1
|
Call N, Tomkinson AE. Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases. DNA Repair (Amst) 2025; 149:103843. [PMID: 40347914 DOI: 10.1016/j.dnarep.2025.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The joining of DNA single- and double-strand breaks (SSB and DSB) is essential for maintaining genome stability and integrity. While this is ultimately accomplished in human cells by the DNA ligases encoded by the LIG1, LIG3 and LIG4 genes, these enzymes are recruited to DNA breaks through specific interactions with proteins involved in break sensing and recognition and/or break processing. In this review, we focus on the interplay between the DNA break-activated poly (ADP-ribose) polymerases, PARP1 and PARP2, poly (ADP-ribose) (PAR) and the DNA ligases in DNA replication and repair. The most extensively studied example of this interplay is the recruitment of DNA ligase IIIα (LigIIIα) and other repair proteins to SSBs through an interaction between XRCC1, a scaffold protein and partner protein of nuclear LigIIIα, and PAR synthesized by PARP1 and to a lesser extent PARP2. Recently, these proteins have been implicated in a back-up pathway for joining Okazaki fragments that appears to have a critical function even in cells with no defect in the major LigI-dependent pathway. Finally, we discuss the effects of FDA-approved PARP1/2 inhibitors on DNA replication and repair in cancer and non-malignant cells and the potential utility of DNA ligase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Nicolas Call
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
2
|
Fielden J, Siegner SM, Gallagher DN, Schröder MS, Dello Stritto MR, Lam S, Kobel L, Schlapansky MF, Jackson SP, Cejka P, Jost M, Corn JE. Comprehensive interrogation of synthetic lethality in the DNA damage response. Nature 2025; 640:1093-1102. [PMID: 40205037 PMCID: PMC12018271 DOI: 10.1038/s41586-025-08815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
The DNA damage response (DDR) is a multifaceted network of pathways that preserves genome stability1,2. Unravelling the complementary interplay between these pathways remains a challenge3,4. Here we used CRISPR interference (CRISPRi) screening to comprehensively map the genetic interactions required for survival during normal human cell homeostasis across all core DDR genes. We captured known interactions and discovered myriad new connections that are available online. We defined the molecular mechanism of two of the strongest interactions. First, we found that WDR48 works with USP1 to restrain PCNA degradation in FEN1/LIG1-deficient cells. Second, we found that SMARCAL1 and FANCM directly unwind TA-rich DNA cruciforms, preventing catastrophic chromosome breakage by the ERCC1-ERCC4 complex. Our data yield fundamental insights into genome maintenance, provide a springboard for mechanistic investigations into new connections between DDR factors and pinpoint synthetic vulnerabilities that could be exploited in cancer therapy.
Collapse
Affiliation(s)
- John Fielden
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Sebastian M Siegner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Danielle N Gallagher
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Markus S Schröder
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Maria Rosaria Dello Stritto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lena Kobel
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Moritz F Schlapansky
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Marco Jost
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Medina-Suárez D, Han L, O’Reilly S, Liu J, Wei C, Brenière M, Goff N, Chen C, Modesti M, Meek K, Harrington B, Yu K. Lig3-dependent rescue of mouse viability and DNA double-strand break repair by catalytically inactive Lig4. Nucleic Acids Res 2025; 53:gkae1216. [PMID: 39673806 PMCID: PMC11754673 DOI: 10.1093/nar/gkae1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Recent studies have revealed a structural role for DNA ligase 4 (Lig4) in the maintenance of a repair complex during non-homologous end joining (NHEJ) of DNA double-strand breaks. In cultured cell lines, catalytically inactive Lig4 can partially alleviate the severe DNA repair phenotypes observed in cells lacking Lig4. To study the structural role of Lig4 in vivo, a mouse strain harboring a point mutation to Lig4's catalytic site was generated. In contrast to the ablation of Lig4, catalytically inactive Lig4 mice are born alive. These mice display marked growth retardation and have clear deficits in lymphocyte development. We considered that the milder phenotype results from inactive Lig4 help to recruit another ligase to the repair complex. We next generated a mouse strain deficient for nuclear Lig3. Nuclear Lig3-deficient mice are moderately smaller and have elevated incidences of cerebral ventricle dilation but otherwise appear normal. Strikingly, in experiments crossing these two strains, mice lacking nuclear Lig3 and expressing inactive Lig4 were not obtained. Timed mating revealed that fetuses harboring both mutations underwent resorption, establishing an embryonic lethal genetic interaction. These data suggest that Lig3 is recruited to NHEJ complexes to facilitate end joining in the presence (but not activity) of Lig4.
Collapse
Affiliation(s)
- David Medina-Suárez
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Li Han
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Sandra O’Reilly
- Research Technology Support Facility, and Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Jiali Liu
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Chao Wei
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Noah J Goff
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, 3018 Interdisciplinary Science and Technology Building, 766 Service Rd, East Lansing, MI 48824, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, 27 Boulevard Leï Roure CS30059, 13273 Marseille Cedex 09, Marseille, France
| | - Katheryn Meek
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Bonnie Harrington
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| | - Kefei Yu
- Department of Microbiology, Genetics and Immunology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Zalenski N, He Y, Suo Z. Mechanistic Basis for a Single Amino Acid Residue Mutation Causing Human DNA Ligase 1 Deficiency, A Rare Pediatric Disease. J Mol Biol 2024; 436:168813. [PMID: 39374888 DOI: 10.1016/j.jmb.2024.168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
In mammalian cells, DNA ligase 1 (LIG1) functions as the primary DNA ligase in both genomic replication and single-strand break repair. Several reported mutations in human LIG1, including R305Q, R641L, and R771W, cause LIG1 syndrome, a primary immunodeficiency. While the R641L and R771W mutations, respectively located in the nucleotidyl transferase and oligonucleotide binding domains, have been biochemically characterized and shown to reduce catalytic efficiency, the recently reported R305Q mutation within the DNA binding domain (DBD) remains mechanistically unexplored. The R641L and R771W mutations are known to decrease the catalytic activity of LIG1 by affecting both interdomain interactions and DNA binding during catalysis, without significantly impacting overall DNA affinity. To elucidate the molecular basis of the LIG1 syndrome-causing R305Q mutation, we purified this single-residue mutant protein and investigated its secondary structure, protein stability, DNA binding affinity, and catalytic efficiency. Our findings reveal that the R305Q mutation significantly impairs the function of LIG1 by disrupting the DBD-DNA interactions, leading to a 7-21-fold lower DNA binding affinity and a 33-300-fold reduced catalytic efficiency of LIG1. Additionally, the R305Q mutation slightly decreases LIG1's protein stability by 2 to 3.6 °C, on par with the effect observed previously with either the R641L or R771W mutant. Collectively, our results uncover a new mechanism whereby the R305Q mutation impairs LIG1-catalyzed nicked DNA ligation, resulting in LIG1 syndrome, and highlight the crucial roles of the DBD-DNA interactions in tight DNA binding and efficient LIG1 catalysis.
