the tunicate Lissoclinum patella, that has persisted through cryptic speciation of the host. In contrast to the known examples of insect symbionts, which tend to be either relatively recent or ancient relationships, the genome of Ca. E. faulkneri has a very low coding density but very few recognizable pseudogenes. The almost complete degradation of intergenic regions and stable gene inventory of extant strains of Ca. E. faulkneri show that further degradation and deletion is happening very slowly. This is a novel stage of genome reduction and provides insight into how tiny genomes are formed. The ptz pathway, which produces the defensive patellazoles, is shown to date to before the divergence of Ca. E. faulkneri strains, reinforcing its importance in this symbiotic relationship. Lastly, as in insects we show that stable symbionts can be lost, as we describe an L. patella animal where Ca. E. faulkneri is displaced by a likely intracellular pathogen. Our results suggest that intracellular symbionts may be an important source of ecologically significant natural products in animals.
Collapse
|
20
|
Baird JD, Arroyo LG. Historical aspects of Potomac horse fever in Ontario (1924-2010). THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2013; 54:565-572. [PMID: 24155447 PMCID: PMC3659452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the summer of 1924 Dr. Frank W. Schofield conducted investigations into an endemic disease of horses in the Kent and Essex counties of Ontario. According to farmers in these counties the disease had existed in this region for at least 50 years previously. The clinical, pathological, histopathological, and epidemiological findings outlined in Schofield's detailed report strongly suggest that this endemic disease was what was designated in 1979 as "Potomac horse fever" (PHF). This assumption is further substantiated by transmission experiments involving horses and laboratory animals that were conducted by Schofield utilizing horse feces, whole blood, and mayflies. The aim of this paper is to present Schofield's detailed investigations and findings and to compare these with PHF research conducted from 1979 to 2010 that ultimately led to the discovery of Neorickettsia risticii as the etiological agent and to elucidation of the organism's complex life cycle.
Collapse
Affiliation(s)
- John D. Baird
- Address all correspondence to Dr. John Baird; e-mail:
| | | |
Collapse
|
21
|
Cicuttin GL, Boeri EJ, Beltrán FJ, Gury Dohmen FE. Molecular detection of Neorickettsia risticii in Brazilian free-tailed bats (Tadarida brasiliensis) from Buenos Aires , Argentina. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000500016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Abstract
SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world’s oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade’s origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade. The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.
Collapse
|
23
|
Serbus LR, Landmann F, Bray WM, White PM, Ruybal J, Lokey RS, Debec A, Sullivan W. A cell-based screen reveals that the albendazole metabolite, albendazole sulfone, targets Wolbachia. PLoS Pathog 2012; 8:e1002922. [PMID: 23028321 PMCID: PMC3447747 DOI: 10.1371/journal.ppat.1002922] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022] Open
Abstract
Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.
Collapse
Affiliation(s)
- Laura R Serbus
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Vaughan JA, Tkach VV, Greiman SE. Neorickettsial endosymbionts of the digenea: diversity, transmission and distribution. ADVANCES IN PARASITOLOGY 2012; 79:253-97. [PMID: 22726644 DOI: 10.1016/b978-0-12-398457-9.00003-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Digeneans are endoparasitic flatworms with complex life cycles and distinct life stages that parasitize different host species. Some digenean species harbour bacterial endosymbionts known as Neorickettsia (Order Rickettsiales, Family Anaplasmataceae). Neorickettsia occur in all life stages and are maintained by vertical transmission. Far from benign however, Neorickettsia may also be transmitted horizontally by digenean parasites to their vertebrate definitive hosts. Once inside, Neorickettsia can infect macrophages and other cell types. In some vertebrate species (e.g. dogs, horses and humans), neorickettsial infections cause severe disease. Taken from a mostly parasitological perspective, this article summarizes our current knowledge on the transmission ecology of neorickettsiae, both for pathogenic species and for neorickettsiae of unknown pathogenicity. In addition, we discuss the diversity, phylogeny and geographical distribution of neorickettsiae, as well as their possible evolutionary associations with various groups of digeneans. Our understanding of neorickettsiae is at an early stage and there are undoubtedly many more neorickettsial endosymbioses with digeneans waiting to be discovered. Because neorickettsiae can infect vertebrates, it is particularly important to examine digenean species that regularly infect humans. Rapid advances in molecular tools and their application towards bacterial identification bode well for our future progress in understanding the biology of Neorickettsia.
