1
|
Cheng Z, Islam S, Kanlong JG, Sheppard M, Seo H, Nikolaitchik OA, Kearse MG, Pathak VK, Musier-Forsyth K, Hu WS. Translation of HIV-1 unspliced RNA is regulated by 5' untranslated region structure. J Virol 2024; 98:e0116024. [PMID: 39315813 PMCID: PMC11494990 DOI: 10.1128/jvi.01160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
HIV-1 must generate infectious virions to spread to new hosts and HIV-1 unspliced RNA (HIV-1 RNA) plays two central roles in this process. HIV-1 RNA serves as an mRNA that is translated to generate proteins essential for particle production and replication, and it is packaged into particles as the viral genome. HIV-1 uses several transcription start sites to generate multiple RNAs that differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. The virus relies on host machinery to translate its RNAs in a cap-dependent manner. Here, we demonstrate that the 5' context of HIV-1 RNA affects the efficiency of translation both in vitro and in cells. Although both RNAs are competent for translation, 3G RNA is translated more efficiently than 1G RNA. The 5' untranslated region (UTR) of 1G and 3G RNAs has previously been shown to fold into distinct structural ensembles. We show that HIV-1 mutants in which the 5' UTR of 1G and 3G RNAs fold into similar structures were translated at similar efficiencies. Thus, the host machinery translates two 99.9% identical HIV-1 RNAs with different efficiencies, and the translation efficiency is regulated by the 5' UTR structure.IMPORTANCEHIV-1 unspliced RNA contains all the viral genetic information and encodes virion structural proteins and enzymes. Thus, the unspliced RNA serves distinct roles as viral genome and translation template, both critical for viral replication. HIV-1 generates two major unspliced RNAs with a 2-nt difference at the 5' end (3G RNA and 1G RNA). The 1G transcript is known to be preferentially packaged over the 3G transcript. Here, we showed that 3G RNA is favorably translated over 1G RNA based on its 5' untranslated region (UTR) RNA structure. In HIV-1 mutants in which the two major transcripts have similar 5' UTR structures, 1G and 3G RNAs are translated similarly. Therefore, HIV-1 generates two 9-kb RNAs with a 2-nt difference, each serving a distinct role dictated by differential 5' UTR structures.
Collapse
Affiliation(s)
- Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Joseph G. Kanlong
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Madeline Sheppard
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Heewon Seo
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael G. Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
2
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Yapo V, Majumder K, Tedbury PR, Wen X, Ong YT, Johnson MC, Sarafianos SG. HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection. J Virol 2023; 97:e0187022. [PMID: 37991365 PMCID: PMC10734542 DOI: 10.1128/jvi.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/28/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.
Collapse
Affiliation(s)
- Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kinjal Majumder
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yee T. Ong
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Marc C. Johnson
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Bruggemans A, Vansant G, Van de Velde P, Debyser Z. The HIV-2 OGH double reporter virus shows that HIV-2 is less cytotoxic and less sensitive to reactivation from latency than HIV-1 in cell culture. J Virus Erad 2023; 9:100343. [PMID: 37701289 PMCID: PMC10493508 DOI: 10.1016/j.jve.2023.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A better understanding of HIV-1 latency is a research priority in HIV cure research. Conversely, little is known about the latency characteristics of HIV-2, the closely related human lentivirus. Though both viruses cause AIDS, HIV-2 infection progresses more slowly with significantly lower viral loads, even when corrected for CD4+ T cell counts. Hence a direct comparison of latency characteristics between HIV-1 and HIV-2 could provide important clues towards a functional cure. Transduction of SupT1 cells with single-round HIV-1 and HIV-2 viruses with an enhanced green fluorescent protein (eGFP) reporter showed higher levels of eGFP expression for HIV-2 than HIV-1, while HIV-1 expression appeared more cytotoxic. To compare HIV-1 and HIV-2 gene expression, latency and reactivation in more detail, we have generated HIV-2 OGH, a replication deficient, near full- length, double reporter virus that discriminates latently and productively infected cells in cell culture. This construct is based on HIV-1 OGH, and to our knowledge, first of its kind for HIV-2. Using this construct we have observed a higher eGFP expression for HIV-2, but higher losses of HIV-1 transduced cells in SupT1 and Jurkat cells and a reduced sensitivity of HIV-2 for reactivation with TNF-α. In addition, we have analysed HIV-2 integration sites and their epigenetic environment. HIV-1 and HIV-2 share a preference for actively transcribed genes in gene-dense regions and favor active chromatin marks while disfavoring methylation markers associated with heterochromatin. In conclusion the HIV-2 OGH construct provides an interesting tool for studying HIV-2 expression, latency and reactivation. As simian immunodeficiency virus (SIV) and HIV-2 have been proposed to model a functional HIV cure, a better understanding of the mechanisms governing HIV-2 and SIV latency will be important to move forward. Further research is needed to investigate if HIV-2 uses similar mechanisms as HIV-1 to achieve its integration site selectivity.
Collapse
Affiliation(s)
- Anne Bruggemans
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
5
|
HIV UTR, LTR, and Epigenetic Immunity. Viruses 2022; 14:v14051084. [PMID: 35632825 PMCID: PMC9146425 DOI: 10.3390/v14051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome—epigenetic immunity towards a cure.
Collapse
|
6
|
Lu MD, Telwatte S, Kumar N, Ferreira F, Martin HA, Kadiyala GN, Wedrychowski A, Moron-Lopez S, Chen TH, Goecker EA, Coombs RW, Lu CM, Wong JK, Tsibris A, Yukl SA. Novel assays to investigate the mechanisms of latent infection with HIV-2. PLoS One 2022; 17:e0267402. [PMID: 35476802 PMCID: PMC9045618 DOI: 10.1371/journal.pone.0267402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Although there have been great advancements in the field of HIV treatment and prevention, there is no cure. There are two types of HIV: HIV-1 and HIV-2. In addition to genetic differences between the two types of HIV, HIV-2 infection causes a slower disease progression, and the rate of new HIV-2 infections has dramatically decreased since 2003. Like HIV-1, HIV-2 is capable of establishing latent infection in CD4+ T cells, thereby allowing the virus to evade viral cytopathic effects and detection by the immune system. The mechanisms underlying HIV latency are not fully understood, rendering this a significant barrier to development of a cure. Using RT-ddPCR, we previously demonstrated that latent infection with HIV-1 may be due to blocks to HIV transcriptional elongation, distal transcription/polyadenylation, and multiple splicing. In this study, we describe the development of seven highly-specific RT-ddPCR assays for HIV-2 that can be applied to the study of HIV-2 infections and latency. We designed and validated seven assays targeting different HIV-2 RNA regions along the genome that can be used to measure the degree of progression through different blocks to HIV-2 transcription and splicing. Given that HIV-2 is vastly understudied relative to HIV-1 and that it can be considered a model of a less virulent infection, application of these assays to studies of HIV-2 latency may inform new therapies for HIV-2, HIV-1, and other retroviruses.