Collapse
Affiliation(s)
- Nikita Zalenski
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Yufan He
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Zucai Suo
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
5
|
Veenstra JH, Chabez A, Haanen TJ, Keranen A, Cunningham-Rundles C, O'Brien PJ. Rare Variants of DNA Ligase 1 Show Distinct Mechanisms of Deficiency. J Biol Chem 2024:107957. [PMID: 39510190 DOI: 10.1016/j.jbc.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency. We investigated the enzymatic activity of several new candidate LIG1 Syndrome variants chosen based on their structural proximity to known clinical variants, low minor allele frequency (MAF), high level of conservation, and concurrence in patients with similar symptoms as LIG1 Syndrome patients. The R305Q substitution is in the DNA binding domain, R768W is in the OB-fold domain, and R641S is in the nucleotidyltransferase domain. Biochemical characterization confirmed deficiencies in ligase activity for all three variants, but also revealed marked differences in comparison to the known LIG1 Syndrome variants. Both the R305Q and R768W substitutions increase the KM for DNA and decrease the catalytic efficiency, however, neither exhibit elevated levels of abortive ligation. In contrast, the R641S variant exhibits a greater impairment of activity as well as a more pronounced level of abortive ligation compared to the known LIG1 Syndrome variant, R641L. This work expands the number of LIG1 alleles that are likely candidates for LIG1 Syndrome, and it raises the question of whether distinct enzymatic deficiencies in LIG1 cause unique clinical impacts in patients harboring these alleles.
Collapse
Affiliation(s)
- Jenna H Veenstra
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Alexandria Chabez
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Terrance J Haanen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Austin Keranen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | | | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
6
|
Bhandari SK, Wiest N, Sallmyr A, Du R, Tomkinson A. Redundant but essential functions of PARP1 and PARP2 in DNA ligase I-independent DNA replication. Nucleic Acids Res 2024; 52:10341-10354. [PMID: 39106163 PMCID: PMC11417376 DOI: 10.1093/nar/gkae672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
While DNA ligase I (LigI) joins most Okazaki fragments, a backup pathway involving poly(ADP-ribose) synthesis, XRCC1 and DNA ligase IIIα (LigIIIα) functions along with the LigI-dependent pathway and is also capable of supporting DNA replication in the absence of LigI. Here we have addressed for the first time the roles of PARP1 and PARP2 in this pathway using isogenic null derivatives of mouse CH12F3 cells. While single and double null mutants of the parental cell line and single mutants of LIG1 null cells were viable, loss of both PARP1 and PARP2 was synthetically lethal with LigI deficiency. Thus, PARP1 and PARP2 have a redundant essential role in LigI-deficient cells. Interestingly, higher levels of PARP2 but not PARP1 associated with newly synthesized DNA in the LIG1 null cells and there was a much higher increase in PARP2 chromatin retention in LIG1 null cells incubated with the PARP inhibitor olaparib with this effect occurring independently of PARP1. Together our results suggest that PARP2 plays a major role in specific cell types that are more dependent upon the backup pathway to complete DNA replication and that PARP2 retention at unligated Okazaki fragments likely contributes to the side effects of current clinical PARP inhibitors.
Collapse
Affiliation(s)
- Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Nathaniel Wiest
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Annahita Sallmyr
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Ruofei Du
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
8
|
Bhandari SK, Wiest N, Sallmyr A, Du R, Ferry L, Defossez PA, Tomkinson AE. Unchanged PCNA and DNMT1 dynamics during replication in DNA ligase I-deficient cells but abnormal chromatin levels of non-replicative histone H1. Sci Rep 2023; 13:4363. [PMID: 36928068 PMCID: PMC10020546 DOI: 10.1038/s41598-023-31367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway. Here we examined the effect of LigI-deficiency on proteins at the replication fork. Notably, LigI-deficiency did not alter the kinetics of association of the PCNA clamp, the leading strand polymerase Pol ε, DNA maintenance methylation proteins and core histones with newly synthesized DNA. While the absence of major changes in replication and methylation proteins is consistent with the similar proliferation rate and DNA methylation levels of the LIG1 null cells compared with the parental cells, the increased levels of LigIIIα/XRCC1 and Pol δ at the replication fork and in bulk chromatin indicate that there are subtle replication defects in the absence of LigI. Interestingly, the non-replicative histone H1 variant, H1.0, is enriched in the chromatin of LigI-deficient mouse CH12F3 and human 46BR.1G1 cells. This alteration was not corrected by expression of wild type LigI, suggesting that it is a relatively stable epigenetic change that may contribute to the immunodeficiencies linked with inherited LigI-deficiency syndrome.
Collapse
Affiliation(s)
- Seema Khattri Bhandari
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nathaniel Wiest
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Annahita Sallmyr
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ruofei Du
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Laure Ferry
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, 750013, Paris, France
| | | | - Alan E Tomkinson
- Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Vaitsiankova A, Burdova K, Sobol M, Gautam A, Benada O, Hanzlikova H, Caldecott KW. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat Struct Mol Biol 2022; 29:329-338. [PMID: 35332322 PMCID: PMC9010290 DOI: 10.1038/s41594-022-00747-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is implicated in the detection and processing of unligated Okazaki fragments and other DNA replication intermediates, highlighting such structures as potential sources of genome breakage induced by PARP inhibition. Here, we show that PARP1 activity is greatly elevated in chicken and human S phase cells in which FEN1 nuclease is genetically deleted and is highest behind DNA replication forks. PARP inhibitor reduces the integrity of nascent DNA strands in both wild-type chicken and human cells during DNA replication, and does so in FEN1-/- cells to an even greater extent that can be detected as postreplicative single-strand nicks or gaps. Collectively, these data show that PARP inhibitors impede the maturation of nascent DNA strands during DNA replication, and implicate unligated Okazaki fragments and other nascent strand discontinuities in the cytotoxicity of these compounds.
Collapse
Affiliation(s)
- Alina Vaitsiankova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Kamila Burdova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Margarita Sobol
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Amit Gautam
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Hana Hanzlikova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czech Republic.
| |
Collapse
|
10
|
DNA Double-Strand Break Repairs and Their Application in Plant DNA Integration. Genes (Basel) 2022; 13:genes13020322. [PMID: 35205367 PMCID: PMC8871565 DOI: 10.3390/genes13020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Double-strand breaks (DSBs) are considered to be one of the most harmful and mutagenic forms of DNA damage. They are highly toxic if unrepaired, and can cause genome rearrangements and even cell death. Cells employ two major pathways to repair DSBs: homologous recombination (HR) and non-homologous end-joining (NHEJ). In plants, most applications of genome modification techniques depend on the development of DSB repair pathways, such as Agrobacterium-mediated transformation (AMT) and gene targeting (GT). In this paper, we review the achieved knowledge and recent advances on the DNA DSB response and its main repair pathways; discuss how these pathways affect Agrobacterium-mediated T-DNA integration and gene targeting in plants; and describe promising strategies for producing DSBs artificially, at definite sites in the genome.
