1
|
Liu J, Nagy N, Ayala-Torres C, Bleuse S, Aguilar-Alonso F, Larsson O, Masucci MG. The Epstein-Barr virus deubiquitinase BPLF1 regulates stress-induced ribosome UFMylation and reticulophagy. Autophagy 2025; 21:996-1018. [PMID: 39842454 PMCID: PMC12013442 DOI: 10.1080/15548627.2024.2440846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
The synthesis of membrane and secreted proteins is safeguarded by an endoplasmic reticulum-associated ribosome quality control (ER-RQC) that promotes the disposal of defective translation products by the proteasome or via a lysosome-dependent pathway involving the degradation of portions of the ER by macroautophagy (reticulophagy). The UFMylation of RPL26 on ER-stalled ribosomes is essential for activating the ER-RQC and reticulophagy. Here, we report that the viral deubiquitinase (vDUB) encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein BPLF1 hinders the UFMylation of RPL26 on ribosomes that stall at the ER, promotes the stabilization of ER-RQC substrates, and inhibits reticulophagy. The vDUB did not act as a de-UFMylase or interfere with the UFMylation of the ER membrane protein CYB5R3 by the UFL1 ligase. Instead, it copurified with ribosomes in sucrose gradients and abrogated a ZNF598- and LTN1-independent ubiquitination event required for RPL26 UFMylation. Physiological levels of BPLF1 impaired the UFMylation of RPL26 in productively EBV-infected cells, pointing to an important role of the enzyme in regulating the translation quality control that allows the efficient synthesis of viral proteins and the production of infectious virus.Abbreviation: BPLF1, BamH1 P fragment left open readingframe-1; CDK5RAP3, CDK5regulatory subunit associated protein 3; ChFP, mCherry fluorescent protein; DDRGK1, DDRGKdomain containing 1; EBV, Epstein-Barr virus; eGFP, enhancedGFP; ER-RQC, endoplasmicreticulum-associated ribosome quality control; LCL, EBV-carryinglymphoblastoid cell line; GFP, green fluorescent protein; RQC, ribosome quality control; SRP, signal recognition particle; UFM1, ubiquitin fold modifier 1; UFL1, UFM1 specific ligase 1.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Solenne Bleuse
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Zhang Y, Ye G, Zeng W, Zhu R, Li C, Zhu Y, Li D, Liu J, Wang W, Li P, Fan L, Wang R, Niu X. Segregation and integration of resting-state brain networks in a longitudinal long COVID cohort. iScience 2025; 28:112237. [PMID: 40230529 PMCID: PMC11994909 DOI: 10.1016/j.isci.2025.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/22/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Long COVID is characterized by debilitating fatigue, likely stemming from abnormal interactions among brain regions, but the neural mechanisms remain unclear. Here, we utilized a nested-spectral partition (NSP) approach to study the segregation and integration of resting-state brain functional networks in 34 patients with long COVID from acute to chronic phase post infection. Compared to healthy controls, patients with long COVID exhibited significantly higher fatigue scores and shifted the brain into a less segregated state at both 1 month and 3 months post infection. During the recovery of fatigue severity, there was no significant difference of segregation/integration. A positive correlation between network integration and fatigue was observed at 1 month, shifting to a negative correlation by 3 months. Gene Ontology analysis revealed that both acute and long-term effects of fatigue were associated with abnormal social behavior. Our findings reveal the brain network reconfiguration trajectories during post-viral fatigue progression that serve as functional biomarkers for tracking neurocognitive sequelae.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Gengchen Ye
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Wentao Zeng
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Ruiting Zhu
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Chiyin Li
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Yanan Zhu
- Medical Imaging Centre, Ankang Central Hospital, Shaanxi Province, Ankang, China
| | - Dongbo Li
- Department of Neurosurgery, Ankang Central Hospital, Shaanxi Province, Ankang, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi’an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Shaanxi Province, Xi’an, China
| | - Wenyang Wang
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Peng Li
- Department of Medical Imaging, Nuclear Industry 215 Hospital of Shaanxi Province, Shaanxi Province, Xianyang, China
- Department of Radiology, The Second Hospital of the Air Force Medical University, Shaanxi Province, Xi’an, China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Rong Wang
- School of Aerospace Engineering, Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| | - Xuan Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, Xi’an, China
| |
Collapse
|
3
|
Jeong MR, Hwang JW, Choi M, Seok SH. MHC class II + macrophage differentiation is impaired in metastasized lungs via PGE 2 receptor EP2. Cell Rep 2025; 44:115574. [PMID: 40232933 DOI: 10.1016/j.celrep.2025.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Monocytes differentiate into macrophages (Mφs) to facilitate lung metastasis, but the monocyte-to-Mφ transition during this process is not well understood. To investigate, we performed bulk RNA sequencing on Mφs isolated from the lungs of mice bearing Lewis lung carcinoma tumors and from naive lungs. Our results showed impaired differentiation of monocytes into major histocompatibility complex (MHC) class II+ Mφs, with an upregulation of PGE2-inducible genes, including Arg1, in tumor-associated Mφs (TAMs). In vitro experiments confirmed that prostaglandin E2 (PGE2) inhibits the differentiation of MHC class II+ Mφs while promoting Arg1+ Mφs via the E prostanoid 2 (EP2) receptor, accompanied by DNA methylation. Whole-genome bisulfite sequencing revealed that PGE2-EP2 signaling drives the hypermethylation and downregulation of gene sets related to myeloid cells in non-neoplastic tissues. Our study highlights PGE2-EP2-driven DNA methylation in the monocyte-to-TAM transition, suggesting potential therapeutic avenues for lung metastasis.
Collapse
Affiliation(s)
- Mi Reu Jeong
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Woo Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
4
|
Solta A, Ernhofer B, Boettiger K, Lang C, Megyesfalvi Z, Mendrina T, Kirchhofer D, Timelthaler G, Szeitz B, Rezeli M, Aigner C, Haschemi A, Unger LW, Dome B, Schelch K. Unveiling the powerhouse: ASCL1-driven small cell lung cancer is characterized by higher numbers of mitochondria and enhanced oxidative phosphorylation. Cancer Metab 2025; 13:16. [PMID: 40165271 PMCID: PMC11959836 DOI: 10.1186/s40170-025-00382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive malignancy with distinct molecular subtypes defined by transcription factors and inflammatory characteristics. This follow-up study aimed to validate the unique metabolic phenotype in achaete-scute homologue 1 (ASCL1)-driven SCLC cell lines and human tumor tissue. METHODS Metabolic alterations were analyzed using proteomic data. Structural and functional differences of mitochondria were investigated using qPCR, flow cytometry, confocal imaging, and transmission electron microscopy and seahorse assays. Several metabolic inhibitors were tested using MTT-based and clonogenic assays. Single-cell enzyme activity assays were conducted on cell lines and tumor tissue samples of SCLC patients. RESULTS We found increased mitochondrial numbers correlating with higher oxidative phosphorylation activity in ASCL1-dominant cells compared to other SCLC subtypes. Metabolic inhibitors targeting mitochondrial respiratory complex-I or carnitine palmitoyltransferase 1 revealed higher responsiveness in SCLC-A. Conversely, we demonstrated that non-ASCL1-driven SCLCs with lower oxidative signatures show dependence on glutaminolysis as evidenced by the enhanced susceptibility to glutaminase inhibition. Accordingly, we detected increased glutamate-dehydrogenase activity in non-ASCL1-dominant cell lines as well as in human SCLC tissue samples. CONCLUSIONS Distinct SCLC subtypes exhibit unique metabolic vulnerabilities, suggesting potential for subtype-specific therapies targeting the respiratory chain, fatty acid transport, or glutaminolysis.
Collapse
Grants
- FWF No. T 1062-B33, FWF I3522, FWF I3977 and I4677, Sonderforschungsbereich F83 Austrian Science Fund
- FWF No. T 1062-B33, FWF I3522, FWF I3977 and I4677, Sonderforschungsbereich F83 Austrian Science Fund
- FWF No. T 1062-B33, FWF I3522, FWF I3977 and I4677, Sonderforschungsbereich F83 Austrian Science Fund
- FWF No. T 1062-B33, FWF I3522, FWF I3977 and I4677, Sonderforschungsbereich F83 Austrian Science Fund
- 2020-1.1.6-JÖVŐ, TKP2021-EGA-33, FK-143751 and FK-147045, UNKP-20-3, UNKP-21-3 and UNKP-23-5, ÚNKP-22-3-II Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
- 2020-1.1.6-JÖVŐ, TKP2021-EGA-33, FK-143751 and FK-147045, UNKP-20-3, UNKP-21-3 and UNKP-23-5, ÚNKP-22-3-II Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
- 2020-1.1.6-JÖVŐ, TKP2021-EGA-33, FK-143751 and FK-147045, UNKP-20-3, UNKP-21-3 and UNKP-23-5, ÚNKP-22-3-II Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
- EFOP-3.6.3-VEKOP-16-2017-00009 Semmelweis Egyetem
- FBKS-2020-22-(291) Fru Berta Kamprads Stiftelse
- 101131228-BIOSMALL HORIZON EUROPE Framework Programme
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Theresa Mendrina
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Beata Szeitz
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lukas W Unger
- Deptartment of Colorectal Surgery, Oxford University Hospitals, Oxford, UK
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria.
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Xue J, Li Q, Wang Y, Yin R, Zhang J. Insight into the structure, oligomerization, and the role in drug resistance of human UDP-glucuronosyltransferases. Arch Toxicol 2025; 99:1153-1165. [PMID: 39812829 DOI: 10.1007/s00204-024-03929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms. A recent analysis of C-terminal structures, compared with original data, underscores the pivotal role of α3, α4, and β4 functional domains in selectively recognizing diverse glycosyl donors. Accumulating evidence suggests that UGTs function as homo- and heterodimers, with oligomers likely stabilizing UGTs and modulating their activity. The review sheds light on the implications of UGT oligomerization on substrate glucuronidation and the interplay between protein-protein interaction and glucuronidation activity. UGT-mediated drug resistance, often underestimated, emerges as a clinically relevant form of chemical resistance, with delineated outcomes in tumors and other diseases. This review provides a multifaceted exploration of the physiological significance of UGTs, spanning genetics, proteins, oligomerization, drug resistance, and more, offering insights into their metabolic mechanisms. Understanding interactions between UGT isoforms is crucial for predicting drug-drug interactions, preventing drug toxicity, and enabling precision treatment.