Collapse
Affiliation(s)
- Michael D. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Sushama Telwatte
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Fernanda Ferreira
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Holly Anne Martin
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Gayatri Nikhila Kadiyala
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Adam Wedrychowski
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Sara Moron-Lopez
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Tsui-Hua Chen
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Erin A. Goecker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Chuanyi M. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ramos H, Monette A, Niu M, Barrera A, López-Ulloa B, Fuentes Y, Guizar P, Pino K, DesGroseillers L, Mouland A, López-Lastra M. The double-stranded RNA-binding protein, Staufen1, is an IRES-transacting factor regulating HIV-1 cap-independent translation initiation. Nucleic Acids Res 2022; 50:411-429. [PMID: 34893869 PMCID: PMC8754648 DOI: 10.1093/nar/gkab1188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5'untranslated region (5'UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.
Collapse
Affiliation(s)
- Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Paola Guizar
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Luc DesGroseillers
- Department of Biochemistry and Molecular Medicine, University of Montreal, P.O. Box 6128, Station Centre Ville, Montreal, Québec H3C 3J7, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
8
|
García-de-Gracia F, Gaete-Argel A, Riquelme-Barrios S, Pereira-Montecinos C, Rojas-Araya B, Aguilera P, Oyarzún-Arrau A, Rojas-Fuentes C, Acevedo ML, Chnaiderman J, Valiente-Echeverría F, Toro-Ascuy D, Soto-Rifo R. CBP80/20-dependent translation initiation factor (CTIF) inhibits HIV-1 Gag synthesis by targeting the function of the viral protein Rev. RNA Biol 2021; 18:745-758. [PMID: 33103564 PMCID: PMC8078705 DOI: 10.1080/15476286.2020.1832375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Translation initiation of the human immunodeficiency virus type-1 (HIV-1) full-length RNA has been shown to occur through cap-dependent and IRES-driven mechanisms. Previous studies suggested that the nuclear cap-binding complex (CBC) rather than eIF4E drives cap-dependent translation of the full-length RNA and we have recently reported that the CBC subunit CBP80 supports the function of the viral protein Rev during nuclear export and translation of this viral transcript. Ribosome recruitment during CBC-dependent translation of cellular mRNAs relies on the activity CBP80/20 translation initiation factor (CTIF), which bridges CBP80 and the 40S ribosomal subunit through interactions with eIF3g. Here, we report that CTIF inhibits HIV-1 and HIV-2 Gag synthesis from the full-length RNA. Our results indicate that CTIF associates with HIV-1 Rev through its N-terminal domain and is recruited onto the full-length RNA ribonucleoprotein complex in order to interfere with Gag synthesis. We also demonstrate that CTIF induces the cytoplasmic accumulation of Rev impeding the association of the viral protein with CBP80. We finally show that Rev interferes with the association of CTIF with CBP80 indicating that CTIF and Rev compete for the CBC subunit.
Collapse
Affiliation(s)
- Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Aguilera
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aarón Oyarzún-Arrau
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mónica L. Acevedo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jonás Chnaiderman
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Barrera A, Ramos H, Vera-Otarola J, Fernández-García L, Angulo J, Olguín V, Pino K, Mouland AJ, López-Lastra M. Post-translational modifications of hnRNP A1 differentially modulate retroviral IRES-mediated translation initiation. Nucleic Acids Res 2020; 48:10479-10499. [PMID: 32960212 PMCID: PMC7544202 DOI: 10.1093/nar/gkaa765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
The full-length mRNAs of the human immunodeficiency virus type-1 (HIV-1), the human T-cell lymphotropic virus type-1 (HTLV-1), and the mouse mammary tumor virus (MMTV) harbor IRESs. The activity of the retroviral-IRESs requires IRES-transacting factors (ITAFs), being hnRNP A1, a known ITAF for the HIV-1 IRES. In this study, we show that hnRNP A1 is also an ITAF for the HTLV-1 and MMTV IRESs. The MMTV IRES proved to be more responsive to hnRNP A1 than either the HTLV-1 or the HIV-1 IRESs. The impact of post-translational modifications of hnRNP A1 on HIV-1, HTLV-1 and MMTV IRES activity was also assessed. Results show that the HIV-1 and HTLV-1 IRESs were equally responsive to hnRNP A1 and its phosphorylation mutants S4A/S6A, S4D/S6D and S199A/D. However, the S4D/S6D mutant stimulated the activity from the MMTV-IRES to levels significantly higher than the wild type hnRNP A1. PRMT5-induced symmetrical di-methylation of arginine residues of hnRNP A1 enabled the ITAF to stimulate the HIV-1 and HTLV-1 IRESs while reducing the stimulatory ability of the ITAF over the MMTV IRES. We conclude that retroviral IRES activity is not only dependent on the recruited ITAFs but also relies on how these proteins are modified at the post-translational level.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
10
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
11
|
Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F, Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. A Rev-CBP80-eIF4AI complex drives Gag synthesis from the HIV-1 unspliced mRNA. Nucleic Acids Res 2019; 46:11539-11552. [PMID: 30239828 PMCID: PMC6265489 DOI: 10.1093/nar/gky851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Gag synthesis from the full-length unspliced mRNA is critical for the production of the viral progeny during human immunodeficiency virus type-1 (HIV-1) replication. While most spliced mRNAs follow the canonical gene expression pathway in which the recruitment of the nuclear cap-binding complex (CBC) and the exon junction complex (EJC) largely stimulates the rates of nuclear export and translation, the unspliced mRNA relies on the viral protein Rev to reach the cytoplasm and recruit the host translational machinery. Here, we confirm that Rev ensures high levels of Gag synthesis by driving nuclear export and translation of the unspliced mRNA. These functions of Rev are supported by the CBC subunit CBP80, which binds Rev and the unspliced mRNA in the nucleus and the cytoplasm. We also demonstrate that Rev interacts with the DEAD-box RNA helicase eIF4AI, which translocates to the nucleus and cooperates with the viral protein to promote Gag synthesis. Finally, we show that the Rev/RRE axis is important for the assembly of a CBP80-eIF4AI complex onto the unspliced mRNA. Together, our results provide further evidence towards the understanding of the molecular mechanisms by which Rev drives Gag synthesis from the unspliced mRNA during HIV-1 replication.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bárbara Rojas-Araya