Collapse
|
11
|
Species variations in XRCC1 recruitment strategies for FHA domain-containing proteins. DNA Repair (Amst) 2022; 110:103263. [PMID: 35026705 PMCID: PMC9282668 DOI: 10.1016/j.dnarep.2021.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/07/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
DNA repair scaffolds XRCC1 and XRCC4 utilize a phosphopeptide FHA domain binding motif (FBM) of the form Y-x-x-pS-pT-D-E that supports recruitment of three identified FHA domain-containing DNA repair proteins: polynucleotide kinase/phosphatase (PNKP), aprataxin (APTX), and a third protein, APLF, that functions as a scaffold in support of non-homologous end joining (NHEJ). Mammalian dimeric XRCC4 is able to interact with two of these proteins at any given time, while monomeric XRCC1 binds only one. However, sequence analysis indicates that amphibian and teleost XRCC1 generally contain two FHA binding motifs. X1-FBM1, is similar to the single mammalian XRCC1 FBM and probably functions similarly. X1-FBM2, is more similar to mammalian XRCC4 FBM; it is located closer to the XRCC1 BRCT1 domain and probably is less discriminating among its three likely binding partners. Availability of an additional PNKP or APTX recruitment motif may alleviate the bottleneck that results from using a single FBM motif for recruitment of multiple repair factors. Alternatively, recruitment of APLF by X1-FBM2 may function to rescue a misdirected or unsuccessful SSB repair response by redirecting the damaged DNA to the NHEJ pathway, - a need that results from the ambiguity of the PARP1 signal regarding the nature of the damage. Evaluation of XRCC4 FBMs in acanthomorphs, which account for a majority of the reported teleost sequences, reveals the presence of an additional XRCC4-like paralog, distinct from other previously described members of the XRCC4 superfamily. The FBM is typically absent in acanthomorph XRCC4, but present in the XRCC4-like paralog. Modeling suggests that XRCC4 and its paralog may form homodimers or XRCC4-XRCC4-like heterodimers.
Collapse
|
12
|
Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503438. [PMID: 35094810 DOI: 10.1016/j.mrgentox.2021.503438] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
DNA double strand breaks (DSBs) are the most threatening type of DNA lesions and must be repaired properly in order to inhibit severe diseases and cell death. There are four major repair pathways for DSBs: non-homologous end joining (NHEJ), homologous recombination (HR), single strand annealing (SSA) and alternative end joining (alt-EJ). Cells choose repair pathway depending on the cell cycle phase and the length of 3' end of the DNA when DSBs are generated. Blunt and short regions of the 5' or 3' overhang DNA are repaired by NHEJ, which uses direct ligation or limited resection processing of the broken DNA end. In contrast, HR, SSA and alt-EJ use the resected DNA generated by the MRN (MRE11-RAD50-NBS1) complex and C-terminal binding protein interacting protein (CtIP) activated during the S and G2 phases. Here, we review recent findings on each repair pathway and the choice of repair mechanism and highlight the role of mismatch repair (MMR) protein in HR.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
13
|
Hausmann M, Hildenbrand G, Pilarczyk G. Networks and Islands of Genome Nano-architecture and Their Potential Relevance for Radiation Biology : (A Hypothesis and Experimental Verification Hints). Results Probl Cell Differ 2022; 70:3-34. [PMID: 36348103 DOI: 10.1007/978-3-031-06573-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cell nucleus is a complex biological system in which simultaneous reactions and functions take place to keep the cell as an individualized, specialized system running well. The cell nucleus contains chromatin packed in various degrees of density and separated in volumes of chromosome territories and subchromosomal domains. Between the chromatin, however, there is enough "free" space for floating RNA, proteins, enzymes, ATPs, ions, water molecules, etc. which are trafficking by super- and supra-diffusion to the interaction points where they are required. It seems that this trafficking works somehow automatically and drives the system perfectly. After exposure to ionizing radiation causing DNA damage from single base damage up to chromatin double-strand breaks, the whole system "cell nucleus" responds, and repair processes are starting to recover the fully functional and intact system. In molecular biology, many individual epigenetic pathways of DNA damage response or repair of single and double-strand breaks are described. How these responses are embedded into the response of the system as a whole is often out of the focus of consideration. In this article, we want to follow the hypothesis of chromatin architecture's impact on epigenetic pathways and vice versa. Based on the assumption that chromatin acts like an "aperiodic solid state within a limited volume," functionally determined networks and local topologies ("islands") can be defined that drive the appropriate repair process at a given damage site. Experimental results of investigations of the chromatin nano-architecture and DNA repair clusters obtained by means of single-molecule localization microscopy offer hints and perspectives that may contribute to verifying the hypothesis.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
15
|
eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 2021; 599:308-314. [PMID: 34671165 PMCID: PMC9295135 DOI: 10.1038/s41586-021-04009-w] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Extrachromosomal circular DNA elements (eccDNAs) have been described in the literature for several decades, and are known for their broad existence across different species1,2. However, their biogenesis and functions are largely unknown. By developing a new circular DNA enrichment method, here we purified and sequenced full-length eccDNAs with Nanopore sequencing. We found that eccDNAs map across the entire genome in a close to random manner, suggesting a biogenesis mechanism of random ligation of genomic DNA fragments. Consistent with this idea, we found that apoptosis inducers can increase eccDNA generation, which is dependent on apoptotic DNA fragmentation followed by ligation by DNA ligase 3. Importantly, we demonstrated that eccDNAs can function as potent innate immunostimulants in a manner that is independent of eccDNA sequence but dependent on eccDNA circularity and the cytosolic DNA sensor Sting. Collectively, our study not only revealed the origin, biogenesis and immunostimulant function of eccDNAs but also uncovered their sensing pathway and potential clinical implications in immune response.
Collapse
|
16
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
17
|
Koussa NC, Smith DJ. Post-replicative nick translation occurs on the lagging strand during prolonged depletion of DNA ligase I in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2021; 11:6298594. [PMID: 34849819 PMCID: PMC8496332 DOI: 10.1093/g3journal/jkab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023]
Abstract
During lagging-strand synthesis, strand-displacement synthesis by DNA polymerase delta (Pol ∂), coupled to nucleolytic cleavage of DNA flap structures, produces a nick-translation reaction that replaces the DNA at the 5′ end of the preceding Okazaki fragment. Previous work following depletion of DNA ligase I in Saccharomyces cerevisae suggests that DNA-bound proteins, principally nucleosomes and the transcription factors Abf1/Rap1/Reb1, pose a barrier to Pol ∂ synthesis and thereby limit the extent of nick translation in vivo. However, the extended ligase depletion required for these experiments could lead to ongoing, non-physiological nick translation. Here, we investigate nick translation by analyzing Okazaki fragments purified after transient nuclear depletion of DNA ligase I in synchronized or asynchronous Saccharomyces cerevisiae cultures. We observe that, even with a short ligase depletion, Okazaki fragment termini are enriched around nucleosomes and Abf1/Reb1/Rap1-binding sites. However, protracted ligase depletion leads to a global change in the location of these termini, moving them toward nucleosome dyads from a more upstream location and further enriching termini at Abf1/Reb1/Rap1-binding sites. In addition, we observe an under-representation of DNA derived from DNA polymerase alpha—the polymerase that initiates Okazaki fragment synthesis—around the sites of Okazaki termini obtained from very brief ligase depletion. Our data suggest that, while nucleosomes and transcription factors do limit strand-displacement synthesis by Pol ∂ in vivo, post-replicative nick translation can occur at unligated Okazaki fragment termini such that previous analyses represent an overestimate of the extent of nick translation occurring during normal lagging-strand synthesis.