Collapse
Affiliation(s)
- Jia Xue
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyi Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruxi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Pirola CJ, Fernández Gianotti T, Sookoian S. The Proteomics of MASLD Progression: Insights From Functional Analysis to Drive the Development of New Therapeutic Solutions. Aliment Pharmacol Ther 2025; 61:614-627. [PMID: 39744897 DOI: 10.1111/apt.18468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading chronic liver disease worldwide, with alarming prevalence reaching epidemic proportions. AIMS AND METHODS The objective of this study is to provide a comprehensive review of the latest blood proteomics studies on MASLD and metabolic dysfunction-associated steatohepatitis (MASH), with emphasis on fibrosis. Furthermore, our objective is to conduct an analysis of protein pathways and interactions by integrating proteomics data using functional enrichment analysis of the deregulated proteins. RESULTS Notwithstanding the considerable discrepancies in the methodology and the number of proteins examined in the circulation, the analysis reveals a consistent pattern among the list of proteins that are decreased or increased in the blood of the affected patients. The relevant biological processes (BP) associated with down- and upregulated proteins are high-density lipoprotein remodelling and complement activation, respectively. The protein families identified include not only those expected to be involved in the immune system and cell adhesion and migration but also ligands of glycoproteins expressed in cells that have been subjected to stress and proteins containing the Sushi domain. CONCLUSIONS The application of cutting-edge methodologies to investigate the blood proteome in MASH is yielding insights that facilitate the elucidation of disease mechanisms and the identification of optimal noninvasive biomarkers. However, several challenges remain to be addressed in future research, including the generalisation of results on a global scale, the optimisation of analytical technologies and the implementation of large longitudinal studies to gain insights into the molecular mechanisms that underpin the development of advanced disease.
Collapse
Affiliation(s)
- Carlos José Pirola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Systems Biology of Complex Diseases, Translational Research in Health Center (CENITRES), Maimónides University, Buenos Aires, Argentina
| | - Tomas Fernández Gianotti
- Systems Biology of Complex Diseases, Translational Research in Health Center (CENITRES), Maimónides University, Buenos Aires, Argentina
| | - Silvia Sookoian
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Clinical and Molecular Hepatology, Translational Research in Health Center (CENITRES), Maimónides University, Buenos Aires, Argentina
| |
Collapse
|
7
|
Barranco I, Almiñana C, Parra A, Martínez-Diaz P, Lucas X, Bauersachs S, Roca J. RNA profiles differ between small and large extracellular vesicle subsets isolated from porcine seminal plasma. BMC Genomics 2024; 25:1250. [PMID: 39731016 DOI: 10.1186/s12864-024-11167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs). The two subsets of sEVs were isolated from 54 seminal plasma samples by a method combining serial centrifugations, size exclusion chromatography, and ultrafiltration. The sEVs were characterized using an orthogonal approach. Analysis of RNA content and quantification were performed using RNA-seq analysis. RESULTS The two subsets of sEVs had different size distributions (P < 0.001). They also showed differences in concentration, morphology, and specific protein markers (P < 0.05). A total of 735 RNAs were identified and quantified, which included: (1) mRNAs, rRNAs, snoRNAs, snRNAs, tRNAs, other ncRNAs (termed as "all RNAs"), (2) miRNAs and (3) piRNAs. The distribution pattern of these RNA classes differed between S-sEVs and L-sEVs (P < 0.05). More than half of "all RNAs", miRNAs and piRNAs were found to be differentially abundant between S- and L-sEVs (FDR < 0.1%). Among the differentially abundant RNAs, "all RNAs" were more abundant in L- than in S-sEVs, whereas the most of the miRNAs were more abundant in S- than in L-sEVs. Differentially abundant piRNAs were equally distributed between S- and L-sEVs. Some of the all RNAs and miRNAs found to be differentially abundant between S- and L-sEVs were associated with sperm quality and functionality and male fertility success. CONCLUSIONS Small and large sEVs isolated from porcine seminal plasma show quantitative differences in RNA content. These differences would suggest that each sEV subtype exerts different functional activities in the targeted cells, namely spermatozoa and functional cells of the female reproductive tract.
Collapse
Grants
- PID2022-137738NA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER UE Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- PID2020-113493RB-I00 funded by MCIN/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
- 21935/PI/22 Fundación Seneca, Murcia, Spain
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland
| | - Ana Parra
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Pablo Martínez-Diaz
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Lindau, ZH, Switzerland
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, Murcia, Spain.
| |
Collapse
|
8
|
Ali A, Liang P. Transposable elements contribute to tissue-specific gene regulation in humans. Genes Genomics 2024; 46:1327-1343. [PMID: 39088190 PMCID: PMC11602805 DOI: 10.1007/s13258-024-01550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Transposable elements (TEs) contribute to approximately half of the human genome, and along with many other functions, they have been known to play a role in gene regulation in the genome. With TEs' active/repressed states varying across tissue and cell types, they have the potential to regulate gene expression in a tissue-specific manner. OBJECTIVE AND METHODS To provide a systematic analysis of TEs' contribution in tissue-specific gene regulation, we examined the regulatory elements and genes in association with TE-derived regulatory sequences in 14 human cell lines belonging to 10 different tissue types using the functional genomics data from the ENCODE project. Specifically, we separately analyzed regulatory regions identified by three different approaches (DNase hypersensitive sites (DHS), histone active sites (HA), and histone repressive sites (HR)). RESULTS These regulatory regions showed to be distinct from each other by sharing less than 2.5% among all three types and more than 95% showed to be cell line-specific. Despite a lower total TE content overall than the genome average, each regulatory sequence type showed enrichment for one or two specific TE type(s): DHS for long terminal repeats (LTRs) and DNA transposons, HA for short interspersed nucleotide elements (SINEs), and HR for LTRs. In contrast, SINE was shown to be overrepresented in all three types of regulatory sequences located in gene-neighboring regions. TE-regulated genes were mostly shown to have cell line specific pattern, and tissue-specific genes (TSGs) showed higher usage of TE regulatory sequences in the tissue of their expression. While TEs in the regulatory sequences showed to be older than their genome-wide counterparts, younger TEs were shown to be more likely used in cell line specific regulatory sequences. CONCLUSIONS Collectively, our study provided further evidence enforcing an important contribution of TEs to tissue-specific gene regulation in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Centre of Biotechnologies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
9
|
Pranomphon T, López-Valiñas Á, Almiñana C, Mahé C, Brair VL, Parnpai R, Mermillod P, Bauersachs S, Saint-Dizier M. Oviduct epithelial spheroids during in vitro culture of bovine embryos mitigate oxidative stress, improve blastocyst quality and change the embryonic transcriptome. Biol Res 2024; 57:73. [PMID: 39438935 PMCID: PMC11494963 DOI: 10.1186/s40659-024-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND In vitro embryo production is increasingly used for genetic improvement in cattle but bypasses the oviduct environment and exposes the embryos to oxidative stress with deleterious effects on further development. Here we aimed to examine the effect of oviduct epithelial spheroids (OES) on embryo development and quality in terms of morphology and gene expression during two co-culture times (4 days: up to embryonic genome activation at 8-16 cell stage vs. 7 days: up to blastocyst stage) and under two oxygen levels (5% vs. 20%). METHODS Bovine presumptive zygotes produced by in vitro fertilization (day 0) using in-vitro matured oocytes were cultured in droplets of synthetic oviductal fluid (SOF) medium with or without (controls) OES for 4 or 7 days under 5% or 20% oxygen (4 treated and 2 control groups). Cleavage rates were evaluated on day 2 and blastocyst rates on days 7-8. Expanded blastocysts on days 7-8 were evaluated for total cell numbers and gene expression analysis by RNA-sequencing. RESULTS Under 20% oxygen, blastocyst rates and total cell numbers were significantly higher in the presence of OES for 4 and 7 days compared to controls (P < 0.05), with no difference according to the co-culture time. Under 5% oxygen, the presence of OES did not affect blastocyst rates but increased the number of cells per blastocyst after 7 days of co-culture (P < 0.05). Both oxygen level and OES co-culture had a significant impact on the embryonic transcriptome. The highest number of differentially expressed genes (DEGs) was identified after 7 days of co-culture under 20% oxygen. DEGs were involved in a wide range of functions, including lipid metabolism, membrane organization, response to external signals, early embryo development, and transport of small molecules among the most significantly impacted. CONCLUSION OES had beneficial effects on embryo development and quality under both 5% and 20% oxygen, mitigating oxidative stress. Stronger effects on embryo quality and transcriptome were obtained after 7 than 4 days of co-culture. This study shows the impact of OES on embryo development and reveals potential molecular targets of OES-embryo dialog involved in response to stress and early embryonic development.
Collapse
Affiliation(s)
- Thanya Pranomphon
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Álvaro López-Valiñas
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
| | | | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland.
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, PRC, INRAE Val-de-Loire, Nouzilly, 37380, France.
| |
Collapse
|
10
|
Krishnan JM, Roskin KM, Meeds HL, Blackard JT. Effect of fentanyl on HIV expression in peripheral blood mononuclear cells. Front Microbiol 2024; 15:1463441. [PMID: 39386369 PMCID: PMC11461324 DOI: 10.3389/fmicb.2024.1463441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Illicit drug use, particularly the synthetic opioid fentanyl, presents a significant global health challenge. Previous studies have shown that fentanyl enhances viral replication; yet, the mechanisms by which it affects HIV pathogenesis remain unclear. This study investigated the impact of fentanyl on HIV replication in CD4+ T lymphocytes. Methods CD4+ T lymphocytes from HIV-negative donors were activated, infected with HIVNL4-3, and treated with fentanyl. HIV proviral DNA and p24 antigen expression were quantified using real-time PCR and ELISA, respectively. Single-cell RNA libraries were analyzed to identify differentially expressed genes. Results Results indicated that fentanyl treatment increased HIV p24 expression and proviral DNA levels, and naltrexone mitigated these effects. Single-cell RNAseq analysis identified significantly altered gene expression in CD4+ T lymphocytes. Discussion The results of our findings suggest that fentanyl promotes HIV replication ex vivo, emphasizing the need for a deeper understanding of opioid-virus interactions to develop better treatment strategies for individuals with HIV and opioid use disorder.