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco García-de-Gracia
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Rojas-Fuentes
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Camila Pereira-Montecinos
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aracelly Gaete-Argel
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon F-69364, France.,Ecole Normale Supérieure de Lyon, Lyon F-69364, France
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Abstract
HIV-1 sensors and their signaling features have been an ongoing topic of intense research over the last decade, as these mechanisms fail to establish protective immunity against HIV-1. Here, we discuss how HIV-1 infects dendritic cells (DCs) and which sensors play a role in recognizing viral DNA and RNA in these specialized immune cells. We will elaborate on the RNA helicase DDX3, which is crucial in translation initiation of HIV-1 mRNA, but also fulfills an important role as RNA sensor and inducer of antiviral immunity in DCs. As DDX3 is indispensable for HIV-1 replication, the virus cannot escape sensing by DDX3, which is an important aspect of its function. Last but not least, we will discuss how HIV-1 suppresses DDX3 sensing and how this impacts the viral load in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Melissa Stunnenberg
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Boeras I, Seufzer B, Brady S, Rendahl A, Heng X, Boris-Lawrie K. The basal translation rate of authentic HIV-1 RNA is regulated by 5'UTR nt-pairings at junction of R and U5. Sci Rep 2017; 7:6902. [PMID: 28761163 PMCID: PMC5537239 DOI: 10.1038/s41598-017-06883-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
The paradigm protein synthesis rate is regulated by structural complexity of the 5′untranslated region (UTR) derives from bacterial and other riboswitches. In-solution, HIV-1 5′UTR forms two interchangeable long-range nucleotide (nt) -pairings, one sequesters the gag start codon promoting dimerization while the other sequesters the dimer initiation signal preventing dimerization. While the effect of these nt-pairings on dimerization and packaging has been documented their effect on authentic HIV translation in cellulo has remained elusive until now. HIVNL4-3 5′UTR substitutions were designed to individually stabilize the dimer-prone or monomer-prone conformations, validated in-solution, and introduced to molecular clones. The effect of 5′UTR conformation on ribosome loading to HIV unspliced RNA and rate of Gag polypeptide synthesis was quantified in cellulo. Monomer- and dimer-prone 5′UTRs displayed equivalent, basal rate of translation. Gain-of-function substitution U103, in conjunction with previously defined nt-pairings that reorient AUG to flexible nt-pairing, significantly activated the translation rate, indicating the basal translation rate is under positive selection. The observed translation up-mutation focuses attention to nt-pairings at the junction of R and U5, a poorly characterized structure upstream of the characterized HIV riboswitch and demonstrates the basal translation rate of authentic HIV RNA is regulated independently of monomer:dimer equilibrium of the 5′UTR.
Collapse
Affiliation(s)
- I Boeras
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - B Seufzer
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - S Brady
- University of Missouri, Department of Biochemistry, 503 S. College Ave, Columbia, MO, 65211, USA
| | - A Rendahl
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA
| | - X Heng
- University of Missouri, Department of Biochemistry, 503 S. College Ave, Columbia, MO, 65211, USA.
| | - K Boris-Lawrie
- University of Minnesota, Department of Veterinary and Biomedical Sciences, 1971 Commonwealth, Saint Paul, MN, 55108, USA.
| |
Collapse
|
14
|
Jiménez-Sousa MÁ, Gómez-Moreno AZ, Pineda-Tenor D, Medrano LM, Sánchez-Ruano JJ, Fernández-Rodríguez A, Artaza-Varasa T, Saura-Montalban J, Vázquez-Morón S, Ryan P, Resino S. CXCL9-11 polymorphisms are associated with liver fibrosis in patients with chronic hepatitis C: a cross-sectional study. Clin Transl Med 2017; 6:26. [PMID: 28755163 PMCID: PMC5533694 DOI: 10.1186/s40169-017-0156-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
Background and aims CXCL9-11 polymorphisms are related to various infectious diseases, including hepatitis C virus (HCV) infection. In this study, we analyzed the association between CXCL9-11 polymorphisms and liver fibrosis in HCV-infected patients. Methods We performed a cross-sectional study in 389 patients who were genotyped for CXCL9-11 polymorphisms (CXCL9 rs10336, CXCL10 rs3921, and CXCL11 rs4619915) using the Sequenom’s MassARRAY platform. The primary outcome variable was the liver stiffness measurement (LSM). We established three cut-offs of LSM: LSM ≥ 7.1 kPa (F ≥ 2—significant fibrosis), LSM ≥ 9.5 kPa (F ≥ 3—advanced fibrosis), and LSM ≥ 12.5 kPa (F4—cirrhosis). Results Recessive, overdominant and codominant models of inheritance showed significant values, but the overdominant model was the best fitting our data. In this case, CXCL9 rs10336 AG, CXCL10 rs3921 CG and CXCL11 rs4619915 AG were mainly associated with lower values of LSM [(adjusted GMR (aGMR) = 0.85 (p = 0.005), aGMR = 0.84 (p = 0.003), and aGMR = 0.84 (p = 0.003), respectively]. Patients with CXCL9 rs10336 AG genotype had lower odds of significant fibrosis (LSM ≥ 7.1 kPa) [adjusted OR (aOR) = 0.59 (p = 0.016)], advanced fibrosis (LSM ≥ 9.5 kPa) [aOR = 0.54 (p = 0.010)], and cirrhosis (LSM ≥ 12.5 kPa) [aOR = 0.56 (p = 0.043)]. Patients with CXCL10 rs3921 CG or CXCL11 rs4619915 AG genotypes had lower odds of significant fibrosis (LSM ≥ 7.1 kPa) [adjusted OR (aOR) = 0.56 (p = 0.008)], advanced fibrosis (LSM ≥ 9.5 kPa) [aOR = 0.55 (p = 0.013)], and cirrhosis (LSM ≥ 12.5 kPa) [aOR = 0.57 (p = 0.051)]. Additionally, CXCL9-11 polymorphisms were related to lower liver stiffness under a codominant model of inheritance, being the heterozygous genotypes also protective against hepatic fibrosis. In the recessive inheritance model, the CXCL9 rs10336 AA, CXCL10 rs3921 CC and CXCL11 rs4619915 AA were associated with higher LSM values [(adjusted GMR (aGMR) = 1.19 (p = 0.030), aGMR = 1.21 (p = 0.023), and aGMR = 1.21 (p = 0.023), respectively]. Moreover, patients with CXCL9 rs10336 AA genotype had higher odds of significant fibrosis (LSM ≥ 7.1 kPa) [adjusted OR (aOR) = 1.83 (p = 0.044)] and advanced fibrosis (LSM ≥ 9.5 kPa) [aOR = 1.85 (p = 0.045)]. Furthermore, patients with CXCL10 rs3921 CC or CXCL11 rs4619915 AA genotypes had higher odds of advanced fibrosis (LSM ≥ 9.5 kPa) [aOR = 1.89 (p = 0.038)]. Conclusions CXCL9-11 polymorphisms were related to likelihood of having liver fibrosis in HCV-infected patients. Our data suggest that CXCL9-11 polymorphisms may play a significant role against the progression of CHC and could help prioritize antiviral therapy.