Collapse
Affiliation(s)
- Natasha C Koussa
- Department of Biology, New York University, New York, NY 10003, USA
| | - Duncan J Smith
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
18
|
Wei L, Ploss A. Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021; 13:v13081463. [PMID: 34452329 PMCID: PMC8402782 DOI: 10.3390/v13081463] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.
Collapse
|
19
|
Kumamoto S, Nishiyama A, Chiba Y, Miyashita R, Konishi C, Azuma Y, Nakanishi M. HPF1-dependent PARP activation promotes LIG3-XRCC1-mediated backup pathway of Okazaki fragment ligation. Nucleic Acids Res 2021; 49:5003-5016. [PMID: 33872376 PMCID: PMC8136790 DOI: 10.1093/nar/gkab269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
DNA ligase 1 (LIG1) is known as the major DNA ligase responsible for Okazaki fragment joining. Recent studies have implicated LIG3 complexed with XRCC1 as an alternative player in Okazaki fragment joining in cases where LIG1 is not functional, although the underlying mechanisms are largely unknown. Here, using a cell-free system derived from Xenopus egg extracts, we demonstrated the essential role of PARP1-HPF1 in LIG3-dependent Okazaki fragment joining. We found that Okazaki fragments were eventually ligated even in the absence of LIG1, employing in its place LIG3-XRCC1, which was recruited onto chromatin. Concomitantly, LIG1 deficiency induces ADP-ribosylation of histone H3 in a PARP1-HPF1-dependent manner. The depletion of PARP1 or HPF1 resulted in a failure to recruit LIG3 onto chromatin and a subsequent failure in Okazaki fragment joining in LIG1-depleted extracts. Importantly, Okazaki fragments were not ligated at all when LIG1 and XRCC1 were co-depleted. Our results suggest that a unique form of ADP-ribosylation signaling promotes the recruitment of LIG3 on chromatin and its mediation of Okazaki fragment joining as a backup system for LIG1 perturbation.
Collapse
Affiliation(s)
- Soichiro Kumamoto
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Miyashita
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Chieko Konishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
20
|
Tomkinson AE, Naila T, Khattri Bhandari S. Altered DNA ligase activity in human disease. Mutagenesis 2021; 35:51-60. [PMID: 31630206 DOI: 10.1093/mutage/gez026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The joining of interruptions in the phosphodiester backbone of DNA is critical to maintain genome stability. These breaks, which are generated as part of normal DNA transactions, such as DNA replication, V(D)J recombination and meiotic recombination as well as directly by DNA damage or due to DNA damage removal, are ultimately sealed by one of three human DNA ligases. DNA ligases I, III and IV each function in the nucleus whereas DNA ligase III is the sole enzyme in mitochondria. While the identification of specific protein partners and the phenotypes caused either by genetic or chemical inactivation have provided insights into the cellular functions of the DNA ligases and evidence for significant functional overlap in nuclear DNA replication and repair, different results have been obtained with mouse and human cells, indicating species-specific differences in the relative contributions of the DNA ligases. Inherited mutations in the human LIG1 and LIG4 genes that result in the generation of polypeptides with partial activity have been identified as the causative factors in rare DNA ligase deficiency syndromes that share a common clinical symptom, immunodeficiency. In the case of DNA ligase IV, the immunodeficiency is due to a defect in V(D)J recombination whereas the cause of the immunodeficiency due to DNA ligase I deficiency is not known. Overexpression of each of the DNA ligases has been observed in cancers. For DNA ligase I, this reflects increased proliferation. Elevated levels of DNA ligase III indicate an increased dependence on an alternative non-homologous end-joining pathway for the repair of DNA double-strand breaks whereas elevated level of DNA ligase IV confer radioresistance due to increased repair of DNA double-strand breaks by the major non-homologous end-joining pathway. Efforts to determine the potential of DNA ligase inhibitors as cancer therapeutics are on-going in preclinical cancer models.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Tasmin Naila
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Seema Khattri Bhandari
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
21
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
23
|
Genome-wide Nucleotide-Resolution Mapping of DNA Replication Patterns, Single-Strand Breaks, and Lesions by GLOE-Seq. Mol Cell 2020; 78:975-985.e7. [PMID: 32320643 PMCID: PMC7276987 DOI: 10.1016/j.molcel.2020.03.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 12/03/2022]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions in the genome, arising spontaneously and as intermediates of many DNA transactions. Nevertheless, in contrast to double-strand breaks (DSBs), their distribution in the genome has hardly been addressed in a meaningful way. We now present a technique based on genome-wide ligation of 3′-OH ends followed by sequencing (GLOE-Seq) and an associated computational pipeline designed for capturing SSBs but versatile enough to be applied to any lesion convertible into a free 3′-OH terminus. We demonstrate its applicability to mapping of Okazaki fragments without prior size selection and provide insight into the relative contributions of DNA ligase 1 and ligase 3 to Okazaki fragment maturation in human cells. In addition, our analysis reveals biases and asymmetries in the distribution of spontaneous SSBs in yeast and human chromatin, distinct from the patterns of DSBs. GLOE-Seq detects 3′-OH ends with nucleotide resolution in purified genomic DNA GLOE-Seq maps single-strand breaks, lesions, and replication and repair intermediates GLOE-Seq reveals insight into the use of ligases 1 and 3 in human cells GLOE-Seq detects asymmetries in spontaneous nicks in yeast and human chromatin
Collapse
|
24
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
25
|
The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair. Pancreatology 2018; 18:822-832. [PMID: 30201439 DOI: 10.1016/j.pan.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cantharidin is an inhibitor of protein phosphatase 2 A (PP2A), and has been frequently used in clinical practice. In our previous study, we proved that cantharidin could arrest cell cycle in G2/M phase. Since cells at G2/M phase are sensitive to radiotherapy, in the present study, we investigated the radiotherapy-sesitization effect of cantharidin and the potential mechanisms involved. METHODS Cell growth was determined by MTT assay. Cell cycle was evaluated by flow cytometry. DNA damage was visualized by phospho-Histone H2A.X staining. Expression of mRNA was tested by microarray assay and real-time PCR. Clinical information and RNA-Seq expression data were derived from The Cancer Genome Atlas (TCGA) pancreatic cancer cohort. Survival analysis was obtained by Kaplan-Meier estimates. RESULTS Cantharidin strengthened the growth inhibition effect of irradiation. Cantharidin drove pancreatic cancer cells out of quiescent G0/G1 phase and arrested cell cycle in G2/M phase. As a result, cantharidin strengthened DNA damage which was induced by irradiation. Moreover, cantharidin repressed expressions of several genes participating in DNA damage repair, including UBE2T, RPA1, GTF2HH5, LIG1, POLD3, RMI2, XRCC1, PRKDC, FANC1, FAAP100, RAD50, RAD51D, RAD51B and DMC1, through JNK, ERK, PKC, p38 and/or NF-κB pathway dependent manners. Among these genes, worse overall survival for pancreatic cancer patients were associated with high mRNA expressions of POLD3, RMI2, PRKDC, FANC1, RAD50 and RAD51B, all of which could be down-regulated by cantharidin. CONCLUSION Cantharidin can sensitize pancreatic cancer cells to radiotherapy. Multiple mechanisms, including cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair, may be involved.