Collapse
Affiliation(s)
- Janani Madhuravasal Krishnan
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Krishna M. Roskin
- Divisions of Biomedical Informatics and Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Heidi L. Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jason T. Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
11
|
Biezeman H, Nubiè M, Oburoglu L. Hematopoietic cells emerging from hemogenic endothelium exhibit lineage-specific oxidative stress responses. J Biol Chem 2024; 300:107815. [PMID: 39326495 PMCID: PMC11532904 DOI: 10.1016/j.jbc.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
During human embryogenesis, distinct waves of hematopoiesis give rise to various blood cell types, originating from hemogenic endothelial (HE) cells. As HE cells reside in hypoxic conditions in the embryo, we investigated the role of hypoxia in human endothelial to hematopoietic transition and subsequent hematopoiesis. Using single-cell RNA sequencing, we describe hypoxia-related transcriptional changes in different HE-derived blood lineages, which reveal that erythroid cells are particularly susceptible to oxidative stress, due to decreased NRF2 activity in hypoxia. In contrast, nonerythroid CD45+ cells exhibit increased proliferative rates in hypoxic conditions and enhanced resilience to oxidative stress. We find that even in normoxia, erythroid cells present a clear predisposition to oxidative stress, with low glutathione levels and high lipid peroxidation, in contrast to CD45+ cells. Intriguingly, reactive oxygen species are produced at different sites in GPA+ and CD45+ cells, revealing differences in oxidative phosphorylation and the use of canonical versus noncanonical tricarboxylic acid cycle in these lineages. Our findings elucidate how hypoxia and oxidative stress distinctly affect HE-derived hematopoietic lineages, uncovering critical transcriptional and metabolic pathways that influence blood cell development.
Collapse
Affiliation(s)
- Harmke Biezeman
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martina Nubiè
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Inada S, Chiba Y, Tian T, Sato H, Wang X, Yoshizaki K, Oka S, Yamada A, Fukumoto S. Expression patterns of keratin family members during tooth development and the role of keratin 17 in cytodifferentiation of stratum intermedium and stellate reticulum. J Cell Physiol 2024; 239:1-13. [PMID: 39014890 DOI: 10.1002/jcp.31387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Keratins are typical intermediate filament proteins of the epithelium that exhibit highly specific expression patterns related to the epithelial type and stage of cellular differentiation. They are important for cytoplasmic stability and epithelial integrity and are involved in various intracellular signaling pathways. Several keratins are associated with enamel formation. However, information on their expression patterns during tooth development remains lacking. In this study, we analyzed the spatiotemporal expression of keratin family members during tooth development using single-cell RNA-sequencing (scRNA-seq) and microarray analysis. scRNA-seq datasets from postnatal Day 1 mouse molars revealed that several keratins are highly expressed in the dental epithelium, indicating the involvement of keratin family members in cellular functions. Among various keratins, keratin 5 (Krt5), keratin 14 (Krt14), and keratin 17 (Krt17) are highly expressed in the tooth germ; KRT17 is specifically expressed in the stratum intermedium (SI) and stellate reticulum (SR). Depletion of Krt17 did not affect cell proliferation in the dental epithelial cell line SF2 but suppressed their differentiation ability. These results suggest that Krt17 is essential for SI cell differentiation. Furthermore, scRNA-seq results indicated that Krt5, Krt14, and Krt17 exhibited distinct expression patterns in ameloblast, SI, and SR cells. Our findings contribute to the elucidation of novel mechanisms underlying tooth development.
Collapse
Affiliation(s)
- Saori Inada
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuta Chiba
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tian Tian
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Hiroshi Sato
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Keigo Yoshizaki
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Sae Oka
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Fukumoto
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
13
|
DeFreitas MJ, Shelton EL, Schmidt AF, Ballengee S, Tian R, Chen P, Sharma M, Levine A, Katz ED, Rojas C, Abitbol CL, Hunter J, Kulandavelu S, Wu S, Young KC, Benny M. Neonatal hyperoxia exposure leads to developmental programming of cardiovascular and renal disease in adult rats. Sci Rep 2024; 14:16742. [PMID: 39033222 PMCID: PMC11271593 DOI: 10.1038/s41598-024-65844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Premature infants are often exposed to hyperoxia. However, there is limited data regarding the mechanistic underpinnings linking neonatal hyperoxia exposure and its contribution to cardio-renal dysfunction in adults born preterm. Our objective was to determine whether neonatal hyperoxia induces systemic vascular stiffness and cardio-renal dysfunction in adulthood. Newborn rats were randomly assigned to room air (RA) or hyperoxia (85% O2) from postnatal day 1 to 14, then recovered in RA until 1 year of life. Arterial stiffness, cardio-renal histomorphometry, and fibrosis in the aorta, heart, and kidney were assessed. RNA-sequencing (RNA-seq) of the aorta and kidney was also done. Adult rats exposed to neonatal hyperoxia had increased aortic and mesenteric artery stiffness as demonstrated by wire and pressure myography. They also had cardiomyocyte hypertrophy, glomerulomegaly, and tubular injury. Hyperoxia exposure altered the transcriptome profile associated with fibrosis and matrix remodeling in the aorta and kidney. There was also increased TGF-β1 levels and fibrosis in the aorta, left ventricle, and kidney. In conclusion, neonatal hyperoxia exposure was associated with systemic vascular and cardio-renal alterations in 1-year-old rats. Further studies to determine how targeted therapies could reprogram cardio-renal injury after neonatal hyperoxia exposure are indicated.
Collapse
Affiliation(s)
- Marissa J DeFreitas
- Department of Pediatrics/Division of Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Augusto F Schmidt
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Sydne Ballengee
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Runxia Tian
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - PingPing Chen
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Mayank Sharma
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Amanda Levine
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Emily Davidovic Katz
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Claudia Rojas
- Department of Pathology, Memorial Healthcare Systems, Hollywood, FL, USA
| | - Carolyn L Abitbol
- Department of Pediatrics/Division of Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juanita Hunter
- Department of Pediatrics/Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shathiyah Kulandavelu
- Department of Pediatrics/Division of Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Karen C Young
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA
| | - Merline Benny
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Miller School of Medicine, University of Miami, P.O. Box 016960 (R-131), Miami, FL, 33101, USA.
| |
Collapse
|
14
|
Liu Y, Flamier A, Bell GW, Diao AJ, Whitfield TW, Wang HC, Wu Y, Schulte F, Friesen M, Guo R, Mitalipova M, Liu XS, Vos SM, Young RA, Jaenisch R. MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Neuron 2024; 112:1943-1958.e10. [PMID: 38697112 DOI: 10.1016/j.neuron.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in the methyl-DNA-binding protein MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). How MECP2 contributes to transcriptional regulation in normal and disease states is unresolved; it has been reported to be an activator and a repressor. We describe here the first integrated CUT&Tag, transcriptome, and proteome analyses using human neurons with wild-type (WT) and mutant MECP2 molecules. MECP2 occupies CpG-rich promoter-proximal regions in over four thousand genes in human neurons, including a plethora of autism risk genes, together with RNA polymerase II (RNA Pol II). MECP2 directly interacts with RNA Pol II, and genes occupied by both proteins showed reduced expression in neurons with MECP2 patient mutations. We conclude that MECP2 acts as a positive cofactor for RNA Pol II gene expression at many neuronal genes that harbor CpG islands in promoter-proximal regions and that RTT is due, in part, to the loss of gene activity of these genes in neurons.
Collapse
Affiliation(s)
- Yi Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Annette Jun Diao
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Hao-Che Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yizhe Wu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ruisi Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Maisam Mitalipova
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Chen X, Song X, Li J, Wang J, Yan Y, Yang F. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Cell Commun Signal 2024; 22:273. [PMID: 38755675 PMCID: PMC11097525 DOI: 10.1186/s12964-024-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC-MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Song
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaran Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumeng Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Potter SJ, Zhang L, Kotliar M, Wu Y, Schafer C, Stefan K, Boukas L, Qu’d D, Bodamer O, Simpson BN, Barski A, Lindsley AW, Bjornsson HT. KMT2D regulates activation, localization, and integrin expression by T-cells. Front Immunol 2024; 15:1341745. [PMID: 38765012 PMCID: PMC11099208 DOI: 10.3389/fimmu.2024.1341745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/21/2024] Open
Abstract
Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.
Collapse
Affiliation(s)
- Sarah J. Potter
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Li Zhang
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Kotliar
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Caitlin Schafer
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kurtis Stefan
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Leandros Boukas
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dima Qu’d
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- The Roya Kabuki Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, MA, United States
| | - Brittany N. Simpson
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew W. Lindsley
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Faculty of Medicine, The University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
17
|
Yoshida M, Kwon AT, Qin XY, Nishimura H, Maeda S, Miyamoto Y, Yoshida Y, Hoshino Y, Suzuki H. Transcriptome analysis of long non-coding RNAs in Mycobacterium avium complex-infected macrophages. Front Immunol 2024; 15:1374437. [PMID: 38711507 PMCID: PMC11070510 DOI: 10.3389/fimmu.2024.1374437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.
Collapse
Affiliation(s)
- Mitsunori Yoshida
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Andrew Taejun Kwon
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Shiori Maeda
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Kita-Kyushu, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, National Institute of Infectious Diseases, Higashi-Murayama, Tokyo, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Kaizuka T, Suzuki T, Kishi N, Tamada K, Kilimann MW, Ueyama T, Watanabe M, Shimogori T, Okano H, Dohmae N, Takumi T. Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development. Nat Commun 2024; 15:2496. [PMID: 38548776 PMCID: PMC10979008 DOI: 10.1038/s41467-024-46529-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Noriyuki Kishi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Manfred W Kilimann
- Max Planck Institute for Experimental Medicine, Göttingen, 37075, Germany
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Kita, Sapporo, 060-8638, Japan
| | | | - Hideyuki Okano
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8585, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
19
|
Tan AW, Tong X, Alvarez-Cubela S, Chen P, Santana AG, Morales AA, Tian R, Infante R, Nunes de Paiva V, Kulandavelu S, Benny M, Dominguez-Bendala J, Wu S, Young KC, Rodrigues CO, Schmidt AF. c-Myc Drives inflammation of the maternal-fetal interface, and neonatal lung remodeling induced by intra-amniotic inflammation. Front Cell Dev Biol 2024; 11:1245747. [PMID: 38481391 PMCID: PMC10933046 DOI: 10.3389/fcell.2023.1245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 04/11/2024] Open
Abstract
Background: Intra-amniotic inflammation (IAI) is associated with increased risk of preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by which IAI leads to preterm birth and BPD are poorly understood, and there are no effective therapies for preterm birth and BPD. The transcription factor c-Myc regulates various biological processes like cell growth, apoptosis, and inflammation. We hypothesized that c-Myc modulates inflammation at the maternal-fetal interface, and neonatal lung remodeling. The objectives of our study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in modulating inflammation at the maternal-fetal interface, and neonatal lung remodeling induced by IAI. Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1) Intra-amniotic saline injections only (control), 2) Intra-amniotic lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation, angiogenesis, immunohistochemistry, and transcriptomic analyses were performed on placenta and fetal membranes, and neonatal lungs to determine kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic c-Myc inhibition on lung remodeling at postnatal day 14. Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular trap (NET) formation in the placenta and fetal membranes, and neonatal lung remodeling with pulmonary hypertension consistent with a BPD phenotype. Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil infiltration and NET formation, and improved neonatal lung remodeling induced by LPS, with improved alveolarization, increased angiogenesis, and decreased pulmonary vascular remodeling. Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET formation in the placenta and fetal membranes. c-Myc also participates in neonatal lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as a potential therapeutic target for IAI and IAI-associated BPD.