Collapse
Affiliation(s)
- María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda- Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | | | - Daniel Pineda-Tenor
- Servicio de Laboratorio Clínico, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Luz Maria Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda- Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | | | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda- Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | | | | | - Sonia Vázquez-Morón
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda- Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Pablo Ryan
- Servicio de Medicina Interna, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda- Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
15
|
Regulation of human immunodeficiency virus type 1 (HIV-1) mRNA translation. Biochem Soc Trans 2017; 45:353-364. [PMID: 28408475 DOI: 10.1042/bst20160357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) mRNA translation is a complex process that uses the host translation machinery to synthesise viral proteins. Several mechanisms for HIV-1 mRNA translation initiation have been proposed including (1) cap-dependent, eIF4E-dependent, (2) cap-dependent, cap-binding complex-dependent, (3) internal ribosome entry sites, and (4) ribosome shunting. While these mechanisms promote HIV-1 mRNA translation in the context of in vitro systems and subgenomic constructs, there are substantial knowledge gaps in understanding how they regulate viral protein production in the context of full-length virus infection. In this review, we will summarise the different translation mechanisms used by HIV-1 mRNAs and the challenges in understanding how they regulate protein synthesis during viral infection.
Collapse
|
16
|
Saleh S, Vranckx L, Gijsbers R, Christ F, Debyser Z. Insight into HIV-2 latency may disclose strategies for a cure for HIV-1 infection. J Virus Erad 2017; 3:7-14. [PMID: 28275453 PMCID: PMC5337426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
HIV-1 and HIV-2 originate from two distinct zoonotic transmissions of simian immunodeficiency viruses from primate to human. Although both share similar modes of transmission and can result in the development of AIDS with similar clinical manifestations, HIV-2 infection is generally milder and less likely to progress to AIDS. HIV is currently incurable due to the presence of HIV provirus integrated into the host DNA of long-lived memory cells of the immune system without active replication. As such, the latent virus is immunologically inert and remains insensitive to the administered antiviral drugs targeting active viral replication steps. Recent evidence suggests that persistent HIV replication may occur in anatomical sanctuaries such as the lymphoid tissue due to low drug penetration. At present, different strategies are being evaluated either to completely eradicate the virus from the patient (sterilising cure) or to allow treatment interruption without viral rebound (functional cure). Because HIV-2 is naturally less pathogenic and displays a more latent phenotype than HIV-1, it may represent a valuable model that provides elementary information to cure HIV-1 infection. Insight into the viral and cellular determinants of HIV-2 replication may therefore pave the way for alternative strategies to eradicate HIV-1 or promote viral remission.
Collapse
Affiliation(s)
- Suha Saleh
- />Laboratory for Molecular Virology and Gene Therapy,
Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| | - Lenard Vranckx
- />Laboratory for Molecular Virology and Gene Therapy,
Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| | - Rik Gijsbers
- />Laboratory for Molecular Virology and Gene Therapy,
Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| | - Frauke Christ
- />Laboratory for Molecular Virology and Gene Therapy,
Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| | - Zeger Debyser
- />Laboratory for Molecular Virology and Gene Therapy,
Department of Pharmaceutical and Pharmacological Sciences,
KU Leuven,
Belgium
| |
Collapse
|
17
|
|
18
|
Translational regulation of APOBEC3G mRNA by Vif requires its 5'UTR and contributes to restoring HIV-1 infectivity. Sci Rep 2016; 6:39507. [PMID: 27996044 PMCID: PMC5171582 DOI: 10.1038/srep39507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
The essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5′-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently. Interestingly, K26R mutation in Vif abolishes degradation of A3G by the proteasome but has no effect at the translational level, indicating these two pathways are independent. These two mechanisms, proteasomal degradation and translational inhibition, similarly contribute to decrease the cellular level of A3G by Vif and to prevent its incorporation into virions. Importantly, inhibition of A3G translation is sufficient to partially restore viral infectivity in the absence of proteosomal degradation. These findings demonstrate that HIV-1 has evolved redundant mechanisms to specifically inhibit the potent antiviral activity of A3G.
Collapse
|
19
|
Cáceres CJ, Angulo J, Contreras N, Pino K, Vera-Otarola J, López-Lastra M. Targeting deoxyhypusine hydroxylase activity impairs cap-independent translation initiation driven by the 5'untranslated region of the HIV-1, HTLV-1, and MMTV mRNAs. Antiviral Res 2016; 134:192-206. [PMID: 27633452 DOI: 10.1016/j.antiviral.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Replication of the human immunodeficiency virus type 1 (HIV-1) is dependent on eIF5A hypusination. Hypusine is formed post-translationally on the eIF5A precursor by two consecutive enzymatic steps; a reversible reaction involving the enzyme deoxyhypusine synthase (DHS) and an irreversible step involving the enzyme deoxyhypusine hydroxylase (DOHH). In this study we explored the effect of inhibiting DOHH activity and therefore eIF5A hypusination, on HIV-1 gene expression. Results show that the expression of proteins from an HIV-1 molecular clone is reduced when DOHH activity is inhibited by Deferiprone (DFP) or Ciclopirox (CPX). Next we evaluated the requirement of DOHH activity for internal ribosome entry site (IRES)-mediated translation initiation driven by the 5'untranslated region (5'UTR) of the full length HIV-1 mRNA. Results show that HIV-1 IRES activity relies on DOHH protein concentration and enzymatic activity. Similar results were obtained for IRES-dependent translation initiation mediated by 5'UTR of the human T-cell lymphotropic virus type 1 (HTLV-1) and the mouse mammary tumor virus (MMTV) mRNAs. Interestingly, activity of the poliovirus IRES, was less sensitive to the targeting of DOHH suggesting that not all viral IRESs are equally dependent on the cellular concentration or the activity of DOHH. In summary we present evidence indicating that the cellular concentration of DOHH and its enzymatic activity play a role in HIV-1, HTLV-1 and MMTV IRES-mediated translation initiation.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
20
|
Daudé C, Décimo D, Trabaud MA, André P, Ohlmann T, de Breyne S. HIV-1 sequences isolated from patients promote expression of shorter isoforms of the Gag polyprotein. Arch Virol 2016; 161:3495-3507. [PMID: 27659676 DOI: 10.1007/s00705-016-3073-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) unspliced mRNA drives the expression of both Gag and Gag-Pol polyproteins by using both cap- and internal ribosome entry site (IRES)-dependent translation initiation mechanisms. An IRES has been described in the matrix coding region that is involved in the production of shorter isoforms of Gag. However, up to now, this has only been shown with sequences derived from the HIV-1 laboratory strains (NL4.3 and HXB2) and never from clinical HIV-1 isolates. We have isolated ~70 sequences from HIV-1-positive patients that we have sequenced and cloned into an expression vector to monitor their ability to drive translation of Gag p55 and the shorter isoforms both in vitro and ex vivo. The results indicate that (1) the translational efficiency from the AUG-p55 varies significantly among the different isolates; (2) expression initiated at AUG-p40 codon is independent of translation initiation at the AUG-p55 triplet; and (3) all sequences promote expression of shorter Gag isoforms, in particular in Jurkat T cells, in which internal initiation occurs exclusively and directly at the AUG-p40 codon. The composition of the first ~800 nucleotides of the HIV-1 unspliced mRNA modulates the expression initiated both at the AUG-p55 and AUG-p40 codons and may impact viral production and replication. Interestingly, the AUG-p40 codon and its surrounding nucleotide context are conserved amongst clinical isolates and are used as a translation initiation site to produce a shorter Gag isoform.