Collapse
|
26
|
Li G, Wang X, Wang X, Guan Z, Guo J, Wang F, Zhang J, Niu B, Zhang T, Wang J, Yang J. Polymorphism rs1052536 in Base Excision Repair Gene Is a Risk Factor in a High-Risk Area of Neural Tube Defects in China. Med Sci Monit 2018; 24:5015-5026. [PMID: 30022792 PMCID: PMC6067017 DOI: 10.12659/msm.907492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background DNA Base Excision Repair Gene-DNA LigaseIII (LIG3) is an important repair gene in the repair pathway and plays an important role in maintaining the integrity of mitochondria. Rs1052536 and rs3135967 polymorphisms of the gene are associated with lung cancer, keratoconus, and Fuchs endothelial corneal dystrophy. There is no previously published report on the relationship between the polymorphisms and neural tube defects (NTDs). Material/Methods Mass ARRAY iPLEX was used to determine the distribution of the polymorphisms in the case group of 108 NTD pregnant women and a control group of 233 normal healthy pregnant women to examine the relevance of their polymorphisms and NTD occurrence. Results The homozygotes of rs1052536 TT were associated with an increased risk for NTDs than CC (P=0.014, OR=2.31, 95%CI [1.17–4.54]), and variants of rs1052536 T were associated with an increased risk of NTDs (P=0.024, OR=1.50, 95%CI [1.06–2.13]). The stratified analysis showed that TT genotype of rs1052536 increased the risk of anencephaly (P=0.016, OR=2.69, 95%CI [1.18–6.10]) and the T allele significantly increased the risk of cranial NTDs (P=0.033, OR=1.56, 95%CI [1.04–2.35]). Conclusions Rs1052536 in LIG3 gene might be a potential genetic risk factor in a high-risk area of NTDs in China.
Collapse
Affiliation(s)
- Guannan Li
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Xin Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jianzhao Zhang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China (mainland)
| | - Jian Yang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China (mainland)
| |
Collapse
|
27
|
Baird DM, Hendrickson EA. Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:89-112. [PMID: 29956293 DOI: 10.1007/978-981-13-0593-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromosomal translocations are now well understood to not only constitute signature molecular markers for certain human cancers but often also to be causative in the genesis of that tumor. Despite the obvious importance of such events, the molecular mechanism of chromosomal translocations in human cells remains poorly understood. Part of the explanation for this dearth of knowledge is due to the complexity of the reaction and the need to archaeologically work backwards from the final product (a translocation) to the original unrearranged chromosomes to infer mechanism. Although not definitive, these studies have indicated that the aberrant usage of endogenous DNA repair pathways likely lies at the heart of the problem. An equally obfuscating aspect of this field, however, has also originated from the unfortunate species-specific differences that appear to exist in the relevant model systems that have been utilized to investigate this process. Specifically, yeast and murine systems (which are often used by basic science investigators) rely on different DNA repair pathways to promote chromosomal translocations than human somatic cells. In this chapter, we will review some of the basic concepts of chromosomal translocations and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells. In addition, we will focus on a specific subset of translocations that involve the very end of a chromosome (a telomere). A better understanding of the relationship between DNA repair pathways and chromosomal translocations is guaranteed to lead to improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Long Q, Yan R, Hu J, Cai D, Mitra B, Kim ES, Marchetti A, Zhang H, Wang S, Liu Y, Huang A, Guo H. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog 2017; 13:e1006784. [PMID: 29287110 PMCID: PMC5747486 DOI: 10.1371/journal.ppat.1006784] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepadnavirus covalently closed circular (ccc) DNA is the bona fide viral transcription template, which plays a pivotal role in viral infection and persistence. Upon infection, the non-replicative cccDNA is converted from the incoming and de novo synthesized viral genomic relaxed circular (rc) DNA, presumably through employment of the host cell’s DNA repair mechanisms in the nucleus. The conversion of rcDNA into cccDNA requires preparation of the extremities at the nick/gap regions of rcDNA for strand ligation. After screening 107 cellular DNA repair genes, we herein report that the cellular DNA ligase (LIG) 1 and 3 play a critical role in cccDNA formation. Ligase inhibitors or functional knock down/out of LIG1/3 significantly reduced cccDNA production in an in vitro cccDNA formation assay, and in cccDNA-producing cells without direct effect on viral core DNA replication. In addition, transcomplementation of LIG1/3 in the corresponding knock-out or knock-down cells was able to restore cccDNA formation. Furthermore, LIG4, a component in non-homologous end joining DNA repair apparatus, was found to be responsible for cccDNA formation from the viral double stranded linear (dsl) DNA, but not rcDNA. In conclusion, we demonstrate that hepadnaviruses utilize the whole spectrum of host DNA ligases for cccDNA formation, which sheds light on a coherent molecular pathway of cccDNA biosynthesis, as well as the development of novel antiviral strategies for treatment of hepatitis B. Hepadnavirus cccDNA is the persistent form of viral genome, and in terms of human hepatitis B virus (HBV), cccDNA is the basis for viral rebound after the cessation of therapy, as well as the elusiveness of a cure with current medications. Therefore, the elucidation of molecular mechanism of cccDNA formation will aid HBV research at both basic and medical levels. In this study, we screened a total of 107 cellular DNA repair genes and identified DNA ligase 1 and 3 as key factors for cccDNA formation from viral relaxed (open) circular DNA. In addition, we found that the cellular DNA ligase 4 is responsible for converting viral double-stranded linear DNA into cccDNA. Our study further confirmed the involvement of host DNA repair machinery in cccDNA formation, and may reveal new antiviral targets for treatment of hepatitis B in future.
Collapse
Affiliation(s)
- Quanxin Long
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jieli Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elena S. Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander Marchetti
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Soujuan Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ailong Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Howes TRL, Sallmyr A, Brooks R, Greco GE, Jones DE, Matsumoto Y, Tomkinson AE. Structure-activity relationships among DNA ligase inhibitors: Characterization of a selective uncompetitive DNA ligase I inhibitor. DNA Repair (Amst) 2017; 60:29-39. [PMID: 29078112 DOI: 10.1016/j.dnarep.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
In human cells, there are three genes that encode DNA ligase polypeptides with distinct but overlapping functions. Previously small molecule inhibitors of human DNA ligases were identified using a structure-based approach. Three of these inhibitors, L82, a DNA ligase I (LigI)-selective inhibitor, and L67, an inhibitor of LigI and DNA ligases III (LigIII), and L189, an inhibitor of all three human DNA ligases, have related structures that are composed of two 6-member aromatic rings separated by different linkers. Here we have performed a structure-activity analysis to identify determinants of activity and selectivity. The majority of the LigI-selective inhibitors had a pyridazine ring whereas the LigI/III- and LigIII-selective inhibitors did not. In addition, the aromatic rings in LigI-selective inhibitors had either arylhydrazone or acylhydrazone, but not vinyl linkers. Among the LigI-selective inhibitors, L82-G17 exhibited increased activity against and selectivity for LigI compared with L82. Notably. L82-G17 is an uncompetitive inhibitor of the third step of the ligation reaction, phosphodiester bond formation. Cells expressing LigI were more sensitive to L82-G17 than isogenic LIG1 null cells. Furthermore, cells lacking nuclear LigIIIα, which can substitute for LigI in DNA replication, were also more sensitive to L82-G17 than isogenic parental cells. Together, our results demonstrate that L82-G17 is a LigI-selective inhibitor with utility as a probe of the catalytic activity and cellular functions of LigI and provide a framework for the future design of DNA ligase inhibitors.