Collapse
|
25
|
Renvoisé A, Merhej V, Georgiades K, Raoult D. Intracellular Rickettsiales: Insights into manipulators of eukaryotic cells. Trends Mol Med 2011; 17:573-83. [PMID: 21763202 DOI: 10.1016/j.molmed.2011.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 02/08/2023]
Abstract
The order Rickettsiales comprises obligate intracellular bacteria that are the ancestors of modern eukaryotes. These bacteria infect various vectors and hosts, with some species being pathogenic to man. Rickettsiales have small, degraded genomes and provide a paradigm for increased pathogenicity despite gene loss; significant levels of genetic exchange occur between bacteria that infect the same host and with the eukaryotic hosts themselves. Crosstalk between host and bacteria appears to be mediated by a Type IV secretion system and proteins containing eukaryotic-like repeat motifs. Rickettsiales also manipulate host reproduction and induce host resistance to viruses. Manipulation of its host by Rickettsiales has long been misunderstood because of technical difficulties, but recent advances in understanding bacterial-eukaryotes interactions have been made and are reviewed here.
Collapse
Affiliation(s)
- Aurélie Renvoisé
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR6236-198, Université de la Méditerranée, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | |
Collapse
|
26
|
Gibson KE, Pastenkos G, Moesta S, Rikihisa Y. Neorickettsia risticii surface-exposed proteins: proteomics identification, recognition by naturally-infected horses, and strain variations. Vet Res 2011; 42:71. [PMID: 21635728 PMCID: PMC3127766 DOI: 10.1186/1297-9716-42-71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/02/2011] [Indexed: 11/16/2022] Open
Abstract
Neorickettsia risticii is the Gram-negative, obligate, and intracellular bacterial pathogen responsible for Potomac horse fever (PHF): an important acute systemic disease of horses. N. risticii surface proteins, critical for immune recognition, have not been thoroughly characterized. In this paper, we identified the 51-kDa antigen (P51) as a major surface-exposed outer membrane protein of older and contemporary strains of N. risticii through mass spectrometry of streptavidin-purified biotinylated surface-labeled proteins. Western blot analysis of sera from naturally-infected horses demonstrated universal and strong recognition of recombinant P51 over other Neorickettsia recombinant proteins. Comparisons of amino acid sequences for predicted secondary structures of P51, as well as Neorickettsia surface proteins 2 (Nsp2) and 3 (Nsp3) among N. risticii strains from horses with PHF during a 26-year period throughout the United States revealed that the majority of variations among strains were concentrated in regions predicted to be external loops of their β-barrel structures. Large insertions or deletions occurred within a tandem-repeat region in Ssa3. These data demonstrate patterns of geographical association for P51 and temporal associations for Nsp2, Nsp3, and Ssa3, indicating evolutionary trends for these Neorickettsia surface antigen genes. This study showed N. risticii surface protein population dynamics, providing groundwork for designing immunodiagnostic targets for PHF.