Collapse
Affiliation(s)
- April W. Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Silvia Alvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pingping Chen
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Aline Guimarães Santana
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
| | - Alejo A. Morales
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Runxia Tian
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Rae Infante
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Vanessa Nunes de Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Shathiyah Kulandavelu
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Merline Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Karen C. Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| | - Claudia O. Rodrigues
- Department of Biomedical Science, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Augusto F. Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children’s Hospital, Miami, FL, United States
| |
Collapse
|
20
|
Zhang S, Gao W, Xie L, Zhang G, Wei Z, Li J, Song C, Chang M. Malonic acid shapes bacterial community dynamics in compost to promote carbon sequestration and humic substance synthesis. CHEMOSPHERE 2024; 350:141092. [PMID: 38169202 DOI: 10.1016/j.chemosphere.2023.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.
Collapse
Affiliation(s)
- Shubo Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mingkai Chang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
21
|
Gammie SC, Messing A, Hill MA, Kelm-Nelson CA, Hagemann TL. Large-scale gene expression changes in APP/PSEN1 and GFAP mutation models exhibit high congruence with Alzheimer's disease. PLoS One 2024; 19:e0291995. [PMID: 38236817 PMCID: PMC10796008 DOI: 10.1371/journal.pone.0291995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.
Collapse
Affiliation(s)
- Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Albee Messing
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mason A. Hill
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
22
|
Newman J, Tong X, Tan A, Yeasky T, De Paiva VN, Presicce P, Kannan PS, Williams K, Damianos A, Tamase Newsam M, Benny MK, Wu S, Young KC, Miller LA, Kallapur SG, Chougnet CA, Jobe AH, Brambilla R, Schmidt AF. Chorioamnionitis accelerates granule cell and oligodendrocyte maturation in the cerebellum of preterm nonhuman primates. J Neuroinflammation 2024; 21:16. [PMID: 38200558 PMCID: PMC10777625 DOI: 10.1186/s12974-024-03012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Preterm birth is often associated with chorioamnionitis and leads to increased risk of neurodevelopmental disorders, such as autism. Preterm birth can lead to cerebellar underdevelopment, but the mechanisms of disrupted cerebellar development in preterm infants are not well understood. The cerebellum is consistently affected in people with autism spectrum disorders, showing reduction of Purkinje cells, decreased cerebellar grey matter, and altered connectivity. METHODS Preterm rhesus macaque fetuses were exposed to intra-amniotic LPS (1 mg, E. coli O55:B5) at 127 days (80%) gestation and delivered by c-section 5 days after injections. Maternal and fetal plasma were sampled for cytokine measurements. Chorio-decidua was analyzed for immune cell populations by flow cytometry. Fetal cerebellum was sampled for histology and molecular analysis by single-nuclei RNA-sequencing (snRNA-seq) on a 10× chromium platform. snRNA-seq data were analyzed for differences in cell populations, cell-type specific gene expression, and inferred cellular communications. RESULTS We leveraged snRNA-seq of the cerebellum in a clinically relevant rhesus macaque model of chorioamnionitis and preterm birth, to show that chorioamnionitis leads to Purkinje cell loss and disrupted maturation of granule cells and oligodendrocytes in the fetal cerebellum at late gestation. Purkinje cell loss is accompanied by decreased sonic hedgehog signaling from Purkinje cells to granule cells, which show an accelerated maturation, and to oligodendrocytes, which show accelerated maturation from pre-oligodendrocytes into myelinating oligodendrocytes. CONCLUSION These findings suggest a role of chorioamnionitis on disrupted cerebellar maturation associated with preterm birth and on the pathogenesis of neurodevelopmental disorders among preterm infants.
Collapse
Affiliation(s)
- Josef Newman
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Xiaoying Tong
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - April Tan
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Toni Yeasky
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Vanessa Nunes De Paiva
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Pietro Presicce
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Paranthaman S Kannan
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Kevin Williams
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Andreas Damianos
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Marione Tamase Newsam
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Merline K Benny
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Karen C Young
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, USA
| | - Suhas G Kallapur
- Division of Neonatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Alan H Jobe
- Division of Neonatology and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, USA
| | - Augusto F Schmidt
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine/Holtz Children's Hospital, Jackson Health System, Miami, USA.
- Batchelor Children's Research Institute, 1580 NW 10Th Ave, Room 348, Miami, FL, 33146, USA.
| |
Collapse
|
23
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin-lineage cells, generates a specific suite of brain, behavioral, and molecular pathologies. Genetics 2024; 226:iyad182. [PMID: 37816306 PMCID: PMC10763537 DOI: 10.1093/genetics/iyad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
Affiliation(s)
- Yunshu Song
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | - Amber LeBlanc
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | | | - Lisa Stubbs
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Chung E, Park JS, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. Sci Rep 2024; 14:439. [PMID: 38172172 PMCID: PMC10764314 DOI: 10.1038/s41598-023-50195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8 and Vcam1, while the surviving proximal tubules (PTs) showed restored transcriptional signature. We also found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Mike Adam
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - S Steven Potter
- Division Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
25
|
Liu J, Nagy N, Ayala-Torres C, Aguilar-Alonso F, Morais-Esteves F, Xu S, Masucci MG. Remodeling of the ribosomal quality control and integrated stress response by viral ubiquitin deconjugases. Nat Commun 2023; 14:8315. [PMID: 38097648 PMCID: PMC10721647 DOI: 10.1038/s41467-023-43946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The strategies adopted by viruses to reprogram the translation and protein quality control machinery and promote infection are poorly understood. Here, we report that the viral ubiquitin deconjugase (vDUB)-encoded in the large tegument protein of Epstein-Barr virus (EBV BPLF1)-regulates the ribosomal quality control (RQC) and integrated stress responses (ISR). The vDUB participates in protein complexes that include the RQC ubiquitin ligases ZNF598 and LTN1. Upon ribosomal stalling, the vDUB counteracts the ubiquitination of the 40 S particle and inhibits the degradation of translation-stalled polypeptides by the proteasome. Impairment of the RQC correlates with the readthrough of stall-inducing mRNAs and with activation of a GCN2-dependent ISR that redirects translation towards upstream open reading frames (uORFs)- and internal ribosome entry sites (IRES)-containing transcripts. Physiological levels of active BPLF1 promote the translation of the EBV Nuclear Antigen (EBNA)1 mRNA in productively infected cells and enhance the release of progeny virus, pointing to a pivotal role of the vDUB in the translation reprogramming that enables efficient virus production.
Collapse
Affiliation(s)
- Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Aguilar-Alonso
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco Morais-Esteves
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Granot M, Braun T, Efroni G, Picard O, Fudim E, Yavzori M, Haj O, Weiss B, Ben-Horin S, Kopylov U, Haberman Y. Baseline Peripheral Blood Mononuclear Cell Transcriptomics Before Ustekinumab Treatment Is Linked With Crohn's Disease Clinical Response at 1 Year. Clin Transl Gastroenterol 2023; 14:e00635. [PMID: 37655708 PMCID: PMC10749706 DOI: 10.14309/ctg.0000000000000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Ustekinumab, a monoclonal antibody to the p40 subunit of interleukin (IL)-12 and IL-23, is used for Crohn's disease (CD), and the documented clinical remission rate after 1 year was observed in approximately 50% of patients. We aimed to identify predictors for a clinical response using peripheral blood obtained from patients with CD just before ustekinumab treatment initiation. METHODS RNA extraction from peripheral blood mononuclear cells was followed by mRNA paired-end sequencing. Differential gene expression was performed using DESeq2. RESULTS We processed samples from 36 adults with CD (13 men, 36%) obtained at baseline before starting ustekinumab treatment. Twenty-two of 36 (61%) were defined as responders and 14/36 (39%) as nonresponders after 1 year based on Physician Global Assessment. Differential gene expression between responders (n = 22) and nonresponders (n = 14) did not show a gene expression signature that passed false discovery rate (FDR) correction. However, the analyses identified 68 genes, including CXCL1/2/3, which were induced in nonresponders vs responders with P < 0.05 and fold change above 1.5. Functional annotation enrichments of these 68 genes using ToppGene indicated enrichment for cytokine activity (FDR = 1.98E-05), CXCR chemokine receptor binding (FDR = 2.11E-05), IL-10 signaling (FDR = 5.03E-07), genes encoding secreted soluble factors (FDR = 1.73E-05), and myeloid dendritic cells (FDR = 1.80E-08). DISCUSSION No substantial differences were found in peripheral blood mononuclear cell transcriptomics between responders and nonresponders. However, among the nonresponders, we noted an increased inflammatory response enriched for pathways linked with cytokine activity and chemokine receptor binding and innate myeloid signature. A larger cohort is required to validate and further explore these findings.