Collapse
Affiliation(s)
- Timothy R L Howes
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Annahita Sallmyr
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Rhys Brooks
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - George E Greco
- Department of Chemistry, Goucher College, Baltimore, MD 21204, United States
| | - Darin E Jones
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, United States
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
30
|
McNally JR, O'Brien PJ. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I. J Biol Chem 2017; 292:15870-15879. [PMID: 28751376 DOI: 10.1074/jbc.m117.804625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Humans have three genes encoding DNA ligases with conserved structural features and activities, but they also have notable differences. The LIG3 gene encodes a ubiquitous isoform in all tissues (LIG3α) and a germ line-specific splicing isoform (LIG3β) that differs in the C-terminal domain. Both isoforms are found in the nucleus and the mitochondria. Here, we determined the kinetics and thermodynamics of single-stranded break ligation by LIG3α and LIG3β and compared this framework to that of LIG1, the nuclear replicative ligase. The kinetic parameters of the LIG3 isoforms are nearly identical under all tested conditions, indicating that the BRCA1 C terminal (BRCT) domain specific to LIG3α does not alter ligation kinetics. Although LIG3 is only 22% identical to LIG1 across their conserved domains, the two enzymes had very similar maximal ligation rates. Comparison of the rate and equilibrium constants for LIG3 and LIG1 nevertheless revealed important differences. The LIG3 isoforms were seven times more efficient than LIG1 at ligating nicked DNA under optimal conditions, mainly because of their lower Km value for the DNA substrate. This could explain why LIG3 is less prone to abortive ligation than LIG1. Surprisingly, the affinity of LIG3 for Mg2+ was ten times weaker than that of LIG1, suggesting that Mg2+ availability regulates DNA ligation in vivo, because Mg2+ levels are higher in the mitochondria than in the nucleus. The biochemical differences between the LIG3 isoforms and LIG1 identified here will guide the understanding of both unique and overlapping biological roles of these critical enzymes.
Collapse
Affiliation(s)
- Justin R McNally
- From the Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Patrick J O'Brien
- From the Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
31
|
Menoni H, Di Mascio P, Cadet J, Dimitrov S, Angelov D. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players. Free Radic Biol Med 2017; 107:159-169. [PMID: 28011149 DOI: 10.1016/j.freeradbiomed.2016.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?
Collapse
Affiliation(s)
- Hervé Menoni
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France.
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000 São Paulo, SP, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stefan Dimitrov
- Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, 38042 Grenoble Cedex 9, France
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL UMR 5239 and Institut NeuroMyoGène - INMG CNRS/UCBL UMR 5310, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| |
Collapse
|
32
|
Sallmyr A, Matsumoto Y, Roginskaya V, Van Houten B, Tomkinson AE. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells. Cancer Res 2016; 76:5431-41. [PMID: 27503931 PMCID: PMC5036517 DOI: 10.1158/0008-5472.can-15-3243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Yoshihiro Matsumoto
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Vera Roginskaya
- Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Bennett Van Houten
- Department of Pharmacology and Cell Biology, University of Pittsburgh School of Medicine and The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Alan E Tomkinson
- Departments of Internal Medicine and Molecular Genetics and Microbiology, and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
33
|
DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol 2016; 37-38:51-64. [DOI: 10.1016/j.semcancer.2016.03.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
34
|
Liddiard K, Ruis B, Takasugi T, Harvey A, Ashelford KE, Hendrickson EA, Baird DM. Sister chromatid telomere fusions, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4. Genome Res 2016; 26:588-600. [PMID: 26941250 PMCID: PMC4864465 DOI: 10.1101/gr.200840.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/02/2016] [Indexed: 01/26/2023]
Abstract
Telomeres shorten with each cell division and can ultimately become substrates for nonhomologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterized more than 1400 telomere fusion events at the single-molecule level, using a combination of high-throughput sequence analysis together with experimentally induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse nontelomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions. Fusion frequency was markedly increased in the absence of TP53 checkpoint control and significantly modulated by the cellular capacity for classical, versus alternative, nonhomologous end joining (NHEJ). We observed a striking reduction in inter-chromosomal fusion events in cells lacking DNA ligase 4, in contrast to a remarkably consistent profile of intra-chromosomal fusion in the context of multiple genetic knockouts, including DNA ligase 3 and 4 double-knockouts. We reveal distinct mutational signatures associated with classical NHEJ-mediated inter-chromosomal, as opposed to alternative NHEJ-mediated intra-chromosomal, telomere fusions and evidence for an unanticipated sufficiency of DNA ligase 1 for these intra-chromosomal events. Our findings have implications for mechanisms driving cancer genome evolution.
Collapse
Affiliation(s)
- Kate Liddiard
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Taylor Takasugi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Adam Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Kevin E Ashelford
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Duncan M Baird
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom
| |
Collapse
|
35
|
Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 2016; 113:1261-6. [PMID: 26787901 DOI: 10.1073/pnas.1521630113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.