Collapse
Affiliation(s)
- Kathryn E Gibson
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, 1925 Coffey Rd, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
27
|
Fabret C, Dervyn E, Dalmais B, Guillot A, Marck C, Grosjean H, Noirot P. Life without the essential bacterial tRNAIle2-lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis. Mol Microbiol 2011; 80:1062-74. [DOI: 10.1111/j.1365-2958.2011.07630.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: anaplasma phagocytophilum and ehrlichia chaffeensis. Front Microbiol 2011; 2:24. [PMID: 21687416 PMCID: PMC3109344 DOI: 10.3389/fmicb.2011.00024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
29
|
Proteomic analysis of Neorickettsia sennetsu surface-exposed proteins and porin activity of the major surface protein P51. J Bacteriol 2010; 192:5898-905. [PMID: 20833807 DOI: 10.1128/jb.00632-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neorickettsia sennetsu is an obligate intracellular bacterium of monocytes and macrophages and is the etiologic agent of human Sennetsu neorickettsiosis. Neorickettsia proteins expressed in mammalian host cells, including the surface proteins of Neorickettsia spp., have not been defined. In this paper, we isolated surface-exposed proteins from N. sennetsu by biotin surface labeling followed by streptavidin-affinity chromatography. Forty-two of the total of 936 (4.5%) N. sennetsu open reading frames (ORFs) were detected by liquid chromatography-tandem mass spectrometry (LC/MS/MS), including six hypothetical proteins. Among the major proteins identified were the two major β-barrel proteins: the 51-kDa antigen (P51) and Neorickettsia surface protein 3 (Nsp3). Immunofluorescence labeling not only confirmed surface exposure of these proteins but also showed rosary-like circumferential labeling with anti-P51 for the majority of bacteria and polar to diffuse punctate labeling with anti-Nsp3 for a minority of bacteria. We found that the isolated outer membrane of N. sennetsu had porin activity, as measured by a proteoliposome swelling assay. This activity allowed the diffusion of L-glutamine, the monosaccharides arabinose and glucose, and the tetrasaccharide stachyose, which could be inhibited with anti-P51 antibody. We purified native P51 and Nsp3 under nondenaturing conditions. When reconstituted into proteoliposomes, purified P51, but not Nsp3, exhibited prominent porin activity. This the first proteomic study of a Neorickettsia sp. showing new sets of proteins evolved as major surface proteins for Neorickettsia and the first identification of a porin for the genus Neorickettsia.
Collapse
|
30
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
31
|
Abstract
With an obligate intracellular lifestyle, Alphaproteobacteria of the order Rickettsiales have inextricably coevolved with their various eukaryotic hosts, resulting in small, reductive genomes and strict dependency on host resources. Unsurprisingly, large portions of Rickettsiales genomes encode proteins involved in transport and secretion. One particular transporter that has garnered recent attention from researchers is the type IV secretion system (T4SS). Homologous to the well-studied archetypal vir T4SS of Agrobacterium tumefaciens, the Rickettsiales vir homolog (rvh) T4SS is characterized primarily by duplication of several of its genes and scattered genomic distribution of all components in several conserved islets. Phylogeny estimation suggests a single event of ancestral acquirement of the rvh T4SS, likely from a nonalphaproteobacterial origin. Bioinformatics analysis of over 30 Rickettsiales genome sequences illustrates a conserved core rvh scaffold (lacking only a virB5 homolog), with lineage-specific diversification of several components (rvhB1, rvhB2, and rvhB9b), likely a result of modifications to cell envelope structure. This coevolution of the rvh T4SS and cell envelope morphology is probably driven by adaptations to various host cells, identifying the transporter as an important target for vaccine development. Despite the genetic intractability of Rickettsiales, recent advancements have been made in the characterization of several components of the rvh T4SS, as well as its putative regulators and substrates. While current data favor a role in effector translocation, functions in DNA uptake and release and/or conjugation cannot at present be ruled out, especially considering that a mechanism for plasmid transfer in Rickettsia spp. has yet to be proposed.
Collapse
|
32
|
Rikihisa Y, Lin M. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 2010; 13:59-66. [PMID: 20053580 DOI: 10.1016/j.mib.2009.12.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 02/04/2023]
Abstract
The obligatory intracellular bacterial pathogens Anaplasma and Ehrlichia infect leukocytes by hijacking host-cell components and processes. The type IV secretion system is up-regulated during infection. Among type IV secretion candidate substrates, an ankyrin repeat protein of Anaplasma phagocytophilum, AnkA, is delivered into the host cytoplasm via a complex that includes VirD4. AnkA is highly tyrosine phosphorylated and binds to the Abl interactor 1, SHP-1, and nuclear DNA fragments. Ehrlichia chaffeensis AnkA was recently reported to be translocated into host-cell nucleus. The recent discovery of several ankyrin repeat proteins secreted via the type IV secretion system of different intracellular bacteria suggests that a common strategy evolved to subvert host-cell functions.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
33
|
Ulrich LE, Zhulin IB. The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 2009; 38:D401-7. [PMID: 19900966 PMCID: PMC2808908 DOI: 10.1093/nar/gkp940] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extracytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 157 draft bacterial and archaeal genomes, which collectively contain more than 245 000 signal transduction proteins. The majority (66%) of these are one-component systems, followed by two-component proteins (26%), chemotaxis (6%), and finally ECF factors (2%).
Collapse
|