Collapse
Affiliation(s)
- Maya Granot
- Pediatric Gastroenterology and Nutrition Unit, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Tzipi Braun
- Pediatric Gastroenterology and Nutrition Unit, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Gilat Efroni
- Pediatric Gastroenterology and Nutrition Unit, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Picard
- Department of Gastroenterology, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Ella Fudim
- Department of Gastroenterology, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Miri Yavzori
- Department of Gastroenterology, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Ola Haj
- Department of Gastroenterology, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Batia Weiss
- Pediatric Gastroenterology and Nutrition Unit, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Shomron Ben-Horin
- Department of Gastroenterology, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Uri Kopylov
- Department of Gastroenterology, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Haberman
- Pediatric Gastroenterology and Nutrition Unit, Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel-Aviv, Israel
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Younas N, Zafar S, Saleem T, Fernandez Flores LC, Younas A, Schmitz M, Zerr I. Differential interactome mapping of aggregation prone/prion-like proteins under stress: novel links to stress granule biology. Cell Biosci 2023; 13:221. [PMID: 38041189 PMCID: PMC10693047 DOI: 10.1186/s13578-023-01164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Aberrant stress granules (SGs) are emerging as prime suspects in the nucleation of toxic protein aggregates. Understanding the molecular networks linked with aggregation-prone proteins (prion protein, synuclein, and tau) under stressful environments is crucial to understand pathophysiological cascades associated with these proteins. METHODS We characterized and validated oxidative stress-induced molecular network changes of endogenous aggregation-prone proteins (prion protein, synuclein, and tau) by employing immunoprecipitation coupled with mass spectrometry analysis under basal and oxidative stress conditions. We used two different cell models (SH-SY5Y: human neuroblastoma and HeLa cell line) to induce oxidative stress using a well-known inducer (sodium arsenite) of oxidative stress. RESULTS Overall, we identified 597 proteins as potential interaction partners. Our comparative interactome mapping provides comprehensive network reorganizations of three aggregation-prone hallmark proteins, establish novel interacting partners and their dysregulation, and validates that prion protein and synuclein localize in cytoplasmic SGs. Localization of prion protein and synuclein in TIA1-positive SGs provides an important link between SG pathobiology and aggregation-prone proteins. In addition, dysregulation (downregulation) of prion protein and exportin-5 protein, and translocation of exportin-5 into the nucleus under oxidative stress shed light on nucleocytoplasmic transport defects during the stress response. CONCLUSIONS The current study contributes to our understanding of stress-mediated network rearrangements and posttranslational modifications of prion/prion-like proteins. Localization of prion protein and synuclein in the cytoplasmic SGs provides an important link between stress granule pathobiology and aggregation-prone proteins. In addition, our findings demonstrate nucleocytoplasmic transport defects after oxidative stress via dysregulation and nuclear accumulation of exportin-5.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Saima Zafar
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Saleem
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Leticia Camila Fernandez Flores
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Abrar Younas
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center, Georg-August-Universität, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
28
|
Kolli U, Jalodia R, Moidunny S, Singh PK, Ban Y, Tao J, Cantu GN, Valdes E, Ramakrishnan S, Roy S. Multi-omics analysis revealing the interplay between gut microbiome and the host following opioid use. Gut Microbes 2023; 15:2246184. [PMID: 37610102 PMCID: PMC10448978 DOI: 10.1080/19490976.2023.2246184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Opioid crisis is an ongoing epidemic since the past several decades in the United States. Opioid use-associated microbial dysbiosis is emerging as a key regulator of intestinal homeostasis and behavioral responses to opioid. However, the mechanistic insight into the role of microbial community in modulating host response is unavailable. To uncover the role of opioid-induced dysbiosis in disrupting intestinal homeostasis we utilized whole genome sequencing, untargeted metabolomics, and mRNA sequencing to identify changes in microbiome, metabolome, and host transcriptome respectively. Morphine treatment resulted in significant expansion of Parasuterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and depletion of Lactobacillus johnsonii. These changes correlated with alterations in lipid metabolites and flavonoids. Significant alteration in microbial metabolism (metabolism of lipids, amino acids, vitamins and cofactors) and increased expression of virulence factors and biosynthesis of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) were observed in microbiome of morphine-treated animals. In concurrence with changes in microbiome and metabolome extensive changes in innate and adaptive immune response, lipid metabolism, and gut barrier dysfunction were observed in the host transcriptome. Microbiome depleted mice displayed lower levels of inflammation, immune response and tissue destruction compared to mice harboring a dysbiotic microbiome in response to morphine treatment, thus establishing dysbiotic microbiome as mediator of morphine gut pathophysiology. Integrative analysis of multi-omics data highlighted the associations between Parasutterella excrementihominis, Burkholderiales bacterium 1_1_47, Enterococcus faecalis, Enterorhabdus caecimuris and altered levels of riboflavin, flavonoids, and lipid metabolites including phosphocholines, carnitines, bile acids, and ethanolamines with host gene expression changes involved in inflammation and barrier integrity of intestine. Omic analysis also highlighted the role of probiotic bacteria Lactobacillus johnsonii, metabolites flavonoids and riboflavin that were depleted with morphine as important factors for intestinal homeostasis. This study presents for the first time ever an interactive view of morphine-induced changes in microbial metabolism, strain level gut microbiome analysis and comprehensive view of changes in gut transcriptome. We also identified areas of potential therapeutic interventions to limit microbial dysbiosis and present a unique resource to the opioid research community.
Collapse
Affiliation(s)
- Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Praveen Kumar Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Fl, USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eridania Valdes
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
Barnett DG, Lechner SA, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Oxidative Metabolism and Synaptic Signaling Dysregulation in the Female Pink1-/- Rat. Laryngoscope 2023; 133:3412-3421. [PMID: 37293988 PMCID: PMC10709531 DOI: 10.1002/lary.30768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES AND HYPOTHESIS Vocal dysfunction, including hypophonia, in Parkinson disease (PD) manifests in the prodromal period and significantly impacts an individual's quality of life. Data from human studies suggest that pathology leading to vocal deficits may be structurally related to the larynx and its function. The Pink1-/- rat is a translational model used to study pathogenesis in the context of early-stage mitochondrial dysfunction. The primary objective of this work was to identify differentially expressed genes in the thyroarytenoid muscle and examine the dysregulated biological pathways in the female rat. METHODS RNA sequencing was used to determine thyroarytenoid (TA) muscle gene expression in adult female Pink1-/- rats compared with controls. A bioinformatic approach and the ENRICHR gene analysis tool were used to compare the sequencing dataset with biological pathways and processes, disease relationships, and drug-repurposing compounds. Weighted Gene Co-expression Network Analysis was used to construct biological network modules. The data were compared with a previously published dataset in male rats. RESULTS Significant upregulated pathways in female Pink1-/- rats included fatty acid oxidation and muscle contraction, synaptic transmission, and neuromuscular processes. Downregulated pathways included anterograde transsynaptic signaling, chemical synaptic transmission, and ion release. Several drug treatment options including cetuximab, fluoxetine, and resveratrol are hypothesized to reverse observed genetic dysregulation. CONCLUSIONS Data presented here are useful for identifying biological pathways that may underlie the mechanisms of peripheral dysfunction including neuromuscular synaptic transmission to the TA muscle. These experimental biomarkers have the potential to be targeted as sites for improving the treatment for hypophonia in early-stage PD. LEVEL OF EVIDENCE NA Laryngoscope, 133:3412-3421, 2023.
Collapse
Affiliation(s)
- David G.S. Barnett
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
30
|
Peña-Cearra A, Castelo J, Lavín JL, Gonzalez-Lopez M, Pascual-Itoiz MA, Fuertes M, Gutiérrez de Juan V, Bárcena L, Martín-Ruiz I, Pellón A, Seoane I, Barriales D, Palacios A, Fullaondo A, Rodríguez-Lago I, Martinez-Chantar ML, Aransay AM, Rodriguez H, Anguita J, Abecia L. Mitochondrial dysfunction-associated microbiota establishes a transmissible refractory response to anti-TNF therapy during ulcerative colitis. Gut Microbes 2023; 15:2266626. [PMID: 37842919 PMCID: PMC10586225 DOI: 10.1080/19490976.2023.2266626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Anti-TNF therapy can induce and maintain a remission status during intestinal bowel disease. However, up to 30% of patients do not respond to this therapy by mechanisms that are unknown. Here, we show that the absence of MCJ, a natural inhibitor of the respiratory chain Complex I, induces gut microbiota changes that are critical determinants of the lack of response in a murine model of DSS-induced inflammation. First, we found that MCJ expression is restricted to macrophages in human colonic tissue. Therefore, we demonstrate by transcriptomic analysis of colon macrophages from DSS-induced mice that MCJ-deficiency is linked to the expression of genes belonging to the FcγR signaling pathway and contains an anti-TNF refractory gene signature identified in ulcerative colitis patients. The gut microbial composition changes observed upon DSS treatment in the MCJ-deficient mice revealed the increased presence of specific colitogenic members, including Ruminococcus gnavus and Oscillospira, which could be associated with the non-response to TNF inhibitors. Further, we show that the presence of a microbiota associated resistance to treatment is dominant and transmissible to responsive individuals. Collectively, our findings underscore the critical role played by macrophage mitochondrial function in the gut ecological niche that can substantially affect not only the severity of inflammation but also the ability to successfully respond to current therapies.
Collapse
Affiliation(s)
- Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jose Luis Lavín
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Applied Mathematics Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | | | - Miguel Fuertes
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Aize Pellón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Iratxe Seoane
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | - María L. Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Ana Mª Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Hector Rodriguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
31
|
Sosnovski KE, Braun T, Amir A, BenShoshan M, Abbas-Egbariya H, Ben-Yishay R, Anafi L, Avivi C, Barshack I, Denson LA, Haberman Y. Reduced LHFPL3-AS2 lncRNA expression is linked to altered epithelial polarity and proliferation, and to ileal ulceration in Crohn disease. Sci Rep 2023; 13:20513. [PMID: 37993670 PMCID: PMC10665440 DOI: 10.1038/s41598-023-47997-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Disruption of intestinal epithelial functions is linked to Crohn disease (CD) pathogenesis. We identified a widespread reduction in the expression of long non-coding RNAs (lncRNAs) including LHFPL3-AS2 in the treatment-naïve CD ileum of the RISK pediatric cohort. We validated the reduction of LHFPL3-AS2 in adult CD and noted a further reduction in patients with more severe CD from the RISK cohort. LHFPL3-AS2 knockdown in Caco-2 cells robustly affected epithelial monolayer morphogenesis with markedly reduced confluency and spreading, showing atypical rounding, and clumping. mRNA-seq analysis of LHFPL3-AS2 knockdown cells highlighted the reduction of genes and pathways linked with apical polarity, actin bundles, morphogenesis, and the b-catenin-TCF4 complex. LHFPL3-AS2 knockdown significantly reduced the ability of cells to form an internal lumen within the 3-dimensional (3D) cyst model, with mislocalization of actin and adherent and tight junction proteins, affecting epithelial polarity. LHFPL3-AS2 knockdown also resulted in defective mitotic spindle formation and consequent reduction in epithelial proliferation. Altogether, we show that LHFPL3-AS2 reduction affects epithelial morphogenesis, polarity, mitotic spindle formation, and proliferation, which are key processes in maintaining epithelial homeostasis in CD. Reduced expression of LHFPL3-AS2 in CD patients and its further reduction with ileal ulceration outcome, emphasizes its significance in this context.