Collapse
|
36
|
Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:166-75. [DOI: 10.1016/j.mrgentox.2015.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
|
37
|
Paul-Konietzko K, Thomale J, Arakawa H, Iliakis G. DNA Ligases I and III Support Nucleotide Excision Repair in DT40 Cells with Similar Efficiency. Photochem Photobiol 2015; 91:1173-80. [DOI: 10.1111/php.12487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/15/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Katja Paul-Konietzko
- Institute of Medical Radiation Biology; University of Duisburg-Essen Medical School; Essen Germany
| | - Juergen Thomale
- Institute of Cell Biology; University of Duisburg-Essen Medical School; Essen Germany
| | - Hiroshi Arakawa
- Institute for Radiocytogenetics; Helmholtz Zentrum München; German Research Center for Environmental Health; Neuherberg Germany
| | - George Iliakis
- Institute of Medical Radiation Biology; University of Duisburg-Essen Medical School; Essen Germany
| |
Collapse
|
38
|
Soni A, Siemann M, Pantelias GE, Iliakis G. Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:2-8. [PMID: 26520366 DOI: 10.1016/j.mrgentox.2015.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
Abstract
Ionizing radiation (IR) induces double strand breaks (DSBs) in cellular DNA, which if not repaired correctly can cause chromosome translocations leading to cell death or cancer. Incorrect joining of DNA ends generating chromosome translocations can be catalyzed either by the dominant DNA-PKcs-dependent, classical non-homologous end-joining (c-NHEJ), or by an alternative end-joining (alt-EJ) process, functioning as backup to abrogated c-NHEJ, or homologous recombination repair. Alt-EJ operates with slower kinetics as compared to c-NHEJ and generates larger alterations at the junctions; it is also considered crucial to chromosome translocation-formation. A recent report posits that this view only holds for rodent cells and that in human cells c-NHEJ is the main mechanism of chromosome translocation formation. Since this report uses designer nucleases that induce DSBs with unique characteristics in specific genomic locations and PCR to detect translocations, we revisit the issue using stochastically distributed DSBs induced in the human genome by IR during the G2-phase of the cell cycle. For visualization and analysis of chromosome translocations, which manifest as chromatid translocations in cells irradiated in G2, we employ classical cytogenetics. In wild-type cells, we observe a significant contribution of alt-EJ to translocation formation, as demonstrated by a yield-reduction after treatment with inhibitors of Parp, or of DNA ligases 1 and 3 (Lig1, Lig3). Notably, a nearly fourfold increase in translocation formation is seen in c-NHEJ mutants with defects in DNA ligase 4 (Lig4) that remain largely sensitive to inhibitors of Parp, and of Lig1/Lig3. We conclude that similar to rodent cells, chromosome translocation formation from randomly induced DSBs in human cells largely relies on alt-EJ. We discuss DSB localization in the genome, characteristics of the DSB and the cell cycle as potential causes of the divergent results generated with IR and designer nucleases.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Maria Siemann
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Gabriel E Pantelias
- Institute of Nuclear Technology and Radiation Protection, National Centre for Scientific Research "Demokritos,"Aghia Paraskevi Attikis, Athens, Greece
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
39
|
Marriott AS, Copeland NA, Cunningham R, Wilkinson MC, McLennan AG, Jones NJ. Diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) is synthesized in response to DNA damage and inhibits the initiation of DNA replication. DNA Repair (Amst) 2015. [PMID: 26204256 DOI: 10.1016/j.dnarep.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The level of intracellular diadenosine 5', 5'''-P(1),P(4)-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70-80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.
Collapse
Affiliation(s)
- Andrew S Marriott
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nikki A Copeland
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster LA1 4YG, UK
| | - Ryan Cunningham
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mark C Wilkinson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Nigel J Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
40
|
Arakawa H, Iliakis G. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III. Genes (Basel) 2015; 6:385-98. [PMID: 26110316 PMCID: PMC4488670 DOI: 10.3390/genes6020385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 01/18/2023] Open
Abstract
Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles. Notably, recent systematic studies in the chicken B cell line, DT40, involving constitutive and conditional knockouts of all three DNA ligases individually, as well as of combinations thereof, demonstrate that the current view must be revised. Results demonstrate that Lig1 deficient cells proliferate efficiently. Even Lig1/Lig4 double knockout cells show long-term viability and proliferate actively, demonstrating that, at least in DT40, Lig3 can perform all ligation reactions of the cellular DNA metabolism as sole DNA ligase. Indeed, in the absence of Lig1, Lig3 can efficiently support semi-conservative DNA replication via an alternative Okazaki-fragment ligation pathway. In addition, Lig3 can back up NHEJ in the absence of Lig4, and can support NER and HRR in the absence of Lig1. Supporting observations are available in less elaborate genetic models in mouse cells. Collectively, these observations raise Lig3 from a niche-ligase to a universal DNA ligase, which can potentially substitute or backup the repair and replication functions of all other DNA ligases in the cell nucleus. Thus, the old model of functionally dedicated DNA ligases is now replaced by one in which only Lig4 remains dedicated to C-NHEJ, with Lig1 and Lig3 showing an astounding functional flexibility and interchangeability for practically all nuclear ligation functions. The underlying mechanisms of Lig3 versus Lig1 utilization in DNA repair and replication are expected to be partly different and remain to be elucidated.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- IFOM-FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, Milano 20139, Italy.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen 45122, Germany.
| |
Collapse
|
41
|
Xiong X, Du Z, Wang Y, Feng Z, Fan P, Yan C, Willers H, Zhang J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 2015; 43:1659-70. [PMID: 25586219 PMCID: PMC4330367 DOI: 10.1093/nar/gku1406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-strand break (DSB) repair and genomic stability not only in c-NHEJ-proficient but also -deficient human G1-phase cells. Using an array of repair substrates we show that these effects of 53BP1 are correlated with a promotion of microhomology-mediated end-joining (MMEJ), a subtype of alt-NHEJ, in G1-phase. Consistent with a specific role in MMEJ we confirm that 53BP1 status does not affect c-NHEJ. 53BP1 supports sequence deletion during MMEJ consistent with a putative role in facilitating end-resection. Interestingly, promotion of MMEJ by 53BP1 in G1-phase cells is only observed in the presence of functional BRCA1. Depletion of both 53BP1 and BRCA1 increases repair needing microhomology usage and augments loss of DNA sequence, suggesting that MMEJ is a highly regulated DSB repair process. Together, these findings significantly expand our understanding of the cell-cycle-dependent roles of 53BP1 in DSB repair.
Collapse
Affiliation(s)
- Xiahui Xiong
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Ying Wang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhihui Feng
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Pan Fan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine,1650 Orleans Street, Baltimore, MD 21231, USA
| | - Chunhong Yan
- Department of Biochemistry and Molecular Biology, Georgia Regents University, 1410 Laney Walker Blvd., CN-2134, Augusta, GA 30912, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| |
Collapse
|
42
|
Autosomal Recessive Ataxias Due to Defects in DNA Repair. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Yousefzadeh MJ, Wyatt DW, Takata KI, Mu Y, Hensley SC, Tomida J, Bylund GO, Doublié S, Johansson E, Ramsden DA, McBride KM, Wood RD. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 2014; 10:e1004654. [PMID: 25275444 PMCID: PMC4183433 DOI: 10.1371/journal.pgen.1004654] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3' single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.
Collapse
Affiliation(s)
- Matthew J. Yousefzadeh
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - David W. Wyatt
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kei-ichi Takata
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Yunxiang Mu
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Sean C. Hensley
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
| | - Junya Tomida
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Göran O. Bylund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Dale A. Ramsden
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin M. McBride
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Richard D. Wood
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| |
Collapse
|
44
|
MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 2014; 322:69-77. [PMID: 24857880 DOI: 10.1016/j.tox.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
Abstract
We examined the role of miRNAs in DNA damage response in HepG2 cells following exposure to 4-aminobiphenyl (4-ABP). The arylamine 4-ABP is a human carcinogen. Using the Comet assay, we showed that 4-ABP (18.75-300μM) induces DNA damage in HepG2 cells after 24h. DNA damage signaling pathway-based PCR arrays were used to investigate expression changes in genes involved in DNA damage response. Results showed down-regulation of 16 DNA repair-related genes in 4-ABP-treated cells. Among them, the expression of selected six genes (UNG, LIG1, EXO1, XRCC2, PCNA, and FANCG) from different DNA repair pathways was decreased with quantitative real-time PCR (qRT-PCR). In parallel, using the miRNA array, we reported that the expression of 27 miRNAs in 4-ABP-treated cells was at least 3-fold higher than that in the control group. Of these differential 27 miRNAs, the most significant expression of miRNA-513a-5p and miRNA-630 was further validated by qRT-PCR, and was predicted to be implicated in the deregulation of FANCG and RAD18 genes, respectively, via bioinformatic analysis. Both FANCG and RAD18 proteins were found to be down-regulated in 4-ABP-treated cells. In addition, overexpression and knockdown of miRNA-513a-5p and miRNA-630 reduced and increased the expression of FANCG and RAD18 proteins, respectively. Based on the above results, we indicated that miRNA-513a-5p and miRNA-630 could play a role in the suppression of DNA repair genes, and eventually lead to DNA damage.