Collapse
Affiliation(s)
- Christelle Daudé
- CIRI, International Center for Infectiology Research, Université de Lyon, 46 Allée d'Italie, 69364, Lyon, France.,Inserm, U1111, 46 Allée d'Italie, 69364, Lyon, France.,Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France.,Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69364, Lyon, France.,CNRS, UMR5308, 46 Allée d'Italie, 69364, Lyon, France.,Waking team, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard, Lyon, France
| | - Didier Décimo
- CIRI, International Center for Infectiology Research, Université de Lyon, 46 Allée d'Italie, 69364, Lyon, France.,Inserm, U1111, 46 Allée d'Italie, 69364, Lyon, France.,Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France.,Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69364, Lyon, France.,CNRS, UMR5308, 46 Allée d'Italie, 69364, Lyon, France
| | | | - Patrice André
- CIRI, International Center for Infectiology Research, Université de Lyon, 46 Allée d'Italie, 69364, Lyon, France.,Inserm, U1111, 46 Allée d'Italie, 69364, Lyon, France.,Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France.,Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69364, Lyon, France.,CNRS, UMR5308, 46 Allée d'Italie, 69364, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, 46 Allée d'Italie, 69364, Lyon, France. .,Inserm, U1111, 46 Allée d'Italie, 69364, Lyon, France. .,Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France. .,Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69364, Lyon, France. .,CNRS, UMR5308, 46 Allée d'Italie, 69364, Lyon, France. .,Hospices Civils de Lyon, Lyon, France.
| | - Sylvain de Breyne
- CIRI, International Center for Infectiology Research, Université de Lyon, 46 Allée d'Italie, 69364, Lyon, France. .,Inserm, U1111, 46 Allée d'Italie, 69364, Lyon, France. .,Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France. .,Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69364, Lyon, France. .,CNRS, UMR5308, 46 Allée d'Italie, 69364, Lyon, France.
| |
Collapse
|
21
|
Fröhlich A, Rojas-Araya B, Pereira-Montecinos C, Dellarossa A, Toro-Ascuy D, Prades-Pérez Y, García-de-Gracia F, Garcés-Alday A, Rubilar PS, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R. DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:719-30. [PMID: 27012366 DOI: 10.1016/j.bbagrm.2016.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
DEAD-box RNA helicase DDX3 is a host factor essential for HIV-1 replication and thus, a potential target for novel therapies aimed to overcome viral resistance. Previous studies have shown that DDX3 promotes nuclear export and translation of the HIV-1 unspliced mRNA. Although the function of DDX3 during both processes requires its catalytic activity, it is unknown whether other domains surrounding the helicase core are involved. Here, we show the involvement of the N- and C-terminal domains of DDX3 in the regulation of HIV-1 unspliced mRNA translation. Our results suggest that the intrinsically disordered N-terminal domain of DDX3 regulates its functions in translation by acting prior to the recruitment of the 43S pre-initiation complex onto the viral 5'-UTR. Interestingly, this regulation was conserved in HIV-2 and was dependent on the CRM1-dependent nuclear export pathway suggesting a role of the RNA helicase in interconnecting nuclear export with ribosome recruitment of the viral unspliced mRNA. This specific function of DDX3 during HIV gene expression could be exploited as an alternative target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Alvaro Fröhlich
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Camila Pereira-Montecinos
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Alessandra Dellarossa
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Daniela Toro-Ascuy
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Francisco García-de-Gracia
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Andrea Garcés-Alday
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Paulina S Rubilar
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111 Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111 Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
22
|
Pachulska-Wieczorek K, Błaszczyk L, Biesiada M, Adamiak RW, Purzycka KJ. The matrix domain contributes to the nucleic acid chaperone activity of HIV-2 Gag. Retrovirology 2016; 13:18. [PMID: 26987314 PMCID: PMC4794849 DOI: 10.1186/s12977-016-0245-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/17/2016] [Indexed: 01/17/2023] Open
Abstract
Background The Gag polyprotein is a multifunctional regulator of retroviral replication and major structural component of immature virions. The nucleic acid chaperone (NAC) activity is considered necessary to retroviral Gag functions, but so far, NAC activity has only been confirmed for HIV-1 and RSV Gag polyproteins. The nucleocapsid (NC) domain of Gag is proposed to be crucial for interactions with nucleic acids and NAC activity. The major function of matrix (MA) domain is targeting and binding of Gag to the plasma membrane but MA can also interact with RNA and influence NAC activity of Gag. Here, we characterize RNA binding properties and NAC activity of HIV-2 MA and Gag, lacking p6 domain (GagΔp6) and discuss potential contribution of NC and MA domains to HIV-2 GagΔp6 functions and interactions with RNA. Results We found that HIV-2 GagΔp6 is a robust nucleic acid chaperone. HIV-2 MA protein promotes nucleic acids aggregation and tRNALys3 annealing in vitro. The NAC activity of HIV-2 NC is affected by salt which is in contrast to HIV-2 GagΔp6 and MA. At a physiological NaCl concentration the tRNALys3 annealing activity of HIV-2 GagΔp6 or MA is higher than HIV-2 NC. The HIV-2 NC and GagΔp6 show strong binding to the packaging signal (Ψ) of HIV-2 RNA and preference for the purine-rich sequences, while MA protein binds mainly to G residues without favouring Ψ RNA. Moreover, HIV-2 GagΔp6 and NC promote HIV-2 RNA dimerization while our data do not support MA domain participation in this process in vitro. Conclusions We present that contrary to HIV-1 MA, HIV-2 MA displays NAC activity and we propose that MA domain may enhance the activity of HIV-2 GagΔp6. The role of the MA domain in the NAC activity of Gag may differ significantly between HIV-1 and HIV-2. The HIV-2 NC and MA interactions with RNA are not equivalent. Even though both NC and MA can facilitate tRNALys3 annealing, MA does not participate in RNA dimerization in vitro. Our data on HIV-2 indicate that the role of the MA domain in the NAC activity of Gag differs not only between, but also within, retroviral genera. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Marcin Biesiada
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.,Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Katarzyna J Purzycka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
23
|
Rojas-Araya B, Ohlmann T, Soto-Rifo R. Translational Control of the HIV Unspliced Genomic RNA. Viruses 2015; 7:4326-51. [PMID: 26247956 PMCID: PMC4576183 DOI: 10.3390/v7082822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/18/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional control in both HIV-1 and HIV-2 is a highly regulated process that commences in the nucleus of the host infected cell and finishes by the expression of viral proteins in the cytoplasm. Expression of the unspliced genomic RNA is particularly controlled at the level of RNA splicing, export, and translation. It appears increasingly obvious that all these steps are interconnected and they result in the building of a viral ribonucleoprotein complex (RNP) that must be efficiently translated in the cytosolic compartment. This review summarizes our knowledge about the genesis, localization, and expression of this viral RNP.