Collapse
Affiliation(s)
- Katya E Sosnovski
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Marina BenShoshan
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haya Abbas-Egbariya
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rakefet Ben-Yishay
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Liat Anafi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Camilla Avivi
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
32
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Miao Z, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Dev Cell 2023; 58:2338-2358.e5. [PMID: 37673062 PMCID: PMC10873092 DOI: 10.1016/j.devcel.2023.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Miao
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ingileif B Hallgrimsdottir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
33
|
Rowland ME, Jiang Y, Shafiq S, Ghahramani A, Pena-Ortiz MA, Dumeaux V, Bérubé NG. Systemic and intrinsic functions of ATRX in glial cell fate and CNS myelination in male mice. Nat Commun 2023; 14:7090. [PMID: 37925436 PMCID: PMC10625541 DOI: 10.1038/s41467-023-42752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Myelin, an extension of the oligodendrocyte plasma membrane, wraps around axons to facilitate nerve conduction. Myelination is compromised in ATR-X intellectual disability syndrome patients, but the causes are unknown. We show that loss of ATRX leads to myelination deficits in male mice that are partially rectified upon systemic thyroxine administration. Targeted ATRX inactivation in either neurons or oligodendrocyte progenitor cells (OPCs) reveals OPC-intrinsic effects on myelination. OPCs lacking ATRX fail to differentiate along the oligodendrocyte lineage and acquire a more plastic state that favors astrocytic differentiation in vitro and in vivo. ATRX chromatin occupancy in OPCs greatly overlaps with that of the chromatin remodelers CHD7 and CHD8 as well as H3K27Ac, a mark of active enhancers. Overall, our data indicate that ATRX regulates the onset of myelination systemically via thyroxine, and by promoting OPC differentiation and suppressing astrogliogenesis. These functions of ATRX identified in mice could explain white matter pathogenesis observed in ATR-X syndrome patients.
Collapse
Affiliation(s)
- Megan E Rowland
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
| | - Yan Jiang
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarfraz Shafiq
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alireza Ghahramani
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Miguel A Pena-Ortiz
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathalie G Bérubé
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada.
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Graduate Program in Neuroscience, Western University, London, ON, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
34
|
Cichowska AW, Wisniewski J, Bromke MA, Olejnik B, Mogielnicka-Brzozowska M. Proteome Profiling of Canine Epididymal Fluid: In Search of Protein Markers of Epididymal Sperm Motility. Int J Mol Sci 2023; 24:14790. [PMID: 37834239 PMCID: PMC10573609 DOI: 10.3390/ijms241914790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sperm maturation in the epididymis is based on interactions with proteins from epididymal fluid (EF). The aim of the study was to profile canine EF proteome and investigate correlations between EF protein content and epididymal spermatozoa (ES) motion parameters. Twenty-three male dogs were divided into two groups: good sperm motility (GSM) and poor sperm motility (PSM). The total motility and progressive motility differed significantly (p = 0.031; p < 0.001, respectively) between the GSM group and the PSM group. The semen samples were centrifuged to separate the EF apart from the ES. The canine EF proteins were analyzed using nano-liquid chromatography, which was coupled with quadrupole time-of-flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools for the first time. A total of 915 proteins were identified (GSM-506; PSM-409, respectively). UniProt identification resulted in six unique proteins (UPs) in the GSM group of dogs and four UPs in the PSM group. A semi-quantitative analysis showed a higher abundance (p < 0.05) of four differentially expressed proteins in the GSM group (ALB, CRISP2, LCNL1, PTGDS). Motility-dependent variations were detected in the EF proteome and were related to important metabolic pathways, which might suggest that several proteins could be potential ES motility biomarkers.
Collapse
Affiliation(s)
- Aleksandra W. Cichowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
35
|
Fonseca PAS, Lam S, Chen Y, Waters SM, Guan LL, Cánovas A. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Sci Rep 2023; 13:16209. [PMID: 37758745 PMCID: PMC10533831 DOI: 10.1038/s41598-023-43097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding host-microbial interactions in the rumen and its influence on desirable production traits may lead to potential microbiota manipulation or genetic selection for improved cattle feed efficiency. This study investigated the host transcriptome and its correlation with the rumen archaea and bacteria differential abundance of two pure beef cattle breeds (Angus and Charolais) and one composite beef hybrid (Kinsella) divergent for residual feed intake (RFI; low-RFI vs. high-RFI). Using RNA-Sequencing of rumen tissue and 16S rRNA gene amplicon sequencing, differentially expressed genes (FDR ≤ 0.05, |log2(Fold-change) >|2) and differentially abundant (p-value < 0.05) archaea and bacteria amplicon sequence variants (ASV) were determined. Significant correlations between gene expression and ASVs (p-value < 0.05) were determine using Spearman correlation. Interesting associations with muscle contraction and the modulation of the immune system were observed for the genes correlated with bacterial ASVs. Potential functional candidate genes for feed efficiency status were identified for Angus (CCL17, CCR3, and CXCL10), Charolais (KCNK9, GGT1 and IL6), and Kinsella breed (ESR2). The results obtained here provide more insights regarding the applicability of target host and rumen microbial traits for the selection and breeding of more feed efficient beef cattle.
Collapse
Grants
- Beef Farmers of Ontario, Genome Canada and the Sustainable Beef and Forage Science Cluster funded by the Canadian Beef Cattle Check-Off, Beef Cattle Research Council (BCRC), Alberta Beef Producers, Alberta Cattle Feeders’ Association, Beef Farmers of Ontario, La Fédération des Productuers de bovins du Québec, and Agriculture and Agri-Food Canada’s Canadian Agricultural Partnership
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), Ontario Ministry of Research and Innovation, and the Ontario Agri-Food Innovation Alliance
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Y Chen
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - S M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - L L Guan
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
36
|
Landis BJ, Helvaty LR, Geddes GC, Lin JI, Yatsenko SA, Lo CW, Border WL, Wechsler SB, Murali CN, Azamian MS, Lalani SR, Hinton RB, Garg V, McBride KL, Hodge JC, Ware SM. A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e029340. [PMID: 37681527 PMCID: PMC10547279 DOI: 10.1161/jaha.123.029340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/24/2023] [Indexed: 09/09/2023]
Abstract
Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well-recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal-related pathways were over-represented in single-gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions Intensive cardiac phenotyping in multisite registry data identifies genotype-phenotype associations in CHD patients with abnormal CMA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chaya N. Murali
- Baylor College of MedicineHoustonTX
- Texas Children’s HospitalHoustonTX
| | | | - Seema R. Lalani
- Baylor College of MedicineHoustonTX
- Texas Children’s HospitalHoustonTX
| | | | - Vidu Garg
- Nationwide Children’s HospitalThe Ohio State UniversityColumbusOH
| | - Kim L. McBride
- Nationwide Children’s HospitalThe Ohio State UniversityColumbusOH
- University of CalgaryCalgaryCanada
| | | | | |
Collapse
|
37
|
Dubois‐Chevalier J, Gheeraert C, Berthier A, Boulet C, Dubois V, Guille L, Fourcot M, Marot G, Gauthier K, Dubuquoy L, Staels B, Lefebvre P, Eeckhoute J. An extended transcription factor regulatory network controls hepatocyte identity. EMBO Rep 2023; 24:e57020. [PMID: 37424431 PMCID: PMC10481658 DOI: 10.15252/embr.202357020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.
Collapse
Affiliation(s)
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Vanessa Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical SciencesGhent UniversityGhentBelgium
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Marie Fourcot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillemette Marot
- Univ. Lille, Inria, CHU Lille, ULR 2694 – METRICS: Évaluation des technologies de santé et des pratiques médicalesLilleFrance
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, INRAE USC 1370, École Normale Supérieure de LyonLyonFrance
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in InflammationLilleFrance
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| |
Collapse
|
38
|
Jafari S, Ravan M, Karimi-Sani I, Aria H, Hasan-Abad AM, Banasaz B, Atapour A, Sarab GA. Screening and identification of potential biomarkers for pancreatic cancer: An integrated bioinformatics analysis. Pathol Res Pract 2023; 249:154726. [PMID: 37591067 DOI: 10.1016/j.prp.2023.154726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Pancreatic cancer is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify essential genes and the involved mechanisms in pancreatic cancer, we used bioinformatics analysis to identify potential biomarkers for pancreatic cancer management. Gene expression profiles of pancreatic cancer patients and normal tissues were screened and downloaded from The Cancer Genome Atlas (TCGA) bioinformatics database. The Differentially expressed genes (DEGs) were identified among gene expression signatures of normal and pancreatic cancer, using R software. Then, enrichment analysis of the DEGs, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, was performed by an interactive and collaborative HTML5 gene list enrichment analysis tool (enrichr) and ToppGene. The protein-protein interaction (PPI) network was also constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and ToppGenet web based tool followed by identifying hub genes of the top 100 DEGs in pancreatic cancer using Cytoscape software. Over 2000 DEGs with variable log2 fold (LFC) were identified among 34,706 genes. Principal component analysis showed that the top 20 DEGs, including H1-4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 might distinguish pancreatic cancer from normal tissue. GO analysis showed that the top DEGs have more enriched in the negative regulation of gene silencing, negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, and nucleosomal DNA binding. KEGG analysis identified an association between pancreatic cancer and systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis. In PPI network analysis, we found that the different types of histone-encoding genes are involved as hub genes in the carcinogenesis of pancreatic cancer. In conclusion, our bioinformatics analysis identified genes that were significantly related to the prognosis of pancreatic cancer patients. These genes and pathways could serve as new potential prognostic markers and be used to develop treatments for pancreatic cancer patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ravan
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahar Banasaz
- Internal Medicine Department, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
39
|
Krzisch M, Yuan B, Chen W, Osaki T, Fu D, Garrett-Engele C, Svoboda D, Andrykovich K, Sur M, Jaenisch R. The A53T mutation in α-synuclein enhances pro-inflammatory activation in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555300. [PMID: 37693409 PMCID: PMC10491251 DOI: 10.1101/2023.08.29.555300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD, however the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T-mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. Here, we used 2-dimensional cultures of human iPSC-derived microglia and transplantation of these cells into the mouse brain to assess the effects of the A53T mutation on human microglia. We found that A53T-mutant human microglia had an intrinsically increased propensity towards pro-inflammatory activation upon inflammatory stimulus. Additionally, A53T mutant microglia showed a strong decrease in catalase expression in non-inflammatory conditions, and increased oxidative stress. Our results indicate that A53T mutant human microglia display cell-autonomous phenotypes that may worsen neuronal damage in early-onset PD.