Collapse
|
45
|
Oh S, Harvey A, Zimbric J, Wang Y, Nguyen T, Jackson PJ, Hendrickson EA. DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells. DNA Repair (Amst) 2014; 21:97-110. [PMID: 24837021 DOI: 10.1016/j.dnarep.2014.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 12/11/2022]
Abstract
Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene's essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells.
Collapse
Affiliation(s)
- Sehyun Oh
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States.
| | - Adam Harvey
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Jacob Zimbric
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States.
| | - Yongbao Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States.
| | - Thanh Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Pauline J Jackson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States.
| |
Collapse
|
46
|
Pagano G, Shyamsunder P, Verma RS, Lyakhovich A. Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon? Oncoscience 2014; 1:287-95. [PMID: 25594021 PMCID: PMC4278298 DOI: 10.18632/oncoscience.29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/20/2014] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is known as an inherited bone marrow failure syndrome associated with cancer predisposition and susceptibility to a number of DNA damaging stimuli, along with a number of clinical features such as upper limb malformations, increased diabetes incidence and typical anomalies in skin pigmentation. The proteins encoded by FA-defective genes (FANC proteins) display well-established roles in DNA damage and repair pathways. Moreover, some independent studies have revealed that mitochondrial dysfunction (MDF) is also involved in FA phenotype. Unconfined to FA, we have shown that other syndromes featuring DNA damage and repair (such as ataxia-telangiectasia, AT, and Werner syndrome, WS) display MDF-related phenotypes, along with oxidative stress (OS) that, altogether, may play major roles in these diseases. Experimental and clinical studies are warranted in the prospect of future therapies to be focused on compounds scavenging reactive oxygen species (ROS) as well as protecting mitochondrial functions.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G Pascale Foundation, CROM, Mercogliano, AV, Italy
| | - Pavithra Shyamsunder
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Rama S Verma
- Stem Cell and Molecular Biology laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai
| | - Alex Lyakhovich
- Duke-NUS Graduate Medical School, Singapore ; Novosibirsk Institute of Molecular Biology and Biophysics, Russian Federation ; Queen's University Belfast, UK
| |
Collapse
|
47
|
Soni A, Siemann M, Grabos M, Murmann T, Pantelias GE, Iliakis G. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining. Nucleic Acids Res 2014; 42:6380-92. [PMID: 24748665 PMCID: PMC4041464 DOI: 10.1093/nar/gku298] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Maria Siemann
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Martha Grabos
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Tamara Murmann
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Gabriel E Pantelias
- Institute of Nuclear Technology and Radiation Protection, National Centre for Scientific Research ''Demokritos,'' Aghia Paraskevi Attikis, 15310 Athens, Greece
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
48
|
DNA ligase I is not essential for mammalian cell viability. Cell Rep 2014; 7:316-320. [PMID: 24726358 PMCID: PMC4593317 DOI: 10.1016/j.celrep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 11/22/2022] Open
Abstract
Of the three DNA ligases present in all vertebrates, DNA ligase I (Lig1) has been considered essential for ligating Okazaki fragments during DNA replication and thereby essential for cell viability. Here, we report the striking finding that a Lig1-null murine B cell line is viable. Surprisingly, the Lig1-null cells exhibit normal proliferation and normal immunoglobulin heavy chain class switch recombination and are not hypersensitive to a wide variety of DNA damaging agents. These findings demonstrate that Lig1 is not absolutely required for cellular DNA replication and repair and that either Lig3 or Lig4 can substitute for the role of Lig1 in joining Okazaki fragments. The establishment of a Lig1-null cell line will greatly facilitate the characterization of DNA ligase function in mammalian cells, but the finding alone profoundly reprioritizes the role of ligase I in DNA replication, repair, and recombination.
Collapse
|
49
|
Sharma NK, Lebedeva M, Thomas T, Kovalenko OA, Stumpf JD, Shadel GS, Santos JH. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. DNA Repair (Amst) 2014; 13:22-31. [PMID: 24342190 PMCID: PMC6211587 DOI: 10.1016/j.dnarep.2013.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mitochondrial dysfunction that is thought to contribute to A-T pathogenesis. However, the molecular mechanism leading to mitochondrial dysfunction in A-T remains unclear. Here, we show that lack of ATM leads to reduced mitochondrial DNA (mtDNA) integrity and mitochondrial dysfunction, which are associated to defective mtDNA repair. While protein levels of mtDNA repair proteins are essentially normal, in the absence of ATM levels specifically of DNA ligase III (Lig3), the only DNA ligase working in mitochondria is reduced. The reduction of Lig3 is observed in different A-T patient cells, in brain and pre-B cells derived from ATM knockout mice as well as upon transient or stable knockdown of ATM. Furthermore, pharmacological inhibition of Lig3 in wild type cells phenocopies the mtDNA repair defects observed in A-T patient cells. As targeted deletion of LIG3 in the central nervous system causes debilitating ataxia in mice, reduced Lig3 protein levels and the consequent mtDNA repair defect may contribute to A-T neurodegeneration. A-T is thus the first disease characterized by diminished Lig3.
Collapse
Affiliation(s)
- Nilesh K Sharma
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Maria Lebedeva
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Terace Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Olga A Kovalenko
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Building 101, Durham, NC 27709, United States
| | - Gerald S Shadel
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States; Department of Pathology, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Janine H Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States.
| |
Collapse
|
50
|
Tomkinson AE, Sallmyr A. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene. Gene 2013; 531:150-7. [PMID: 24013086 DOI: 10.1016/j.gene.2013.08.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 11/30/2022]
Abstract
Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA ligase, DNA ligase I. DNA ligase IIIα is a component of an alternative non-homologous end joining (NHEJ) pathway for DNA double-strand break (DSB) repair that is more active when the major DNA ligase IV-dependent pathway is defective. Unlike its other nuclear functions, the role of DNA ligase IIIα in alternative NHEJ is independent of its nuclear partner protein, X-ray repair cross-complementing protein 1 (XRCC1). DNA ligase IIIα is frequently overexpressed in cancer cells, acting as a biomarker for increased dependence upon alternative NHEJ for DSB repair and it is a promising novel therapeutic target.
Collapse
Affiliation(s)
- Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|