Collapse
Affiliation(s)
- Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France.
- Inserm, U1111, Lyon 69007, France.
- Ecole Normale Supérieure de Lyon, Lyon 69007, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69007, France.
- CNRS, UMR5308, Lyon 69007, France.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
24
|
Herzig E, Hizi A. The importance of glutamine 294 that affects the ribonuclease H activity of the reverse transcriptase of HIV-2 to viral replication. Virology 2015; 483:13-20. [PMID: 25965791 DOI: 10.1016/j.virol.2015.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022]
Abstract
Most currently-used antiretroviral drugs inhibit the reverse-transcriptase (RT) of HIV. The differences between HIV-1 and HIV-2 RTs explain why some of the anti-HIV-1 drugs are not effective against HIV-2. One major difference between the two HIV RTs is the low ribonuclease H (RNase H) activity of HIV-2 RT relative to HIV-1 RT. Our previous studies showed that residue Gln294 in HIV-2 RT accounts for this RNase H reduction (the comparable residue in HIV-1 RT is Pro294), as the Q294P mutant of HIV-2 RT has ~10-fold higher RNase H. Here, we show that infectious HIV-2 cannot bear the replacement of the RT's Gln294 by the HIV-1 RT Pro counterpart, as it results in substantially reduced HIV-2 replication and fast reversions to the wild-type Gln294 virus. These findings prove the critical role of maintaining low RT-associated RNase H activity in HIV-2. In contrast, HIV-1 can tolerate an about 10-fold higher RNase H.
Collapse
Affiliation(s)
- Eytan Herzig
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69974, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69974, Israel.
| |
Collapse
|
25
|
Peña N, Carrillo D, Muñoz JP, Chnaiderman J, Urzúa U, León O, Tornesello ML, Corvalán AH, Soto-Rifo R, Aguayo F. Tobacco smoke activates human papillomavirus 16 p97 promoter and cooperates with high-risk E6/E7 for oxidative DNA damage in lung cells. PLoS One 2015; 10:e0123029. [PMID: 25830243 PMCID: PMC4382149 DOI: 10.1371/journal.pone.0123029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
We have previously shown a functional interaction between human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins and cigarette smoke condensate (CSC) in lung cells suggesting cooperation during carcinogenesis. The molecular mechanisms of such interaction, however, remain to be elucidated. Here we first present evidence showing that cigarette smoke condensate (CSC) has the ability to activate the HPV-16 p97 promoter by acting on the long control region (LCR) in lung epithelial cells. Interestingly, we observed that CSC-induced p97 promoter activation occurs in a dose-dependent manner in both tumor A-549 (lung adenocarcinoma), H-2170 (bronchial carcinoma), SiHa or Hela (cervical carcinoma) cells but not in non-tumor BEAS-2B (bronchial) or NL-20 (alveolar) lung cells unless they ectopically expressed the HPV-16 E6 and E7 oncogenes. In addition, we also observed a significant increase of primary DNA damage in tumor and non-tumor CSC-treated lung cells expressing HPV-16 E6 and E7 oncogenes suggesting a cooperative effect in this process, even though the contribution of E7 was significantly higher. Taken together, our results strongly suggest that tobacco smoke is able to induce the activation of the HPV-16 p97 promoter in cooperation with HPV-16 E6 and E7 oncogenes that, in turn, sensitize lung cells to tobacco smoke-induced DNA damage.
Collapse
Affiliation(s)
- Nelson Peña
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego Carrillo
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan P. Muñoz
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jonás Chnaiderman
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ulises Urzúa
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Oscar León
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Maria L. Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"—IRCCS, Naples, Italy
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS) and UC—Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisco Aguayo
- Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
26
|
Thymic HIV-2 infection uncovers posttranscriptional control of viral replication in human thymocytes. J Virol 2014; 89:2201-8. [PMID: 25473058 DOI: 10.1128/jvi.03047-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED A unique HIV-host equilibrium exists in untreated HIV-2-infected individuals. This equilibrium is characterized by low to undetectable levels of viremia throughout the disease course, despite the establishment of disseminated HIV-2 reservoirs at levels comparable to those observed in untreated HIV-1 infection. Although the clinical spectrum is similar in the two infections, HIV-2 infection is associated with a much lower rate of CD4 T-cell decline and has a limited impact on the mortality of infected adults. Here we investigated HIV-2 infection of the human thymus, the primary organ for T-cell production. Human thymic tissue and suspensions of total or purified CD4 single-positive thymocytes were infected with HIV-2 or HIV-1 primary isolates using either CCR5 or CXCR4 coreceptors. We found that HIV-2 infected both thymic organ cultures and thymocyte suspensions, as attested to by the total HIV DNA and cell-associated viral mRNA levels. Nevertheless, thymocytes featured reduced levels of intracellular Gag viral protein, irrespective of HIV-2 coreceptor tropism and cell differentiation stage, in agreement with the low viral load in culture supernatants. Our data show that HIV-2 is able to infect the human thymus, but the HIV-2 replication cycle in thymocytes is impaired, providing a new model to identify therapeutic targets for viral replication control. IMPORTANCE HIV-1 infects the thymus, leading to a decrease in CD4 T-cell production that contributes to the characteristic CD4 T-cell loss. HIV-2 infection is associated with a very low rate of progression to AIDS and is therefore considered a unique naturally occurring model of attenuated HIV disease. HIV-2-infected individuals feature low to undetectable plasma viral loads, in spite of the numbers of circulating infected T cells being similar to those found in patients infected with HIV-1. We assessed, for the first time, the direct impact of HIV-2 infection on the human thymus. We show that HIV-2 is able to infect the thymus but that the HIV-2 replication cycle in thymocytes is impaired. We propose that this system will be important to devise immunotherapies that target viral production, aiding the design of future therapeutic strategies for HIV control.