Collapse
|
40
|
Tejwani L, Jung Y, Kokubu H, Sowmithra S, Ni L, Lee C, Sanders B, Lee PJ, Xiang Y, Luttik K, Soriano A, Yoon J, Park J, Ro HH, Ju H, Liao C, Tieze SM, Rigo F, Jafar-Nejad P, Lim J. Reduction of nemo-like kinase increases lysosome biogenesis and ameliorates TDP-43-related neurodegeneration. J Clin Invest 2023; 133:e138207. [PMID: 37384409 PMCID: PMC10425213 DOI: 10.1172/jci138207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although mutations in TARDBP, encoding transactive response DNA-binding protein 43 kDa (TDP-43), account for less than 1% of all ALS cases, TDP-43-positive aggregates are present in nearly all ALS patients, including patients with sporadic ALS (sALS) or carrying other familial ALS-causing (fALS-causing) mutations. Interestingly, TDP-43 inclusions are also present in subsets of patients with frontotemporal dementia, Alzheimer's disease, and Parkinson's disease; therefore, methods of activating intracellular protein quality control machinery capable of clearing toxic cytoplasmic TDP-43 species may alleviate disease-related phenotypes. Here, we identify a function of nemo-like kinase (Nlk) as a negative regulator of lysosome biogenesis. Genetic or pharmacological reduction of Nlk increased lysosome formation and improved clearance of aggregated TDP-43. Furthermore, Nlk reduction ameliorated pathological, behavioral, and life span deficits in 2 distinct mouse models of TDP-43 proteinopathy. Because many toxic proteins can be cleared through the autophagy/lysosome pathway, targeted reduction of Nlk represents a potential approach to therapy development for multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
| | - Youngseob Jung
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hiroshi Kokubu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sowmithra Sowmithra
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Changwoo Lee
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
| | - Benjamin Sanders
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
| | - Paul J. Lee
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
| | - Yangfei Xiang
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
| | | | | | - Junhyun Park
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
| | | | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - Janghoo Lim
- Interdepartmental Neuroscience Program
- Department of Neuroscience, and
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, and
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Polzin BJ, Stevenson SA, Gammie SC, Riters LV. Distinct patterns of gene expression in the medial preoptic area are related to gregarious singing behavior in European starlings (Sturnus vulgaris). BMC Neurosci 2023; 24:41. [PMID: 37537543 PMCID: PMC10399071 DOI: 10.1186/s12868-023-00813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Song performed in flocks by European starlings (Sturnus vulgaris), referred to here as gregarious song, is a non-sexual, social behavior performed by adult birds. Gregarious song is thought to be an intrinsically reinforced behavior facilitated by a low-stress, positive affective state that increases social cohesion within a flock. The medial preoptic area (mPOA) is a region known to have a role in the production of gregarious song. However, the neurochemical systems that potentially act within this region to regulate song remain largely unexplored. In this study, we used RNA sequencing to characterize patterns of gene expression in the mPOA of male and female starlings singing gregarious song to identify possibly novel neurotransmitter, neuromodulator, and hormonal pathways that may be involved in the production of gregarious song. RESULTS Differential gene expression analysis and rank rank hypergeometric analysis indicated that dopaminergic, cholinergic, and GABAergic systems were associated with the production of gregarious song, with multiple receptor genes (e.g., DRD2, DRD5, CHRM4, GABRD) upregulated in the mPOA of starlings who sang at high rates. Additionally, co-expression network analyses identified co-expressing gene clusters of glutamate signaling-related genes associated with song. One of these clusters contained five glutamate receptor genes and two glutamate scaffolding genes and was significantly enriched for genetic pathways involved in neurodevelopmental disorders associated with social deficits in humans. Two of these genes, GRIN1 and SHANK2, were positively correlated with performance of gregarious song. CONCLUSIONS This work provides new insights into the role of the mPOA in non-sexual, gregarious song in starlings and highlights candidate genes that may play a role in gregarious social interactions across vertebrates. The provided data will also allow other researchers to compare across species to identify conserved systems that regulate social behavior.
Collapse
Affiliation(s)
- Brandon J Polzin
- Department of Integrative Biology, University of Wisconsin- Madison, Madison, WI, USA.
| | - Sharon A Stevenson
- Department of Integrative Biology, University of Wisconsin- Madison, Madison, WI, USA
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin- Madison, Madison, WI, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin- Madison, Madison, WI, USA
| |
Collapse
|
42
|
Sebastian R, Jin K, Pavon N, Bansal R, Potter A, Song Y, Babu J, Gabriel R, Sun Y, Aronow B, Pak C. Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat Commun 2023; 14:3770. [PMID: 37355690 PMCID: PMC10290702 DOI: 10.1038/s41467-023-39420-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
De novo mutations and copy number deletions in NRXN1 (2p16.3) pose a significant risk for schizophrenia (SCZ). It is unclear how NRXN1 deletions impact cortical development in a cell type-specific manner and disease background modulates these phenotypes. Here, we leveraged human pluripotent stem cell-derived forebrain organoid models carrying NRXN1 heterozygous deletions in isogenic and SCZ patient genetic backgrounds and conducted single-cell transcriptomic analysis over the course of brain organoid development from 3 weeks to 3.5 months. Intriguingly, while both deletions similarly impacted molecular pathways associated with ubiquitin-proteasome system, alternative splicing, and synaptic signaling in maturing glutamatergic and GABAergic neurons, SCZ-NRXN1 deletions specifically perturbed developmental trajectories of early neural progenitors and accumulated disease-specific transcriptomic signatures. Using calcium imaging, we found that both deletions led to long-lasting changes in spontaneous and synchronous neuronal networks, implicating synaptic dysfunction. Our study reveals developmental-timing- and cell-type-dependent actions of NRXN1 deletions in unique genetic contexts.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Graduate Program in Neuroscience & Behavior, UMass Amherst, Amherst, MA, 01003, USA
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Narciso Pavon
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Ruby Bansal
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Andrew Potter
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Juliana Babu
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Rafael Gabriel
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA, 01003, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45256, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
43
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539585. [PMID: 37205355 PMCID: PMC10187285 DOI: 10.1101/2023.05.06.539585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR) mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation while analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, and disease and metabolic linkage, of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Lead Contact
| |
Collapse
|
44
|
Rudman-Melnick V, Adam M, Stowers K, Potter A, Ma Q, Chokshi SM, Vanhoutte D, Valiente-Alandi I, Lindquist DM, Nieman ML, Kofron JM, Potter SS, Devarajan P. Single-cell sequencing dissects the transcriptional identity of activated fibroblasts and identifies novel persistent distal tubular injury patterns in kidney fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2880248. [PMID: 37293022 PMCID: PMC10246229 DOI: 10.21203/rs.3.rs-2880248/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Examining kidney fibrosis is crucial for mechanistic understanding and developing targeted strategies against chronic kidney disease (CKD). Persistent fibroblast activation and tubular epithelial cell (TEC) injury are key CKD contributors. However, cellular and transcriptional landscapes of CKD and specific activated kidney fibroblast clusters remain elusive. Here, we analyzed single cell transcriptomic profiles of two clinically relevant kidney fibrosis models which induced robust kidney parenchymal remodeling. We dissected the molecular and cellular landscapes of kidney stroma and newly identified three distinctive fibroblast clusters with "secretory", "contractile" and "vascular" transcriptional enrichments. Also, both injuries generated failed repair TECs (frTECs) characterized by decline of mature epithelial markers and elevation of stromal and injury markers. Notably, frTECs shared transcriptional identity with distal nephron segments of the embryonic kidney. Moreover, we identified that both models exhibited robust and previously unrecognized distal spatial pattern of TEC injury, outlined by persistent elevation of renal TEC injury markers including Krt8, while the surviving proximal tubules (PTs) showed restored transcriptional signature. Furthermore, we found that long-term kidney injuries activated a prominent nephrogenic signature, including Sox4 and Hox gene elevation, which prevailed in the distal tubular segments. Our findings might advance understanding of and targeted intervention in fibrotic kidney disease.
Collapse
Affiliation(s)
| | - Mike Adam
- Cincinnati Children's Hospital Medical Center
| | | | | | - Qing Ma
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yagi H, Cui C, Saydmohammed M, Gabriel G, Baker C, Devine W, Wu Y, Lin JH, Malek M, Bais A, Murray S, Aronow B, Tsang M, Kostka D, Lo CW. Spatial transcriptome profiling uncovers metabolic regulation of left-right patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537827. [PMID: 37131609 PMCID: PMC10153223 DOI: 10.1101/2023.04.21.537827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Left-right patterning disturbance can cause severe birth defects, but it remains least understood of the three body axes. We uncovered an unexpected role for metabolic regulation in left-right patterning. Analysis of the first spatial transcriptome profile of left-right patterning revealed global activation of glycolysis, accompanied by right-sided expression of Bmp7 and genes regulating insulin growth factor signaling. Cardiomyocyte differentiation was left-biased, which may underlie the specification of heart looping orientation. This is consistent with known Bmp7 stimulation of glycolysis and glycolysis suppression of cardiomyocyte differentiation. Liver/lung laterality may be specified via similar metabolic regulation of endoderm differentiation. Myo1d , found to be left-sided, was shown to regulate gut looping in mice, zebrafish, and human. Together these findings indicate metabolic regulation of left-right patterning. This could underlie high incidence of heterotaxy-related birth defects in maternal diabetes, and the association of PFKP, allosteric enzyme regulating glycolysis, with heterotaxy. This transcriptome dataset will be invaluable for interrogating birth defects involving laterality disturbance.