Collapse
|
27
|
Ohlmann T, Mengardi C, López-Lastra M. Translation initiation of the HIV-1 mRNA. ACTA ACUST UNITED AC 2014; 2:e960242. [PMID: 26779410 DOI: 10.4161/2169074x.2014.960242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 12/17/2022]
Abstract
Translation initiation of the full-length mRNA of the human immunodeficiency virus can occur via several different mechanisms to maintain production of viral structural proteins throughout the replication cycle. HIV-1 viral protein synthesis can occur by the use of both a cap-dependant and IRES-driven mechanism depending on the physiological conditions of the cell and the status of the ongoing infection. For both of these mechanisms there is a need for several viral and cellular co-factors for optimal translation of the viral mRNA. In this review we will describe the mechanism used by the full-length mRNA to initiate translation highlighting the role of co-factors within this process. A particular emphasis will be given to the role of the DDX3 RNA helicase in HIV-1 mRNA translation initiation.
Collapse
Affiliation(s)
- Théophile Ohlmann
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Chloé Mengardi
- CIRI; International Center for Infectiology Research; Université de Lyon; Lyon, France; Inserm; Lyon, France; Ecole Normale Supérieure de Lyon; Lyon, France; Université Lyon 1; Center International de Recherche en Infectiologie; Lyon, France; CNRS; Lyon, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular; Instituto Milenio de Inmunología e Inmunoterapia; Centro de Investigaciones Médicas; Escuela de Medicina; Pontificia Universidad Católica de Chile ; Santiago, Chile
| |
Collapse
|
28
|
Soto-Rifo R, Valiente-Echeverria F, Rubilar PS, Garcia-de-Gracia F, Ricci EP, Limousin T, Décimo D, Mouland AJ, Ohlmann T. HIV-2 genomic RNA accumulates in stress granules in the absence of active translation. Nucleic Acids Res 2014; 42:12861-75. [PMID: 25352557 PMCID: PMC4227750 DOI: 10.1093/nar/gku1017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood. Here, we present evidence showing that HIV-2 expression induces stress granule assembly in cultured cells. This contrasts with HIV-1, which interferes with stress granules assembly even upon induced cellular stress. Moreover, we observed that the RNA-binding protein and stress granules assembly factor TIAR associates with the gRNA to form a TIAR-HIV-2 ribonucleoprotein (TH2RNP) complex localizing diffuse in the cytoplasm or aggregated in stress granules. Although the assembly of TH2RNP in stress granules did not require the binding of the Gag protein to the gRNA, we observed that increased levels of Gag promoted both translational arrest and stress granule assembly. Moreover, HIV-2 Gag also localizes to stress granules in the absence of a ‘packageable’ gRNA. Our results indicate that the HIV-2 gRNA is compartmentalized in stress granules in the absence of active translation prior to being selected for packaging by the Gag polyprotein.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 8389100, Santiago, Chile
| | - Fernando Valiente-Echeverria
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada Department of Medicine, Division of Experimental Medicine and Department of Microbiology & Immunology, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Paulina S Rubilar
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Francisco Garcia-de-Gracia
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 8389100, Santiago, Chile
| | - Emiliano P Ricci
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Taran Limousin
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Didier Décimo
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada Department of Medicine, Division of Experimental Medicine and Department of Microbiology & Immunology, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Théophile Ohlmann
- INSERM U1111, CIRI, Lyon, F-69364, France Ecole Normale Supérieure de Lyon, Lyon, F-69364, France
| |
Collapse
|
29
|
Burugu S, Daher A, Meurs EF, Gatignol A. HIV-1 translation and its regulation by cellular factors PKR and PACT. Virus Res 2014; 193:65-77. [PMID: 25064266 DOI: 10.1016/j.virusres.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
The synthesis of proteins from viral mRNA is the first step towards viral assembly. Viruses are dependent upon the cellular translation machinery to synthesize their own proteins. The synthesis of proteins from the human immunodeficiency virus (HIV) type 1 and 2 RNAs utilize several alternative mechanisms. The regulation of viral protein production requires a constant interplay between viral requirements and the cell response to viral infection. Among the antiviral cell responses, the interferon-induced RNA activated protein kinase, PKR, regulates the cellular and viral translation. During HIV-1 infection, PKR activation is highly regulated by viral and cellular factors. The cellular TAR RNA Binding Protein, TRBP, the Adenosine Deaminase acting on RNA, ADAR1, and the PKR Activator, PACT, play important roles. Recent data show that PACT changes its function from activator to inhibitor in HIV-1 infected cells. Therefore, HIV-1 has evolved to replicate in cells in which TRBP, ADAR1 and PACT prevent PKR activation to allow efficient viral protein synthesis. This proper translation will initiate the assembly of viral particles.
Collapse
Affiliation(s)
- Samantha Burugu
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Aïcha Daher
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Eliane F Meurs
- Institut Pasteur, Department of Virology, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Anne Gatignol
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
30
|
Amorim R, Costa SM, Cavaleiro NP, da Silva EE, da Costa LJ. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease. PLoS One 2014; 9:e88619. [PMID: 24520405 PMCID: PMC3919812 DOI: 10.1371/journal.pone.0088619] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.
Collapse
Affiliation(s)
- Raquel Amorim
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sara Mesquita Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pereira Cavaleiro
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Elias da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Instituto de Microbiologia, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Plank TDM, Whitehurst JT, Kieft JS. Cell type specificity and structural determinants of IRES activity from the 5' leaders of different HIV-1 transcripts. Nucleic Acids Res 2013; 41:6698-714. [PMID: 23661682 PMCID: PMC3711417 DOI: 10.1093/nar/gkt358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing.
Collapse
Affiliation(s)
- Terra-Dawn M Plank
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, Aurora, Colorado, 80045, USA
| | | | | |
Collapse
|
32
|
Soto-Rifo R, Rubilar PS, Ohlmann T. The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA. Nucleic Acids Res 2013; 41:6286-99. [PMID: 23630313 PMCID: PMC3695493 DOI: 10.1093/nar/gkt306] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here, we show a novel molecular mechanism promoted by the DEAD-box RNA helicase DDX3 for translation of the HIV-1 genomic RNA. This occurs through the adenosine triphosphate-dependent formation of a translation initiation complex that is assembled at the 5′ m7GTP cap of the HIV-1 mRNA. This is due to the property of DDX3 to substitute for the initiation factor eIF4E in the binding of the HIV-1 m7GTP 5′ cap structure where it nucleates the formation of a core DDX3/PABP/eIF4G trimeric complex on the HIV-1 genomic RNA. By using RNA fluorescence in situ hybridization coupled to indirect immunofluorescence, we further show that this viral ribonucleoprotein complex is addressed to compartmentalized cytoplasmic foci where the translation initiation complex is assembled.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon 69634, France.
| | | | | |
Collapse
|
33
|
Soto-Rifo R, Ohlmann T. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:369-85. [PMID: 23606618 DOI: 10.1002/wrna.1165] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DDX3 belongs to the DEAD-box proteins, a large family of ATP-dependent RNA helicases that participate in all aspects of RNA metabolism. Human DDX3 is a component of several messenger ribonucleoproteins that are found in the spliceosome, the export and the translation initiation machineries but also in different cytoplasmic mRNA granules. DDX3 has been involved in several cellular processes such as cell cycle progression, apoptosis, cancer, innate immune response, and also as a host factor for viral replication. Interestingly, not all these functions require the catalytic activities of DDX3 and thus, the precise roles of this apparently multifaceted protein remain largely obscure. The aim of this review is to provide a rapid and critical overview of the structure and functions of DDX3 with a particular emphasis on its role during mRNA metabolism.