Collapse
|
46
|
Wu Y, Gettler K, Kars ME, Giri M, Li D, Bayrak CS, Zhang P, Jain A, Maffucci P, Sabic K, Van Vleck T, Nadkarni G, Denson LA, Ostrer H, Levine AP, Schiff ER, Segal AW, Kugathasan S, Stenson PD, Cooper DN, Philip Schumm L, Snapper S, Daly MJ, Haritunians T, Duerr RH, Silverberg MS, Rioux JD, Brant SR, McGovern DPB, Cho JH, Itan Y. Identifying high-impact variants and genes in exomes of Ashkenazi Jewish inflammatory bowel disease patients. Nat Commun 2023; 14:2256. [PMID: 37080976 PMCID: PMC10119186 DOI: 10.1038/s41467-023-37849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic digestive tract inflammatory conditions whose genetic etiology is still poorly understood. The incidence of IBD is particularly high among Ashkenazi Jews. Here, we identify 8 novel and plausible IBD-causing genes from the exomes of 4453 genetically identified Ashkenazi Jewish IBD cases (1734) and controls (2719). Various biological pathway analyses are performed, along with bulk and single-cell RNA sequencing, to demonstrate the likely physiological relatedness of the novel genes to IBD. Importantly, we demonstrate that the rare and high impact genetic architecture of Ashkenazi Jewish adult IBD displays significant overlap with very early onset-IBD genetics. Moreover, by performing biobank phenome-wide analyses, we find that IBD genes have pleiotropic effects that involve other immune responses. Finally, we show that polygenic risk score analyses based on genome-wide high impact variants have high power to predict IBD susceptibility.
Collapse
Affiliation(s)
- Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Gettler
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mamta Giri
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dalin Li
- Translational Genomics Unit, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cigdem Sevim Bayrak
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Aayushee Jain
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick Maffucci
- Immunology Institute, Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Ksenija Sabic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tielman Van Vleck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee A Denson
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Harry Ostrer
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Adam P Levine
- Division of Medicine, University College London (UCL), London, UK
- Research Department of Pathology, University College London (UCL), London, UK
| | - Elena R Schiff
- Division of Medicine, University College London (UCL), London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony W Segal
- Division of Medicine, University College London (UCL), London, UK
| | | | - Peter D Stenson
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff, UK
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Oncology Boston Children's Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Talin Haritunians
- Translational Genomics Unit, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Mark S Silverberg
- Inflammatory Bowel Disease Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Steven R Brant
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dermot P B McGovern
- Translational Genomics Unit, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
47
|
Pirola CJ, Sookoian S. Advances in our understanding of the molecular heterogeneity of fatty liver disease: toward informed treatment decision making. Expert Rev Gastroenterol Hepatol 2023; 17:317-324. [PMID: 36912694 DOI: 10.1080/17474124.2023.2191190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) is a complex disorder resulting from intricate relationships with diverse cardiometabolic risk factors and environmental factors. NAFLD may result in severe chronic liver damage and potentially declining liver function. AREAS COVERED Accumulated knowledge over the last decade indicates that the disease trajectory presents substantial heterogeneity. In addition, overlapping features with the diseases of the metabolic syndrome, combined with heterogeneity in disease mechanisms, further complicates NAFLD diagnosis and prognosis, and hampers progress in biomarker and pharmacological discoveries. Here, we explore solving the heterogeneous clinical landscape of NAFLD by cluster analysis of molecular signatures that serve as a proxy for disease stratification into molecular sub-types. First, we collected information on NAFLD and metabolic syndrome-associated protein-coding genes by data mining the literature. Next, we performed pathways enrichment and cluster analyses to decipher and dissect the different patterns of phenotypic heterogeneity. Our approach showed unique biological pathways for every clinical subtype/group, namely NAFLD + obesity, NAFLD + arterial hypertension, NAFLD + dyslipidemia, and NAFLD + type 2 diabetes. EXPERT OPINION Patients with NAFLD may be benefited by a better understanding of the disease biology, which involves 'dissection' of the molecular sub-phenotypes that drive the disease progression.
Collapse
Affiliation(s)
- Carlos J Pirola
- Systems Biology of Complex Diseases, Centro de Altos Estudios En Ciencias Humanas Y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Altos Estudios En Ciencias Humanas Y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
Pasha U, Nisar H, Nisar H, Abid R, Ashraf NM, Sadaf S. Molecular Dynamic Simulations Unravel the Underlying Impact of Missense Mutation in Autoimmunity Gene PTPN22 on Predisposition to Rheumatoid Arthritis. J Interferon Cytokine Res 2023; 43:121-132. [PMID: 36811459 DOI: 10.1089/jir.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Genetic mutations in various proteins have been implicated with increased risk or severity of rheumatoid arthritis (RA) in different population groups. In the present case-control study, we have investigated the risk association of single nucleotide mutations present in some of the highly reported anti-inflammatory proteins and/or cytokines, with RA susceptibility in the Pakistani subjects. The study involves 310 ethnically and demographically similar participants from whom blood samples were taken and processed for DNA extraction. Through extensive data mining, 5 hotspot mutations reported in 4 genes, that is, interleukin (IL)-4 (-590; rs2243250), IL-10 (-592; rs1800872), IL-10 (-1082; rs1800896), PTPN22 (C1858T; rs2476601), and TNFAIP3 (T380G; rs2230926), were selected for RA susceptibility analyses using genotyping assays. The results demonstrated the association of only 2 DNA variants [rs2243250 (odds ratio, OR = 2.025, 95% confidence interval, CI = 1.357-3.002, P = 0.0005 Allelic) and rs2476601 (OR = 4.25, 95% CI = 1.569-11.55, P = 0.004 Allelic)] with RA susceptibility in the local population. The former single nucleotide mutation was nonfunctional, whereas the latter, residing in the exonic region of a linkage-proven autoimmunity gene PTPN22, was involved in R620→W620 substitution. Comparative molecular dynamic simulations and free-energy calculations revealed a radical impact on the geometry/confirmation of key functional moieties in the mutant protein leading to a rather weak binding of W620 variant with the interacting receptor (SRC kinase). The interaction imbalance and binding instabilities provide convincing clues about the insufficient inhibition of T cell activation and/or ineffective clearance of autoimmune clones-a hallmark of several autoimmune disorders. In conclusion, the present research describes the association of 2 hotspot mutations in IL-4 promoter and PTPN22 gene with RA susceptibility in the Pakistani study cohort. It also details how a functional mutation in PTPN22 impacts the overall protein geometry, charge, and/or receptor interactions to contribute to RA susceptibility.
Collapse
Affiliation(s)
- Usman Pasha
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Haseeb Nisar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hajira Nisar
- Emergency and Out Patient Department, Ali Fatima Hospital, Lahore, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
49
|
Pirola CJ, Sookoian S. COVID-19 and non-alcoholic fatty liver disease: Biological insights from multi-omics data. Liver Int 2023; 43:580-587. [PMID: 36593576 DOI: 10.1111/liv.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
We explored the shared pathophysiological mechanisms between COVID-19 and non-alcoholic fatty liver disease (NAFLD) by integrating multi-omics data. We studied common genetic risk factors and underlying biological processes using functional enrichment analysis. To understand the sex-specific pathways involved in the clinical course of SARS-CoV-2 infection, we processed sex-stratified data from COVID-19 genome-wide association datasets. We further explored the transcriptional signature of the liver cells in healthy and COVID-19 tissue specimens. We also integrated genetic and metabolomic information. We found that COVID-19 and NAFLD share biological disease mechanisms, including pathways that regulate the inflammatory and lipopolysaccharide response. Single-cell transcriptomics revealed enrichment of complement-related pathways in Kupffer cells, syndecan-mediated signalling in plasma cells, and epithelial-to-mesenchymal transition in hepatic stellate cells. The strategy of pathway-level analysis of genomic and metabolomic data uncovered l-lactic acid, Krebs cycle intermediate compounds, arachidonic acid and cortisol among the most prominent shared metabolites.
Collapse
Affiliation(s)
- Carlos J Pirola
- Systems Biology of Complex Diseases, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
50
|
Kambey PA, Kodzo LD, Serojane F, Oluwasola BJ. The bi-directional association between bipolar disorder and obesity: Evidence from Meta and bioinformatics analysis. Int J Obes (Lond) 2023; 47:443-452. [PMID: 36806758 DOI: 10.1038/s41366-023-01277-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND The globally high prevalence of both obesity and bipolar disorder makes the bidirectional relationship between the two disorders a pivotal phenomenon; hence, a meta-analysis to synopsize their co-occurrence is indispensable. Psychotropic-induced obesity has been reported to be an important factor linking bipolar disorder and obesity. Nonetheless, the molecular signature of this connection is perplexing. METHODS Here, we leverage both meta-analysis and bioinformatics analysis to provide a conspectus and deduce the molecular signature of obesity in bipolar disease patients following psychotropic treatment. Searches were performed on a diverse collection of databases through June 25, 2020. The Newcastle-Ottawa Scale was used to rate the quality of the studies. Analysis of OR, 95% CI, and tests of homogeneity were carried out with STATA software. For the bioinformatics analysis, the LIMMA package which is incorporated into the Gene Expression Omnibus database was used. RESULTS Our search yielded 138 studies, of which 18 fitted our inclusion criteria. Individuals who are obese have an increased risk of developing bipolar disorder (pooled adjusted OR = 1.32, 95% CI = 1.01-1.62). In a manner analogous to this, the pooled adjusted odds ratio reveals that patients with bipolar disorder have an increased chance of obesity (OR = 1.68, 95% CI = 1.35-2). To deduce the molecular signature of obesity in bipolar disorder patients following psychotropic treatment, three data sets from the Gene Expression Omnibus database (GSE5392, GSE87610, and GSE35977) were integrated and the genes obtained were validated by a cohort of known single nucleotide polymorphism of obesity via direct overlap. Results indicate genes that are activated after psychotropic treatment. Some of these genes are CYBB, C3, OLR1, CX3CR1, C3AR1, CD53, AIF1, LY86, BDNF, ALOX5AP, CXCL10, and the preponderance falls under mesodermal and PI3K-Akt signaling pathway. The ROC analysis reveals a strong discriminating value between the two groups (UBAP2L AUC = 0.806, p = 1.1e-04, NOVA2 AUC = 0.73, p = 6.7e-03). CONCLUSION Our study shows unequivocal evidence of a bi-directional association between bipolar disorder and obesity, but more crucially, it provides a snapshot of the molecular signature of obesity in bipolar patients as a result of psychotropic medication.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.
| | - Lalit Dzifa Kodzo
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.,School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan Province, China.,Nursing and Midwifery Training college, Twifo Praso, Central Region, Ghana
| | - Fattimah Serojane
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.,Southern Medical University, Guangzhou, China
| | - Bolorunduro Janet Oluwasola
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O Box 25305-00100, Nairobi, Kenya.,Departure of computer science and Technology, Harbin Institute of Technology, No 92, Xidazhi Street, Harbin, 150001, P. R. China
| |
Collapse
|