Collapse
Affiliation(s)
- Ricardo Soto-Rifo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
34
|
Dornseifer S, Sczakiel G. Computational identification of biologically functional non-hairpin GC-helices in human Argonaute mRNA. BMC Bioinformatics 2013; 14:122. [PMID: 23574946 PMCID: PMC3626786 DOI: 10.1186/1471-2105-14-122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/25/2013] [Indexed: 02/02/2023] Open
Abstract
Background Perfectly formed duplex elements in RNA occur within folding units, often as a part of hairpin motifs which can be reliably predicted by various RNA folding algorithms. Double helices with consecutive Watson-Crick base-pairing may also be formed between distant RNA segments thereby facilitating long-range interactions of long-chain RNA that may be biologically functional. Here we addressed the potential formation of RNA duplex motifs by long-range RNA-RNA interactions of distantly located matching sequence elements of a single long-chain RNA. Results We generated a Python-based software tool that identifies consecutive RNA duplex elements at any given length and nucleotide content formed by distant sequences. The software tool, dubbed RNAslider, is built on the theoretical RNA structure prediction algorithm Mfold. Source code and sample data sets are available on demand. We found that a small ratio of human genes including the Argonaute (Ago)-like gene family encode mRNAs containing highly GC-rich non-hairpin duplex elements (GC-helix) of equal to or more than 8 base pairs in length and we provide experimental evidence for their biological significance. Conclusion GC-helices are observed preferentially within the 5′-region of mRNAs in an evolutionarily conserved fashion indicating their potential biological role. This view is supported experimentally by post-transcriptional regulation of gene expression of a fusion transcript containing 5′-sequences of human mRNAAgo2 harbouring GC-helices and down-stream coding sequences of Renilla luciferase.
Collapse
Affiliation(s)
- Simon Dornseifer
- Institut für Molekulare Medizin, Center for Structural and Cell Biology in Medicine (CSCM), Universität zu Lübeck, Ratzeburger Allee 160, Lübeck D-23538, Germany
| | | |
Collapse
|
35
|
Valiente-Echeverría F, Vallejos M, Monette A, Pino K, Letelier A, Huidobro-Toro JP, Mouland AJ, López-Lastra M. A cis-acting element present within the Gag open reading frame negatively impacts on the activity of the HIV-1 IRES. PLoS One 2013; 8:e56962. [PMID: 23451120 PMCID: PMC3581557 DOI: 10.1371/journal.pone.0056962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
Translation initiation from the human immunodeficiency virus type-1 (HIV-1) mRNA can occur through a cap or an IRES dependent mechanism. Cap-dependent translation initiation of the HIV-1 mRNA can be inhibited by the instability element (INS)-1, a cis-acting regulatory element present within the gag open reading frame (ORF). In this study we evaluated the impact of the INS-1 on HIV-1 IRES-mediated translation initiation. Using heterologous bicistronic mRNAs, we show that the INS-1 negatively impact on HIV-1 IRES-driven translation in in vitro and in cell-based experiments. Additionally, our results show that the inhibitory effect of the INS-1 is not general to all IRESes since it does not hinder translation driven by the HCV IRES. The inhibition by the INS-1 was partially rescued in cells by the overexpression of the viral Rev protein or hnRNPA1.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
36
|
de Breyne S, Soto-Rifo R, López-Lastra M, Ohlmann T. Translation initiation is driven by different mechanisms on the HIV-1 and HIV-2 genomic RNAs. Virus Res 2012; 171:366-81. [PMID: 23079111 DOI: 10.1016/j.virusres.2012.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 02/08/2023]
Abstract
The human immunodeficiency virus (HIV) unspliced full length genomic RNA possesses features of an eukaryotic cellular mRNA as it is capped at its 5' end and polyadenylated at its 3' extremity. This genomic RNA is used both for the production of the viral structural and enzymatic proteins (Gag and Pol, respectively) and as genome for encapsidation in the newly formed viral particle. Although both of these processes are critical for viral replication, they should be controlled in a timely manner for a coherent progression into the viral cycle. Some of this regulation is exerted at the level of translational control and takes place on the viral 5' untranslated region and the beginning of the gag coding region. In this review, we have focused on the different initiation mechanisms (cap- and internal ribosome entry site (IRES)-dependent) that are used by the HIV-1 and HIV-2 genomic RNAs and the cellular and viral factors that can modulate their expression. Interestingly, although HIV-1 and HIV-2 share many similarities in the overall clinical syndrome they produce, in some aspects of their replication cycle, and in the structure of their respective genome, they exhibit some differences in the way that ribosomes are recruited on the gag mRNA to initiate translation and produce the viral proteins; this will be discussed in the light of the literature.
Collapse
|
37
|
DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J 2012; 31:3745-56. [PMID: 22872150 DOI: 10.1038/emboj.2012.220] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/11/2012] [Indexed: 11/08/2022] Open
Abstract
Here, we have characterized a step in translation initiation of viral and cellular mRNAs that contain RNA secondary structures immediately at the vicinity of their m(7)GTP cap. This is mediated by the DEAD-box helicase DDX3 which can directly bind to the 5' of the target mRNA where it clamps the entry of eIF4F through an eIF4G and Poly A-binding protein cytoplasmic 1 (PABP) double interaction. This could induce limited local strand separation of the secondary structure to allow 43S pre-initiation complex attachment to the 5' free extremity of the mRNA. We further demonstrate that the requirement for DDX3 is highly specific to some selected transcripts, cannot be replaced or substituted by eIF4A and is only needed in the very early steps of ribosome binding and prior to 43S ribosomal scanning. Altogether, these data define an unprecedented role for a DEAD-box RNA helicase in translation initiation.
Collapse
|
38
|
de Breyne S, Chamond N, Décimo D, Trabaud MA, André P, Sargueil B, Ohlmann T. In vitrostudies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor 4F. FEBS J 2012; 279:3098-111. [DOI: 10.1111/j.1742-4658.2012.08689.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|